FCC PART 15, SUBPART B and C TEST REPORT

for

TriggerLinc

MODEL: 2421

Prepared for

SMARTLABS, INC. 16542 MILLIKAN AVENUE IRVINE, CALIFORNIA 92606

Prepared by:

Fajimoto

KYLE FUJIMOTO

Approved by:_

MICHAEL CHRISTENSEN

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: JANUARY 2, 2009

	REPORT	APPENDICES			TOTAL		
	BODY	A	В	C	D	E	
PAGES	16	2	2	2	11	11	44

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

TriggerLinc

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
2.1 Location of Testing 2.2 Traceability Statement	6 6 6
2.3 Cognizant Personnel 2.4 Date Test Sample was Received 2.5 Disposition of the Test Sample 2.6 Abbreviations and Acronyms	6 6 6 6
3. APPLICABLE DOCUMENTS	7
 4. DESCRIPTION OF TEST CONFIGURATION 4.1 Description Of Test Configuration - EMI 4.1.1 Cable Construction and Termination 	8 8 9
 LISTS OF EUT, ACCESSORIES AND TEST EQUIPM EUT and Accessory List EMI Test Equipment 	1ENT 10 10 11
 6. TEST SITE DESCRIPTION 6.1 Test Facility Description 6.2 EUT Mounting, Bonding and Grounding 	12 12 12
 7. TEST PROCEDURES 7.1 RF Emissions 7.1.1 Conducted Emissions Test 7.1.2 Radiated Emissions (Spurious and Harmonics) Test 7.1.3 Radiated Emissions (Spurious and Harmonics) Test (Continuous Action (Continuous Action	ued) 13
8. CONCLUSIONS	16

LIST OF APPENDICES

APPENDIX	TITLE		
A	Laboratory Recognitions		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams, Charts, and Photos		
	Test Setup Diagrams		
	Radiated Emissions Photos		
	Antenna and Effective Gain Factors		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Radiated Test Site – 3 Meters

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested: TriggerLinc

Model: 2421 S/N: N/A

Product Description: See Expository Statement

Modifications: The EUT was not modified in order to meet the specifications.

Manufacturer: SmartLabs, Inc.

> 16542 Millikan Avenue Irvine, California 92606

Test Dates: December 16 and 17, 2008

Test Specifications: EMI requirements

CFR Title 47, Part 15 Subpart B; and Subpart C, Sections 15.205, 15.209 and 15.249

Test Procedure: ANSI C63.4

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz – 30 MHz	This test was not preformed because the EUT operates on battery power only and cannot be plugged into the AC public mains.
2	Radiated RF Emissions, 10 kHz – 9300 MHz (Transmitter Portion)	Complies with the limits of CFR Title 47, Part 15, Subpart C, section 15.205, 15.209, and 15.249.
3	Radiated RF Emissions, 10 kHz – 9300 MHz (Digital Portion)	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B.

PURPOSE

1.

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the TriggerLinc, Model: 2421. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B for the digital portion; and the limits defined in Subpart C, sections 15.205, 15.207, 15.209, and 15.249 for the transmitter portion.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

SmartLabs, Inc.

Linda Shea Marcus Escobosa

Compatible Electronics, Inc.

Kyle Fujimoto Test Engineer Michael Christensen Lab Manager

2.4 Date Test Sample was Received

The test sample was received on December 15, 2008.

2.5 Disposition of the Test Sample

The sample has not been returned to SmartLabs, Inc. as of January 2, 2009.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference

EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4 2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

TriggerLinc Model: 2421

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description Of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The TriggerLinc, Model: 2421 (EUT) had two unterminated wires connected to the terminal block inside the EUT. The EUT's antenna is hardwired onto the PCB. The EUT was tested in three orthogonal axis. The EUT was continuously transmitting and/or receiving.

The final radiated data as well as the conducted data was taken in the both the transmitting and receiving modes. Please see Appendix E for the data sheets.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

TriggerLinc
Model: 2421

4.1.1 Cable Construction and Termination

<u>Cable 1</u> This is a 1-meter unshielded cable connecting the EUT to the terminal block. The cable is hard wired at each end. The cable was bundled to a length of 40 centimeters.

<u>Cable 2</u> This is a 1-meter unshielded cable connecting the EUT to the terminal block. The cable is hard wired at each end. The cable was bundled to a length of 40 centimeters.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

TriggerLinc

Model: 2421

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIALNUMBER	FCC ID
TRIGGERLINC (EUT)	SMARTLABS, INC.	2421	N/A	SBP2421

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CALIBRATION DUE DATE
GENERAL TEST EQUIPMENT USED FOR ALL RF EMISSIONS TESTS					
Computer	Hewlett Packard	4530	US91912319	N/A	N/A
EMI Receiver	Rohde & Schwarz	ESIB40	100194	September 17, 2008	Sept. 17, 2010
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A
	RF RADIA	ATED EMISSI	ONS TEST EQU	IPMENT	
Radiated Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A
Biconical Antenna	Com Power	AB-900	15226	February 28, 2008	Feb. 28, 2009
Log Periodic Antenna	Com Power	AL-100	16060	June 27, 2008	June 27, 2009
Preamplifier	Com-Power	PA-102	1017	January 11, 2008	Jan. 11, 2009
Loop Antenna	Com Power	AL-130	17089	September 29, 2008	Sept. 29, 2009
Horn Antenna	Com Power	AH-118	071175	June 27, 2008	June 27, 2010
Microwave Preamplifier	Com Power	PA-122	181921	March 3, 2008	March 3, 2009
Antenna Mast	Com Power	AM-100	N/A	N/A N/A	
Microwave Preamplifier	Com Power	PA-840	711013	March 3, 2008	March 3, 2009
Horn Antenna	Com-Power	AH826	71957	December 12, 2007	Dec. 12, 2009
RF CONDUCTED EMISSIONS TEST EQUIPMENT					
LISN	Com Power	LI-215	12078	September 29, 2008	Sept. 29, 2009
LISN	Com Power	LI-215	12082	September 29, 2008	Sept. 29, 2009
Transient Limiter	Seaward	252A910	1	September 26, 2008	Sept. 26, 2009

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

TriggerLinc

Model: 2421

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

TriggerLinc Model: 2421

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in EN 55022. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Test Results:

This test was not preformed because the EUT operates on battery power only and cannot be plugged into the AC public mains.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

TriggerLinc

7.1.2 Radiated Emissions (Spurious and Harmonics) Test

The EMI Receiver was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The EMI Receiver was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the EMI Receiver records the highest measured reading over all the sweeps.

The frequencies above 1 GHz were averaged manually by narrowing the video filter down to 10 Hz and putting the sweep time on AUTO on the spectrum analyzer to keep the amplitude reading calibrated.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE EFFECTIVE MEASUREMENT BANDWIDTH		TRANSDUCER
9 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 9.3 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results. The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

TriggerLinc

7.1.3 Radiated Emissions (Spurious and Harmonics) Test (Continued)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain the final test data. The final qualification data sheets are located in Appendix E.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, sections 15.205, 15.209, and 15.249.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

TriggerLinc

8. CONCLUSIONS

The TriggerLinc, Model: 2421 meets all of the **Class B** specification limits defined in CFR Title 47, Part 15, Subpart B for the digital portion; and the limits defined in Subpart C, sections 15.205, 15.207, 15.209, and 15.249 for the transmitter portion.

APPENDIX A

LABORATORY RECOGNITIONS

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.249 or FCC Class B specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT.

APPENDIX C

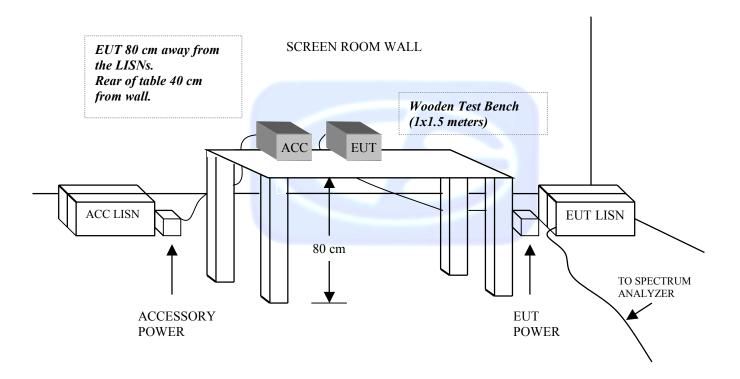
ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

TriggerLinc Model: 2421 S/N: N/A

There were no additional models covered under this report.



APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

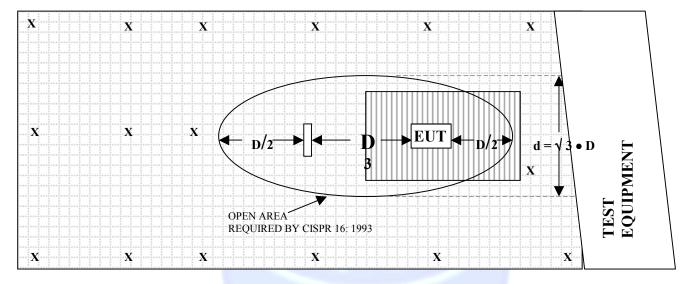

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED TEST SITE – 3 METERS

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

X = GROUND RODS = GROUND SCREEN

D = TEST DISTANCE (meters) = WOOD COVER

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15226

CALIBRATION DATE: FEBRUARY 28, 2008

-			
FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	12.1	100	10.7
35	12.2	120	13.6
40	11.7	140	12.1
45	9.9	160	12.2
50	11.3	180	15.2
60	9.4	200	16.5
70	7.6	250	16.5
80	6.0	275	18.1
90	6.8	300	21.5

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16060

CALIBRATION DATE: JUNE 27, 2008

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	12.7	700	21.2
400	15.3	800	21.7
500	17.4	900	21.8
600	19.0	1000	22.8

COM POWER AH-118

HORN ANTENNA

S/N: 071175

CALIBRATION DATE: JUNE 27, 2008

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	24.5	10.0	39.4
1.5	25.4	10.5	39.7
2.0	28.3	11.0	39.0
2.5	28.9	11.5	40.0
3.0	29.7	12.0	39.7
3.5	30.8	12.5	41.7
4.0	31.4	13.0	42.7
4.5	32.6	13.5	41.2
5.0	33.7	14.0	41.6
5.5	34.4	14.5	43.2
6.0	34.7	15.0	42.3
6.5	35.4	15.5	39.3
7.0	37.0	16.0	41.7
7.5	37.4	16.5	39.6
8.0	37.6	17.0	43.0
8.5	37.6	17.5	47.1
9.0	38.5	18.0	46.2
9.5	38.6		

COM-POWER PA-102

PREAMPLIFIER

S/N: 1017

CALIBRATION DATE: JANUARY 11, 2008

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	38.2	300	38.0
40	38.0	350	38.3
50	38.3	400	38.0
60	38.6	450	37.5
70	38.4	500	37.9
80	38.4	550	37.9
90	38.3	600	37.8
100	38.1	650	37.5
125	38.5	700	38.0
150	38.2	750	37.7
175	38.1	800	37.1
200	38.4	850	37.1
225	38.2	900	37.1
250	38.2	950	37.0
275	38.0	1000	36.5

COM-POWER PA-122

PREAMPLIFIER

S/N: 181921

CALIBRATION DATE: MARCH 3, 2008

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	36.32	10.0	35.47
1.5	35.40	10.5	35.05
2.0	34.77	11.0	34.16
2.5	35.07	11.5	33.75
3.0	34.86	12.0	34.65
3.5	34.48	12.5	34.41
4.0	34.30	13.0	35.36
4.5	33.96	13.5	35.30
5.0	34.06	14.0	35.87
5.5	34.54	14.5	36.44
6.0	35.90	15.0	36.24
6.5	36.85	15.5	35.92
7.0	36.55	16.0	35.53
7.5	35.31	16.5	35.29
8.0	33.57	17.0	34.96
8.5	33.36	17.5	34.02
9.0	35.01	18.0	33.39
9.5	35.97		


COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: SEPTEMBER 29, 2008

FREQUENCY	MAGNETIC	ELECTRIC
(MHz)	(dB/m)	(dB/m)
0.009	-41.57	9.93
0.01	-42.06	9.44
0.02	-42.43	9.07
0.05	-42.50	9.00
0.07	-42.10	9.40
0.1	-42.03	9.47
0.2	-44.50	7.00
0.3	-41.93	9.57
0.5	-41.90	9.60
0.7	-41.73	9.77
1	-41.23	10.27
2	-40.90	10.60
3	-41.20	10.30
4	-41.30	10.20
5	-40.70	10.80
10	-41.10	10.40
15	-42.17	9.33
20	-42.00	9.50
25	-42.20	9.30
30	-43.10	8.40

FRONT VIEW

SMARTLABS, INC.
TRIGGERLINC
MODEL: 2421
FCC SUBPART B AND C – RADIATED EMISSIONS

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

SMARTLABS, INC.
TRIGGERLINC
MODEL: 2421
FCC SUBPART B AND C – RADIATED EMISSIONS

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

APPENDIX E

DATA SHEETS

RADIATED EMISSIONS

DATA SHEETS

SmartLabs, Inc. Date: 12/16/08 TriggerLinc Model: 2421 Labs: B and D

Tested By: Kyle Fujimoto

X-Axis **Transmit Mode**

Freq. (MHz)						Peak /	Ant.	Table	
915.04 83.08 V 94 -10.92 Peak 1.5 180 1830.08 38.95 V 74 -35.05 Peak 1.25 135 1830.08 28.62 V 54 -25.38 Avg 1.25 135 2745.12 39.67 V 74 -34.33 Peak 1.08 125 2745.12 26.07 V 54 -27.93 Avg 1.08 125 3660.16 40.38 V 74 -33.62 Peak 1.23 150 3660.16 27.29 V 54 -26.71 Avg 1.23 150 4575.2 41.14 V 74 -32.86 Peak 1.65 125 4575.2 29.71 V 54 -24.29 Avg 1.65 125 5490.24	Freq.	Level				QP/	Height	Angle	
1830.08 38.95 V 74 -35.05 Peak 1.25 135 135 1830.08 28.62 V 54 -25.38 Avg 1.25 135 2745.12 39.67 V 74 -34.33 Peak 1.08 125 2745.12 26.07 V 54 -27.93 Avg 1.08 125 26.07 V 54 -27.93 Avg 1.08 125 26.07 V 54 -26.71 Avg 1.23 150 3660.16 27.29 V 54 -26.71 Avg 1.23 150 4575.2 29.71 V 54 -24.29 Avg 1.65 125 29.71 V 54 29.72 N 54 29.7	(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
1830.08 28.62 V 54 -25.38 Avg 1.25 135 2745.12 39.67 V 74 -34.33 Peak 1.08 125 2745.12 26.07 V 54 -27.93 Avg 1.08 125 3660.16 40.38 V 74 -33.62 Peak 1.23 150 3660.16 27.29 V 54 -26.71 Avg 1.23 150 4575.2 41.14 V 74 -32.86 Peak 1.65 125 5490.24 Image: Application of the composition of the com	915.04	83.08	V	94	-10.92	Peak	1.5	180	
1830.08 28.62 V 54 -25.38 Avg 1.25 135 2745.12 39.67 V 74 -34.33 Peak 1.08 125 2745.12 26.07 V 54 -27.93 Avg 1.08 125 3660.16 40.38 V 74 -33.62 Peak 1.23 150 3660.16 27.29 V 54 -26.71 Avg 1.23 150 4575.2 41.14 V 74 -32.86 Peak 1.65 125 5490.24 Image: Application of the composition of the com									
2745.12 39.67 V 74 -34.33 Peak 1.08 125 2745.12 26.07 V 54 -27.93 Avg 1.08 125 3660.16 40.38 V 74 -33.62 Peak 1.23 150 3660.16 27.29 V 54 -26.71 Avg 1.23 150 4575.2 41.14 V 74 -32.86 Peak 1.65 125 4575.2 29.71 V 54 -24.29 Avg 1.65 125 5490.24									
2745.12 26.07 V 54 -27.93 Avg 1.08 125 3660.16 40.38 V 74 -33.62 Peak 1.23 150 3660.16 27.29 V 54 -26.71 Avg 1.23 150 4575.2 41.14 V 74 -32.86 Peak 1.65 125 4575.2 29.71 V 54 -24.29 Avg 1.65 125 5490.24 Image: Application of the complex of	1830.08	28.62	V	54	-25.38	Avg	1.25	135	
2745.12 26.07 V 54 -27.93 Avg 1.08 125 3660.16 40.38 V 74 -33.62 Peak 1.23 150 3660.16 27.29 V 54 -26.71 Avg 1.23 150 4575.2 41.14 V 74 -32.86 Peak 1.65 125 4575.2 29.71 V 54 -24.29 Avg 1.65 125 5490.24 Image: Application of the complex of									
3660.16									
3660.16 27.29 V 54 -26.71 Avg 1.23 150 4575.2 41.14 V 74 -32.86 Peak 1.65 125 4575.2 29.71 V 54 -24.29 Avg 1.65 125 5490.24 Image: Control of the control of t	2745.12	26.07	V	54	-27.93	Avg	1.08	125	
3660.16 27.29 V 54 -26.71 Avg 1.23 150 4575.2 41.14 V 74 -32.86 Peak 1.65 125 4575.2 29.71 V 54 -24.29 Avg 1.65 125 5490.24 Image: Control of the control of t	2660.40	40.20	W	74	22.62	Dools	1.00	150	
4575.2 41.14 V 74 -32.86 Peak 1.65 125 4575.2 29.71 V 54 -24.29 Avg 1.65 125 5490.24									
4575.2 29.71 V 54 -24.29 Avg 1.65 125 5490.24 Image: square of the control o	3000.10	21.29	V	54	-20.71	Avg	1.23	150	
4575.2 29.71 V 54 -24.29 Avg 1.65 125 5490.24 Image: square of the control o	4575.2	41 14	V	74	-32.86	Peak	1.65	125	
5490.24									
5490.24 0 0<	1070.2	20.71	•	01	21.20	7119	1.00	120	
6405.28 no emissions found 6405.28 no emissions found 7320.32 no emissions found 7320.32 no emissions found 8235.36 no emissions found 9150.4 no emissions found	5490.24								no emissions found
6405.28 no emissions found 7320.32 no emissions found 8235.36 no emissions found 9150.4 no emissions found	5490.24								
6405.28 no emissions found 7320.32 no emissions found 8235.36 no emissions found 9150.4 no emissions found									
7320.32 no emissions found 7320.32 no emissions found 8235.36 no emissions found 8235.36 no emissions found 9150.4 no emissions found									no emissions found
7320.32 no emissions found 8235.36 no emissions found 9150.4 no emissions found	6405.28								
7320.32 no emissions found 8235.36 no emissions found 9150.4 no emissions found									
8235.36 no emissions found 8235.36 no emissions found 9150.4 no emissions found									no emissions found
9150.4 no emissions found	7320.32								
9150.4 no emissions found	9225.26								no emissione four d
9150.4 no emissions found									no emissions tound
	0200.00								
	9150.4								no emissions found

SmartLabs, Inc. Date: 12/16/08 TriggerLinc Model: 2421 Labs: B and D

Tested By: Kyle Fujimoto

X-Axis **Transmit Mode**

					Peak /	Ant.	Table	
Freq.	Level				QP/	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
915.04	85.68	Н	94	-8.32	Peak	1	135	
1830.08	44.98	Н	74	-29.02	Peak	1.35	125	
1830.08	40.26	Н	54	-13.74	Avg	1.35	125	
2745.12	41.17	Н	74	-32.83	Peak	1.65	230	
2745.12	31.82	Н	54	-22.18	Avg	1.65	230	
2000 40	40.00		74	22.70	Deele	4 75	225	
3660.16	40.28	Н	74	-33.72	Peak	1.75	225	
3660.16	27.24	Н	54	-26.76	Avg	1.75	225	
4575.2	42.72	Н	74	-31.28	Peak	1.35	225	
4575.2	29.68	H	54	-24.32	Avg	1.35	225	
4373.2	29.00	11	J 1	-24.52	Avy	1.00	225	
5490.24								no emissions found
5490.24								
6405.28								no emissions found
6405.28								
7320.32								no emissions found
7320.32								
8235.36								no emissions found
8235.36								
9150.4								no emissione formal
9150.4								no emissions found
9130.4								

SmartLabs, Inc. Date: 12/16/08 TriggerLinc Model: 2421 Labs: B and D

Tested By: Kyle Fujimoto

Y-Axis **Transmit Mode**

					Peak /	Ant.	Table	
Freq.	Level				QP/	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
915.04	84.58	V	94	-9.42	Peak	1.5	90	
1830.08	47.55	V	74	-26.45	Peak	1.22	180	
1830.08	43.41	V	54	-10.59	Avg	1.22	180	
2745.12	44.16	V	74	-29.84	Peak	1.23	135	
2745.12	36.23	V	54	-17.77	Avg	1.23	135	
2145.12	30.23	V	J 1	-17.77	Avy	1.23	133	
3660.16	39.74	V	74	-34.26	Peak	1.26	150	
3660.16	27.22	V	54	-26.78	Avg	1.26	150	
4575.2	41.89	V	74	-32.11	Peak	1.25	135	
4575.2	29.68	V	54	-24.32	Avg	1.25	135	
5490.24	43.59	V	74	-30.41	Peak	1.36	135	
5490.24	31.13	V	54	-22.87	Avg	1.36	135	
6405.28								no emissions found
6405.28								no emissions tound
0400.20								
7320.32								no emissions found
7320.32								
8235.36								no emissions found
8235.36								
0450.4								un audadaua fau d
9150.4 9150.4								no emissions found
9100.4								

SmartLabs, Inc. Date: 12/16/08 TriggerLinc Model: 2421 Labs: B and D

Tested By: Kyle Fujimoto

Y-Axis **Transmit Mode**

					Peak /	Ant.	Table	
Freq.	Level				QP/	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
915.04	80.78	Н	94	-13.22	Peak	2.5	0	
1830.08	43.98	Н	74	-30.02	Peak	1.25	135	
1830.08	40.12	Н	54	-13.88	Avg	1.25	135	
2745.12	37.53	H	74	-36.47	Peak	1.23	150	
2745.12	24.96	Н	54	-29.04	Avg	1.23	150	
3660.16	39.59	Н	74	-34.41	Peak	1.35	150	
3660.16	27.29	Н		-34.41	Avg	1.35	150	
3000.10	21.29	11	J 4	-20.71	Avy	1.55	130	
4575.2	42.52	Н	74	-31.48	Peak	1.65	165	
4575.2	29.68	Н	54	-24.32	Avg	1.65	165	
5490.24								no emissions found
5490.24								
6405.28								no emissions found
6405.28								
7320.32								no emissions found
7320.32								
8235.36								no emissions found
8235.36								no emissions tound
3233.30								
9150.4								no emissions found
9150.4								, .

SmartLabs, Inc. Date: 12/16/08 TriggerLinc Model: 2421 Labs: B and D

Tested By: Kyle Fujimoto

Z-Axis Transmit Mode

					Dools /	A4	Table	
F.,, .,	Laval				Peak / QP /	Ant.		
Freq.	Level	Dal (w/b)	Limit	Marain	-	Height	Angle	Comments
(MHz)	(dBuV)	` ,		Margin	Avg	(m)	(deg)	Comments
915.04	77.18	V	94	-16.82	Peak	1	180	
1830.08	42.45	V	74	-31.55	Peak	1.35	150	
1830.08	37.58	V	54	-16.42	Avg	1.35	150	
2745.12	40.42	V	74	-33.58	Peak	1.52	180	
2745.12	24.51	V	54	-29.49	Avg	1.52	180	
0000 15	40 :-			00 -0		4.0=	46-	
3660.16	40.47	V	74	-33.53	Peak	1.67	135	
3660.16	27.26	V	54	-26.74	Avg	1.67	135	
4575.2	41.58	V	74	-32.42	Peak	1.76	180	
4575.2	29.71	V	54	-24.29	Avg	1.76	180	
5490.24								no emissions found
5490.24								
0.405.00								
6405.28								no emissions found
6405.28								
7000.00								
7320.32								no emissions found
7320.32								
8235.36								no emissione formal
8235.36								no emissions found
0235.30								
9150.4								no emissions found
9150.4								no emissions round
9100.4								

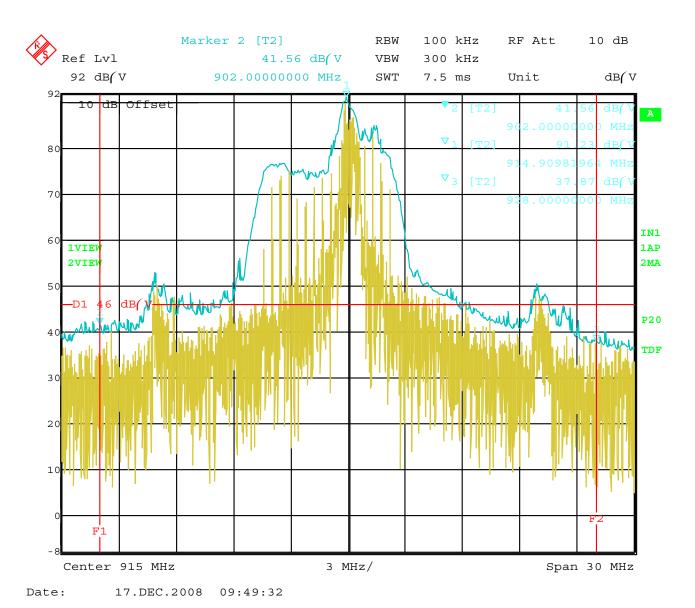
SmartLabs, Inc. Date: 12/16/08 TriggerLinc Model: 2421 Labs: B and D

Tested By: Kyle Fujimoto

Z-Axis Transmit Mode

					Peak /	Ant.	Table	
Freq.	Level				QP/	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
915.04	91.23	Н	94	-2.77	Peak	1	90	
1830.08	44.88	Н	74	-29.12	Peak	1.24	135	
1830.08	39.42	Н	54	-14.58	Avg	1.24	135	
2745.12	39.65	Н	74	-34.35	Peak	1.35	125	
2745.12	28.81	Н	54	-25.19	Avg	1.35	125	
3660.16	41.17	Н	74	-32.83	Peak	1.45	135	
3660.16	27.25	Н	54	-26.75	Avg	1.45	135	
4575.2	43.07	Н	74	-30.93	Peak	1.67	123	
4575.2	29.71	Н	54	-24.29	Avg	1.67	123	
5490.24								no emissions found
5490.24								
6405.28								no emissions found
6405.28								
7320.32								no emissions found
7320.32								
0005.00								and and a standard from the
8235.36								no emissions found
8235.36								
9150.4								no emissione formal
9150.4								no emissions found
9150.4								

FCC 15.249 and FCC Class B


SmartLabs, Inc. Date: 12/16/08
TriggerLinc Labs: B and D

Model: 2421 Tested By: Kyle Fujimoto

Z-Axis (Worst Case)

Digital Portion, Receive Portion, and Non-Harmonic Emissions from the Tx

Freq.	Level				Peak / QP /	Ant. Height	Table Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
								No Emissions Detected
								from 1 GHz to 9300 MHz
								for the Digital Portion
								for both the Vertical and
								Horizontal Polarizations.
								No Emissions Detected
								from 1 GHz to 9300 MHz
								for the Non-Harmonic
								Emissions from the Tx for the
								EUT for both the Vertical and
								Horizontal Polarizations.
								No Emissions Detected
								from 1 GHz to 9300 MHz
								for the Receiver Portion
								for both the Vertical and
								Horizontal Polarizations.

 $Band\ Edge\ of\ the\ Fundamental-Z-Axis-Horizontal\ Polarization\ (Worst\ Case)$

Test Location : Compatible Electronics Page : 1/1

Customer: SmartLabs, Inc.Date: 12/16/2008Manufacturer: SmartLabs, Inc.Time: 8:50:50

Eut name : TriggerLinc Lab : D

Model : 2421 Test Distance : 3 Meters

Serial # : N/A

Specification : FCC Class B

Distance correction factor (20 * log(test/spec) : 0.00

Transmit Mode (Worst Case)
Tested By: Kyle Fujimoto

Pol	Freq MHz	Rdng dBuV	Cable loss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	Limit = L dBuV/m	Delta R-L dB
1V	301.457	36.30	1.91	12.74	38.01	12.94	46.00	-33.06
2H	322.654	46.40	2.04	13.36	38.14	23.66	46.00	-22.34
3H	324.600	47.30	2.05	13.41	38.15	24.61	46.00	-21.39
4V	359.000	49.00	2.24	14.32	38.24	27.32	46.00	-18.68
5H	360.111	44.00	2.24	14.35	38.24	22.36	46.00	-23.64
6V	875.080	40.80	3.85	21.78	37.10	29.33	46.00	-16.67
7H	875.164	50.70	3.85	21.78	37.10	39.23	46.00	-6.77
8H	894.968	52.00	3.81	21.80	37.10	40.51	46.00	-5.49
9V	895.052	35.50	3.81	21.80	37.10	24.00	46.00	-22.00
10H	935.109	53.00	4.01	22.16	37.03	42.15	46.00	-3.85
11V	935.109	44.40	4.01	22.16	37.03	33.55	46.00	-12.45
12H	954.958	50.90	4.14	22.36	36.95	40.45	46.00	-5.55
13V	955.010	40.40	4.14	22.36	36.95	29.96	46.00	-16.04