SmartLabs, Inc.

TEST REPORT FOR

Inline Dual Load Module, FanLinc ${ }^{\text {TM }}$ \#2475F

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.207, 15.249
and
RSS 210 Issue 8

Report No.: 92499-4

Date of issue: November 18, 2011

Testing Certificates: 803.01,803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Site Registration \& Accreditation Information 4
Summary of Results5
Conditions During Testing 5
Equipment Under Test 6
Peripheral Devices 6
FCC Part 15 Subpart C 7
15.31(e) Voltage Variations 7
15.207 AC Conducted Emissions 11
15.249(a) RF Power Output 18
-20dBc Occupied Bandwidth 23
Bandedge 27
15.249(d) Radiated Spurious Emissions 33
RSS-210 44
99 \% Bandwidth 44
Supplemental Information 48
Measurement Uncertainty 48
Emissions Test Details 48

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

SmartLabs, Inc.
16542 Millikan Ave.
Irvine, CA 92606

Representative: Chris Sy-Santos
Customer Reference Number: 11-3CS1103-01

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Dianne Dudley
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 92499

November 11, 2011
November 11, 2011

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

Site Registration \& Accreditation Information

Location	CB \#	Japan	Canada	FCC
Brea A	US0060	R-2945, C-3248 \& T-1572	3082D-1	90473

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Description	Test Procedure/Method	Results
		Pass
Voltage Variation	FCC Part 15 Subpart C Section 15.31(e)	Pass
		Pass
Conducted Emissions	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003)	
		FCC Part 15 Subpart C Section 15.249(a)
RF Power Output		Pass
	FCC Part 15 Subpart C Section 15.249	Pass
-20dBc Occupied Bandwidth		Pass
	FCC	Pass
Bandedge		
Radiated Spurious Emissions	FCC Part 15 Subpart C Section 15.249(d)	
		RSS 210 Issue 8
99\% Bandwidth		

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Inline Dual Load Module
Manuf: SmartLabs, Inc.
Model: FanLinc ${ }^{\text {TM }} \# 2475 F$
Serial: 14.8C.4A

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Suspended Ceiling Fan
Manuf: Hunter
Model: 28683-530
Serial: NA

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.31(e) Voltage Variations

Test Conditions / Setup

The EUT is placed on the wooden table lined with Styrofoam. Total height is 1.5 meter from the ground plane. Connected to the EUT is a support suspended ceiling fan.
Continuous transmit
914.92MHz-915.08MHz

EUT only operates on $120 \mathrm{Vac} / 60 \mathrm{~Hz}$.
Frequency range of measurement $=30 \mathrm{MHz}-1 \mathrm{GHz}$.
$30 \mathrm{MHz}-1000 \mathrm{MHz}$; RBW=120 kHz, VBW=120 kHz

Temperature: $17^{\circ} \mathrm{C}$, Relative Humidity: 20%
15.31(e): The supply voltage varied between 85% and 115% of the nominal rated supply voltage (120Vac), no change in the Fundamental signal level was observed.

Engineer Name: Don Nguyen
Test Equipment

Asset/Serial \#	Description	Model	Manufacturer	Cal Date	Cal Due
AN00309	Preamp	8447D	HP	$5 / 7 / 2010$	$5 / 7 / 2012$
AN01995	Biconilog Antenna	CBL6111C	Chase	$3 / 8 / 2010$	$3 / 8 / 2012$
ANP05050	Cable	RG223/U	Pasternack	$3 / 21 / 2011$	$3 / 21 / 2013$
ANP05198	Cable	8268	Belden	$12 / 21 / 2010$	$12 / 21 / 2012$
AN02672	Spectrum Analyzer	E4446A	Agilent	$8 / 9 / 2010$	$8 / 9 / 2012$

Test Setup Photos

X AXIS FRONT VIEW

X AXIS BACK VIEW

Y AXIS FRONT VIEW

Y AXIS BACK VIEW

Z AXIS FRONT VIEW

Z AXIS BACK VIEW

15.207 AC Conducted Emissions

Test Data Sheets

Test Location:	CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112	
Customer:	SmartLabs, Inc.	
Specification:	$\mathbf{1 5 . 2 0 7}$ AC Mains - Average	
Work Order \#:	$\mathbf{9 2 4 9 9}$	Date: 11/11/2011
Test Type:	Conducted Emissions	Time: 11:37:20
Equipment:	Inline Dual Load Module	Sequence\#: 13
Manufacturer:	SmartLabs, Inc.	Tested By:
Model Nguyen		120 V 60 Hz
S/N:	FanLinc	

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06085	Attenuator	SA18N10W-09	$12 / 8 / 2010$	$12 / 8 / 2012$
T2	ANP01910	Cable	RG-142	$3 / 19 / 2010$	$3 / 19 / 2012$
T3	AN02343	High Pass Filter	HE9615-150K- $50-720 B$	$1 / 4 / 2011$	$1 / 4 / 2013$
	AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$
T4	AN00848.1	50uH LISN-Line 1 (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 22 / 2011$	$3 / 22 / 2013$
	AN00848.1	50uH LISN-Line 2 $(d B)$	$3816 / 2 \mathrm{~nm}$	$3 / 22 / 2011$	$3 / 22 / 2013$

Equipment Under Test (* : EUT):

Function	Manufacturer	Model \#	S/N
Inline Dual Load Module*	SmartLabs, Inc.	FanLinc $^{\mathrm{TM}} \# 2475 \mathrm{~F}$	14.8 C .4 A
Support Devices:			
Function	Manufacturer	Model \#	S/N
Suspended Ceiling Fan	Hunter	$28683-530$	NA

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam. Total height is 1.5 meter from the ground plane. Connected to the EUT is a support suspended ceiling fan.
Continuous transmit
914.92MHz-915.08MHz

EUT only operates on $120 \mathrm{Vac} / 60 \mathrm{~Hz}$.
Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$; RBW=9 kHz, VBW=9 kHz
$17^{\circ} \mathrm{C}, 20 \%$ Relative Humidity

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Lead: L1

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Margin } \\ d B \end{gathered}$	Polar Ant
1	438.701k	38.7	+5.7	+0.1	+0.3	+0.1	+0.0	44.9	47.1	-2.2	L1
2	1.451M	37.6	+5.7	+0.1	+0.2	+0.1	+0.0	43.7	46.0	-2.3	L1
3	459.790k	38.0	+5.7	+0.1	+0.3	+0.1	+0.0	44.2	46.7	-2.5	L1
4	435.792k	38.3	+5.7	+0.1	+0.3	+0.1	+0.0	44.5	47.1	-2.6	L1
5	466.335k	37.8	+5.7	+0.1	+0.3	+0.1	+0.0	44.0	46.6	-2.6	L1
6	347.800k	40.1	+5.7	+0.1	+0.2	+0.1	+0.0	46.2	49.0	-2.8	L1
7	432.156k	38.1	+5.7	+0.1	+0.3	+0.1	+0.0	44.3	47.2	-2.9	L1
8	402.340k	38.7	+5.7	+0.1	+0.3	+0.1	+0.0	44.9	47.8	-2.9	L1
9	380.524 k	39.2	+5.7	+0.1	+0.2	+0.1	+0.0	45.3	48.3	-3.0	L1
10	267.807k	41.9	+5.7	+0.1	+0.2	+0.1	+0.0	48.0	51.2	-3.2	L1
11	167.453k	45.6	+5.7	+0.1	+0.4	+0.1	+0.0	51.9	55.1	-3.2	L1
12	411.067k	38.2	+5.7	+0.1	+0.3	+0.1	+0.0	44.4	47.6	-3.2	L1
13	388.524k	38.8	+5.7	+0.1	+0.2	+0.1	+0.0	44.9	48.1	-3.2	L1
14	456.881k	37.2	+5.7	+0.1	+0.3	+0.1	+0.0	43.4	46.7	-3.3	L1
	$446.700 \mathrm{k}$ Ave	26.2	+5.7	+0.1	+0.3	+0.1	+0.0	32.4	46.9	-14.5	L1
\wedge	446.700k	38.9	+5.7	+0.1	+0.3	+0.1	+0.0	45.1	46.9	-1.8	L1

CKC Laboratories Date: 11/11/2011 Time: 11:37:20 SmartLabs, Inc. WO\#: 92499 15.207 AC Mains - Average Test Lead: L1 120V 60Hz Sequence\#: 13 Ext ATTN: 0 dB

Sweep Data	Readings
Peak Readings	\times QP Readings
* Average Readings	$\boldsymbol{\nabla}$ Ambient
	$1-15.207$ AC Mains - Average
	$2-15.207$ AC Mains - Quasi-peak

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: SmartLabs, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#: 92499
Test Type:
Equipment:
Manufacturer:
Model:

Conducted Emissions

Inline Dual Load Module
SmartLabs, Inc.
FanLinc ${ }^{\text {TM }}$ \#2475F
Date: 11/11/2011
Time: 11:41:12
Sequence\#: 14
Tested By: Don Nguyen
120 V 60 Hz
S/N: 14.8C.4A
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06085	Attenuator	SA18N10W-09	$12 / 8 / 2010$	$12 / 8 / 2012$
T2	ANP01910	Cable	RG-142	$3 / 19 / 2010$	$3 / 19 / 2012$
T3	AN02343	High Pass Filter	HE9615-150K- $50-720 B$	$1 / 4 / 2011$	$1 / 4 / 2013$
	AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$
	AN00848.1	50 uH LISN-Line 1 $(\mathrm{~dB})$	$3816 / 2 \mathrm{~nm}$	$3 / 22 / 2011$	$3 / 22 / 2013$
T4	AN00848.1	50 uH LISN-Line 2 $(\mathrm{~dB})$	$3816 / 2 \mathrm{~nm}$	$3 / 22 / 2011$	$3 / 22 / 2013$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Inline Dual Load Module*	SmartLabs, Inc.	FanLinc $^{\text {TM }}$ \#2475F	14.8C.4A
Support Devices:			
Function	Manufacturer	Model \#	S/N
Suspended Ceiling Fan	Hunter	28683-530	NA

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam. Total height is 1.5 meter from the ground plane.
Connected to the EUT is a support suspended ceiling fan.
Continuous transmit
914.92MHz-915.08MHz

EUT only operates on $120 \mathrm{Vac} / 60 \mathrm{~Hz}$.
Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$
$150 \mathrm{kHz}-30 \mathrm{MHz} ;$ RBW $=9 \mathrm{kHz}, \mathrm{VBW}=9 \mathrm{kHz}$
$17^{\circ} \mathrm{C}, 20 \%$ Relative Humidity
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Lead: L2

| $\#$ | Freq
 MHz | Rdng
 $\mathrm{dB} \mu \mathrm{V}$ | T 1
 dB | T 2
 dB | T 3
 dB | T 4
 dB | Dist
 Table | Corr
 $\mathrm{dB} \mu \mathrm{V}$ | Spec
 $\mathrm{dB} \mu \mathrm{V}$ | Margin
 dB | Polar
 Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 265.626 k | 42.7 | +5.7 | +0.1 | +0.2 | +0.2 | +0.0 | 48.9 | 51.3 | -2.4 | L 2 |
| 2 | 355.799 k | 40.1 | +5.7 | +0.1 | +0.2 | +0.2 | +0.0 | 46.3 | 48.8 | -2.5 | L 2 |
| 3 | 1.430 M | 37.3 | +5.7 | +0.1 | +0.2 | +0.2 | +0.0 | 43.5 | 46.0 | -2.5 | L 2 |
| 4 | 301.986 k | 41.5 | +5.7 | +0.1 | +0.2 | +0.2 | +0.0 | 47.7 | 50.2 | -2.5 | L 2 |

5	196.541k	45.2	+5.7	+0.1	+0.1	+0.2	+0.0	51.3	53.8	-2.5	L2
6	214.721k	44.3	+5.7	+0.1	+0.1	+0.2	+0.0	50.4	53.0	-2.6	L2
7	243.082k	43.1	+5.7	+0.1	+0.1	+0.2	+0.0	49.2	52.0	-2.8	L2
8	327.438k	40.5	+5.7	+0.1	+0.2	+0.2	+0.0	46.7	49.5	-2.8	L2
9	331.802k	40.4	+5.7	+0.1	+0.2	+0.2	+0.0	46.6	49.4	-2.8	L2
10	$\begin{aligned} & \text { 163.090k } \\ & \text { Ave } \end{aligned}$	37.6	+5.7	+0.1	+0.5	+0.2	+0.0	44.1	55.3	-11.2	L2
\wedge	163.090k	47.7	+5.7	+0.1	+0.5	+0.2	+0.0	54.2	55.3	-1.1	L2
\wedge	160.908k	47.5	+5.7	+0.1	+0.5	+0.2	+0.0	54.0	55.4	-1.4	L2
	$258.354 \mathrm{k}$ Ave	31.6	+5.7	+0.1	$+0.2$	+0.2	+0.0	37.8	51.5	-13.7	L2
\wedge	258.354k	43.5	+5.7	+0.1	$+0.2$	+0.2	+0.0	49.7	51.5	-1.8	L2
	$\begin{aligned} & \text { 169.635k } \\ & \text { Ave } \end{aligned}$	34.2	+5.7	+0.1	+0.4	+0.2	+0.0	40.6	55.0	-14.4	L2
\wedge	169.635k	47.6	+5.7	+0.1	+0.4	+0.2	+0.0	54.0	55.0	-1.0	L2
17	$\begin{aligned} & \text { 189.269k } \\ & \text { Ave } \end{aligned}$	32.9	+5.7	+0.1	+0.2	+0.2	+0.0	39.1	54.1	-15.0	L2
\wedge	189.269k	46.1	+5.7	+0.1	$+0.2$	+0.2	+0.0	52.3	54.1	-1.8	L2
\wedge	192.905k	45.6	+5.7	+0.1	+0.2	+0.2	+0.0	51.8	53.9	-2.1	L2

CKC Laboratories Date: 11/11/2011 Time: 11:41:12 SmartLabs, Inc. WO\#: 92499 15.207 AC Mains - Average Test Lead: L2 120V 60Hz Sequence\#: 14 Ext ATTN: 0 dB

Sweep Data	Readings
Peak Readings	\times QP Readings
* Average Readings	$\boldsymbol{\nabla}$ Ambient
	$1-15.207$ AC Mains - Average
	$2-15.207$ AC Mains - Quasi-peak

Test Setup Photos

15.249(a) RF Power Output

Test Location:	CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112	
Customer:	SmartLabs, Inc.	
Specification:	$\mathbf{1 5 . 2 4 9}$ Carrier and Spurious Emissions (902-928 MHz Transmitter)	
Work Order \#:	92499	Date: 11/11/2011
Test Type:	Maximized Emissions	Time: 08:41:57
Equipment:	Inline Dual Load Module	Sequence\#: 11
Manufacturer:	SmartLabs, Inc.	Tested By: Don Nguyen
Model:	FanLinc	
SM $/ \mathrm{N}:$	14.8 C .4 A	

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447D	$5 / 7 / 2010$	$5 / 7 / 2012$
T2	AN01995	Biconilog Antenna	CBL6111C	$3 / 8 / 2010$	$3 / 8 / 2012$
T3	ANP05050	Cable	RG223/U	$3 / 21 / 2011$	$3 / 21 / 2013$
T4	ANP05198	Cable	8268	$12 / 21 / 2010$	$12 / 21 / 2012$
	AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$

Equipment Under Test (${ }^{*}=$ EUT):

Function	Manufacturer	Model \#	S/N
Inline Dual Load Module*	SmartLabs, Inc.	FanLinc $^{\mathrm{TM}} \# 2475 \mathrm{~F}$	14.8 C .4 A
Support Devices:			
Function	Manufacturer	Model \#	S/N
Suspended Ceiling Fan	Hunter	$28683-530$	NA

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam. Total height is 1.5 meter from the ground plane. Connected to the EUT is a support suspended ceiling fan.
Continuous transmit
914.92MHz-915.08MHz

EUT only operates on $120 \mathrm{Vac} / 60 \mathrm{~Hz}$.
Frequency range of measurement $=30 \mathrm{MHz}-1 \mathrm{GHz}$.
$30 \mathrm{MHz}-1000 \mathrm{MHz}$; RBW=120 kHz, VBW=120 kHz
$17^{\circ} \mathrm{C}, 20 \%$ Relative Humidity
Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Distance: 3 Meters

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	915.066 M	79.8	-27.1	+23.6	+0.5	+5.8	+0.0	82.6	94.0 X-axis	-11.4	Horiz
2	914.921 M	79.8	-27.1	+23.6	+0.5	+5.8	+0.0	82.6	94.0 X-axis	-11.4	Horiz
3	914.922 M	79.6	-27.1	+23.6	+0.5	+5.8	+0.0	82.4	94.0	-11.6	Vert
4	915.072 M	79.6	-27.1	+23.6	+0.5	+5.8	+0.0	82.4	94.0 Y-axis	-11.6	Vert

5	914.926 M	79.1	-27.1	+23.6	+0.5	+5.8	+0.0	81.9	94.0 Z-axis	-12.1	Horiz
6	915.072 M	77.7	-27.1	+23.6	+0.5	+5.8	+0.0	80.5	94.0 Z-axis	-13.5	Horiz
7	914.923 M	72.7	-27.1	+23.6	+0.5	+5.8	+0.0	75.5	94.0 Y-axis	-18.5	Horiz
8	914.927 M	72.7	-27.1	+23.6	+0.5	+5.8	+0.0	75.5	94.0 Z-axis	-18.5	Vert
9	915.068 M	72.6	-27.1	+23.6	+0.5	+5.8	+0.0	75.4	94.0 Y-axis	-18.6	Horiz
10	915.077 M	72.6	-27.1	+23.6	+0.5	+5.8	+0.0	75.4	94.0 Z-axis	-18.6	Vert
11	915.068 M	71.6	-27.1	+23.6	+0.5	+5.8	+0.0	74.4	94.0 X-axis	-19.6	Vert
12	914.928 M	71.5	-27.1	+23.6	+0.5	+5.8	+0.0	74.3	94.0 X-axis	-19.7	Vert

Test Setup Photos

X AXIS FRONT VIEW

X AXIS BACK VIEW

Y AXIS FRONT VIEW

Y AXIS BACK VIEW

Z AXIS FRONT VIEW

Z AXIS BACK VIEW

-20 dBc Occupied Bandwidth

Test Conditions / Setup

The EUT is placed on the wooden table lined with Styrofoam. Total height is 1.5 meter from the ground plane. Connected to the EUT is a support suspended ceiling fan. Continuous transmit $914.92 \mathrm{MHz}-915.08 \mathrm{MHz}$ EUT only operates on $120 \mathrm{Vac} / 60 \mathrm{~Hz}$.
Frequency range of measurement
$30 \mathrm{MHz}-1 \mathrm{GHz}$.
$30 \mathrm{MHz}-1000 \mathrm{MHz} ; \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
Temperature: $17^{\circ} \mathrm{C}$, Relative Humidity: 20%
$15.31(\mathrm{e})$: The supply voltage varied between 85% and 115% of the nominal rated supply voltage (120Vac), no change in the Fundamental signal level was observed.

Engineer Name: Don Nguyen

Test Equipment					
Asset/Serial \#	Description	Model	Manufacturer	Cal Date	Cal Due
AN00309	Preamp	8447D	HP	$5 / 7 / 2010$	$5 / 7 / 2012$
AN01995	Biconilog Antenna	CBL6111C	Chase	$3 / 8 / 2010$	$3 / 8 / 2012$
ANP05050	Cable	RG223/U	Pasternack	$3 / 21 / 2011$	$3 / 21 / 2013$
ANP05198	Cable	8268	Belden	$12 / 21 / 2010$	$12 / 21 / 2012$
AN02672	Spectrum Analyzer	E4446A	Agilent	$8 / 9 / 2010$	$8 / 9 / 2012$

Test Data

Test Setup Photos

X AXIS FRONT VIEW

X AXIS BACK VIEW

Y AXIS FRONT VIEW

Y AXIS BACK VIEW

Z AXIS FRONT VIEW

Z AXIS BACK VIEW

Bandedge

Test Conditions / Setup

The EUT is placed on the wooden table lined with Styrofoam. Total height is 1.5 meter from the ground plane. Connected to the EUT is a support suspended ceiling fan. Continuous transmit $914.92 \mathrm{MHz}-915.08 \mathrm{MHz}$ EUT only operates on $120 \mathrm{Vac} / 60 \mathrm{~Hz}$.
Frequency range of measurement
$30 \mathrm{MHz}-1 \mathrm{GHz}$.
$30 \mathrm{MHz}-1000 \mathrm{MHz} ; \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$

Temperature: $17^{\circ} \mathrm{C}$, Relative Humidity: 20%
15.31(e): The supply voltage varied between 85% and 115% of the nominal rated supply voltage (120Vac), no change in the Fundamental signal level was observed.

Engineer Name: Don Nguyen

Test Equipment

Asset/Serial \#	Description	Model	Manufacturer	Cal Date	Cal Due
AN00309	Preamp	8447D	HP	$5 / 7 / 2010$	$5 / 7 / 2012$
AN01995	Biconilog Antenna	CBL6111C	Chase	$3 / 8 / 2010$	$3 / 8 / 2012$
ANP05050	Cable	RG223/U	Pasternack	$3 / 21 / 2011$	$3 / 21 / 2013$
ANP05198	Cable	8268	Belden	$12 / 21 / 2010$	$12 / 21 / 2012$
AN02672	Spectrum Analyzer	E4446A	Agilent	$8 / 9 / 2010$	$8 / 9 / 2012$

Test Data

Center Tx on

Left TX on

Left TX off

Right TX on

Right Tx off

Test Setup Photos

X AXIS FRONT VIEW

X AXIS BACK VIEW

Y AXIS FRONT VIEW

Y AXIS BACK VIEW

Z AXIS FRONT VIEW

Z AXIS BACK VIEW

15.249(d) Radiated Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: SmartLabs, Inc.
Specification:
15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

92499

Maximized Emissions
Inline Dual Load Module
SmartLabs, Inc.
FanLinc ${ }^{\text {TM }}$ \#2475F
S/N:

Date: 11/11/2011
Time: 11:18:48
Sequence\#: 12
Tested By: Don Nguyen

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447D	$5 / 7 / 2010$	$5 / 7 / 2012$
T2	AN01995	Biconilog Antenna	CBL6111C	$3 / 8 / 2010$	$3 / 8 / 2012$
T3	ANP05050	Cable	RG223/U	$3 / 21 / 2011$	$3 / 21 / 2013$
T4	ANP05198	Cable	8268	$12 / 21 / 2010$	$12 / 21 / 2012$
T5	AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$
T6	AN00786	Preamp	83017 A	$8 / 5 / 2010$	$8 / 5 / 2012$
T7	AN00849	Horn Antenna	3115	$4 / 23 / 2010$	$4 / 23 / 2012$
T8	AN03239	Cable	$32022-2-29094 \mathrm{~K}-8 / 30 / 2011$	$8 / 30 / 2013$	
			24 TC		
T9	ANP05421	Cable	Sucoflex 104A	$2 / 12 / 2010$	$2 / 12 / 2012$
T10	AN03169	High Pass Filter	HM1155-11SS	$9 / 22 / 2011$	$9 / 22 / 2013$
T11	ANP06081	Cable	L1-PNMNM-48	$4 / 28 / 2011$	$4 / 28 / 2013$
T12	AN00314	Loop Antenna	6502	$6 / 30 / 2010$	$6 / 30 / 2012$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Inline Dual Load Module*	SmartLabs, Inc.	FanLinc $^{\mathrm{TM}}$ \#2475F	14.8C.4A
Support Devices: S/N Function Manufacturer Model \# NA Suspended Ceiling Fan Hunter $28683-530$			

Test Conditions / Notes:
The EUT is placed on the wooden table lined with Styrofoam. Total height is 1.5 meter from the ground plane. Connected to the EUT is a support suspended ceiling fan.
Continuous transmit
914.92MHz-915.08MHz

EUT only operates on $120 \mathrm{Vac} / 60 \mathrm{~Hz}$.
Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kH}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz} ; 150 \mathrm{kHz}-30 \mathrm{MHz} ;$ RBW=9 kHz, VBW=9 kHz; $30 \mathrm{MHz}-1000$
$\mathrm{MHz} ;$ RBW $=120 \mathrm{kHz}, V B W=120 \mathrm{kHz}, 1000 \mathrm{MHz}-10,000 \mathrm{MHz} ;$ RBW=1 MHz, VBW=1 MHz.
$17^{\circ} \mathrm{C}, 20 \%$ Relative Humidity
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \mathrm{T} 2 \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ \mathrm{~T} 8 \\ \mathrm{~T} 12 \\ \mathrm{~dB} \end{gathered}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
1	1830.000M	57.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +0.4 \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +2.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	+0.0	51.3	$\begin{aligned} & 54.0 \\ & \text { Z-axis } \end{aligned}$	-2.7	Horiz
2	1830.057M	56.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +0.4 \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +2.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	+0.0	50.4	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-3.6	Vert
3	2745.050M	52.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +3.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	49.6	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-4.4	Horiz
4	2745.507M	52.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +3.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	49.6	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-4.4	Vert
5	2744.707M	52.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +3.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	49.4	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-4.6	Vert
6	2745.357M	52.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +3.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	49.2	$\begin{gathered} \quad 54.0 \\ \text { Y-axis } \end{gathered}$	-4.8	Vert
7	2745.117M	52.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.3 \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +3.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	+0.0	49.1	$\begin{gathered} \text { 54.0 } \\ \text { Z-axis } \end{gathered}$	-4.9	Horiz
8	2745.000M	51.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +3.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	48.3	$\begin{gathered} \quad 54.0 \\ \text { Z-axis } \end{gathered}$	-5.7	Horiz
9	1830.067M	54.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +2.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	48.1	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-5.9	Vert
10	2745.017M	50.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.3 \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +3.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	+0.0	47.8	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-6.2	Horiz
11	1830.067M	53.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +0.4 \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +2.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$+0.0$	46.7	$\begin{aligned} & \text { 54.0 } \\ & \text { Z-axis } \end{aligned}$	-7.3	Vert

12	2744.967M	49.0	+0.0	${ }^{+0.0}$	+0.0		+0.0	46.0	$\begin{array}{r} 54.0 \\ \mathrm{X} \text {-axis } \end{array}$	-8.0	Vert
			+0.0	-37.8	+29.3	+0.4					
			+1.4	+0.3	+3.4	+0.0					
13	1829.967M	52.0	+0.0	+0.0	+0.0	+0.0	+0.0	45.5	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-8.5	Horiz
			+0.0	-38.2	+27.2	+0.3					
			+1.0	+0.4	+2.8	+0.0					
14	1830.050M	52.0	+0.0	+0.0	+0.0	+0.0	+0.0	45.5	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-8.5	Horiz
			+0.0	-38.2	+27.2	+0.3					
			+1.0	+0.4	+2.8	+0.0					
15	2745.067M	47.8	+0.0	+0.0	+0.0	+0.0	$+0.0$	44.8	$\begin{gathered} 54.0 \\ \text { Z-axis } \end{gathered}$	-9.2	Vert
			+0.0	-37.8	+29.3	+0.4					
			+1.4	+0.3	+3.4	+0.0					
16	5490.000M	38.6	+0.0	+0.0	+0.0	+0.0	+0.0	44.3	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-9.7	Vert
			+0.0	-36.9	+34.4	+0.6					
			+2.0	+0.2	+5.4	+0.0					
17	5489.967M	38.5	+0.0	+0.0	+0.0	+0.0	+0.0	44.2	$\begin{gathered} 54.0 \\ \text { X-axis } \end{gathered}$	-9.8	Vert
			+0.0	-36.9	+34.4	+0.6					
			+2.0	+0.2	+5.4	+0.0					
18	5490.067M	38.2	+0.0	+0.0	+0.0	+0.0	+0.0	43.9	$\begin{gathered} 54.0 \\ \text { Z-axis } \end{gathered}$	-10.1	Horiz
			+0.0	-36.9	+34.4	+0.6					
			+2.0	+0.2	+5.4	+0.0					
19	5490.067M	37.9	+0.0	+0.0	+0.0	+0.0	+0.0	43.6	$\begin{gathered} 54.0 \\ \text { Z-axis } \end{gathered}$	-10.4	Vert
			+0.0	-36.9	+34.4	+0.6					
			+2.0	+0.2	+5.4	+0.0					
20	4575.000M	40.7	+0.0	+0.0	+0.0	+0.0	+0.0	43.4	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-10.6	Vert
			+0.0	-37.2	+32.5	+0.5					
			+1.9	+0.3	+4.7	+0.0					
21	5490.017M	37.2	+0.0	+0.0	+0.0	+0.0	$+0.0$	42.9	$\begin{gathered} 54.0 \\ \text { X-axis } \end{gathered}$	-11.1	Horiz
			+0.0	-36.9	+34.4	+0.6					
			+2.0	+0.2	+5.4	+0.0					
22	3660.067M	42.1	+0.0	+0.0	+0.0	+0.0	+0.0	42.6	$\begin{gathered} 54.0 \\ \text { Z-axis } \end{gathered}$	-11.4	Horiz
			+0.0	-37.4	+31.3	+0.4					
			+1.7	+0.3	+4.2	+0.0					
23	3660.000M	41.9	+0.0	+0.0	+0.0	+0.0	+0.0	42.4	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-11.6	Vert
			+0.0	-37.4	+31.3	+0.4					
			+1.7	+0.3	+4.2	+0.0					
24	4574.967M	39.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.2	$\begin{gathered} 54.0 \\ \text { X-axis } \end{gathered}$	-11.8	Vert
			+0.0	-37.2	+32.5	+0.5					
			+1.9	+0.3	+4.7	+0.0					
25	3660.067M	41.6	+0.0	+0.0	+0.0	+0.0	+0.0	42.1	$\begin{gathered} 54.0 \\ \text { Z-axis } \end{gathered}$	-11.9	Vert
			+0.0	-37.4	+31.3	+0.4					
			+1.7	+0.3	+4.2	+0.0					
26	4575.067M	39.3	+0.0	+0.0	+0.0	+0.0	+0.0	42.0	$\begin{gathered} 54.0 \\ \text { Z-axis } \end{gathered}$	-12.0	Vert
			+0.0	-37.2	+32.5	+0.5					
			+1.9	+0.3	+4.7	+0.0					
27	4575.017M	38.8	+0.0	+0.0	+0.0	+0.0	+0.0	41.5	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-12.5	Horiz
			+0.0	-37.2	+32.5	+0.5					
			+1.9	+0.3	+4.7	+0.0					
28	4575.000M	38.8	+0.0	+0.0	+0.0	+0.0	+0.0	41.5	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-12.5	Horiz
			+0.0	-37.2	+32.5	+0.5					
			+1.9	+0.3	+4.7	+0.0					

29	230.010 M	46.9	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	33.2	$\begin{gathered} \hline 46.0 \\ \text { Z-axis } \end{gathered}$	-12.8	Horiz
30	899.990M	30.6	$\begin{array}{r} -27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.3 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	33.1	$\begin{gathered} 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-12.9	Horiz
31	3660.000M	40.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.3 \\ +4.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-13.1	Horiz
32	230.035M	46.5	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	32.8	$\begin{gathered} \quad 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-13.2	Horiz
33	110.585M	44.8	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	30.0	$\begin{aligned} & 43.5 \\ & \mathrm{X} \text {-axis } \end{aligned}$	-13.5	Horiz
34	35.000 M	36.7	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+16.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	26.4	$\begin{gathered} \hline 40.0 \\ \text { Z-axis } \end{gathered}$	-13.6	Vert
35	5490.000 M	34.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.9 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \\ +5.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} \quad 54.0 \\ \text { Y-axis } \end{gathered}$	-13.7	Horiz
36	3659.967M	39.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.3 \\ +4.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	40.0	$\begin{aligned} & \quad 54.0 \\ & \mathrm{X} \text {-axis } \end{aligned}$	-14.0	Vert
37	286.160M	43.2	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+13.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-14.1	Horiz
38	373.030M	40.3	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} \quad 46.0 \\ \text { Z-axis } \end{gathered}$	-14.3	Horiz
39	4575.067M	36.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.5 \\ +4.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{aligned} & \text { 54.0 } \\ & \text { Z-axis } \end{aligned}$	-14.4	Horiz
40	900.000 M	28.5	$\begin{array}{r} -27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+5.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} \hline 46.0 \\ \text { Z-axis } \end{gathered}$	-15.0	Horiz
41	295.060M	42.2	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+13.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+3.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-15.0	Horiz
42	900.000 M	28.5	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+5.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 46.0 \\ \text { Y-axis } \end{gathered}$	-15.0	Vert
43	3660.017M	38.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.3 \\ +4.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-15.0	Horiz
44	900.000M	27.8	$\begin{array}{r} -27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+5.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} \quad 46.0 \\ \text { Z-axis } \end{gathered}$	-15.7	Vert
45	900.000 M	26.3	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	28.8	$\begin{gathered} 46.0 \\ \text { Y-axis } \end{gathered}$	-17.2	Horiz

Page 36 of 49

46	192.485M	42.3	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+9.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	26.2	$\begin{aligned} & 43.5 \\ & \text { X-axis } \end{aligned}$	-17.3	Horiz
47	690.010M	29.4	-27.2	+20.9	+0.5	+5.0	$+0.0$	28.6	$\begin{gathered} 46.0 \\ \text { X-axis } \end{gathered}$	-17.4	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
48	192.485M	41.8	-27.7	+9.0	+0.2	+2.4	+0.0	25.7	$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-17.8	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
49	690.000M	28.6	-27.2	+20.9	+0.5	+5.0	+0.0	27.8	$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-18.2	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
50	230.005M	40.5	-27.8	+11.3	+0.2	+2.6	$+0.0$	26.8	$\begin{gathered} 46.0 \\ \text { X-axis } \end{gathered}$	-19.2	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
51	373.560M	35.3	-27.8	+15.5	+0.3	+3.4	+0.0	26.7	$\begin{gathered} 46.0 \\ \text { X-axis } \end{gathered}$	-19.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
52	295.010M	37.9	-27.8	+13.3	+0.2	+3.1	+0.0	26.7	$\begin{gathered} \hline 46.0 \\ \text { Z-axis } \end{gathered}$	-19.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
53	690.000M	27.2	-27.2	+20.9	+0.5	+5.0	$+0.0$	26.4	$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-19.6	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
54	110.000M	38.4	-27.8	+11.0	+0.1	+1.8	+0.0	23.5	$\begin{gathered} \quad 43.5 \\ \text { Z-axis } \end{gathered}$	-20.0	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
55	230.000M	39.6	-27.8	+11.3	+0.2	+2.6	+0.0	25.9	$\begin{gathered} 46.0 \\ \text { Y-axis } \end{gathered}$	-20.1	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
56	373.600M	33.9	-27.8	+15.5	+0.3	+3.4	+0.0	25.3	$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-20.7	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
57	381.220M	33.1	-27.9	+15.7	+0.3	+3.5	+0.0	24.7	$\begin{gathered} 46.0 \\ \text { X-axis } \end{gathered}$	-21.3	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
58	401.220M	32.4	-27.9	+16.2	+0.3	+3.6	+0.0	24.6	$\begin{gathered} \hline 46.0 \\ \text { X-axis } \end{gathered}$	-21.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
59	390.790M	32.8	-27.9	+15.9	+0.3	+3.5	+0.0	24.6	$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-21.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
60	690.000M	25.4	-27.2	+20.9	+0.5	+5.0	+0.0	24.6	$\begin{gathered} 46.0 \\ \text { Y-axis } \end{gathered}$	-21.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
61	295.070M	35.7	-27.8	+13.3	+0.2	+3.1	+0.0	24.5	$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-21.5	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
62	690.000M	25.1	-27.2	+20.9	+0.5	+5.0	+0.0	24.3	Y-axis	-21.7	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					

63	218.495 M	38.8	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+10.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	24.3	$\begin{gathered} 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-21.7	Vert
64	230.000 M	37.6	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	23.9	$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-22.1	Vert
65	390.050M	31.8	$\begin{array}{r} \hline-27.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	23.6	$\begin{gathered} \hline 46.0 \\ \text { Z-axis } \end{gathered}$	-22.4	Horiz
66	372.220 M	32.0	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	23.3	$\begin{gathered} \quad 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-22.7	Vert
67	230.000 M	36.8	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	23.1	$\begin{gathered} 46.0 \\ \text { Y-axis } \end{gathered}$	-22.9	Horiz
68	392.720M	31.1	$\begin{array}{r} -27.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+16.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	23.1	$\begin{gathered} 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-22.9	Vert
69	390.810M	30.8	$\begin{array}{r} -27.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	22.6	$\begin{gathered} 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-23.4	Horiz
70	110.000 M	34.9	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	20.0	$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-23.5	Horiz
71	35.160 M	26.6	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+16.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	16.2	$\begin{gathered} \quad 40.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-23.8	Horiz
72	1.411 M	31.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +8.9 \\ & \hline \end{aligned}$	-40.0	0.7	$\begin{gathered} 24.6 \\ \text { Y-axis } \end{gathered}$	-23.9	Paral
73	192.485M	34.6	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	18.5	$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-25.0	Vert
74	192.880M	34.4	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} 43.5 \\ \text { Y-axis } \end{gathered}$	-25.2	Horiz
75	35.000 M	24.9	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+16.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} \hline 40.0 \\ \text { Z-axis } \end{gathered}$	-25.4	Horiz
76	286.400 M	31.3	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+13.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-26.0	Vert
77	192.880M	33.5	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{aligned} & 43.5 \\ & \text { Y-axis } \end{aligned}$	-26.1	Vert
78	185.595M	33.6	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} 43.5 \\ \mathrm{X} \text {-axis } \end{gathered}$	-26.1	Vert
79	286.160M	31.1	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+13.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	19.8	$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-26.2	Vert

Page 38 of 49

80	197.945M	32.4	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	16.4	$\begin{array}{r} 43.5 \\ \mathrm{X} \text {-axis } \end{array}$	-27.1	Vert
81	295.000 M	27.6	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+13.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	16.4	$\begin{gathered} 46.0 \\ \text { Y-axis } \end{gathered}$	-29.6	Vert
82	1.860M	28.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0	-2.9	$\begin{gathered} 29.5 \\ \text { Y-axis } \end{gathered}$	-32.4	Paral
83	1.765 M	26.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0		$\begin{aligned} & 29.5 \\ & \text { Z-axis } \end{aligned}$	-34.4	Paral
84	1.742 M	25.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0	-5.7	$\begin{aligned} & 29.5 \\ & \text { Y-axis } \end{aligned}$	-35.2	Perpe
85	1.700M	16.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +8.9 \\ & \hline \end{aligned}$	-40.0	-14.0	$\begin{gathered} 22.9 \\ \text { Z-axis } \end{gathered}$	-36.9	Perpe
86	185.000k	55.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +8.5 \\ & \hline \end{aligned}$	-80.0	-15.6	$\begin{gathered} 22.3 \\ \text { Z-axis } \end{gathered}$	-37.9	Perpe
87	3.400 M	22.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0	-8.5	$\begin{gathered} 29.5 \\ \text { Z-axis } \end{gathered}$	-38.0	Perpe
88	2.370M	22.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0	-8.5	$\begin{array}{r} 29.5 \\ \mathrm{X} \text {-axis } \end{array}$	-38.0	Paral
89	185.000k	54.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.1 \\ +0.0 \\ +8.5 \\ \hline \end{array}$	-80.0	-16.5	$\begin{gathered} 22.3 \\ \text { Y-axis } \end{gathered}$	-38.8	Perpe
90	3.335M	21.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0	-9.8	$\begin{aligned} & 29.5 \\ & \mathrm{X} \text {-axis } \end{aligned}$	-39.3	Paral
91	2.247 M	21.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0	-9.9	$\begin{aligned} & 29.5 \\ & \text { Y-axis } \end{aligned}$	-39.4	Perpe
92	14.876 M	21.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +7.6 \\ & \hline \end{aligned}$	-40.0		$\begin{aligned} & 29.5 \\ & \text { Y-axis } \end{aligned}$	-40.3	Paral
93	220.000k	51.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +8.5 \\ & \hline \end{aligned}$	-80.0		$\begin{gathered} 20.8 \\ \text { Z-axis } \end{gathered}$	-40.3	Paral
94	3.710 M	20.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0		$\begin{gathered} 29.5 \\ \mathrm{X} \text {-axis } \end{gathered}$	-40.4	Perpe
95	2.200 M	18.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0	-12.8	$\begin{gathered} 29.5 \\ \text { Z-axis } \end{gathered}$	-42.3	Perpe
96	220.000k	49.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +8.5 \\ & \hline \end{aligned}$	-80.0	-21.5	$\begin{gathered} 20.8 \\ \mathrm{X} \text {-axis } \end{gathered}$	-42.3	Perpe

Page 39 of 49

97	390.000 k	43.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +8.6 \end{aligned}$	-80.0	-27.5	$\begin{gathered} 15.8 \\ \text { X-axis } \end{gathered}$	-43.3	Paral
98	3.455M	16.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +8.8 \end{aligned}$	-40.0	-14.7	$\begin{aligned} & 29.5 \\ & \text { Z-axis } \end{aligned}$	-44.2	Paral
99	3.415 M	16.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +8.8 \end{aligned}$	-40.0	-14.8	$\begin{array}{r} 29.5 \\ \text { Y-axis } \end{array}$	-44.3	Perpe
100	356.000k	38.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +8.5 \end{aligned}$	-80.0	-33.2	$\begin{gathered} 16.6 \\ \text { Y-axis } \end{gathered}$	-49.8	Paral

CKC Laboratories Date: 11/11/2011 Time: 11:18:48 SmartLabs, Inc. WO\#: 92499
15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Sequence\#: 12 Ext ATTN: 0 dB

Test Setup Photos

X AXIS FRONT VIEW

X AXIS BACK VIEW

Y AXIS FRONT VIEW

Y AXIS BACK VIEW

Z AXIS FRONT VIEW

Z AXIS BACK VIEW

RSS-210

99 \% Bandwidth

Test Conditions / Setup

The EUT is placed on the wooden table lined with Styrofoam. Total height is 1.5 meter from the ground plane. Connected to the EUT is a support suspended ceiling fan. Continuous transmit $914.92 \mathrm{MHz}-915.08 \mathrm{MHz}$ EUT only operates on $120 \mathrm{Vac} / 60 \mathrm{~Hz}$.
Frequency range of measurement
$30 \mathrm{MHz}-1 \mathrm{GHz}$.
$30 \mathrm{MHz}-1000 \mathrm{MHz}$; RBW=120 kHz, VBW=120 kHz
Temperature: $17^{\circ} \mathrm{C}$, Relative Humidity: 20%
15.31(e): The supply voltage varied between 85% and 115% of the nominal rated supply voltage (120 Vac), no change in the Fundamental signal level was observed.

Engineer Name: Don Nguyen

Test Equipment					
Asset/Serial \#	Description	Model	Manufacturer	Cal Date	Cal Due
AN00309	Preamp	8447D	HP	$5 / 7 / 2010$	$5 / 7 / 2012$
AN01995	Biconilog Antenna	CBL6111C	Chase	$3 / 8 / 2010$	$3 / 8 / 2012$
ANP05050	Cable	RG223/U	Pasternack	$3 / 21 / 2011$	$3 / 21 / 2013$
ANP05198	Cable	8268	Belden	$12 / 21 / 2010$	$12 / 21 / 2012$
AN02672	Spectrum Analyzer	E4446A	Agilent	$8 / 9 / 2010$	$8 / 9 / 2012$

Test Data

Test Setup Photos

X AXIS FRONT VIEW

X AXIS BACK VIEW

Y AXIS FRONT VIEW

Y AXIS BACK VIEW

Z AXIS FRONT VIEW

Z AXIS BACK VIEW

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

LABORATORIES, INC.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

