

SMARTLABS, INC. TEST REPORT

FOR THE

LAMPLINCTM - INSTEON PLUG-IN DIMMER (DUAL BAND), 2457D2

FCC PART 15 SUBPART C SECTIONS 15.207 & 15.249 AND RSS-210 VERSION 7

TESTING

DATE OF ISSUE: OCTOBER 30, 2009

PREPARED FOR: PREPARED BY:

SmartLabs, Inc.
Dianne Dudley
16542 Millikan Ave.
CKC Laboratories, Inc.
Irvine, CA 92606
5046 Sierra Pines Drive
Mariposa, CA 95338

P.O. No.: 09-3JL1020-I Date of test: October 23, 2009

W.O. No.: 90125

Report No.: FC09-182

This report contains a total of 31 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Site File Registration Numbers	3
Summary of Results	4
Conditions During Testing	4
FCC 15.31(e) Voltage Variation	5
FCC 15.31(m) Number Of Channels	5
FCC 15.33(a) Frequency Ranges Tested	5
FCC 15.203 Antenna Requirements	
EUT Operating Frequency	5
Temperature And Humidity During Testing	5
Equipment Under Test (EUT) Description	6
Equipment Under Test	6
Peripheral Devices	6
Measurement Uncertainties	7
Report of Emissions Measurements	7
Testing Parameters	7
FCC 2.1046/15.249 (a) (b) RF Output Power	9
FCC 2.1049 Occupied Bandwidth	13
FCC 2.1053/15.249 (d) Radiated Spurious Emissions	16
FCC 15.207 Conducted Emissions	19
FCC_Bandedge	26
RSS-210 99% Bandwidth	29

ADMINISTRATIVE INFORMATION

DATE OF TEST: DATE OF RECEIPT:

October 23, 2009 October 21, 2009

REPRESENTATIVE:

John Lockyer

MANUFACTURER: TEST LOCATION: SmartLabs, Inc. CKC Laboratories, Inc. 16542 Millikan Ave. 110 Olinda Place Irvine, CA 92606 Brea, CA 92823

TEST METHOD: FCC Part 15 Subpart C Section 15.207 & 15.249, and RSS – 210 and RSS-**GEN**

PURPOSE OF TEST: To perform the testing of the LampLincTM - INSTEON Plug-In Dimmer (Dual Band), 2457D2 with the requirements for FCC Part 15 Subpart C Sections 15.207 & 15.249 and RSS – 210 devices.

APPROVALS

QUALITY ASSURANCE: TEST PERSONNEL:

Steve Behm, Director of Engineering Services

Eddie Wong, Senior EMC Engineer

SITE FILE REGISTRATION NUMBERS

Location	Japan	Canada	FCC
Brea A	R-301, C-314 & T-1572	3082D-1	90473

Page 3 of 31

Report No.: FC09-182

SUMMARY OF RESULTS

Test	Specification/Method	Results
RF Output Power	FCC2.1046/15.249 (a) & (b)	Pass
Occupied Bandwidth	FCC2.1049	Pass
Radiated Spurious Emissions	FCC2.1053/15.249 (d)	Pass
Voltage Variation	FCC15.31(e)	Pass
Conducted Emissions	FCC15.207	Pass
FCC_ Bandedge		Pass
99% Bandwidth	RSS-210 Version 7	Pass

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

Page 4 of 31 Report No.: FC09-182

FCC 15.31(e) Voltage Variations

The supply voltage was varied between 85% and 115% of the nominal rated supply voltage, no change in the Fundamental signal level was observed.

FCC 15.31(m) Number Of Channels

This device operates on a single channel.

FCC 15.33(a) Frequency Ranges Tested

15.207 Conducted Emissions: 150 kHz – 30 MHz 15.209 Radiated Emissions: 9 kHz- 10 GHz

FCC 15.203 Antenna Requirements

The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

EUT Operating Frequency

The EUT was operating at 915 MHz

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C.

The relative humidity was between 20% and 75%.

Page 5 of 31 Report No.: FC09-182

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested is a LampLincTM - INSTEON Plug-In Dimmer (Dual Band), 2457D2

EQUIPMENT UNDER TEST

<u>LampLincTM - INSTEON Plug-In Dimmer</u>

(Dual Band) Model

Manuf: SmartLabs, Inc.

Model: 2457D2 Serial: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Lamp

Manuf: Generic Model: NA Serial: NA

> Page 6 of 31 Report No.: FC09-182

MEASUREMENT UNCERTAINTIES

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 7 of 31 Report No.: FC09-182

	SAMPLE CALCULA	TIONS
	Meter reading	$(dB\mu V)$
+	Antenna Factor	(dB)
+	Cable Loss	(dB)
-	Distance Correction	(dB)
-	Preamplifier Gain	(dB)
=	Corrected Reading	$(dB\mu V/m)$

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Ouasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 8 of 31 Report No.: FC09-182

FCC 2.1046/15.249 (a) & (b) RF OUTPUT POWER

Test Setup Photos

Page 9 of 31 Report No.: FC09-182

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: SmartLabs, Inc.

Specification: FCC 15.249(a) / (b) Field strength of Fundamental/ Field strength of Harmonics

 Work Order #:
 90125
 Date:
 10/23/2009

 Test Type:
 Radiated Scan
 Time:
 11:02:34

Equipment: LampLincTM - INSTEON Plug-In Sequence#: 3

Dimmer (Dual Band)

Manufacturer: SmartLabs, Inc. Tested By: E. Wong

Model: 2457D2 S/N: NA

Test Equipment:

z est z quip ment				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	04/16/2009	04/16/2011	P05050
Cable	Cable15	01/05/2009	01/05/2011	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
2'-40GHz cable	NA	09/21/2009	09/21/2011	P2948
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565
Loop Antenna	2014	06/16/2008	06/16/2010	00314
1.0 GHz HPF	002	09/14/2009	09/14/2011	03169

Equipment Under Test (* = EUT):

=quipilient citaer zest (_
Function	Manufacturer	Model #	S/N
LampLincTM - INSTEON	SmartLabs, Inc.	2457D2	NA
Plug-In Dimmer (Dual			
Band) Model*			

Support Devices:

Function	Manufacturer	Model #	S/N
Lamp	Generic	NA	NA

Test Conditions / Notes:

The EUT is placed on a plastic structure with dielectric constant approaching the value of air. The device is orientated as a wall mount device. A lamp is connected to the EUT with a light bulb installed.

Freq= 915MHz. Modulation: FSK Power= 0dBm=0.001W.

50 mV/m = 93.9 dBuV/m 3 m. 500 uV/m = 53.979 = 54 dBuV/m @3m

The EUT is set in constant transmit mode. The light is set at brightest setting.

20°C, 42% Relative Humidity

Frequency range of measurement = 9 kHz- 10 GHz.

Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz- 30 MHz RBW=9 kHz, VBW=9 kHz; 30

MHz- 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz-10,000 MHz RBW=1 MHz, VBW=1 MHz

Emission profile of the EUT rotated in three Orthogonal orientation was investigated.

Presented data is the worst case emission.

Page 10 of 31 Report No.: FC09-182

Transducer Legend:

T1=Bilog-AN01995 BILOG_012110 T3=Cable #15_05198_ Site A, 010511 T5=Heliax Cable 54' ANP05565 090410 T7=Hi Freq_40GHz_2ft-AN02948-092111 T9=HPF_1GHz_AN03169-091411.TRN

T2=Cable #10 ANP05050 041611 T4=Pre_amp_HP8447D-AN00309-050210 T6=HF_pre AMP-1-26GHz_AN00786-072810.TRN T8=Horn Ant AN00849 060610

rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7	T8					
MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBμV/m	dB	Ant
914.910M	84.7	+23.5		+5.8	-27.2	+0.0	87.5	93.9	-6.4	Horiz
		+0.0	+0.0	+0.0	+0.0			Fundamen	tal: X	
914.910M	83.0					+0.0	85.8			Vert
		+0.0	+0.0	+0.0	+0.0			Fundamen	tal: X	
914.917M	82.5					+0.0	85.3			Horiz
		+0.0	+0.0	+0.0	+0.0			Fundamen	tal: Y	
01401016	02.4	22.5	0.7	7.0	27.2	0.0	05.0	02.0	0.7	TT .
914.910M	82.4					+0.0	85.2			Horiz
		+0.0	+0.0	+0.0	+0.0			Fundamen	tal: Z	
1020 0001 6	50 6	0.0	0.0	0.0	0.0	0.0	45.0	710	0.0	T. 7
1830.000M	52.6					+0.0	45.2		-8.8	Vert
			-38.0	+0.4	+26.7			Λ		
1920 070M	52.2		ι Ο Ο	+0.0	+ΩΩ	+ΩΩ	110	540	0.2	Horiz
1829.970WI	32.2					+0.0	44.8		-9.2	попх
			-38.0	+0.4	+20.7			1		
1920 0001/	52.1		+0.0	+0.0	+0.0	+0.0	117	54.0	0.2	Vert
1630.000101	32.1					+0.0	44./		-9.3	vert
			-36.0	±0. 4	+20.7			L		
914 910M	81.0		+0.7	±5.8	-27.2	+0.0	83.8	93.9	-10.1	Horiz
914.910IVI	01.0					+0.0	05.0			110112
		10.0	10.0	10.0	10.0			1 unuamen	uı. <i>L</i>	
915 063M	80.9	+23.5	+0.7	+5.8	-27.2	+0.0	83.7	93.9	-10.2	Vert
713.003WI	00.7					10.0	05.7			V C11
		10.0	10.0	10.0	10.0			2 dilduillell	1	
		Freq Rdng MHz dBμV 914.910M 84.7 914.910M 83.0 914.917M 82.5 914.910M 82.4 1830.000M 52.6 1830.000M 52.1 914.910M 81.0	Freq Rdng T1 T5 T9 MHz dBμV dB 914.910M 84.7 +23.5 +0.0 +23.5 +0.0 914.910M 82.5 +23.5 +0.0 +23.5 +0.0 914.910M 82.4 +23.5 +0.0 +3.2 +0.3 1829.970M 52.2 +0.0 +3.2 +0.3 1830.000M 52.1 +0.0 +3.2 +0.3 914.910M 81.0 +23.5 +0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq Rdng T1 T2 T3 T4 Dist MHz dBμV dB dB dB dB dB Table 914.910M 84.7 +23.5 +0.7 +5.8 -27.2 +0.0 914.910M 83.0 +23.5 +0.7 +5.8 -27.2 +0.0 914.917M 82.5 +23.5 +0.7 +5.8 -27.2 +0.0 914.910M 82.4 +23.5 +0.7 +5.8 -27.2 +0.0 914.910M 82.4 +23.5 +0.7 +5.8 -27.2 +0.0 914.910M 82.4 +23.5 +0.7 +5.8 -27.2 +0.0 914.910M 52.6 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 1829.970M 52.2 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 1830.000M 52.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Page 11 of 31 Report No.: FC09-182

10 1830.000M	49.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.1	54.0	-11.9	Vert
		+3.2	-38.0	+0.4	+26.7			Z		
		+0.3								
11 3660.000M	41.8	+0.0	+0.0	+0.0	+0.0	+0.0	41.7	54.0	-12.3	Vert
		+4.8	-37.3	+0.6	+31.6					
		+0.2								
12 1829.900M	47.9	+0.0	+0.0	+0.0	+0.0	+0.0	40.5	54.0	-13.5	Horiz
		+3.2	-38.0	+0.4	+26.7			X		
		+0.3								
13 1829.570M	47.6	+0.0	+0.0	+0.0	+0.0	+0.0	40.2	54.0	-13.8	Vert
		+3.2	-38.0	+0.4	+26.7			Y		
		+0.3								
14 2745.000M	43.2	+0.0	+0.0	+0.0	+0.0	+0.0	39.6	54.0	-14.4	Vert
		+4.1	-37.8	+0.5	+29.3					
		+0.3								

Page 12 of 31 Report No.: FC09-182

FCC 2.1049 OCCUPIED BANDWIDTH

Test Setup Photos

Page 13 of 31 Report No.: FC09-182

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: SmartLabs, Inc.

 Work Order #:
 90125
 Date:
 10/23/2009

 Test Type:
 Radiated Scan
 Time:
 11:02:34

Equipment: **LampLincTM - INSTEON Plug-In** Sequence#: 3

Dimmer (Dual Band)

Manufacturer: SmartLabs, Inc. Tested By: E. Wong

Model: 2457D2 S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	04/16/2009	04/16/2011	P05050
Cable	Cable15	01/05/2009	01/05/2011	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
LampLincTM - INSTEON	SmartLabs, Inc.	2457D2	NA
Plug-In Dimmer (Dual			
Band) Model*			

Support Devices:

Function	Manufacturer	Model #	S/N
Lamp	Generic	NA	NA

Test Conditions / Notes:

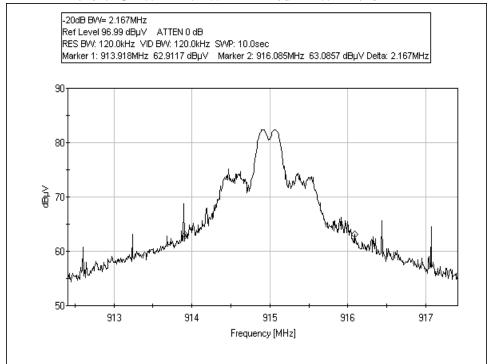
The EUT is placed on a plastic structure with dielectric constant approaching the value of air. The device is orientated as a wall mount device.

A lamp is connected to the EUT with a light bulb installed.

Freq= 915MHz. Modulation: FSK Power= 0dBm=0.001W. 50mV/m = 93.9dBuV/m 3 m. 500uV/m = 53.979 = 54dBuV/m @3m

The EUT is set in constant transmit mode. The light is set at brightest setting.

20°C, 42% Relative Humidity


Emission profile of the EUT rotated in three Orthogonal orientations was investigated.

Presented data is the worst case emission.

Page 14 of 31 Report No.: FC09-182

2.1049 OBW BANDWIDTH 20dB BW = 2.167 MHz

FCC 2.1053/15.249 (d) RADIATED SPRURIOUS EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: SmartLabs, Inc.

Specification: FCC 15.249(d) / 15.209

 Work Order #:
 90125
 Date:
 10/23/2009

 Test Type:
 Radiated Scan
 Time:
 14:45:07

Equipment: LampLincTM - INSTEON Plug-In Sequence#: 3

Dimmer (Dual Band)

Manufacturer: SmartLabs, Inc. Tested By: E. Wong

Model: 2457D2 S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	04/16/2009	04/16/2011	P05050
Cable	Cable15	01/05/2009	01/05/2011	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
2'-40GHz cable	NA	09/21/2009	09/21/2011	P2948
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565
Loop Antenna	2014	06/16/2008	06/16/2010	00314
1.0 GHz HPF	002	09/14/2009	09/14/2011	03169

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
LampLincTM - INSTEON	SmartLabs, Inc.	2457D2	NA
Plug-In Dimmer (Dual			
Band) Model*			

Support Devices:

Function	Manufacturer	Model #	S/N
Lamp	Generic	NA	NA

Test Conditions / Notes:

The EUT is placed on a plastic structure with dielectric constant approaching the value of air.. The device is orientated as a wall mount device. A lamp is connected to the EUT with a light bulb installed.

Freq= 915MHz. Modulation: FSK Power= 0dBm=0.001W.

The EUT is set in constant transmit mode. The light is set at brightest setting.

20°C, 42% Relative Humidity

Frequency range of measurement = 9 kHz- 10 GHz.

Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz- 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz- 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz-10,000 MHz RBW=1 MHz, VBW=1 MHz

Emission profile of the EUT rotated in three Orthogonal orientations was investigated. Presented data is the worst case emission.

Page 17 of 31 Report No.: FC09-182

Transducer Legend:

T1=Bilog-AN01995 BILOG_012110 T2=Cable #10 ANP05050 041611

T3=Cable #15_05198_ Site A, 010511 T4=Pre_amp_HP8447D-AN00309-050210

T5=Heliax Cable 54' ANP05565 090410 T6=HF_pre AMP-1-26GHz_AN00786-072810.TRN

T7=Hi Freq_40GHz_2ft-AN02948-092111 T8=Horn Ant AN00849 060610 T9=HPF_1GHz_AN03169-091411.TRN

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	•		T5	T6	T7	T8			•	C	
			T9								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	66.356M	54.0	+6.3	+0.1	+1.3	-28.0	+0.0	33.7	40.0	-6.3	Vert
	QP		+0.0	+0.0	+0.0	+0.0					
			+0.0								
٨	66.356M	56.1	+6.3	+0.1	+1.3	-28.0	+0.0	35.8	40.0	-4.2	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
3	1830.000M	52.6	+0.0	+0.0	+0.0	+0.0	+0.0	45.2	54.0	-8.8	Vert
			+3.2	-38.0	+0.4	+26.7			X		
			+0.3								
4	1829.970M	52.2	+0.0	+0.0	+0.0	+0.0	+0.0	44.8	54.0	-9.2	Horiz
			+3.2	-38.0	+0.4	+26.7			Y		
			+0.3								
5	905.014M	32.1	+23.4	+0.7	+5.7	-27.2	+0.0	34.7	46.0	-11.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
6	3660.000M	41.8	+0.0	+0.0	+0.0	+0.0	+0.0	41.7	54.0	-12.3	Vert
			+4.8	-37.3	+0.6	+31.6					
			+0.2								
7	925.083M	30.2	+23.7	+0.7	+5.8	-27.2	+0.0	33.2	46.0	-12.8	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
8	2745.000M	43.2	+0.0	+0.0	+0.0	+0.0	+0.0	39.6	54.0	-14.4	Vert
			+4.1	-37.8	+0.5	+29.3					
			+0.3								
9	66.358M	35.2	+6.3	+0.1	+1.3	-28.0	+0.0	14.9	40.0	-25.1	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 18 of 31 Report No.: FC09-182

FCC 15.207 CONDUCTED EMISSIONS

Test Setup Photos

Page 19 of 31 Report No.: FC09-182

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: SmartLabs, Inc.

Specification: FCC 15.207 COND [AVE]

 Work Order #:
 90125
 Date:
 10/23/2009

 Test Type:
 Conducted Emissions
 Time:
 08:56:49

Equipment: LampLincTM - INSTEON Plug-In Sequence#: 1

Dimmer (Dual Band)

Manufacturer: SmartLabs, Inc. Tested By: E. Wong Model: 2457D2 110V 60Hz

S/N: NA

Test Equipment:

1 1				
Function	S/N	Calibration Date	Cal Due Date	Asset #
LISN	1104	12/09/2008	12/09/2010	00847
6dB Attenuator	None	10/14/2008	10/14/2010	P05886
150kHz HPF	G7755	01/09/2008	01/09/2010	02610
Conducted Emission	Cable #21	05/12/2008	05/12/2010	P04358
Cable				
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672

Equipment Under Test (* = EUT):

=quipilient citaer zest (
Function	Manufacturer	Model #	S/N
LampLincTM - INSTEON	SmartLabs, Inc.	2457D2	NA
Plug-In Dimmer (Dual			
Band) Model*			

Support Devices:

Function	Manufacturer	Model #	S/N	
Lamp	Generic	NA	NA	

Test Conditions / Notes:

The EUT is placed on a plastic structure with dielectric constant approaching the value of air. The device is orientated as a wall mount device. A lamp is connected to the EUT with a light bulb installed.

Freq= 915MHz. Modulation: FSK Power= 0dBm=0.001W.

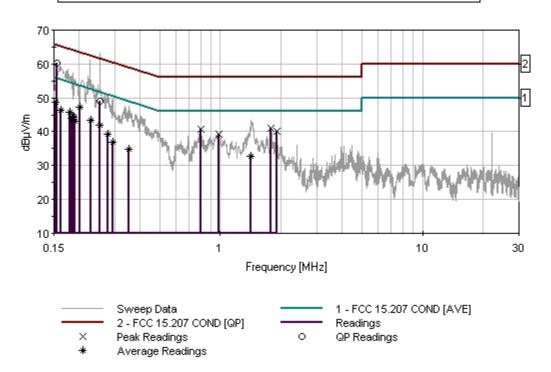
The EUT is set in constant transmit mode. The light is set at brightest setting.

20°C, 42% Relative Humidity

Page 20 of 31 Report No.: FC09-182

Transducer Legend:

T1=150kHz HPF AN02610_010910	T2=6dB atten-P05886-101410.TRN
T3=Cable #21 -P04358- Site A 05/12/10	T4=L1 Insertion Loss AN00847_120910


Measu	rement Data:	Re	ading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table		dBμV/m	dB	Ant
1	253.990k QP	42.7	+0.2	+6.1	+0.0	+0.0	+0.0	49.0	51.6	-2.6	Black
۸	253.991k	56.8	+0.2	+6.1	+0.0	+0.0	+0.0	63.1	51.6	+11.5	Black
3	1.787M	34.7	+0.2	+6.1	+0.1	+0.0	+0.0	41.1	46.0	-4.9	Black
4	155.520k QP	52.9	+1.3	+6.1	+0.0	+0.0	+0.0	60.3	65.7	-5.4	Black
٨	154.001k	56.1	+1.5	+6.1	+0.0	+0.0	+0.0	63.7	55.8	+7.9	Black
6	801.577k	34.2	+0.3	+6.1	+0.0	+0.0	+0.0	40.6	46.0	-5.4	Black
7	1.894M	33.7	+0.2	+6.1	+0.1	+0.0	+0.0	40.1	46.0	-5.9	Black
8	202.627k Ave	40.9	+0.2	+6.1	+0.0	+0.0	+0.0	47.2	53.5	-6.3	Black
٨	205.268k	49.0	+0.2	+6.1	+0.0	+0.0	+0.0	55.3	53.4	+1.9	Black
10	987.776k	32.9	+0.3	+6.1	+0.1	+0.0	+0.0	39.4	46.0	-6.6	Black
11	154.001k Ave	41.1	+1.5	+6.1	+0.0	+0.0	+0.0	48.7	55.8	-7.1	Black
12	179.916k Ave	39.4	+0.3	+6.1	+0.0	+0.0	+0.0	45.8	54.5	-8.7	Black
13	161.635k Ave	39.8	+0.6	+6.1	+0.0	+0.0	+0.0	46.5	55.4	-8.9	Black
٨	161.635k	52.8	+0.6	+6.1	+0.0	+0.0	+0.0	59.5	55.4	+4.1	Black
15	227.575k Ave	37.1	+0.2	+6.1	+0.0	+0.0	+0.0	43.4	52.5	-9.1	Black
٨	225.629k	54.7	+0.2	+6.1	+0.0	+0.0	+0.0	61.0	52.6	+8.4	Black
17	188.286k Ave	38.0	+0.3	+6.1	+0.0	+0.0	+0.0	44.4	54.1	-9.7	Black
٨	184.179k	49.9	+0.3	+6.1	+0.0	+0.0	+0.0	56.3	54.3	+2.0	Black
19	186.360k Ave	38.1	+0.3	+6.1	+0.0	+0.0	+0.0	44.5	54.2	-9.7	Black
20	253.990k Ave	35.5	+0.2	+6.1	+0.0	+0.0	+0.0	41.8	51.6	-9.8	Black
21	184.179k Ave	37.7	+0.3	+6.1	+0.0	+0.0	+0.0	44.1	54.3	-10.2	Black

Page 21 of 31 Report No.: FC09-182

22	190.842k	36.7	+0.3	+6.1	+0.0	+0.0	+0.0	43.1	54.0	-10.9	Black
	Ave										
٨	186.360k	50.8	+0.3	+6.1	+0.0	+0.0	+0.0	57.2	54.2	+3.0	Black
٨	191.451k	49.1	+0.3	+6.1	+0.0	+0.0	+0.0	55.5	54.0	+1.5	Black
25	277.988k	33.0	+0.2	+6.1	+0.0	+0.0	+0.0	39.3	50.9	-11.6	Black
	Ave										
٨	277.988k	44.9	+0.2	+6.1	+0.0	+0.0	+0.0	51.2	50.9	+0.3	Black
27	1.422M	26.4	+0.2	+6.1	+0.1	+0.0	+0.0	32.8	46.0	-13.2	Black
	Ave										
^	1.422M	37.0	+0.2	+6.1	+0.1	+0.0	+0.0	43.4	46.0	-2.6	Black
29	293.987k	30.5	+0.2	+6.1	+0.0	+0.0	+0.0	36.8	50.4	-13.6	Black
	Ave										
^	293.987k	43.3	+0.2	+6.1	+0.0	+0.0	+0.0	49.6	50.4	-0.8	Black
31	350.709k	28.4	+0.2	+6.1	+0.0	+0.0	+0.0	34.7	48.9	-14.2	Black
	Ave										
٨	350.709k	41.1	+0.2	+6.1	+0.0	+0.0	+0.0	47.4	48.9	-1.5	Black

CKC Laboratories, Inc. Date: 10/23/2009 Time: 08:56:49 SmartLabs, Inc. WO#: 90125 FCC 15.207 COND [AVE] Test Lead: Black 110V 60Hz Sequence#: 1 2457D2

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: SmartLabs, Inc.

Specification: FCC 15.207 COND [AVE]

Work Order #: 90125 Date: 10/23/2009
Test Type: Conducted Emissions Time: 09:02:54
Equipment: LampLincTM - INSTEON Plug-In Sequence#: 2

Dimmer (Dual Band)

Manufacturer: SmartLabs, Inc. Tested By: E. Wong Model: 2457D2 110V 60Hz

S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
LISN	1104	12/09/2008	12/09/2010	00847
6dB Attenuator	None	10/14/2008	10/14/2010	P05886
150kHz HPF	G7755	01/09/2008	01/09/2010	02610
Conducted Emission	Cable #21	05/12/2008	05/12/2010	P04358
Cable				
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
LampLincTM - INSTEON	SmartLabs, Inc.	2457D2	NA
Plug-In Dimmer (Dual			
Band) Model*			

Support Devices:

Function	Manufacturer	Model #	S/N
Lamp	Generic	NA	NA

Test Conditions / Notes:

The EUT is placed on a plastic structure with dielectric constant approaching the value of air. The device is orientated as a wall mount device. A lamp is connected to the EUT with a light bulb installed.

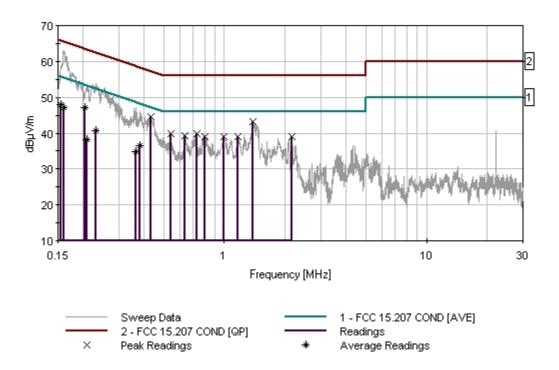
Freq= 915MHz. Modulation: FSK Power= 0dBm=0.001W.

The EUT is set in constant transmit mode. The light is set at brightest setting.

20°C, 42% Relative Humidity

Page 23 of 31 Report No.: FC09-182

Transducer Legend:


T1=150kHz HPF AN02610_010910	T2=6dB atten-P05886-101410.TRN
T3=Cable #21 -P04358- Site A 05/12/10	T4=L2 Insertion Loss AN00847_120910

Measu	rement Data.	: Re	eading lis	ted by ma	argin.			Test Lead	d: White		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	434.338k	38.4	+0.2	+6.1	+0.0	+0.0	+0.0	44.7	47.2	-2.5	White
2	1.388M	36.6	+0.3	+6.1	+0.1	+0.1	+0.0	43.2	46.0	-2.8	White
3	728.129k	33.6	+0.3	+6.1	+0.0	+0.0	+0.0	40.0	46.0	-6.0	White
4	544.146k	33.5	+0.2	+6.1	+0.0	+0.0	+0.0	39.8	46.0	-6.2	White
5	204.331k Ave	40.7	+0.2	+6.1	+0.0	+0.1	+0.0	47.1	53.4	-6.3	White
6		33.0	+0.2	+6.1	+0.0	+0.0	+0.0	39.3	46.0	-6.7	White
7	804.485k	32.7	+0.3	+6.1	+0.0	+0.0	+0.0	39.1	46.0	-6.9	White
8	2.166M	32.6	+0.2	+6.1	+0.1	+0.1	+0.0	39.1	46.0	-6.9	White
9	996.281k	32.4	+0.3	+6.1	+0.1	+0.1	+0.0	39.0	46.0	-7.0	White
10	1.162M	32.4	+0.3	+6.1	+0.1	+0.1	+0.0	39.0	46.0	-7.0	White
11	155.077k Ave	40.5	+1.4	+6.1	+0.0	+0.0	+0.0	48.0	55.7	-7.7	White
12	160.181k Ave	40.5	+0.6	+6.1	+0.0	+0.0	+0.0	47.2	55.5	-8.3	White
٨	160.181k	56.2	+0.6	+6.1	+0.0	+0.0	+0.0	62.9	55.5	+7.4	White
14	383.433k Ave	30.2	+0.2	+6.1	+0.0	+0.0	+0.0	36.5	48.2	-11.7	White
٨	383.433k	39.6	+0.2	+6.1	+0.0	+0.0	+0.0	45.9	48.2	-2.3	White
16	232.174k Ave	34.2	+0.2	+6.1	+0.0	+0.1	+0.0	40.6	52.4	-11.8	White
٨	232.174k	47.5	+0.2	+6.1	+0.0	+0.1	+0.0	53.9	52.4	+1.5	White
18	364.526k Ave	28.4	+0.2	+6.1	+0.0	+0.0	+0.0	34.7	48.6	-13.9	White
٨		40.8	+0.2	+6.1	+0.0	+0.0	+0.0	47.1	48.6	-1.5	White
٨	367.435k	39.5	+0.2	+6.1	+0.0	+0.0	+0.0	45.8	48.6	-2.8	White
21	209.631k Ave	31.7	+0.2	+6.1	+0.0	+0.1	+0.0	38.1	53.2	-15.1	White
٨		46.5	+0.2	+6.1	+0.0	+0.1	+0.0	52.9	53.2	-0.3	White

Page 24 of 31 Report No.: FC09-182

CKC Laboratories, Inc. Date: 10/23/2009 Time: 09:02:54 SmartLabs, Inc. WO#: 90125 FCC 15:207 COND [AVE] Test Lead: White 110V 60Hz Sequence#: 2 2457D2

FCC_BANDEDGE

Test Setup Photos

Page 26 of 31 Report No.: FC09-182

Test Conditions

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: SmartLabs, Inc.

 Work Order #:
 90125
 Date:
 10/23/2009

 Test Type:
 Radiated Scan
 Time:
 11:02:34

Equipment: LampLincTM - INSTEON Plug-In Sequence#: 3

Dimmer (Dual Band)

Manufacturer: SmartLabs, Inc. Tested By: E. Wong

Model: 2457D2 S/N: NA

Test Equipment:

1 cst Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	04/16/2009	04/16/2011	P05050
Cable	Cable15	01/05/2009	01/05/2011	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309

Equipment Under Test (* = EUT):

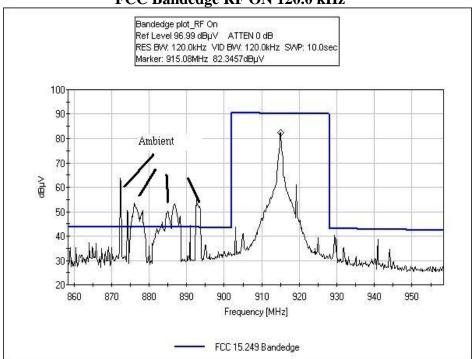
Function	Manufacturer	Model #	S/N
LampLincTM - INSTEON	SmartLabs, Inc.	2457D2	NA
Plug-In Dimmer (Dual			
Band) Model*			

Support Devices:

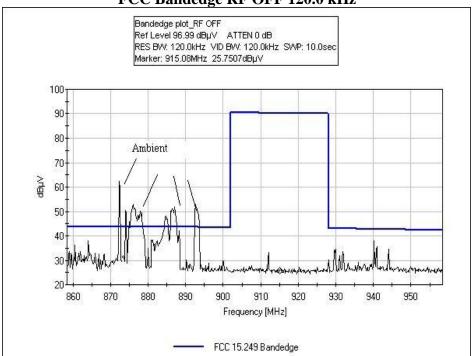
Function	Manufacturer	Model #	S/N
Lamp	Generic	NA	NA

Test Conditions / Notes:

The EUT is placed on a plastic structure with dielectric constant approaching the value of air. The device is orientated as a wall mount device. A lamp is connected to the EUT with a light bulb installed.


Freq= 915MHz. Modulation: FSK Power= 0dBm=0.001W. 50mV/m = 93.9dBuV/m 3 m. 500uV/m = 53.979 =54dBuV/m @3m The EUT is set in constant transmit mode. The light is set at brightest setting. 20°C, 42% Relative Humidity

Emission profile of the EUT rotated in three Orthogonal orientations was investigated. Presented data is the worst case emission.


Page 27 of 31 Report No.: FC09-182

FCC Bandedge RF OFF 120.0 kHz

Note: Two plots are presented to clarify the presence of ambient signal; one plot with the Device turned on, the other with the device turned off. The captured Ambient signal is annotated on the plots.

> Page 28 of 31 Report No.: FC09-182

RSS-210 99% BANDWIDTH

Test Setup Photos

Page 29 of 31 Report No.: FC09-182

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: SmartLabs, Inc.

 Work Order #:
 90125
 Date:
 10/23/2009

 Test Type:
 Radiated Scan
 Time:
 11:02:34

Equipment: LampLincTM - INSTEON Plug-In Sequence#: 3

Dimmer (Dual Band)

Manufacturer: SmartLabs, Inc. Tested By: E. Wong

Model: 2457D2 S/N: NA

Test Equipment:

I ost Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	04/16/2009	04/16/2011	P05050
Cable	Cable15	01/05/2009	01/05/2011	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
LampLincTM - INSTEON	SmartLabs, Inc.	2457D2	NA
Plug-In Dimmer (Dual			
Band) Model*			

Support Devices:

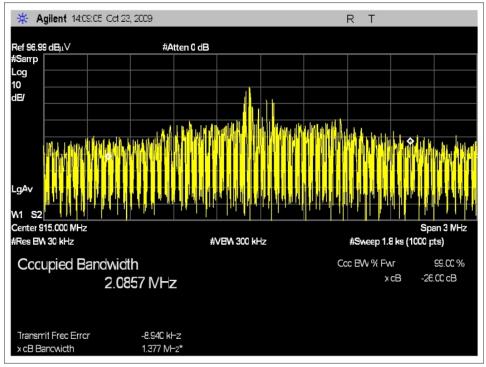
Function	Manufacturer	Model #	S/N
Lamp	Generic	NA	NA

Test Conditions / Notes:

The EUT is placed on a plastic structure with dielectric constant approaching the value of air. The device is orientated as a wall mount device. A lamp is connected to the EUT with a light bulb installed.

Freq= 915MHz. Modulation: FSK Power= 0dBm=0.001W. 50mV/m = 93.9dBuV/m 3 m. 500uV/m = 53.979 = 54dBuV/m @3m

The EUT is set in constant transmit mode, light is set at brightest setting. 20°C, 42% Relative Humidity


Emission profile of the EUT rotated in three Orthogonal orientations was investigated. Presented data is the worst case emission.

The pulsating signal was captured with slow sweet time and the Channel bandwidth function of the spectrum analyzer was used to compute the 99% BW.

Page 30 of 31 Report No.: FC09-182

RSS-210 99% BANDWIDTH 2.0MHz

