SmartLabs, Inc.

ADDENDUM TO TEST REPORT 92438-3

In-Line 0-10VDC Dimmer or Dual-Switch, 2475DA2

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.207, 15.249
and
RSS 210 ISSUE 8

Report No.: 92438-3A

Date of issue: December 15, 2011

Testing Certificates: 803.01, 803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

[^0]TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Revision History 3
Report Authorization 3
Test Facility Information 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Conditions During Testing 5
Equipment Under Test 6
Peripheral Devices 6
FCC Part 15 Subpart C 7
15.31(e) Voltage Variations 7
15.207 AC Conducted Emissions 10
15.249(a) RF Power Output 27
15.249(a) Field Strength of Harmonics / 15.249(d) Field Strength of Spurious Emissions 36
-20dBc Occupied Bandwidth 55
Bandedge 59
RSS-210 65
99 \% Bandwidth 65
Supplemental Information 69
Measurement Uncertainty 69
Emissions Test Details. 69

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

SmartLabs, Inc.
16542 Millikan Ave
Irvine, CA 92606

Representative: John Lockyer
Customer Reference Number: 11-3JL1013-01

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Dianne Dudley
CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 92348

October 27, 2011
October 27, 2011- December 6, 2011

Revision History

Original: To perform the testing of the In-Line 0-10VDC Dimmer or Dual-Switch, 2475DA2 with the requirements for FCC Part 15 Subpart C Sections 15.207, 15.249 and RSS 210 Issue 8 devices.
Addendum A: To include testing performed of the In-Line 0-10VDC Dimmer or Dual-Switch, 2475DA2 with optional sensor and a section of dedicated cable length installed with the requirements for FCC Part 15 Subpart C Sections 15.249(a) and 15.249(d).

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

Site Registration \& Accreditation Information

Location	CB \#	Japan	Canada	FCC
Brea A	US0060	R-2945, C-3248 \& T-1572	3082D-1	90473

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.207, 15.249 and RSS 210 Issue 8

Description	Test Procedure/Method	Results
Voltage Variation	FCC Part 15 Subpart C Section 15.31(e)	Pass
	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003)	Pass
Conducted Emissions	FCC Part 15 Subpart C Section 15.249 (a)	Pass
		Pass
RF Power Output	FCC Part 15 Subpart C Section 15.249(a) \& 15.249(d) / ANSI C63.4 (2003)	Pass
Field Strength of Harmonics / Field Strength of Spurious Emissions		Pass
	FCC Part 15 Subpart C Section 15.249	
-20dBc Occupied Bandwidth	FCC Part 15 Subpart C Section 15.249	Pass
		FCC Part 15 Subpart C
Occupied Bandwidth		PSS 210 Issue 8
Bandedge		Pass
99 \% Bandwidth		

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

In-Line 0-10VDC Dimmer or Dual-Switch
Manuf: SmartLabs, Inc.
Model: 2475DA2
Serial: 148B8C

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Dimmable Programmed Start Electronic Ballast
Manuf: Phillips
Model: IZT-132-SC
Serial: NA

Florescent Light

Manuf: Ecolux
Model: SP35
Serial: F17T8-SP35-ECO

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.31(e) Voltage Variations

Test Conditions / Setup

The EUT is placed on the wooden table lined with Styrofoam; total height is 1.5 meter from the ground plane. Connected to the EUT is a light bulb.
Continuous transmit
914.92MHz-915.08MHz
15.31(e) compliance: the supply voltage was varied between 85% and 115% of the nominal rated supply voltage (120-230Vac), no change in the Fundamental signal level was observed.

Frequency range of measurement $=30 \mathrm{MHz}-1 \mathrm{GHz}$
RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$18^{\circ} \mathrm{C}, 22 \%$ Relative Humidity
Engineer Name: D. Nguyen

Test Equipment

Asset/Serial \#	Description	Model	Manufacturer	Cal Date	Cal Due
AN00309	Preamp	8447D	HP	$5 / 7 / 2010$	$5 / 7 / 2012$
AN01995	Biconilog Antenna	CBL6111C	Chase	$3 / 8 / 2010$	$3 / 8 / 2012$
ANP05050	Cable	RG223/U	Pasternack	$3 / 21 / 2011$	$3 / 21 / 2013$
ANP05198	Cable	8268	Belden	$12 / 21 / 2010$	$12 / 21 / 2012$
AN02672	Spectrum Analyzer	E4446A	Agilent	$8 / 9 / 2010$	$8 / 9 / 2012$

Test Setup Photos

15.31(e) Y Axis

15.31(e) Z Axis

15.31(e) BACK VIEW

15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: SmartLabs, Inc.
Specification: $\quad \mathbf{1 5 . 2 0 7}$ AC Mains - Average

Work Order \#: 92348
Test Type: Conducted Emissions
Equipment: In-Line 0-10VDC Dimmer or DualSwitch
Manufacturer: SmartLabs, Inc. Tested By: Don Nguyen
Model: 2475DA2
S/N: 148B8C

Date: 10/27/2011
Time: 15:43:59
Sequence\#: 11

120 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$
T1	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 16 / 2009$	$11 / 16 / 2011$
T2	ANP04358	Cable	RG142	$5 / 7 / 2010$	$5 / 7 / 2012$
T3	ANP06084	Attenuator	SA18N10W-06	$12 / 8 / 2010$	$12 / 8 / 2012$
T4	AN00847.1	50uH LISN-Line 1 $(d B)$	$3816 / 2 N M$	$12 / 21 / 2010$	$12 / 21 / 2012$
	AN00847.1	50uH LISN-Line 2 $(d B)$	$3816 / 2 N M$	$12 / 21 / 2010$	$12 / 21 / 2012$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
In-Line 0-10VDC Dimmer	SmartLabs, Inc.	2475DA2	148B8C
or Dual-Switch*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Dimmable Programmed Start Electronic Ballast	Phillips	IZT-132-SC	NA
Florescent Light	Ecolux	SP35	F17T8-SP35-ECO

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam; total height is 1.5 meter from the ground plane. Connected to the EUT is a light bulb.
Continuous transmit
914.92MHz-915.08MHz

Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$
RBW $=\mathrm{VBW}=9 \mathrm{kHz}$
$18^{\circ} \mathrm{C}$, 22% Relative Humidity

Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	20.481M	41.4	+0.2	+0.4	+5.9	+1.1	+0.0	49.0	50.0	-1.0	L1
2	20.274 M	41.4	+0.2	+0.4	+5.9	+1.1	+0.0	49.0	50.0	-1.0	L1
3	22.112 M	41.2	+0.2	+0.4	+5.9	+1.3	+0.0	49.0	50.0	-1.0	L1
4	21.670 M	41.2	+0.2	+0.4	+5.9	+1.3	+0.0	49.0	50.0	-1.0	L1
5	21.148 M	41.0	+0.2	+0.4	+5.9	+1.2	+0.0	48.7	50.0	-1.3	L1
6	21.400 M	41.0	+0.2	+0.4	+5.9	+1.2	+0.0	48.7	50.0	-1.3	L1
7	20.148M	41.0	+0.2	+0.4	+5.9	+1.1	+0.0	48.6	50.0	-1.4	L1
8	21.797 M	40.8	+0.2	+0.4	+5.9	+1.3	+0.0	48.6	50.0	-1.4	L1
9	20.355 M	40.9	+0.2	+0.4	+5.9	+1.1	+0.0	48.5	50.0	-1.5	L1
10	21.526 M	40.8	+0.2	+0.4	+5.9	+1.2	+0.0	48.5	50.0	-1.5	L1
11	23.511 M	40.5	+0.2	+0.4	+5.9	+1.5	+0.0	48.5	50.0	-1.5	L1
12	1.026 M	38.4	+0.2	+0.1	+5.8	+0.0	+0.0	44.5	46.0	-1.5	L1
13	453.244 k	39.2	+0.3	+0.1	+5.7	+0.0	+0.0	45.3	46.8	-1.5	L1
14	20.229 M	40.9	+0.2	+0.4	+5.9	+1.1	+0.0	48.5	50.0	-1.5	L1
15	20.310 M	40.9	+0.2	+0.4	+5.9	+1.1	+0.0	48.5	50.0	-1.5	L1
16	20.256M	40.9	+0.2	+0.4	+5.9	+1.1	+0.0	48.5	50.0	-1.5	L1
17	796.485k	38.3	+0.2	+0.1	+5.8	+0.0	+0.0	44.4	46.0	-1.6	L1
18	21.544 M	40.7	+0.2	+0.4	+5.9	+1.2	+0.0	48.4	50.0	-1.6	L1
19	24.292 M	40.3	+0.2	+0.4	+5.9	+1.5	+0.0	48.3	50.0	-1.7	L1
20	20.454 M	40.6	+0.2	+0.4	+5.9	+1.1	+0.0	48.2	50.0	-1.8	L1
	$836.481 \mathrm{k}$ Ave	36.2	+0.2	+0.1	+5.8	+0.0	+0.0	42.3	46.0	-3.7	L1
\wedge	836.481 k	45.1	+0.2	+0.1	+5.8	+0.0	+0.0	51.2	46.0	+5.2	L1
	$\begin{aligned} & \text { 227.292k } \\ & \text { fve } \end{aligned}$	39.9	+0.3	+0.1	+5.8	+0.0	+0.0	46.1	52.5	-6.4	L1
	$656.279 \mathrm{k}$ Ave	32.8	+0.3	+0.1	+5.8	+0.0	+0.0	39.0	46.0	-7.0	L1

Page 11 of 70

$\begin{gathered} 25 \begin{array}{c} 636.500 \mathrm{k} \\ \text { Ave } \end{array} \end{gathered}$	31.5	+0.3	+0.1	+5.8	+0.0	+0.0	37.7	46.0	-8.3	L1
^ 636.500k	43.0	+0.3	+0.1	+5.8	+0.0	+0.0	49.2	46.0	+3.2	L1
$\begin{gathered} 27{ }^{232.173 \mathrm{k}} \\ \text { Ave } \end{gathered}$	37.0	+0.3	+0.1	+5.8	+0.0	+0.0	43.2	52.4	-9.2	L1
$\wedge 232.173 \mathrm{k}$	47.7	+0.3	+0.1	+5.8	+0.0	+0.0	53.9	52.4	+1.5	L1
$\begin{gathered} \hline 29 \begin{array}{c} 622.683 \mathrm{k} \\ \text { Ave } \end{array} \\ \hline \end{gathered}$	28.9	+0.3	+0.1	+5.8	+0.0	+0.0	35.1	46.0	-10.9	L1
^ 622.683k	41.9	+0.3	+0.1	+5.8	+0.0	+0.0	48.1	46.0	+2.1	L1
$\begin{gathered} 31 \\ \text { Ave } \\ \hline \end{gathered}$	27.4	+0.2	+0.1	+5.8	+0.0	+0.0	33.5	46.0	-12.5	L1
$\wedge 1.073 \mathrm{M}$	42.4	+0.2	+0.1	+5.8	+0.0	+0.0	48.5	46.0	+2.5	L1
$\begin{gathered} 33 \\ \text { Ave } \\ \hline \end{gathered}$	25.8	+0.2	+0.1	+5.8	+0.0	+0.0	31.9	46.0	-14.1	L1
^ 1.115 M	41.8	+0.2	+0.1	+5.8	+0.0	$+0.0$	47.9	46.0	+1.9	L1
	15.8	+0.2	+0.4	+5.9	+1.3	+0.0	23.6	50.0	-26.4	L1
^ 21.743 M	44.6	+0.2	+0.4	+5.9	+1.3	+0.0	52.4	50.0	+2.4	L1
$\begin{gathered} 37 \begin{array}{c} 18.815 \mathrm{M} \\ \text { Ave } \end{array} \\ \hline \end{gathered}$	12.2	$+0.2$	+0.4	+5.9	+1.0	+0.0	19.7	50.0	-30.3	L1
^ 18.815 M	47.9	+0.2	+0.4	+5.9	+1.0	+0.0	55.4	50.0	+5.4	L1

CKC Laboratories Date: 10/27/2011 Time: 15:43:59 SmartLabs, Inc. WO\#: 92348 15.207 AC Mains - Average Test Lead: L1 120V 60Hz Sequence\#: 11 Ext ATTN: 0 dB

Sweep Data	
Peak Readings	\times Readings
* \quad Average Readings Readings	
	1-15.207 AC Mains - Average

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: SmartLabs, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#: 92348
Test Type:
Equipment: In-Line 0-10VDC Dimmer or Dual-
10/27/2011
Time: 15:52:19
Sequence\#: 12

Tested By: Don Nguyen
120 V 60 Hz
Manufacturer:
Model:
SmartLabs, Inc.
2475DA2
S/N: 148B8C
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$
T1	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 16 / 2009$	$11 / 16 / 2011$
T2	ANP04358	Cable	RG142	$5 / 7 / 2010$	$5 / 7 / 2012$
T3	ANP06084	Attenuator	SA18N10W-06	$12 / 8 / 2010$	$12 / 8 / 2012$
	AN00847.1	50uH LISN-Line 1 $(\mathrm{~dB})$	$3816 / 2 \mathrm{NM}$	$12 / 21 / 2010$	$12 / 21 / 2012$
T4	AN00847.1	50uH LISN-Line 2 $(d B)$	$3816 / 2 \mathrm{NM}$	$12 / 21 / 2010$	$12 / 21 / 2012$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
In-Line 0-10VDC Dimmer or Dual-Switch*	SmartLabs, Inc.	2475DA2	148B8C

Support Devices:

Function	Manufacturer	Model \#	S/N
Dimmable Programmed Start Electronic Ballast	Phillips	IZT-132-SC	NA
Florescent Light	Ecolux	SP35	F17T8-SP35-ECO

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam; total height is 1.5 meter from the ground plane. Connected to the EUT is a light bulb.
Continuous transmit
914.92MHz-915.08MHz

Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$
RBW=VBW=9kHz
$18^{\circ} \mathrm{C}, 22 \%$ Relative Humidity
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Lead: L2

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	21.238 M	41.0	+0.2	+0.4	+5.9	+1.3	+0.0	48.8	50.0	-1.2	L 2
2	21.373 M	40.9	+0.2	+0.4	+5.9	+1.3	+0.0	48.7	50.0	-1.3	L 2
3	21.499 M	40.7	+0.2	+0.4	+5.9	+1.4	+0.0	48.6	50.0	-1.4	L 2

4	$\begin{aligned} & 830.464 \mathrm{k} \\ & \text { ve } \end{aligned}$	38.4	+0.2	+0.1	+5.8	+0.0	+0.0	44.5	46.0	-1.5	L2
5	20.508M	40.8	+0.2	+0.4	+5.9	+1.2	+0.0	48.5	50.0	-1.5	L2
6	21.779M	40.6	+0.2	+0.4	+5.9	+1.4	+0.0	48.5	50.0	-1.5	L2
7	$\begin{aligned} & 830.665 \mathrm{k} \\ & \text { ve } \end{aligned}$	38.4	$+0.2$	+0.1	+5.8	$+0.0$	$+0.0$	44.5	46.0	-1.5	L2
\wedge	830.665k	43.0	+0.2	+0.1	+5.8	+0.0	+0.0	49.1	46.0	+3.1	L2
9	1.511 M	38.3	+0.1	+0.1	+5.8	+0.1	+0.0	44.4	46.0	-1.6	L2
10	21.175 M	40.6	+0.2	+0.4	+5.9	+1.3	+0.0	48.4	50.0	-1.6	L2
11	3.748 M	38.2	+0.1	+0.2	+5.8	+0.1	+0.0	44.4	46.0	-1.6	L2
12	19.896M	40.6	+0.2	+0.4	+5.9	+1.2	+0.0	48.3	50.0	-1.7	L2
13	20.058M	40.4	+0.2	+0.4	+5.9	+1.2	+0.0	48.1	50.0	-1.9	L2
14	21.562M	40.2	$+0.2$	+0.4	+5.9	+1.4	$+0.0$	48.1	50.0	-1.9	L2
15	19.797M	40.4	+0.2	+0.4	+5.9	+1.2	+0.0	48.1	50.0	-1.9	L2
16	3.956M	37.8	+0.1	+0.2	+5.8	+0.1	$+0.0$	44.0	46.0	-2.0	L2
17	20.148M	40.3	$+0.2$	+0.4	+5.9	+1.2	$+0.0$	48.0	50.0	-2.0	L2
18	379.070k	40.2	+0.3	+0.1	+5.7	+0.0	+0.0	46.3	48.3	-2.0	L2
19	232.901k	44.1	$+0.3$	+0.1	+5.8	$+0.0$	$+0.0$	50.3	52.3	-2.0	L2
20	600.868k	37.7	+0.3	+0.1	+5.8	+0.0	$+0.0$	43.9	46.0	-2.1	L2
21	452.518k	38.6	+0.3	+0.1	+5.7	+0.0	+0.0	44.7	46.8	-2.1	L2
22	21.950M	40.0	+0.2	+0.4	+5.9	+1.4	$+0.0$	47.9	50.0	-2.1	L2
23	19.283M	40.2	+0.2	+0.4	+5.9	+1.2	+0.0	47.9	50.0	-2.1	L2
24	19.878M	40.1	$+0.2$	$+0.4$	+5.9	+1.2	+0.0	47.8	50.0	-2.2	L2
25	19.670M	40.0	+0.2	+0.4	+5.9	+1.2	+0.0	47.7	50.0	-2.3	L2
26	22.202 M	39.6	+0.2	+0.4	+5.9	+1.4	+0.0	47.5	50.0	-2.5	L2
27	162.363 k	46.4	+0.4	+0.1	+5.8	+0.0	+0.0	52.7	55.3	-2.6	L2
28	22.058 M	39.5	+0.2	+0.4	+5.9	+1.4	+0.0	47.4	50.0	-2.6	L2
29	20.112M	39.6	$+0.2$	$+0.4$	+5.9	+1.2	$+0.0$	47.3	50.0	-2.7	L2

Page 15 of 70

$30 \quad 21.932 \mathrm{M}$	39.4	+0.2	+0.4	+5.9	+1.4	+0.0	47.3	50.0	-2.7	L2
$\begin{gathered} 31 \quad 1.285 \mathrm{M} \\ \text { Ave } \end{gathered}$	32.5	+0.2	+0.1	+5.8	+0.1	+0.0	38.7	46.0	-7.3	L2
1.285M	42.5	+0.2	+0.1	+5.8	+0.1	+0.0	48.7	46.0	+2.7	L2
$\begin{gathered} 33 \\ \text { Ave } \\ \hline \end{gathered}$	29.9	+0.2	+0.1	+5.8	+0.0	+0.0	36.0	46.0	-10.0	L2
$\wedge 1.090 \mathrm{M}$	41.0	+0.2	+0.1	+5.8	+0.0	+0.0	47.1	46.0	+1.1	L2
$\begin{gathered} 35{ }^{4.241 \mathrm{M}} \\ \text { Ave } \end{gathered}$	24.9	+0.1	+0.2	+5.8	+0.2	+0.0	31.2	46.0	-14.8	L2
^ 4.241 M	40.7	+0.1	+0.2	+5.8	+0.2	+0.0	47.0	46.0	+1.0	L2
$\begin{gathered} 37{ }^{21.202 \mathrm{M}} \\ \text { Ave } \end{gathered}$	22.3	+0.2	+0.4	+5.9	+1.3	+0.0	30.1	50.0	-19.9	L2
^ 21.202 M	46.3	+0.2	+0.4	+5.9	+1.3	+0.0	54.1	50.0	+4.1	L2
$\begin{gathered} 39{ }^{21.049 \mathrm{M}} \\ \text { Ave } \end{gathered}$	21.8	+0.2	+0.4	+5.9	+1.3	+0.0	29.6	50.0	-20.4	L2
^ 21.049 M	43.2	+0.2	+0.4	+5.9	+1.3	+0.0	51.0	50.0	+1.0	L2
$\begin{gathered} 41 \begin{array}{l} 21.112 \mathrm{M} \\ \text { Ave } \\ \hline \end{array}{ }^{2} \\ \hline \end{gathered}$	21.1	$+0.2$	+0.4	+5.9	+1.3	+0.0	28.9	50.0	-21.1	L2
^ 21.112 M	47.4	+0.2	+0.4	+5.9	+1.3	+0.0	55.2	50.0	+5.2	L2
$\begin{gathered} 43 \begin{array}{c} 22.022 \mathrm{M} \\ \text { Ave } \end{array} \\ \hline \end{gathered}$	20.3	+0.2	+0.4	+5.9	+1.4	+0.0	28.2	50.0	-21.8	L2
^ 22.022 M	55.1	+0.2	+0.4	+5.9	+1.4	+0.0	63.0	50.0	+13.0	L2
$\begin{gathered} \hline 45 \begin{array}{c} 19.571 \mathrm{M} \\ \text { Ave } \\ \hline \end{array}{ }^{2} \\ \hline \end{gathered}$	19.2	+0.2	+0.4	+5.9	+1.2	+0.0	26.9	50.0	-23.1	L2
^ 19.571 M	44.6	+0.2	+0.4	+5.9	+1.2	+0.0	52.3	50.0	+2.3	L2

CKC Laboratories Date: 10/27/2011 Time: 15:52:19 SmartLabs, Inc. WO\#: 92348 15.207 AC Mains - Average Test Lead: L2 120V 60Hz Sequence\#: 12 Ext ATTN: 0 dB

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: SmartLabs, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#: 92348
Test Type:
Equipment: In-Line 0-10VDC Dimmer or DualSwitch
Manufacturer: SmartLabs, Inc. Tested By: Don Nguyen
Model: 2475DA2
Date: 10/27/2011
Time: 16:09:41
Sequence\#: 14

230 V 50 Hz
S/N: 148B8C

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$	
T1	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 16 / 2009$	$11 / 16 / 2011$
T2	ANP04358	Cable	RG142	$5 / 7 / 2010$	$5 / 7 / 2012$
T3	ANP06084	Attenuator	SA18N10W-06	$12 / 8 / 2010$	$12 / 8 / 2012$
T4	AN00847.1	50uH LISN-Line 1 $(\mathrm{~dB})$	$3816 / 2 \mathrm{NM}$	$12 / 21 / 2010$	$12 / 21 / 2012$
	AN00847.1	50uH LISN-Line 2 $(d B)$	$3816 / 2 \mathrm{NM}$	$12 / 21 / 2010$	$12 / 21 / 2012$

Equipment Under Test $(*=$ EUT):

Function	Manufacturer	Model \#	S/N
In-Line 0-10VDC Dimmer or Dual-Switch*	SmartLabs, Inc.	2475DA2	148B8C

Support Devices:

Function	Manufacturer	Model \#	S/N
Dimmable Programmed Start Electronic Ballast	Phillips	IZT-132-SC	NA
Florescent Light	Ecolux	SP35	F17T8-SP35-ECO

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam; total height is 1.5 meter from the ground plane. Connected to the EUT is a light bulb.
Continuous transmit
914.92MHz-915.08MHz

Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$
RBW $=\mathrm{VBW}=9 \mathrm{kHz}$
$18^{\circ} \mathrm{C}, 22 \%$ Relative Humidity
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Lead: L1

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	953.754 k	38.9	+0.2	+0.1	+5.8	+0.0	+0.0	45.0	46.0	-1.0	L 1
2	21.670 M	41.1	+0.2	+0.4	+5.9	+1.3	+0.0	48.9	50.0	-1.1	L 1
3	21.337 M	41.0	+0.2	+0.4	+5.9	+1.2	+0.0	48.7	50.0	-1.3	L 1

4	21.616 M	40.9	+0.2	+0.4	+5.9	+1.3	+0.0	48.7	50.0	-1.3	L1
5	21.049 M	40.9	+0.2	+0.4	+5.9	+1.2	+0.0	48.6	50.0	-1.4	L1
6	20.661M	41.0	+0.2	+0.4	+5.9	+1.1	+0.0	48.6	50.0	-1.4	L1
7	20.346M	41.0	+0.2	+0.4	+5.9	+1.1	+0.0	48.6	50.0	-1.4	L1
8	22.121 M	40.8	+0.2	+0.4	+5.9	+1.3	+0.0	48.6	50.0	-1.4	L1
9	21.175M	40.9	+0.2	+0.4	+5.9	+1.2	+0.0	48.6	50.0	-1.4	L1
10	4.258 M	38.3	+0.1	+0.2	+5.8	+0.1	+0.0	44.5	46.0	-1.5	L1
11	379.070k	40.6	+0.3	+0.1	+5.7	+0.0	+0.0	46.7	48.3	-1.6	L1
12	23.915M	40.4	+0.2	+0.4	+5.9	+1.5	+0.0	48.4	50.0	-1.6	L1
	$\begin{aligned} & 828.483 \mathrm{k} \\ & \text { ve } \end{aligned}$	38.3	+0.2	+0.1	+5.8	+0.0	+0.0	44.4	46.0	-1.6	L1
\wedge	828.483k	44.4	+0.2	+0.1	+5.8	+0.0	+0.0	50.5	46.0	+4.5	L1
15	20.454M	40.7	+0.2	+0.4	+5.9	+1.1	+0.0	48.3	50.0	-1.7	L1
16	20.436M	40.6	+0.2	+0.4	+5.9	+1.1	+0.0	48.2	50.0	-1.8	L1
17	21.094 M	40.5	+0.2	+0.4	+5.9	+1.2	+0.0	48.2	50.0	-1.8	L1
18	21.202 M	40.5	+0.2	+0.4	+5.9	+1.2	+0.0	48.2	50.0	-1.8	L1
19	20.076 M	40.5	+0.2	+0.4	+5.9	+1.1	+0.0	48.1	50.0	-1.9	L1
20	20.535 M	40.5	+0.2	+0.4	+5.9	+1.1	+0.0	48.1	50.0	-1.9	L1
21	20.202M	40.4	+0.2	+0.4	+5.9	+1.1	+0.0	48.0	50.0	-2.0	L1
22	523.784k	37.8	+0.3	+0.1	+5.7	+0.0	+0.0	43.9	46.0	-2.1	L1
23	21.076M	39.9	+0.2	+0.4	+5.9	+1.2	+0.0	47.6	50.0	-2.4	L1
24	21.896 M	39.7	+0.2	+0.4	+5.9	+1.3	+0.0	47.5	50.0	-2.5	L1
25	545.600k	37.2	+0.3	+0.1	+5.8	+0.0	+0.0	43.4	46.0	-2.6	L1
26	20.049M	39.7	+0.2	+0.4	+5.9	+1.1	+0.0	47.3	50.0	-2.7	L1
27	20.121 M	39.4	+0.2	+0.4	+5.9	+1.1	+0.0	47.0	50.0	-3.0	L1
	$\begin{aligned} & 1.502 \mathrm{M} \\ & \text { ave } \end{aligned}$	36.8	+0.1	+0.1	+5.8	+0.0	+0.0	42.8	46.0	-3.2	L1
\wedge	1.502 M	42.2	+0.1	+0.1	+5.8	+0.0	+0.0	48.2	46.0	+2.2	L1

Page 19 of 70

$\begin{gathered} 30 \quad 452.518 \mathrm{k} \\ \text { Ave } \end{gathered}$	35.3	+0.3	+0.1	+5.7	+0.0	+0.0	41.4	46.8	-5.4	L1
$\wedge \quad 452.518 \mathrm{k}$	43.3	+0.3	+0.1	+5.7	+0.0	+0.0	49.4	46.8	+2.6	L1
$\begin{gathered} 32 \begin{array}{c} 638.682 \mathrm{k} \\ \text { Ave } \end{array} \end{gathered}$	32.6	+0.3	+0.1	+5.8	+0.0	+0.0	38.8	46.0	-7.2	L1
$\wedge \quad 638.682 \mathrm{k}$	40.9	+0.3	+0.1	+5.8	+0.0	+0.0	47.1	46.0	+1.1	L1
$\begin{gathered} 34{ }^{1.273 \mathrm{M}} \\ \text { Ave } \end{gathered}$	32.0	+0.2	+0.1	+5.8	+0.0	+0.0	38.1	46.0	-7.9	L1
$\wedge 1.273 \mathrm{M}$	42.5	+0.2	+0.1	+5.8	+0.0	+0.0	48.6	46.0	+2.6	L1
$\begin{gathered} 36 \quad 1.086 \mathrm{M} \\ \text { Ave } \end{gathered}$	30.9	+0.2	+0.1	+5.8	+0.0	+0.0	37.0	46.0	-9.0	L1
$\wedge 1.086 \mathrm{M}$	46.1	+0.2	+0.1	+5.8	+0.0	+0.0	52.2	46.0	+6.2	L1
$\begin{gathered} 38 \quad 1.205 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	30.1	+0.2	+0.1	+5.8	+0.0	+0.0	36.2	46.0	-9.8	L1
$\wedge 1.205 \mathrm{M}$	41.8	+0.2	+0.1	+5.8	+0.0	+0.0	47.9	46.0	+1.9	L1
$\begin{gathered} 40{ }^{1.149 \mathrm{M}} \\ \text { Ave } \end{gathered}$	28.4	+0.2	+0.1	+5.8	+0.0	+0.0	34.5	46.0	-11.5	L1
$\wedge 1.149 \mathrm{M}$	41.6	+0.2	+0.1	+5.8	+0.0	+0.0	47.7	46.0	+1.7	L1
$\begin{aligned} & 42 \quad 856.844 \mathrm{k} \\ & \text { Ave } \end{aligned}$	27.5	+0.2	+0.1	+5.8	+0.0	+0.0	33.6	46.0	-12.4	L1
$\wedge 856.844 \mathrm{k}$	43.0	+0.2	+0.1	+5.8	+0.0	+0.0	49.1	46.0	+3.1	L1
$\begin{aligned} & 44 \begin{array}{l} 873.570 \mathrm{k} \\ \text { Ave } \end{array} \end{aligned}$	27.0	+0.2	+0.1	+5.8	+0.0	+0.0	33.1	46.0	-12.9	L1
$\wedge 873.570 \mathrm{k}$	43.3	+0.2	+0.1	+5.8	+0.0	+0.0	49.4	46.0	+3.4	L1
$\begin{gathered} 46 \begin{array}{c} 842.300 \mathrm{k} \\ \text { Ave } \end{array} \end{gathered}$	26.5	+0.2	+0.1	+5.8	+0.0	+0.0	32.6	46.0	-13.4	L1
$\wedge 842.300 \mathrm{k}$	42.5	+0.2	+0.1	+5.8	+0.0	+0.0	48.6	46.0	+2.6	L1
$\begin{gathered} \hline 48 \quad 889.963 \mathrm{k} \\ \text { Ave } \\ \hline \end{gathered}$	25.4	+0.2	+0.1	+5.8	+0.0	+0.0	31.5	46.0	-14.5	L1
$\wedge 8889.963 \mathrm{k}$	42.0	+0.2	+0.1	+5.8	+0.0	+0.0	48.1	46.0	+2.1	L1

CKC Laboratories Date: 10/27/2011 Time: 16:09:41 SmartLabs, Inc. WO\#: 92348 15.207 AC Mains - Average Test Lead: L1 230V 50Hz Sequence\#: 14 Ext ATTN: 0 dB

$\begin{array}{ll} & \text { Sweep Data } \\ \text { O } & \text { Peak Readings } \\ \text { * } & \text { Average Readings } \\ & 1-15.207 \text { AC Mains - Average }\end{array}$

—— Readings
\times QP Readings
- Ambient
2-15.207 AC Mains - Quasi-peak

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: SmartLabs, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#: 92348
Test Type:
Equipment: In-Line 0-10VDC Dimmer or DualSwitch
Manufacturer: SmartLabs, Inc. Tested By: Don Nguyen
Model: 2475DA2
Date: 10/27/2011
Time: 16:01:33
Sequence\#: 13

230 V 50 Hz
S/N: 148B8C

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$	
T1	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 16 / 2009$	$11 / 16 / 2011$
T2	ANP04358	Cable	RG142	$5 / 7 / 2010$	$5 / 7 / 2012$
T3	ANP06084	Attenuator	SA18N10W-06	$12 / 8 / 2010$	$12 / 8 / 2012$
	AN00847.1	50 uH LISN-Line 1 $(\mathrm{~dB})$	$3816 / 2 \mathrm{NM}$	$12 / 21 / 2010$	$12 / 21 / 2012$
T4	AN00847.1	50uH LISN-Line 2 $(\mathrm{~dB})$	$3816 / 2 \mathrm{NM}$	$12 / 21 / 2010$	$12 / 21 / 2012$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
In-Line 0-10VDC Dimmer or Dual-Switch*	SmartLabs, Inc.	2475DA2	148B8C

Support Devices:

Function	Manufacturer	Model \#	S/N
Dimmable Programmed Start Electronic Ballast	Phillips	IZT-132-SC	NA
Florescent Light	Ecolux	SP35	F17T8-SP35-ECO

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam; total height is 1.5 meter from the ground plane. Connected to the EUT is a light bulb.
Continuous transmit
914.92MHz-915.08MHz

Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$
$\mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$
$18^{\circ} \mathrm{C}, 22 \%$ Relative Humidity
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Lead: L2

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	4.309 M	38.7	+0.1	+0.2	+5.8	+0.2	+0.0	45.0	46.0	-1.0	L 2
2	803.031 k	38.8	+0.2	+0.1	+5.8	+0.0	+0.0	44.9	46.0	-1.1	L 2

4	$\begin{aligned} & 830.264 \mathrm{k} \\ & \text { Ave } \\ & \hline \end{aligned}$	38.4	+0.2	+0.1	+5.8	+0.0	+0.0	44.5	46.0	-1.5	L2
\wedge	830.665k	44.3	+0.2	+0.1	+5.8	+0.0	+0.0	50.4	46.0	+4.4	L2
6	726.674k	38.4	+0.2	+0.1	+5.8	$+0.0$	+0.0	44.5	46.0	-1.5	L2
7	885.710k	38.0	+0.2	+0.1	+5.8	+0.0	+0.0	44.1	46.0	-1.9	L2
8	309.985k	41.9	+0.3	+0.1	+5.7	+0.0	+0.0	48.0	50.0	-2.0	L2
9	245.991k	43.4	+0.3	+0.1	+5.8	+0.0	+0.0	49.6	51.9	-2.3	L2
10	499.059k	37.5	+0.3	+0.1	+5.7	+0.0	+0.0	43.6	46.0	-2.4	L2
11	21.824 M	39.5	+0.2	+0.4	+5.9	+1.4	+0.0	47.4	50.0	-2.6	L2
12	4.428M	37.1	+0.1	+0.2	+5.8	+0.2	+0.0	43.4	46.0	-2.6	L2
13	788.487k	37.1	+0.2	+0.1	+5.8	+0.0	+0.0	43.2	46.0	-2.8	L2
14	21.292M	39.3	$+0.2$	+0.4	+5.9	+1.3	$+0.0$	47.1	50.0	-2.9	L2
15	3.476M	36.7	+0.1	+0.2	+5.8	+0.1	+0.0	42.9	46.0	-3.1	L2
16	21.788 M	38.9	+0.2	+0.4	+5.9	+1.4	+0.0	46.8	50.0	-3.2	L2
17	20.049 M	39.0	$+0.2$	+0.4	+5.9	+1.2	$+0.0$	46.7	50.0	-3.3	L2
18	2.115 M	36.5	+0.1	+0.1	+5.8	+0.1	+0.0	42.6	46.0	-3.4	L2
19	750.672k	36.5	$+0.2$	+0.1	+5.8	$+0.0$	$+0.0$	42.6	46.0	-3.4	L2
20	21.634 M	38.6	+0.2	+0.4	+5.9	+1.4	+0.0	46.5	50.0	-3.5	L2
21	19.454 M	38.7	+0.2	+0.4	+5.9	+1.2	+0.0	46.4	50.0	-3.6	L2
22	1.966M	36.3	$+0.1$	+0.1	+5.8	+0.1	$+0.0$	42.4	46.0	-3.6	L2
23	744.127k	36.1	+0.2	+0.1	+5.8	+0.0	+0.0	42.2	46.0	-3.8	L2
24	739.037k	36.1	+0.2	+0.1	+5.8	+0.0	+0.0	42.2	46.0	-3.8	L2
25	704.858k	35.7	+0.3	+0.1	+5.8	+0.0	+0.0	41.9	46.0	-4.1	L2
26	21.031 M	38.1	+0.2	+0.4	+5.9	+1.3	+0.0	45.9	50.0	-4.1	L2
27	2.591 M	35.7	+0.1	+0.2	+5.8	+0.1	+0.0	41.9	46.0	-4.1	L2
28	2.357 M	35.5	+0.1	+0.2	+5.8	+0.1	+0.0	41.7	46.0	-4.3	L2
29	764.489k	35.4	$+0.2$	$+0.1$	+5.8	$+0.0$	$+0.0$	41.5	46.0	-4.5	L2

Page 23 of 70

30	3.229 M	35.0	+0.1	+0.2	+5.8	+0.1	+0.0	41.2	46.0	-4.8	L2
	$\begin{aligned} & 1.281 \mathrm{M} \\ & \text { Ave } \end{aligned}$	34.7	+0.2	+0.1	+5.8	+0.1	+0.0	40.9	46.0	-5.1	L2
\wedge	1.281 M	43.9	+0.2	+0.1	+5.8	+0.1	+0.0	50.1	46.0	+4.1	L2
33	22.580 M	36.8	+0.2	+0.4	+5.9	+1.5	+0.0	44.8	50.0	-5.2	L2
34	2.285 M	34.5	+0.1	+0.2	+5.8	+0.1	+0.0	40.7	46.0	-5.3	L2
35	508.513 k	34.4	+0.3	+0.1	+5.7	+0.0	+0.0	40.5	46.0	-5.5	L2
36	2.196 M	34.1	$+0.1$	$+0.1$	+5.8	+0.1	+0.0	40.2	46.0	-5.8	L2
37	2.081 M	34.1	$+0.1$	$+0.1$	+5.8	+0.1	+0.0	40.2	46.0	-5.8	L2
38	2.268 M	33.9	+0.1	+0.2	+5.8	+0.1	+0.0	40.1	46.0	-5.9	L2
39	22.121 M	36.1	+0.2	+0.4	+5.9	+1.4	+0.0	44.0	50.0	-6.0	L2
Ave		36.2	+0.3	+0.1	+5.7	+0.0	$+0.0$	42.3	48.3	-6.0	L2
\wedge	380.524 k	44.1	+0.3	+0.1	+5.7	+0.0	+0.0	50.2	48.3	+1.9	L2
Ave		34.1	+0.3	+0.1	+5.7	+0.0	+0.0	40.2	47.3	-7.1	L2
\wedge	428.520 k	43.2	+0.3	+0.1	+5.7	+0.0	+0.0	49.3	47.3	+2.0	L2
Ave		31.4	+0.3	+0.1	+5.8	+0.0	+0.0	37.6	46.0	-8.4	L2
\wedge	613.957 k	40.9	+0.3	+0.1	+5.8	+0.0	+0.0	47.1	46.0	+1.1	L2
Ave		37.9	+0.2	+0.1	+5.8	+0.0	+0.0	44.0	54.2	-10.2	L2
	$191.451 \mathrm{k}$	36.7	+0.2	+0.1	+5.8	+0.0	+0.0	42.8	54.0	-11.2	L2
\wedge	191.451k	51.4	+0.2	+0.1	+5.8	+0.0	+0.0	57.5	54.0	+3.5	L2
\wedge	195.814k	50.4	+0.3	+0.1	+5.8	+0.0	+0.0	56.6	53.8	+2.8	L2
	$1.060 \mathrm{M}$	28.2	+0.2	+0.1	+5.8	+0.0	+0.0	34.3	46.0	-11.7	L2
\wedge	1.060 M	41.5	+0.2	+0.1	+5.8	+0.0	+0.0	47.6	46.0	+1.6	L2
Ave		35.1	+0.2	+0.1	+5.8	+0.0	+0.0	41.2	54.4	-13.2	L2
\wedge	186.360k	53.0	+0.2	+0.1	+5.8	+0.0	+0.0	59.1	54.2	+4.9	L2
\wedge	181.997k	50.5	+0.2	+0.1	+5.8	+0.0	+0.0	56.6	54.4	+2.2	L2

CKC Laboratories Date: 10/27/2011 Time: 16:01:33 SmartLabs, Inc. WO\#: 92348 15.207 AC Mains - Average Test Lead: L2 230V 50Hz Sequence\#: 13 Ext ATTN: 0 dB

Test Setup Photos

15.249(a) RF Power Output

Test Data

Test Location:	CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112	
Customer:	SmartLabs, Inc.	
Specification:	$\mathbf{1 5 . 2 4 9}$ Carrier and Spurious Emissions (902-928 MHz Transmitter)	
Work Order \#:	92348	Date: 10/27/2011
Test Type:	Maximized Emissions	Time: 08:56:55
Equipment:	In-Line 0-10VDC Dimmer or Dual-	Sequence\#: 10
	Switch	
Manufacturer:	SmartLabs, Inc.	
Model:	2475DA2	
S/N:	148B8C	

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447 D	$5 / 7 / 2010$	$5 / 7 / 2012$
T2	AN01995	Biconilog Antenna	CBL6111C	$3 / 8 / 2010$	$3 / 8 / 2012$
T3	ANP05050	Cable	RG223/U	$3 / 21 / 2011$	$3 / 21 / 2013$
T4	ANP05198	Cable	8268	$12 / 21 / 2010$	$12 / 21 / 2012$
	AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$

Equipment Under Test $(*=$ EUT):

Function	Manufacturer	Model \#	S/N
In-Line 0-10VDC Dimmer or Dual-Switch*	SmartLabs, Inc.	2475DA2	148B8C

Support Devices:

Function Dimmable Programmed Start Electronic Ballast	Manufacturer	Phillips	Model \#
Florescent Light	Ecolux	SP35	NA

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam; total height is 1.5 meter from the ground plane. Connected to the EUT is a light bulb.
Continuous transmit
914.92MHz-915.08MHz
$18^{\circ} \mathrm{C}, 22 \%$ Relative Humidity

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \text { T3 } \\ \text { dB } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
	$\begin{aligned} & \text { 914.933M } \\ & \mathrm{QP} \\ & \hline \end{aligned}$	88.9	-27.1	+23.6	+0.5	+5.8	+0.0	91.7	$\begin{gathered} 94.0 \\ \text { Y-axis } \end{gathered}$	-2.3	Horiz
	$\begin{aligned} & \text { 915.086M } \\ & \text { QP } \end{aligned}$	88.9	-27.1	+23.6	$+0.5$	+5.8	+0.0		$\begin{gathered} 94.0 \\ \text { Y-axis } \end{gathered}$	-2.3	Horiz
	$\begin{aligned} & \text { 915.085M } \\ & \text { QP } \end{aligned}$	88.8	-27.1	+23.6	+0.5	+5.8	+0.0	91.6	$\begin{gathered} 94.0 \\ \mathrm{X} \text { axis } \end{gathered}$	-2.4	Horiz
\wedge	915.085 M	89.1	-27.1	+23.6	+0.5	+5.8	+0.0	91.9	$\begin{gathered} 94.0 \\ \mathrm{X} \text { axis } \end{gathered}$	-2.1	Horiz
\wedge	915.086M	89.1	-27.1	+23.6	+0.5	+5.8	+0.0	91.9	$\begin{gathered} 94.0 \\ \text { Y-axis } \end{gathered}$	-2.1	Horiz
\wedge	915.083 M	80.5	-27.1	+23.6	$+0.5$	+5.8	+0.0	83.3	$\begin{gathered} 94.0 \\ \mathrm{Z} \text { axis } \end{gathered}$	-10.7	Horiz
	$\begin{aligned} & \text { 914.921M } \\ & \mathrm{QP} \\ & \hline \end{aligned}$	88.6	-27.1	+23.6	+0.5	+5.8	+0.0	91.4	$\begin{array}{r} 94.0 \\ \mathrm{X} \text { axis } \\ \hline \end{array}$	-2.6	Horiz
\wedge	914.933 M	89.0	-27.1	+23.6	+0.5	+5.8	+0.0	91.8	$\begin{gathered} 94.0 \\ \text { Y-axis } \end{gathered}$	-2.2	Horiz
\wedge	914.921 M	88.9	-27.1	+23.6	+0.5	+5.8	+0.0	91.7	$\begin{gathered} 94.0 \\ \mathrm{X} \text { axis } \end{gathered}$	-2.3	Horiz
\wedge	914.933 M	80.5	-27.1	+23.6	$+0.5$	+5.8	+0.0	83.3	$\begin{array}{r} \quad 94.0 \\ \mathrm{Z} \text { axis } \end{array}$	-10.7	Horiz
	$$	87.7	-27.1	+23.6	+0.5	+5.8	+0.0	90.5	$\begin{gathered} 94.0 \\ \mathrm{X} \text { axis } \end{gathered}$	-3.5	Vert
\wedge	915.085 M	88.5	-27.1	+23.6	+0.5	+5.8	+0.0	91.3	$\begin{gathered} 94.0 \\ \mathrm{X} \text { axis } \end{gathered}$	-2.7	Vert
\wedge	915.085M	84.5	-27.1	+23.6	+0.5	+5.8	+0.0	87.3	$\begin{aligned} & 94.0 \\ & \text { Y-axis } \end{aligned}$	-6.7	Vert
\wedge	915.085M	84.0	-27.1	+23.6	$+0.5$	+5.8	+0.0	86.8	$\begin{array}{r} \quad 94.0 \\ \mathrm{Z} \text { axis } \end{array}$	-7.2	Vert
	$\begin{aligned} & \text { 914.932M } \\ & \text { QP } \\ & \hline \end{aligned}$	87.6	-27.1	+23.6	+0.5	+5.8	+0.0	90.4	$\begin{aligned} & 94.0 \\ & \mathrm{X} \text { axis } \end{aligned}$	-3.6	Vert
\wedge	914.932 M	88.0	-27.1	+23.6	$+0.5$	+5.8	+0.0	90.8	$\begin{aligned} & \quad 94.0 \\ & \mathrm{X} \text { axis } \end{aligned}$	-3.2	Vert
\wedge	914.935M	84.8	-27.1	+23.6	+0.5	+5.8	+0.0	87.6	$\begin{gathered} 94.0 \\ \text { Y-axis } \end{gathered}$	-6.4	Vert
\wedge	914.935 M	83.1	-27.1	+23.6	+0.5	+5.8	+0.0	85.9	$\begin{aligned} & \quad 94.0 \\ & \mathrm{Z} \text { axis } \end{aligned}$	-8.1	Vert

CKC Laboratories Date: 10/27/2011 Time: 08:56:55 SmartLabs, Inc. WO\#: 92348 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Sequence\#: 10 Ext ATTN: 0 dB

[^1]| Test Location: | CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112 | | |
| :--- | :--- | :--- | :--- |
| | | | |
| Customer: | SmartLabs, Inc. | | |
| Specification: | 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) | | |
| Work Order \#: | 92348 | Date: | 12/6/2011 |
| Test Type: | Maximized Emissions | Time: | 17:57:32 |
| Equipment: | In-Line 0-10VDC Dimmer or Dual- | Sequence\#: | 13 |
| | Switch | | |
| Manufacturer: | SmartLabs, Inc. | Tested By: E. Wong | |
| Model: | 2475DA2 | | |
| S/N: | 148B8C | | |

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447 D	$5 / 7 / 2010$	$5 / 7 / 2012$
T2	AN01995	Biconilog Antenna	CBL6111C	$3 / 8 / 2010$	$3 / 8 / 2012$
T3	ANP05050	Cable	RG223/U	$3 / 21 / 2011$	$3 / 21 / 2013$
T4	ANP05198	Cable	8268	$12 / 21 / 2010$	$12 / 21 / 2012$
T5	AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$

Equipment Under Test $(*=$ EUT):

Function	Manufacturer	Model \#	S/N
In-Line 0-10VDC Dimmer or Dual-Switch*	SmartLabs, Inc.	2475DA2	148B8C

Support Devices:

Function Dimmable Programmed Start Electronic Ballast	Manufacturer	Model \#	S/N
Florescent Light	Ecolux	IZT-132-SC	NA

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam, total height is 0.8 meter from the ground plane. Connected to the EUT is a light bulb and a Sensor with a section of dedicated wire length attached.
Continuous transmit
914.92MHz-915.08MHz

Frequency range of measurement $=$ Fundamental.
$30 \mathrm{MHz}-1000 \mathrm{MHz} ; \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$18^{\circ} \mathrm{C}, 22 \%$
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

5	$915.087 \mathrm{M}$ QP	86.5	$\begin{array}{r} \hline-27.1 \\ +0.0 \end{array}$	+23.6	+0.5	+5.8	Z				
\wedge	915.087 M	86.7	$\begin{array}{r} -27.1 \\ +0.0 \end{array}$	+23.6	+0.5	+5.8	+0.0	89.5	94.0	-4.5	Vert
\wedge	915.075 M	83.3	$\begin{array}{r} \hline-27.1 \\ +0.0 \end{array}$	+23.6	+0.5	+5.8	+0.0		94.0	-7.9	Vert
\wedge	915.075 M	82.8	$\begin{array}{r} -27.1 \\ +0.0 \\ \hline \end{array}$	+23.6	+0.5	+5.8	+0.0	85.6	94.0	-8.4	Vert

CKC Laboratories Date: 12/6/2011 Time: 17:57:32 SmartLabs, Inc. WO\#: 92348
15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Sequence\#: 13 Ext ATTN: 0 dB

- Readings
 \times QP Readings
 - Ambient

O Peak Readings

* Average Readings
* 1-15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

Test Setup Photos

15.249(a) X AXIS

15.249(a) Y AXIS

15.249(a) Z AXIS

15.249(a) BACK VIEW

Tested: December 6, 2011

15.249(a) X AXIS

15.249(a) Y AXIS

15.249(a) Z AXIS

15.249(a) BACK VIEW

LABORATORIES, INC.

15.249(a) Field Strength of Harmonics / 15.249(d) Field Strength of Spurious Emissions

Test Data

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: SmartLabs, Inc.
Specification: 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)
Work Order \#: 92348 Date: 10/27/2011
Test Type: Maximized Emissions
Time: 13:55:50
Equipment:
In-Line 0-10VDC Dimmer or Dual-
Sequence\#: 11
Switch
Manufacturer: SmartLabs, Inc. Tested By: Don Nguyen
Model: 2475DA2
S/N: 148B8C
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447 D	$5 / 7 / 2010$	$5 / 7 / 2012$
T2	AN01995	Biconilog Antenna	CBL6111C	$3 / 8 / 2010$	$3 / 8 / 2012$
T3	ANP05050	Cable	RG223/U	$3 / 21 / 2011$	$3 / 21 / 2013$
T4	ANP05198	Cable	8268	$12 / 21 / 2010$	$12 / 21 / 2012$
T5	AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$
T6	AN00786	Preamp	83017 A	$8 / 5 / 2010$	$8 / 5 / 2012$
T7	AN00849	Horn Antenna	3115	$4 / 23 / 2010$	$4 / 23 / 2012$
T8	AN03239	Cable	$32022-2-29094 \mathrm{~K}-8 / 30 / 2011$	$8 / 30 / 2013$	
			24 TC		
T9	ANP05421	Cable	Sucoflex 104A	$2 / 12 / 2010$	$2 / 12 / 2012$
T10	ANP05563	Cable	ANDL-1-PNMN-	$9 / 3 / 2010$	$9 / 3 / 2012$
			48		
T11	AN03169	High Pass Filter	HM1155-11SS	$9 / 22 / 2011$	$9 / 22 / 2013$
T12	AN00314	Loop Antenna	6502	$6 / 30 / 2010$	$6 / 30 / 2012$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
In-Line 0-10VDC Dimmer or Dual-Switch*	SmartLabs, Inc.	2475DA2	148B8C

Support Devices:

Function	Manufacturer	Model \#	S/N
Dimmable Programmed	Phillips	IZT-132-SC	NA
Start Electronic Ballast			
Florescent Light	Ecolux	SP35	F17T8-SP35-ECO

Test Conditions / Notes:
The EUT is placed on the wooden table lined with Styrofoam; total height is 1.5 meter from the ground plane. Connected to the EUT is a light bulb.
Continuous transmit
914.92MHz-915.08MHz

Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kH}-150 \mathrm{kHz} ;$ RBW $=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz} ; 150 \mathrm{kHz}-30 \mathrm{MHz} ;$ RBW=9 kHz, VBW=9 kHz; $30 \mathrm{MHz}-1000$
$\mathrm{MHz} ;$ RBW $=120 \mathrm{kHz}, V B W=120 \mathrm{kHz}, 1000 \mathrm{MHz}-10,000 \mathrm{MHz} ; \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$.
$18^{\circ} \mathrm{C}, 22 \%$ Relative Humidity
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

$\#$ Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { T9 } \\ & \text { dB } \end{aligned}$	$\begin{gathered} \mathrm{T} 2 \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ \mathrm{~T} 8 \\ \mathrm{~T} 12 \\ \mathrm{~dB} \\ \hline \end{gathered}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 181830.050 \mathrm{M} \\ & \text { QP } \end{aligned}$	59.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	52.9	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-1.1	Horiz
$\begin{aligned} & 21829.947 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	59.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	52.9	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-1.1	Horiz
$\wedge 1829.947 \mathrm{M}$	60.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	54.1	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	+0.1	Horiz
$\wedge 1829.917 \mathrm{M}$	56.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	$\overline{49.4}$	$\begin{aligned} & \quad 54.0 \\ & \mathrm{Z} \text { axis } \end{aligned}$	-4.6	Horiz
$\begin{aligned} & 5 \text { 1830.050M } \\ & \text { QP } \end{aligned}$	59.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	52.9	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-1.1	Horiz
6 1830.197M	59.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	+0.0	52.8	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-1.2	Horiz
$\begin{aligned} & 7 \text { 1829.697M } \\ & \text { QP } \end{aligned}$	59.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	52.5	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-1.5	Horiz
$\begin{aligned} & 81829.790 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	58.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	+0.0	52.1	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-1.9	Horiz
$\wedge 1829.790 \mathrm{M}$	59.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	53.0	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-1.0	Horiz
$\wedge 1829.883 \mathrm{M}$	59.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	52.7	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-1.3	Horiz
$\begin{aligned} & 111830.060 \mathrm{M} \\ & \text { QP } \end{aligned}$	58.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	52.0	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-2.0	Horiz

\wedge	1830.050M	60.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.2 \\ +2.7 \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \\ +0.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	+0.0	54.0	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	+0.0	Horiz	
131829.950 MQP		58.3	+0.0	+0.0	+0.0	+0.0	+0.0	51.7	Z ${ }^{54.0}$	-2.3	Vert	
		+0.0	-38.2	+27.2	+0.3							
		+1.0	+2.7	+0.4	+0.0							
\wedge	1829.950M		59.0	+0.0	+0.0	+0.0	+0.0	+0.0	52.4	$\begin{gathered} \quad 54.0 \\ \text { Z axis } \end{gathered}$	-1.6	Vert
				+0.0	-38.2	+27.2	+0.3					
		+1.0		+2.7	+0.4	+0.0						
15	1830.225M	57.8	+0.0	+0.0	+0.0	+0.0	+0.0	51.2	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-2.8	Vert	
			+0.0	-38.2	+27.2	+0.3						
			+1.0	+2.7	+0.4	+0.0						
16	1829.825M	57.7	+0.0	+0.0	+0.0	+0.0	$+0.0$	51.1	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-2.9	Vert	
			+0.0	-38.2	+27.2	+0.3						
			+1.0	+2.7	+0.4	+0.0						
17	1829.775M	57.3	+0.0	+0.0	+0.0	+0.0	+0.0	50.7	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-3.3	Vert	
			+0.0	-38.2	+27.2	+0.3						
			+1.0	+2.7	+0.4	+0.0						
18	1830.275M	57.2	+0.0	+0.0	+0.0	+0.0	$+0.0$	50.6	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-3.4	Vert	
			+0.0	-38.2	+27.2	+0.3						
			+1.0	+2.7	+0.4	+0.0						
19	129.800M	53.3	-27.8	+11.9	+0.2	+1.9	+0.0	39.5	$\begin{gathered} \quad 43.5 \\ \text { Z-axis } \end{gathered}$	-4.0	Horiz	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
20	164.920M	52.9	-27.8	+10.2	+0.2	+2.2	$+0.0$	37.7	$\begin{gathered} 43.5 \\ \mathrm{X} \text {-axis } \end{gathered}$	-5.8	Horiz	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
21	9150.000M	35.7	+0.0	+0.0	+0.0	+0.0	+0.0	47.3	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-6.7	Horiz	
			+0.0	-35.4	+36.7	+0.7						
			+2.7	+6.7	+0.2	+0.0						
22	160.800M	51.5	-27.7	+10.6	+0.1	+2.2	+0.0	36.7	$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-6.8	Horiz	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
23	9150.067M	35.5	+0.0	+0.0	+0.0	+0.0	+0.0	47.1	$\begin{gathered} 54.0 \\ \mathrm{Z} \text { axis } \end{gathered}$	-6.9	Horiz	
			+0.0	-35.4	+36.7	+0.7						
			+2.7	+6.7	+0.2	+0.0						
24	9150.000M	35.5	+0.0	$+0.0$	+0.0	+0.0	$+0.0$	47.1	$\begin{gathered} 54.0 \\ \mathrm{Z} \text { axis } \end{gathered}$	-6.9	Vert	
			+0.0	-35.4	+36.7	+0.7						
			+2.7	+6.7	+0.2	+0.0						
25	945.078M	35.7	-27.1	+24.0	+0.5	+5.9	$+0.0$	39.0	$\begin{gathered} 46.0 \\ \text { Y-axis } \end{gathered}$	-7.0	Horiz	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
26	944.928M	35.6	-27.1	+24.0	+0.5	+5.9	+0.0	38.9	$\begin{gathered} 46.0 \\ \text { Y-axis } \end{gathered}$	-7.1	Horiz	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
27	127.700M	49.4	-27.8	+12.0	+0.2	+1.9	+0.0	35.7	$\begin{gathered} 43.5 \\ \mathrm{Y} \text {-axis } \end{gathered}$	-7.8	Horiz	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
28	9150.000M	34.6	+0.0	+0.0	+0.0	+0.0	+0.0	46.2	(${ }^{54.0}$	-7.8	Vert	
			+0.0	-35.4	+36.7	+0.7						
			+2.7	+6.7	+0.2	+0.0						

29	9149.927M	34.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.4 \\ +6.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.7 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	46.2	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-7.8	Horiz
30	161.920M	50.4	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+10.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	35.5	$\begin{gathered} 43.5 \\ \text { Y-axis } \end{gathered}$	-8.0	Vert
31	944.927M	34.5	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	37.8	$\begin{gathered} 46.0 \\ \text { Y-axis } \end{gathered}$	-8.2	Vert
32	945.088M	34.5	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	37.8	$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-8.2	Vert
33	945.087M	34.4	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	37.7	$\begin{gathered} 46.0 \\ \text { Y-axis } \end{gathered}$	-8.3	Vert
34	944.928M	34.4	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	37.7	$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-8.3	Vert
35	8235.067M	35.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.4 \\ +6.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.6 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ \mathrm{Z} \text { axis } \end{gathered}$	-8.3	Horiz
36	69.420 M	52.1	$\begin{array}{r} -27.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	31.6	$\begin{gathered} 40.0 \\ \text { Y-axis } \end{gathered}$	-8.4	Vert
37	182.420M	51.3	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	35.1	$\begin{gathered} 43.5 \\ \mathrm{X} \text {-axis } \end{gathered}$	-8.4	Horiz
38	170.800M	50.6	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-8.6	Horiz
39	8235.000M	35.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{gathered} +0.0 \\ -36.4 \\ +6.2 \\ \hline \end{gathered}$	$\begin{array}{r} +0.0 \\ +36.6 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ \mathrm{Z} \text { axis } \end{gathered}$	-8.8	Vert
40	33.420 M	40.9	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+17.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	31.1	$\begin{gathered} 40.0 \\ \text { Y-axis } \end{gathered}$	-8.9	Vert
41	8235.000M	35.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.4 \\ +6.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.6 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ \text { X-axis } \end{gathered}$	-8.9	Horiz
42	194.800M	50.5	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-9.0	Horiz
43	9149.975M	33.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.4 \\ +6.7 \end{array}$	$\begin{array}{r} +0.0 \\ +36.7 \\ +0.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-9.0	Vert
44	8235.000M	35.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.4 \\ +6.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.6 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	44.8	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-9.2	Vert
45	6405.000M	37.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.5 \\ +5.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	44.7	$\begin{gathered} 54.0 \\ \mathrm{Z} \text { axis } \end{gathered}$	-9.3	Vert

Page 39 of 70

46	7320.000M	36.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.7 \\ +5.8 \end{array}$	$\begin{array}{r} +0.0 \\ +35.9 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	44.6	$\begin{aligned} & \quad 54.0 \\ & \mathrm{Z} \text { axis } \end{aligned}$	-9.4	Vert
47	944.928M	33.3	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+24.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	36.6	$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-9.4	Horiz
48	155.620 M	48.5	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-9.5	Vert
49	6405.000M	37.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.5 \\ +5.5 \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \\ +0.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	44.4	$\begin{aligned} & \quad 54.0 \\ & \mathrm{X} \text {-axis } \end{aligned}$	-9.6	Horiz
50	7320.067M	36.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.7 \\ +5.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.9 \\ +0.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	44.3	$\begin{aligned} & \quad 54.0 \\ & \mathrm{Z} \text { axis } \end{aligned}$	-9.7	Horiz
51	6405.067M	36.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.5 \\ +5.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{aligned} & \quad 54.0 \\ & \mathrm{Z} \text { axis } \end{aligned}$	-9.9	Horiz
52	8234.975M	34.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.4 \\ +6.2 \end{array}$	$\begin{array}{r} +0.0 \\ +36.6 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	44.0	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-10.0	Vert
53	141.800 M	47.6	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	33.5	$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-10.0	Horiz
54	7319.975M	35.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.7 \\ +5.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.9 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-10.1	Vert
55	86.570 M	47.3	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +8.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 40.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-10.2	Vert
56	945.078 M	32.4	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-10.3	Horiz
57	2745.327M	46.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +3.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	43.7	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-10.3	Horiz
58	2744.827M	46.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +3.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	43.6	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-10.4	Horiz
59	8234.927M	33.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.4 \\ +6.2 \end{array}$	$\begin{array}{r} +0.0 \\ +36.6 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} \quad 54.0 \\ \text { Y-axis } \end{gathered}$	-10.6	Horiz
60	2744.725M	46.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +3.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	43.3	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-10.7	Vert
61	93.980M	49.3	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-10.8	Vert
62	2745.050M	46.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +3.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	43.1	$\begin{aligned} & \quad 54.0 \\ & \mathrm{Z} \text { axis } \end{aligned}$	-10.9	Vert

63	36.770M	40.5	-27.8	+15.2	+0.1	$+1.0$	+0.0	$\begin{array}{lc} \hline 29.0 & 40.0 \\ & \text { X-axis } \end{array}$		-11.0	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
64	2745.325M	46.1	+0.0	+0.0	+0.0	+0.0	+0.0	43.0	54.0	-11.0	Horiz
			+0.0	-37.8	+29.3	+0.4		X -axis			
			+1.4	+3.3	+0.3	+0.0					
65	33.570M	38.6	-27.8	+17.0	+0.1	+0.9	+0.0	28.8	40.0	-11.2	Vert
			+0.0	+0.0	+0.0	+0.0		X -axis			
			+0.0	+0.0	+0.0	+0.0					
66	164.710M	47.5	-27.8	+10.2	+0.2	+2.2	+0.0	32.3	43.5	-11.2	Horiz
			+0.0	+0.0	+0.0	+0.0		X -axis			
			+0.0	+0.0	+0.0	+0.0					
67	2744.700M	45.6	+0.0	+0.0	+0.0	+0.0	+0.0	42.5	54.0	-11.5	Horiz
			+0.0	-37.8	+29.3	+0.4			X -axis		
			+1.4	+3.3	+0.3	+0.0					
68	7319.927M	34.4	+0.0	+0.0	+0.0	+0.0	+0.0	42.5	54.0	-11.5	Horiz
			+0.0	-36.7	+35.9	+0.6			Y -axis		
			+2.3	+5.8	+0.2	+0.0					
69	5490.067M	37.2	+0.0	+0.0	+0.0	+0.0	+0.0	42.5	54.0	-11.5	Horiz
			+0.0	-36.9	+34.4	+0.6			Z axis		
			+2.0	+5.0	+0.2	+0.0					
70	7320.000M	34.4	+0.0	+0.0	+0.0	+0.0	+0.0	42.5	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-11.5	Horiz
			+0.0	-36.7	+35.9	+0.6					
			+2.3	+5.8	+0.2	+0.0					
71	5490.000 M	37.1	+0.0	+0.0	+0.0	+0.0	+0.0	42.4	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-11.6	Horiz
			+0.0	-36.9	+34.4	+0.6					
			+2.0	+5.0	+0.2	+0.0					
72	2745.350M	45.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.4	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-11.6	Vert
			+0.0	-37.8	+29.3	+0.4					
			+1.4	+3.3	+0.3	+0.0					
73	6404.975M	35.0	+0.0	+0.0	+0.0	+0.0	+0.0	42.3	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-11.7	Vert
			+0.0	-36.5	+35.2	+0.6					
			+2.2	+5.5	+0.3	+0.0					
74	5490.000M	36.9	+0.0	+0.0	+0.0	+0.0	+0.0	42.2	$\begin{gathered} 54.0 \\ \mathrm{Z} \text { axis } \end{gathered}$	-11.8	Vert
			+0.0	-36.9	+34.4	+0.6					
			+2.0	+5.0	+0.2	+0.0					
75	30.663M	36.6	-27.8	+18.3	+0.1	+0.9	+0.0	28.1	$\begin{gathered} \hline 40.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-11.9	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
76	7320.000M	34.0	+0.0	+0.0	+0.0	+0.0	+0.0	42.1	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-11.9	Vert
			+0.0	-36.7	+35.9	+0.6					
			+2.3	+5.8	+0.2	+0.0					
77	2745.317M	45.1	+0.0	+0.0	+0.0	+0.0	+0.0	42.0	$\begin{gathered} 54.0 \\ \mathrm{Z} \text { axis } \end{gathered}$	-12.0	Horiz
			+0.0	-37.8	+29.3	+0.4					
			+1.4	+3.3	+0.3	+0.0					
78	6405.000M	34.7	+0.0	+0.0	+0.0	+0.0	+0.0	42.0	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-12.0	Vert
			+0.0	-36.5	+35.2	+0.6					
			+2.2	+5.5	+0.3	+0.0					
79	89.420M	48.5	-27.8	+9.0	+0.1	+1.6	+0.0	31.4	43.5	-12.1	Vert
			+0.0	+0.0	+0.0	+0.0			Z-axis		
			+0.0	+0.0	+0.0	+0.0					

80	74.920M	47.3	$\begin{gathered} -27.8 \\ +0.0 \\ +0.0 \end{gathered}$	$\begin{aligned} & \hline+6.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	27.9	$\begin{gathered} 40.0 \\ \text { Z-axis } \end{gathered}$	-12.1	Vert
81	2744.792M	44.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +3.3 \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	+0.0	41.8	$\begin{gathered} 54.0 \\ \mathrm{Z} \text { axis } \end{gathered}$	-12.2	Horiz
82	131.420M	45.0	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +11.9 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	31.3	$\begin{gathered} 43.5 \\ \text { Y-axis } \end{gathered}$	-12.2	Vert
83	52.770 M	47.0	$\begin{array}{r} \hline-27.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+7.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	27.7	$\begin{gathered} 40.0 \\ \text { X-axis } \end{gathered}$	-12.3	Vert
84	6404.927M	34.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.5 \\ +5.5 \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \\ +0.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	+0.0	41.6	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-12.4	Horiz
85	5490.000M	36.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.0 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -36.9 \\ +5.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \\ +0.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	+0.0	41.4	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-12.6	Vert
86	5489.927M	36.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.9 \\ +5.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	41.4	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-12.6	Horiz
87	4575.000M	38.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +1.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +4.4 \end{array}$	$\begin{array}{r} +0.0 \\ +32.5 \\ +0.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	41.3	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-12.7	Horiz
88	4575.000M	38.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +4.4 \end{array}$	$\begin{array}{r} +0.0 \\ +32.5 \\ +0.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ \mathrm{Z} \text { axis } \end{gathered}$	-12.9	Vert
89	5489.975M	35.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.0 \end{aligned}$	$\begin{gathered} +0.0 \\ -36.9 \\ +5.0 \end{gathered}$	$\begin{array}{r} +0.0 \\ +34.4 \\ +0.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-12.9	Vert
90	221.800 M	47.2	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +10.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0		$\begin{gathered} 46.0 \\ \text { Z-axis } \end{gathered}$	-13.1	Horiz
91	163.840M	45.3	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +10.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	30.2	$\begin{gathered} 43.5 \\ \mathrm{X} \text {-axis } \end{gathered}$	-13.3	Vert
92	4574.975M	38.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +4.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.5 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	40.6	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-13.4	Vert
93	206.700M	45.3	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	29.9	$\begin{gathered} 43.5 \\ \text { Y-axis } \end{gathered}$	-13.6	Horiz
94	4575.067M	38.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +4.4 \end{array}$	$\begin{array}{r} +0.0 \\ +32.5 \\ +0.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ \mathrm{Z} \text { axis } \end{gathered}$	-13.6	Horiz
95	4575.000M	37.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +4.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.5 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	40.1	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-13.9	Vert
96	183.940M	45.6	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	29.4	$\begin{gathered} 43.5 \\ \text { X-axis } \end{gathered}$	-14.1	Vert

Page 42 of 70

97	164.620M	44.6	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	29.4	$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-14.1	Vert
98	3659.975M	39.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +4.1 \end{array}$	$\begin{array}{r} +0.0 \\ +31.3 \\ +0.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	+0.0	39.9	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-14.1	Vert
99	76.070 M	44.9	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +7.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	25.7	$\begin{gathered} \quad 40.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-14.3	Vert
100	3660.000M	39.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +4.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.3 \\ +0.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	39.6	$\begin{aligned} & \quad 54.0 \\ & \mathrm{Z} \text { axis } \end{aligned}$	-14.4	Vert
101	82.970M	43.7	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+8.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	25.6	$\begin{gathered} 40.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-14.4	Vert
102	3659.927M	39.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +4.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.3 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	39.5	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-14.5	Horiz
103	194.910M	45.0	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	29.0	$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-14.5	Vert
104	945.096M	28.1	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	31.4	$\begin{gathered} 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-14.6	Vert
105	4574.927M	37.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +4.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.5 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-14.6	Horiz
106	3660.067M	39.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +4.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.3 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{aligned} & \quad 54.0 \\ & \mathrm{Z} \text { axis } \end{aligned}$	-14.6	Horiz
107	56.942M	45.6	$\begin{array}{r} -27.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +6.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	25.4	$\begin{gathered} \quad 40.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-14.6	Horiz
108	2744.700M	42.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +3.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-14.9	Vert
109	952.192M	27.7	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-14.9	Vert
110	2745.000M	42.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +3.3 \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} \quad 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-15.0	Vert
111	2745.000M	42.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +3.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	38.9	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-15.1	Horiz
112	3660.000M	38.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +4.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.3 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	38.6	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-15.4	Horiz
113	965.088M	34.9	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.3 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	38.5	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-15.5	Horiz

114	3660.000M	37.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +4.1 \end{array}$	$\begin{array}{r} +0.0 \\ +31.3 \\ +0.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$+0.0$	38.2	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-15.8	Vert
115	964.968M	34.6	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	38.2	$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-15.8	Horiz
116	149.140M	41.7	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	27.5	$\begin{gathered} 43.5 \\ \mathrm{X} \text {-axis } \end{gathered}$	-16.0	Vert
117	965.088M	34.3	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	37.9	$\begin{gathered} \text { 54.0 } \\ \text { Z-axis } \end{gathered}$	-16.1	Vert
118	975.088M	33.7	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	37.6	$\begin{gathered} \quad 54.0 \\ \text { Z-axis } \end{gathered}$	-16.4	Vert
119	964.928M	34.0	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} \text { 54.0 } \\ \text { Z-axis } \end{gathered}$	-16.4	Vert
120	193.620M	43.1	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	27.1	$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-16.4	Vert
121	974.928M	33.5	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	37.4	$\begin{aligned} & \quad 54.0 \\ & \text { Z-axis } \end{aligned}$	-16.6	Vert
122	183.120M	43.1	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-16.6	Vert
123	975.074M	33.2	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} \quad 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-16.9	Horiz
124	142.920M	40.2	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	26.1	$\begin{gathered} 43.5 \\ \text { Y-axis } \end{gathered}$	-17.4	Vert
125	99.380 M	42.1	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-17.4	Vert
126	140.940M	40.1	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0		$\begin{gathered} 43.5 \\ \mathrm{X} \text {-axis } \end{gathered}$	-17.4	Vert
127	964.938M	32.9	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-17.5	Vert
128	974.929M	32.6	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	36.5	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-17.5	Horiz
129	965.088M	32.8	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+24.3 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ \text { Y-axis } \end{gathered}$	-17.6	Vert
130	974.948M	32.0	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	35.9	$\begin{gathered} 54.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-18.1	Vert

131	149.620M	39.6	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+11.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	25.4	$\begin{gathered} 43.5 \\ \text { Z-axis } \end{gathered}$	-18.1	Vert
132	94.942M	41.7	$\begin{gathered} -27.8 \\ +0.0 \\ +0.0 \end{gathered}$	$\begin{aligned} & +9.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	25.3	$\begin{gathered} 43.5 \\ \mathrm{X} \text {-axis } \end{gathered}$	-18.2	Horiz
133	965.098M	31.1	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +24.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0		$\begin{aligned} & \text { 54.0 } \\ & \text { Z-axis } \end{aligned}$	-19.3	Horiz
134	58.970M	41.0	$\begin{array}{r} -27.9 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	20.4	$\begin{aligned} & \quad 40.0 \\ & \mathrm{X} \text {-axis } \end{aligned}$	-19.6	Vert
135	964.938M	30.8	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +24.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	34.4	$\begin{aligned} & \quad 54.0 \\ & \text { Z-axis } \end{aligned}$	-19.6	Horiz
136	994.938M	30.2	$\begin{array}{r} -27.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +24.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	34.4	$\begin{gathered} \quad 54.0 \\ \text { Z-axis } \end{gathered}$	-19.6	Vert
137	995.108M	30.0	$\begin{array}{r} -27.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +24.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	34.2	$\begin{aligned} & \text { 54.0 } \\ & \text { Z-axis } \end{aligned}$	-19.8	Vert
138	91.942M	40.4	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	23.6	$\begin{gathered} 43.5 \\ \mathrm{X} \text {-axis } \end{gathered}$	-19.9	Horiz
139	975.088 M	30.0	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +24.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0		$\begin{gathered} \text { 54.0 } \\ \text { Z-axis } \end{gathered}$	-20.1	Horiz
140	974.938M	29.9	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +24.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0		$\begin{gathered} \text { 54.0 } \\ \text { Z-axis } \end{gathered}$	-20.2	Horiz
141	181.340M	39.4	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	23.2	$\begin{gathered} 43.5 \\ \mathrm{X} \text {-axis } \end{gathered}$	-20.3	Vert
142	99.292 M	38.1	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +10.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0		$\begin{gathered} 43.5 \\ \mathrm{X} \text {-axis } \end{gathered}$	-21.4	Horiz
143	100.592 M	37.7	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +10.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0		$\begin{aligned} & 43.5 \\ & \mathrm{X} \text {-axis } \end{aligned}$	-21.7	Horiz
144	223.140 M	37.5	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0		$\begin{gathered} \quad 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-22.7	Vert
145	234.240M	36.1	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +11.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0		$\begin{gathered} 46.0 \\ \mathrm{X} \text {-axis } \end{gathered}$	-23.2	Vert
146	195.740M	35.1	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0		$\begin{array}{r} 43.5 \\ \mathrm{X} \text {-axis } \end{array}$	-24.4	Vert
147	90.392M	34.6	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +9.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	17.6	$\begin{array}{r} 43.5 \\ \mathrm{X} \text {-axis } \end{array}$	-25.9	Horiz

148	172.800k	68.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +8.6 \end{aligned}$	-80.0	-3.1	$\begin{gathered} 22.8 \\ \text { X-axis } \end{gathered}$	-25.9	Perpe
149	221.820k	65.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +8.5 \end{aligned}$	-80.0	-5.7	$\begin{gathered} 20.7 \\ \text { Y-axis } \end{gathered}$	-26.4	Perpe
150	280.740 M	30.7	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+13.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	19.3	$\begin{gathered} 46.0 \\ \text { X-axis } \end{gathered}$	-26.7	Vert
151	99.230 M	32.3	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	16.3	$\begin{gathered} 43.5 \\ \text { Y-axis } \end{gathered}$	-27.2	Horiz
152	258.280k	62.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +8.4 \\ & \hline \end{aligned}$	-80.0	-8.9	$\begin{gathered} 19.4 \\ \text { Y-axis } \end{gathered}$	-28.3	Perpe
153	138.742 M	26.9	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +11.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	12.9	$\begin{gathered} 43.5 \\ \text { X-axis } \end{gathered}$	-30.6	Horiz
154	1.785 M	26.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0	-4.3	$\begin{gathered} 29.5 \\ \text { Z-axis } \end{gathered}$	-33.8	Perpe
155	2.005 M	23.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0	-7.5	$\begin{gathered} 29.5 \\ \text { Y-axis } \end{gathered}$	-37.0	Paral
156	2.502 M	21.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0		$\begin{gathered} 29.5 \\ \text { Y-axis } \end{gathered}$	-38.6	Paral
157	1.758 M	21.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +8.8 \\ & \hline \end{aligned}$	-40.0	-9.4	$\begin{gathered} 29.5 \\ \text { Z-axis } \end{gathered}$	-38.9	Paral
158	338.800k	36.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +8.5 \\ & \hline \end{aligned}$	-80.0	-35.2	$\begin{gathered} 17.0 \\ \text { X-axis } \end{gathered}$	-52.2	Paral

CKC Laboratories Date: 10/27/2011 Time: 13:55:50 SmartLabs, Inc. WO\#: 92348
15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Sequence\#: 11 Ext ATTN: 0 dB

| Test Location: | CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112 | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| Customer: | SmartLabs, Inc. | | |
| Specification: | 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) | | |
| Work Order \#: | 92348 | Date: | 12/6/2011 |
| Test Type: | Maximized Emissions | Time: | 17:27:55 |
| Equipment: | In-Line 0-10VDC Dimmer or Dual- | Sequence\#: | 12 |
| | Switch | | |
| Manufacturer: | SmartLabs, Inc. | Tested By: E. Wong | |
| Model: | 2475DA2 | | |
| S/N: | 148B8C | | |

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN00309	Preamp	8447D	$5 / 7 / 2010$	$5 / 7 / 2012$
	AN01995	Biconilog Antenna	CBL6111C	$3 / 8 / 2010$	$3 / 8 / 2012$
	ANP05050	Cable	RG223/U	$3 / 21 / 2011$	$3 / 21 / 2013$
	ANP05198	Cable	8268	$12 / 21 / 2010$	$12 / 21 / 2012$
T1	AN02672	Spectrum Analyzer	E4446A	$8 / 9 / 2010$	$8 / 9 / 2012$
T2	AN00786	Preamp	83017 A	$8 / 5 / 2010$	$8 / 5 / 2012$
T3	AN00849	Horn Antenna	3115	$4 / 23 / 2010$	$4 / 23 / 2012$
T4	AN03239	Cable	$32022-2-29094 \mathrm{~K}-8 / 30 / 2011$	$8 / 30 / 2013$	
			Cable	Sucoflex 104A	$2 / 12 / 2010$
T5	ANP05421	Cable	ANDL-1-PNMN-	$9 / 3 / 2010$	$2 / 12 / 2012$
T6	ANP05563		High Pass Filter	HM1155-11SS	$9 / 22 / 2011$
		T0op Antenna	6502	$6 / 30 / 2010$	$9 / 22 / 2012$
	AN03169	AN00314	LT	$6 / 30 / 2012$	

Equipment Under Test $(*=$ EUT $)$:

Function	Manufacturer	Model \#	S/N
In-Line 0-10VDC Dimmer or Dual-Switch*	SmartLabs, Inc.	2475DA2	148B8C

Support Devices:

Function Dimmable Programmed Start Electronic Ballast	Manufacturer	Phillips	Model \#
Florescent Light	Ecolux	SP35	NA

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam, total height is 0.8 meter from the ground plane. Connected to the EUT is a light bulb and a Sensor with a section of dedicated wire length attached.
Continuous transmit
914.92MHz-915.08MHz

Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kH}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz} ; 150 \mathrm{kHz}-30 \mathrm{MHz} ; \mathrm{RBW}=9 \mathrm{kHz}, \mathrm{VBW}=9 \mathrm{kHz} ; 30 \mathrm{MHz}-1000$
$\mathrm{MHz} ; \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}, 1000 \mathrm{MHz}-10,000 \mathrm{MHz} ; \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$.
$18^{\circ} \mathrm{C}, 22 \%$
Maximized 10 worse frequency of the original test data. All harmonics are checked.

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Distance: 3 Meters

CKC Laboratories Date: 12/6/2011 Time: 17:27:55 SmartLabs, Inc. WO\#: 92348
15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Sequence\#: 12 Ext ATTN: 0 dB

0 Peak Readings

* Average Readings
_1-15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

Test Setup Photos

15.249(a) / 15.249(d) X AXIS

15.249(a) / 15.249(d) Y AXIS

15.249(a) / 15.249(d) Z AXIS

15.249(a) / 15.249(d) BACK VIEW

Tested December 6, 2011

15.249(a) / 15.249(d) X AXIS

15.249(a) / 15.249(d) Y AXIS

15.249(a) / 15.249(d) Z AXIS

15.249(a) / 15.249(d) BACK VIEW

LABORATORIES, INC.

-20 dBc Occupied Bandwidth

Test Conditions / Setup

The EUT is placed on the wooden table lined with Styrofoam, total height is 1.5 meter from the ground plane. Connected to the EUT is a light bulb.
Continuous transmit
914.92MHz-915.08MHz
15.31(e) compliance: the supply voltage was varied between 85% and 115% of the nominal rated supply voltage (120-230Vac), no change in the Fundamental signal level was observed.

Frequency range of measurement $=30 \mathrm{MHz}-1 \mathrm{GHz}$
RBW=120 kHz, VBW=120 kHz
$18^{\circ} \mathrm{C}, 22 \%$ Relative Humidity

Engineer Name: D. Nguyen

Test Equipment

Asset/Serial \#	Description	Model	Manufacturer	Cal Date	Cal Due
AN00309	Preamp	8447D	HP	$5 / 7 / 2010$	$5 / 7 / 2012$
AN01995	Biconilog Antenna	CBL6111C	Chase	$3 / 8 / 2010$	$3 / 8 / 2012$
ANP05050	Cable	RG223/U	Pasternack	$3 / 21 / 2011$	$3 / 21 / 2013$
ANP05198	Cable	8268	Selden	$12 / 21 / 2010$	$12 / 21 / 2012$
AN02672	Spectrum Analyzer	E4446A	Agilent	$8 / 9 / 2010$	$8 / 9 / 2012$

Test Plot

Test Setup Photos

-20dBc OBW X AXIS

-20dBc OBW X AXIS

-20dBc OBW BACK VIEW

Bandedge

Test Conditions / Setup

The EUT is placed on the wooden table lined with Styrofoam, total height is 1.5 meter from the ground plane. Connected to the EUT is a light bulb.
Continuous transmit
914.92MHz-915.08MHz
15.31(e) compliance: the supply voltage was varied between 85% and 115% of the nominal rated supply voltage (120-230Vac), no change in the Fundamental signal level was observed.

Frequency range of measurement $=30 \mathrm{MHz}-1 \mathrm{GHz}$
RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$18^{\circ} \mathrm{C}, 22 \%$ Relative Humidity

Engineer Name: D. Nguyen

Test Equipment						
Asset/Serial \#	Description	Model	Manufacturer	Cal Date	Cal Due	
AN00309	Preamp	8447D	HP	$5 / 7 / 2010$	$5 / 7 / 2012$	
AN01995	Biconilog Antenna	CBL6111C	Chase	$3 / 8 / 2010$	$3 / 8 / 2012$	
ANP05050	Cable	RG223/U	Pasternack	$3 / 21 / 2011$	$3 / 21 / 2013$	
ANP05198	Cable	8268	Belden	$12 / 21 / 2010$	$12 / 21 / 2012$	
AN02672	Spectrum Analyzer	E4446A	Agilent	$8 / 9 / 2010$	$8 / 9 / 2012$	

Test Data

LEFT Tx ON

LEFT Tx OFF

RIGHT Tx ON

RIGHT Tx OFF

CENTER

Test Setup Photos

FCC BANDEDGE X AXIS

FCC BANDEDGE Y AXIS

FCC BANDEDGE Z AXIS

FCC BANDEDGE BACK VIEW

RSS-210

99 \% Bandwidth

Test Conditions / Setup

The EUT is placed on the wooden table lined with Styrofoam, total height is 1.5 meter from the ground plane. Connected to the EUT is a light bulb.
Continuous transmit
914.92MHz-915.08MHz
15.31(e) compliance: the supply voltage was varied between 85% and 115% of the nominal rated supply voltage (120-230Vac), no change in the Fundamental signal level was observed.

Frequency range of measurement $=30 \mathrm{MHz}-1 \mathrm{GHz}$
RBW=120 kHz, VBW=120 kHz
$18^{\circ} \mathrm{C}, 22 \%$ Relative Humidity

Engineer Name: D. Nguyen

Test Equipment						
Asset/Serial \#	Description	Model	Manufacturer	Cal Date	Cal Due	
AN00309	Preamp	8447D	HP	$5 / 7 / 2010$	$5 / 7 / 2012$	
AN01995	Biconilog Antenna	CBL6111C	Chase	$3 / 8 / 2010$	$3 / 8 / 2012$	
ANP05050	Cable	RG223/U	Pasternack	$3 / 21 / 2011$	$3 / 21 / 2013$	
ANP05198	Cable	8268	Selden	$12 / 21 / 2010$	$12 / 21 / 2012$	
AN02672	Spectrum Analyzer	E4446A	Agilent	$8 / 9 / 2010$	$8 / 9 / 2012$	

Test Data

Test Setup Photos

RSS 210 X AXIS

RSS 210 X AXIS

RSS 210 Z AXIS

RSS 210 BACK VIEW

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $k=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS
Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

LABORATORIES, INC.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: This report contains a total of 70 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

[^1]: O Peak Readings

 * Average Readings
 - 1-15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

