Smartlabs, Inc.

ADDENDUM TO TEST REPORT 93833-4

Keypad with Dimmer
Model: 2334-2

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.207, 15.249
and
RSS 210 Issue 8

Report No.: 93833-4A

Date of issue: January 9, 2012

Testing Certificates: 803.01, 803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Revision History 3
Report Authorization 3
Test Facility Information 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Conditions During Testing 5
Equipment Under Test 6
Peripheral Devices 6
FCC Part 15 Subpart C 7
15.31(e) Voltage Variations 7
15.207 AC Conducted Emissions 9
15.249(a)(b) RF Power Output 19
-20dBc \& 99\% Occupied Bandwidth 22
Bandedge 25
15.249(d) Field Strength of Spurious Emissions 29
Supplemental Information 38
Measurement Uncertainty 38
Emissions Test Details. 38

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Smartlabs, Inc.
16542 Millikan Ave
Irvine, CA 92606

Representative: John Lockyer
Customer Reference Number: 12-3JL1113

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Dianne Dudley
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 93833

December 5, 2012
December 5, 2012

Revision History

Original: Testing of the Keypad with Dimmer, 2334-2 to FCC 15.209, 15.249 and RSS-210 Issue 8 devices.
Addendum A: To add a peripheral device to "Equipment under Test" section and to add statement in the "Test Conditions / Notes:" section on the 15.207 conducted emissions data sheets.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
1120 Fulton Place
Fremont, CA 94539

Site Registration \& Accreditation Information

Location	CB \#	Taiwan	Canada	FCC	Japan
Fremont	USO082	SL2-IN-E-1148R	$3082 B-1$	958979	A-0149

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.207, 15.249 \& RSS 210 Issue 8

Description	Test Procedure/Method	Results
Voltage Variation	FCC Part 15 Subpart C Section 15.31(e)	Pass
		Pass
Conducted Emissions	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003)	Pass
		PCC Part 15 Subpart C Section 15.249(a)(b)
RF Power Output		Pass
	FCC Part 15 Subpart C Section 15.249 / RSS 210 Issue 8	Pass
$-20 d B c ~ \& ~ 99 \% ~ O c c u p i e d ~ B a n d w i d t h ~$	FCC Part 15 Subpart C	Pass
		Pass
Bandedge	FCC Part 15 Subpart C Section 15.249(d)	
Field Strength of Harmonics	FCC Part 15 Subpart C Section 15.249(d)	
Field Strength of Spurious Emissions		

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Keypad with Dimmer
Manuf: Smartlabs
Model: 2334-2
Serial: None

PERIPHERAL DEVICES

The EUT was tested with the following peripheral devices:

EUT Load
Manuf: Foshan
Model: 25 W Light Bulb
Serial: None

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.31(e) Voltage Variations

Test Conditions / Setup

Transmitting fundamental frequency
Frequency Range of Measurement= Fundamental
TX= 914.9MHz to 915.1 MHz
Frequency Operation: 914.9 MHz to 915.1 MHz
Software Used: None

Temperature: $20.5^{\circ} \mathrm{C}$
Humidity: 55\%
Atmospheric Pressure: 101.8 kPa
Firmware

RBW=VBW=120kHz
Voltage of Power: 120V-60Hz (100\%)

The EUT is a fixed device. The EUT is placed on an 80 cm table and at the center of turning table. The EUT is installed in a fixed position. The EUT is set in constant transmit mode
15.31(e) compliance: the supply voltage was varied between 85% and 115% of the nominal rated supply voltage (100vac and 240 Vac), no change in the fundamental signal level was observed.

Engineer Name: Hieu Song Nguyenpham/ Christine Nicklas
Test Equipment

Asset \#	Description	Manufacturer	Model	Cal Date	Cal Due
AN01992	Biconilog Antenna	Chase	CBL6111C	$12 / 23 / 2010$	$12 / 23 / 2012$
AN00730	Preamp	HP		$1 / 31 / 2011$	$1 / 31 / 2013$
ANP00880	Cable	Pasternack	RG214U	$7 / 30 / 2012$	$7 / 30 / 2014$
ANP05299	Cable	Pasternack	RG214	$3 / 6 / 2011$	$3 / 6 / 2013$
ANP05440	Cable	Pasternack		$3 / 7 / 2011$	$3 / 7 / 2013$
AN02668	Spectrum Analyzer	Agilent	E4446A	$2 / 23 / 2011$	$2 / 23 / 2013$

Test Setup Photos

15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Places • Fremont, CA 94539 • (510) 249-1170

Customer: Smartlabs, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N:

93833
Conducted Emissions
Keypad with Dimmer
Smartlabs
2334-2
None

Date: 12/5/2012
Time: 2:03:30 PM
Sequence\#: 20
Tested By: Hieu Song Nguyenpham/ Christine 120 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	$23-10-34$	$4 / 15 / 2011$	$4 / 15 / 2013$
T2	ANP00880	Cable	RG214U	$7 / 30 / 2012$	$7 / 30 / 2014$
T3	ANP05440	Cable		$3 / 7 / 2011$	$3 / 7 / 2013$
T4	AN00493	50uH LISN-L1 (L) Loss W/O European Adapter	$3816 / \mathrm{NM}$	$3 / 10 / 2011$	$3 / 10 / 2013$
		50uH LISN-L(2) N Loss W/O European Adapter	$3816 / \mathrm{NM}$	$3 / 10 / 2011$	$3 / 10 / 2013$
	AN00493	Spectrum Analyzer	E4446A	$2 / 23 / 2011$	$2 / 23 / 2013$
	High Pass Filter	HE9615-150K-	$1 / 3 / 2012$	$1 / 3 / 2014$	
T5	AN03279	50-720B			

Equipment Under Test (*= EUT):
Function Manufacturer Model \# S/N Keypad with Dimmer* Smartlabs $2334-2$ None Support Devices: Function Manufacturer Model \# S/N

Test Conditions / Notes:
Conducted Emission FCC 15.207
Frequency Range: 150 kHz to 30 MHz
Frequency Range of Measurement= Fundamental
TX= 914.9MHz to 915.1 Mhz

Frequency Operation: 914.9 MHz to 915.1 MHz
Software Used: None
Temperature: $20.5^{\circ} \mathrm{C}$
Humidity: 55\%
Atmospheric Pressure: 101.8 kPa
Voltage of Power: $120 \mathrm{~V}-60 \mathrm{~Hz}$ (100\%)

The EUT is a fixed device. The EUT is placed on an 80 cm table and at the center of turning table. The EUT is installed in fix position.

Note: EUT Load is turned off during testing in order to capture data in accordance with 15.207 representing EUT transmitter functions only.

Ext Attn: 0 dB

12	309.985k	18.8	$\begin{aligned} & \hline+9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.9	+0.0	29.7	50.0	-20.3	Black
13	699.041 k	14.9	$\begin{aligned} & +9.9 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.5	+0.0	25.6	46.0	-20.4	Black
14	679.406k	14.8	$\begin{aligned} & +9.9 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.5	$+0.0$	25.5	46.0	-20.5	Black
15	556.508k	14.6	$\begin{aligned} & +9.9 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.6	$+0.0$	25.3	46.0	-20.7	Black
16	614.685k	14.7	$\begin{aligned} & +9.9 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.5	$+0.0$	25.3	46.0	-20.7	Black
17	685.224 k	14.6	$\begin{aligned} & +9.9 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.5	+0.0	25.3	46.0	-20.7	Black
18	359.435 k	17.1	$\begin{aligned} & +9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.8	+0.0	27.9	48.7	-20.8	Black
19	320.893k	17.9	$\begin{aligned} & +9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.9	+0.0	28.8	49.7	-20.9	Black
20	620.502k	14.5	$\begin{aligned} & +9.9 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.5	+0.0	25.1	46.0	-20.9	Black
21	789.941k	14.6	$\begin{aligned} & +9.8 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.5	$+0.0$	25.1	46.0	-20.9	Black
22	459.790k	14.9	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.7	+0.0	25.7	46.7	-21.0	Black
23	1.723 M	14.3	$\begin{aligned} & +9.8 \\ & +0.2 \\ & \hline \end{aligned}$	+0.1	+0.1	+0.4	$+0.0$	24.9	46.0	-21.1	Black
24	649.591k	14.1	$\begin{aligned} & +9.9 \\ & +0.2 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.5	$+0.0$	24.8	46.0	-21.2	Black
25	765.216k	14.3	$\begin{array}{r} +9.8 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	$+0.5$	$+0.0$	24.8	46.0	-21.2	Black
26	328.165k	17.3	$\begin{aligned} & +9.8 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.9	+0.0	28.2	49.5	-21.3	Black
27	552.872 k	14.0	$\begin{array}{r} +9.9 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.6	$+0.0$	24.7	46.0	-21.3	Black
28	1.498 M	14.1	$\begin{aligned} & \hline+9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.1	+0.4	+0.0	24.7	46.0	-21.3	Black
29	542.691 k	13.9	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.6	+0.0	24.6	46.0	-21.4	Black
30	604.504k	14.0	$\begin{aligned} & +9.9 \\ & +0.1 \end{aligned}$	+0.1	+0.0	$+0.5$	$+0.0$	24.6	46.0	-21.4	Black
31	306.349 k	17.7	$\begin{aligned} & +9.8 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.9	+0.0	28.6	50.1	-21.5	Black
32	518.693k	13.8	$\begin{aligned} & \hline+9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.6	+0.0	24.5	46.0	-21.5	Black
33	512.876k	13.7	$\begin{array}{r} +9.8 \\ +0.2 \\ \hline \end{array}$	$+0.1$	+0.0	+0.6	$+0.0$	24.4	46.0	-21.6	Black
34	449.609k	14.5	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.7	$+0.0$	25.3	46.9	-21.6	Black
35	528.874 k	13.7	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.6	$+0.0$	24.4	46.0	-21.6	Black
36	701.222k	13.7	$\begin{aligned} & +9.9 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.5	+0.0	24.4	46.0	-21.6	Black
37	571.052 k	13.7	$\begin{array}{r} +9.9 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.6	+0.0	24.4	46.0	-21.6	Black

Page 11 of 39

38	691.768 k	13.6	+9.9 +0.2	+0.1	+0.0	+0.5	+0.0	24.3	46.0	-21.7	Black	
39	440.882 k	14.6	+9.8 +0.1	+0.1	+0.0	+0.7	+0.0	25.3	47.0	-21.7	Black	
40	983.523 k	13.9	+9.8 +0.1	+0.1	+0.0	+0.4	+0.0	24.3	46.0	-21.7	Black	
41	746.309 k	13.6	+9.9 +0.2	+0.1	+0.0	+0.5	+0.0	24.3	46.0	-21.7	Black	
42	606.685 k	13.6	+9.9 +0.1	+0.1	+0.0	+0.5	+0.0	24.2	46.0	-21.8	Black	
43	611.776 k	13.6	+9.9 +0.1	+0.1	+0.0	+0.5	+0.0	24.2	46.0	-21.8	Black	
44	330.347 k	16.7	+9.8 +0.1	+0.1	+0.0	+0.9	+0.0	27.6	49.4	-21.8	Black	
45	379.070 k	15.7	+9.8 +0.1	+0.1	+0.0	+0.8	+0.0	26.5	48.3	-21.8	Black	
46	616.139 k	13.6	+9.9 +0.1	+0.1	+0.0	+0.5	+0.0	24.2	46.0	-21.8	Black	
47	724.493 k	13.5	+9.9 +0.2	+0.1	+0.0	+0.5	+0.0	24.2	46.0	-21.8	Black	
48	857.571 k	13.7	+9.8 +0.2	+0.1	+0.0	+0.4	+0.0	24.2	46.0	-21.8	Black	

CKC Laboratories, Inc Date: 12/5/2012 Time: 2:03:30 PM Smartlabs, Inc WO\#: 93833 Test Lead: Black 120 V 60 Hz Sequence\#: 20

Test Location: CKC Laboratories, Inc. • 1120 Fulton Places • Fremont, CA 94539 • (510) 249-1170

Customer:	Smartlabs, Inc.	
Specification:	$\mathbf{1 5 . 2 0 7}$ AC Mains - Average	
Work Order \#:	$\mathbf{9 3 8 3 3}$	Date:
Test Type:	Conducted Emissions	Time:
Equipment:	Keypad with Dimmer	Sequence\#:
Manufacturer:	Smartlabs	Tested By:
Mieu Song Nguyenpham/ Christine		
Model:	$2334-2$	
S $:$		120 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	$23-10-34$	$4 / 15 / 2011$	$4 / 15 / 2013$
T2	ANP00880	Cable	RG214U	$7 / 30 / 2012$	$7 / 30 / 2014$
T3	ANP05440	Cable		$3 / 7 / 2011$	$3 / 7 / 2013$
	AN00493	50uH LISN-L1 (L) Loss W/O European Adapter	$3816 / \mathrm{NM}$	$3 / 10 / 2011$	$3 / 10 / 2013$
		50uH LISN-L(2) N Loss W/O European Adapter	$3816 / \mathrm{NM}$	$3 / 10 / 2011$	$3 / 10 / 2013$
T4	AN00493	Spectrum Analyzer	E4446A	$2 / 23 / 2011$	$2 / 23 / 2013$
		High Pass Filter	HE9615-150K-	$1 / 3 / 2012$	$1 / 3 / 2014$
T5	AN03279		$50-720 B$		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Keypad with Dimmer*	Smartlabs	$2334-2$	None
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Conducted Emission FCC 15.207
Frequency Range: 150 kHz to 30 MHz
Frequency Range of Measurement= Fundamental
$\mathrm{TX}=914.9 \mathrm{MHz}$ to 915.1 MHz

Frequency Operation: 914.9 MHz to 915.1 MHz
Software Used: None
Temperature: $20.5^{\circ} \mathrm{C}$
Humidity: 55\%
Atmospheric Pressure: 101.8 kPa
Voltage of Power: 120V-60Hz (100\%)
The EUT is a fixed device. The EUT is placed on an 80 cm table and at the center of turning table. The EUT is installed in fix position.

Note: EUT Load is turned off during testing in order to capture data in accordance with 15.207 representing EUT transmitter functions only.

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Lead: White

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	160.908k	34.9	$\begin{array}{r} +9.9 \\ +0.7 \\ \hline \end{array}$	+0.0	+0.0	+2.2	+0.0	47.7	55.4	-7.7	White
2	176.179k	31.4	$\begin{aligned} & +9.9 \\ & +0.4 \end{aligned}$	+0.1	+0.0	+2.0	+0.0	43.8	54.7	-10.9	White
3	222.721 k	26.4	$\begin{aligned} & +9.9 \\ & +0.2 \\ & \hline \end{aligned}$	+0.1	+0.0	+1.5	+0.0	38.1	52.7	-14.6	White
4	218.357k	26.2	$\begin{aligned} & +9.9 \\ & +0.3 \end{aligned}$	+0.1	+0.0	+1.5	+0.0	38.0	52.9	-14.9	White
5	231.447 k	24.0	$\begin{aligned} & +9.9 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+1.4	+0.0	35.6	52.4	-16.8	White
6	236.538k	23.4	$\begin{aligned} & +9.9 \\ & +0.2 \\ & \hline \end{aligned}$	+0.1	+0.0	+1.3	+0.0	34.9	52.2	-17.3	White
7	250.354 k	22.5	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+1.2	+0.0	33.8	51.7	-17.9	White
8	253.263 k	22.0	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+1.2	+0.0	33.3	51.6	-18.3	White
9	532.510 k	15.6	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.6	+0.0	26.3	46.0	-19.7	White
10	739.764k	15.6	$\begin{aligned} & +9.9 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.5	+0.0	26.3	46.0	-19.7	White
11	741.946k	15.5	$\begin{aligned} & +9.9 \\ & +0.2 \\ & \hline \end{aligned}$	+0.1	+0.0	$+0.5$	$+0.0$	26.2	46.0	-19.8	White
12	592.868k	15.4	$\begin{array}{r} +9.9 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.6	+0.0	26.1	46.0	-19.9	White
13	267.807 k	20.0	$\begin{aligned} & +9.8 \\ & +0.2 \\ & \hline \end{aligned}$	+0.1	+0.0	+1.1	+0.0	31.2	51.2	-20.0	White
14	277.988k	19.9	$\begin{aligned} & +9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+1.0	+0.0	30.9	50.9	-20.0	White
15	273.625k	19.8	$\begin{aligned} & \hline+9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+1.1	+0.0	30.9	51.0	-20.1	White
16	291.078 k	19.4	$\begin{aligned} & \hline+9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+1.0	+0.0	30.4	50.5	-20.1	White
17	504.149 k	15.0	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.6	+0.0	25.7	46.0	-20.3	White
18	752.854k	15.2	$\begin{aligned} & +9.8 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.5	+0.0	25.7	46.0	-20.3	White
19	744.855k	14.9	$\begin{aligned} & +9.9 \\ & +0.2 \end{aligned}$	+0.1	+0.0	$+0.5$	$+0.0$	25.6	46.0	-20.4	White
20	755.035k	15.1	$\begin{aligned} & \hline+9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.5	+0.0	25.6	46.0	-20.4	White
21	321.621 k	18.3	$\begin{aligned} & +9.8 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.9	+0.0	29.2	49.7	-20.5	White

Page 15 of 39

22	770.307k	15.0	$\begin{aligned} & \hline+9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.5	+0.0	25.5	46.0	-20.5	White
23	809.576k	15.0	$\begin{aligned} & \hline+9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.5	+0.0	25.5	46.0	-20.5	White
24	541.964 k	14.7	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.6	$+0.0$	25.4	46.0	-20.6	White
25	677.224 k	14.7	$\begin{aligned} & +9.9 \\ & +0.2 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.5	+0.0	25.4	46.0	-20.6	White
26	517.966k	14.7	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.6	$+0.0$	25.4	46.0	-20.6	White
27	317.985k	18.2	$\begin{aligned} & +9.8 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.9	+0.0	29.1	49.8	-20.7	White
28	315.076k	18.2	$\begin{aligned} & +9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.9	+0.0	29.1	49.8	-20.7	White
29	284.533 k	19.0	$\begin{aligned} & +9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+1.0	+0.0	30.0	50.7	-20.7	White
30	339.074 k	17.7	$\begin{aligned} & \hline+9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.8	+0.0	28.5	49.2	-20.7	White
31	771.761k	14.8	$\begin{aligned} & +9.8 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.5	$+0.0$	25.3	46.0	-20.7	White
32	763.762k	14.8	$\begin{array}{r} +9.8 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	$+0.5$	+0.0	25.3	46.0	-20.7	White
33	566.689 k	14.6	$\begin{aligned} & +9.9 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.6	$+0.0$	25.3	46.0	-20.7	White
34	477.243 k	14.8	$\begin{aligned} & +9.8 \\ & +0.2 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.7	$+0.0$	25.6	46.4	-20.8	White
35	636.501k	14.6	$\begin{aligned} & +9.9 \\ & +0.1 \end{aligned}$	+0.1	+0.0	$+0.5$	$+0.0$	25.2	46.0	-20.8	White
36	680.133k	14.5	$\begin{aligned} & +9.9 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.5	+0.0	25.2	46.0	-20.8	White
37	646.682k	14.5	$\begin{array}{r} +9.9 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	$+0.5$	$+0.0$	25.1	46.0	-20.9	White
38	919.732k	14.6	$\begin{aligned} & \hline+9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.4	+0.0	25.1	46.0	-20.9	White
39	528.874k	14.3	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.6	+0.0	25.0	46.0	-21.0	White
40	543.418k	14.3	$\begin{aligned} & \hline+9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.6	$+0.0$	25.0	46.0	-21.0	White
41	264.171k	19.1	$\begin{aligned} & \hline+9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+1.1	+0.0	30.3	51.3	-21.0	White
42	429.247 k	15.6	$\begin{aligned} & \hline+9.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.7	+0.0	26.3	47.3	-21.0	White
43	710.676k	14.3	$\begin{array}{r} +9.9 \\ +0.2 \\ \hline \end{array}$	$+0.1$	+0.0	+0.5	$+0.0$	25.0	46.0	-21.0	White
44	859.753k	14.5	$\begin{aligned} & +9.8 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.4	$+0.0$	25.0	46.0	-21.0	White
45	637.955k	14.4	$\begin{aligned} & +9.9 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.5	$+0.0$	25.0	46.0	-21.0	White
46	660.499k	14.3	$\begin{aligned} & +9.9 \\ & +0.2 \end{aligned}$	+0.1	+0.0	+0.5	+0.0	25.0	46.0	-21.0	White
47	640.864k	14.3	$\begin{array}{r} +9.9 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.5	+0.0	24.9	46.0	-21.1	White

Page 16 of 39

| 48 | 643.773 k | 14.3 | +9.9
 +0.1 | +0.1 | +0.0 | +0.5 | +0.0 | 24.9 | 46.0 | -21.1 | White |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | |
| 49 | 717.948 k | 14.2 | +9.9
 +0.2 | +0.1 | +0.0 | +0.5 | +0.0 | 24.9 | 46.0 | -21.1 | White |
| 50 | 547.782 k | 14.1 | +9.9 | +0.1 | +0.0 | +0.6 | +0.0 | 24.8 | 46.0 | -21.2 | White |
| | | | +0.1 | | | | | | | | |

CKC Laboratories, Inc Date: 12/5/2012 Time: 2:09:14 PM Smartlabs, Inc WO\#: 93833 Test Lead: White 120 V 60 Hz Sequence\#: 21

[^0]
Test Setup Photos

15.249(a)(b) RF Power Output

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Places • Fremont, CA 94539 • (510) 249-1170
Customer: Smartlabs, Inc.
Specification: 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)
Work Order \#:

93833
Radiated Scan
Keypad with Dimmer
Smartlabs

2334-2
None

Date: 12/5/2012
Time: 09:07:40
Sequence\#: 1
Tested By: Hieu Song Nguyenpham/ Christine Nicklas

Model:
Non

Description Model

ID							Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN01992	Biconilog Antenna	CBL6111C	$12 / 23 / 2010$	$12 / 23 / 2012$						
T2	AN00730	Preamp		$1 / 31 / 2011$	$1 / 31 / 2013$						
T3	ANP00880	Cable	RG214U	$7 / 30 / 2012$	$7 / 30 / 2014$						
T4	ANP05299	Cable	RG214	$3 / 6 / 2011$	$3 / 6 / 2013$						
T5	ANP05440	Cable		$3 / 7 / 2011$	$3 / 7 / 2013$						
	AN02668	Spectrum Analyzer	E4446A	$2 / 23 / 2011$	$2 / 23 / 2013$						

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Keypad with Dimmer*	Smartlabs	$2334-2$	None
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Transmitting fundamental frequency
Frequency Range of Measurement= Fundamental
TX= 914.9 MHz to 915.1 MHz
Frequency Operation: 914.9 MHz to 915.1 MHz
Software Used: None
Temperature: $20.5^{\circ} \mathrm{C}$
Humidity: 55%
Atmospheric Pressure: 101.8 kPa
Firmware
RBW=VBW $=120 \mathrm{kHz}$
Voltage of Power: $120 \mathrm{~V}-60 \mathrm{~Hz}(100 \%)$

The EUT is a fixed device. The EUT is placed on an 80 cm table and at the center of turning table. The EUT is
installed in fix position. The EUT is set in constant transmit mode

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Distance: 3 Meters

Test Setup Photos

LABORATORIES, INC.

-20dBc \& 99\% Occupied Bandwidth

Test Conditions / Setup

Transmitting fundamental frequency
Frequency Range of Measurement= Fundamental
TX= 914.9 MHz to 915.1 MHz
Frequency Operation: 914.9 MHz to 915.1 MHz
Software Used: None
Temperature: $20.5^{\circ} \mathrm{C}$
Humidity: 55\%
Atmospheric Pressure: 101.8 kPa
Firmware
$\mathrm{RBW}=\mathrm{VBW}=120 \mathrm{kHz}$

Voltage of Power: 120V-60Hz (100\%)
The EUT is a fixed device. The EUT is placed on an 80 cm table and at the center of turning table. The EUT is installed in fix position. The EUT is set in constant transmit mode.

Engineer Name: Hie Song Nguyenpham / Christine Nicklas
Test Equipment

Asset \#	Description	Manufacturer	Model	Cal Date	Cal Due
AN01992	Biconilog Antenna	Chase	CBL6111C	$12 / 23 / 2010$	$12 / 23 / 2012$
AN00730	Preamp	HP		$1 / 31 / 2011$	$1 / 31 / 2013$
ANP00880	Cable	Pasternack	RG214U	$7 / 30 / 2012$	$7 / 30 / 2014$
ANP05299	Cable	Pasternack	RG214	$3 / 6 / 2011$	$3 / 6 / 2013$
ANP05440	Cable	Pasternack		$3 / 7 / 2011$	$3 / 7 / 2013$
AN02668	Spectrum Analyzer	Agilent	E4446A	$2 / 23 / 2011$	$2 / 23 / 2013$

Test Plots

Test Setup Photos

LABORATORIES, INC.

Bandedge

Test Conditions / Setup

Transmitting fundamental frequency
Frequency Range of Measurement= Fundamental
TX= 914.9 MHz to 915.1 MHz
Frequency Operation: 914.9 MHz to 915.1 MHz
Software Used: None

Temperature: $20.5^{\circ} \mathrm{C}$
Humidity: 55\%
Atmospheric Pressure: 101.8kPa
Firmware
$\mathrm{RBW}=\mathrm{VBW}=120 \mathrm{kHz}$
Voltage of Power: 120V-60Hz (100\%)

The EUT is a fixed device. The EUT is placed on an 80 cm table and at the center of turning table. The EUT is installed in fix position. The EUT is set in constant transmit mode.

Engineer Name: Hieu Song Nguyenpham / Christine Nicklas

Test Equipment

Asset \#	Description	Manufacturer	Model	Cal Date	Cal Due
AN01992	Biconilog Antenna	Chase	CBL6111C	$12 / 23 / 2010$	$12 / 23 / 2012$
AN00730	Preamp	HP		$1 / 31 / 2011$	$1 / 31 / 2013$
ANP00880	Cable	Pasternack	RG214U	$7 / 30 / 2012$	$7 / 30 / 2014$
ANP05299	Cable	Pasternack	RG214	$3 / 6 / 2011$	$3 / 6 / 2013$
ANP05440	Cable	Pasternack		$3 / 7 / 2011$	$3 / 7 / 2013$
AN02668	Spectrum Analyzer	Agilent	E4446A	$2 / 23 / 2011$	$2 / 23 / 2013$

Test Data

Left

Center

Right

Test Setup Photos

LABORATORIES, INC.

15.249(d) Field Strength of Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Places • Fremont, CA 94539 • (510) 249-1170

Customer: Smartlabs, Inc.
Specification: 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)
Work Order \#:

93833
Radiated Scan
Keypad with Dimmer

Date: 12/5/2012
Time: 13:13:59
Sequence\#: 19
Tested By: Hieu Song Nguyenpham/ Christine
$\begin{array}{ll}\text { Manufacturer: } & \text { Smartlabs } \\ \text { Model: } & 2334-2\end{array}$
$\begin{array}{ll}\text { Manufacturer: } & \text { Smartlab } \\ \text { Model: } & 2334-2\end{array}$
S/N: None

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	$2 / 23 / 2011$	$2 / 23 / 2013$
T1	ANP00880	Cable	RG214U	$7 / 30 / 2012$	$7 / 30 / 2014$
T2	ANP05440	Cable		$3 / 7 / 2011$	$3 / 7 / 2013$
T3	AN00432	Loop Antenna	6502	$3 / 31 / 2011$	$3 / 31 / 2013$

| Equipment Under Test (* $\mathbf{*}$ EUT): | |
| :--- | :--- | :--- | :--- |
| Function Manufacturer Model \# S/N
 Keypad with Dimmer* Smartlabs $2334-2$ None
 Support Devices:
 Function Manufacturer Model \# S/N | |

Test Conditions / Notes:

Harmonic and Spurious Emission for FCC15.249
Frequency Range: 9 kHz to 30 MHz
Frequency Range of Measurement= Fundamental
TX= 914.9 MHz to 915.1 MHz
Frequency Operation: 914.9 MHz to 915.1 MHz
Software Used: None
Temperature: $20.5^{\circ} \mathrm{C}$
Humidity: 55\%
Atmospheric Pressure: 101.8 kPa
Firmware
RBW $=\mathrm{VBW}=200 \mathrm{~Hz}$ from 9 kHz to 150 kHz
$\mathrm{RBW}=\mathrm{VBW}=9 \mathrm{Khz}$ from 150 kHz to 30 MHz
Voltage of Power: 120V-60Hz (100\%)
The EUT is a fixed device. The EUT is placed on an 80 cm table and at the center of turning table. The EUT is installed in fix position.

Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	620.408 k	38.4	+0.1	+0.0	+11.3		-40.0	9.8	31.7	-21.9	Paral
2	674.766 k	36.8	+0.1	+0.0	+11.5	-40.0	8.4	31.0	-22.6	Paral	
3	593.229 k	37.7	+0.1	+0.0	+11.3	-40.0	9.1	32.1	-23.0	Paral	
4	526.326 k	38.9	+0.1	+0.0	+11.2	-40.0	10.2	33.2	-23.0	Perpe	
5	883.836 k	33.7	+0.1	+0.1	+11.4	-40.0	5.3	28.6	-23.3	Perpe	
6	871.292 k	33.9	+0.1	+0.1	+11.4	-40.0	5.5	28.8	-23.3	Perpe	

CKC Laboratories, Inc Date: 12/5/2012 Time: 13:13:59 Smartlabs, Inc WO\#: 93833 Test Distance: 3 Meters Sequence\#: 19

O Peak Readings

* Average Readings
* 1 - 15.249 Carrier and Spurious Emissions ($902-928 \mathrm{MHz}$ Transmitter)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Places • Fremont, CA 94539 • (510) 249-1170

Customer:	Smartlabs, Inc.	
Specification:	$\mathbf{1 5 . 2 4 9}$ Carrier and Spurious Emissions (902-928 MHz Transmitter)	
Work Order \#:	$\mathbf{9 3 8 3 3}$	Date: $12 / 5 / 2012$
Test Type:	Radiated Scan	Time: $11: 42: 23$
Equipment:	Keypad with Dimmer	Sequence\#:
Manufacturer:	Smartlabs	Tested By:

S/N: None
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	$2 / 23 / 2011$	$2 / 23 / 2013$
T1	AN01992	Biconilog Antenna	CBL6111C	$12 / 23 / 2010$	$12 / 23 / 2012$
T2	AN00730	Preamp		$1 / 31 / 2011$	$1 / 31 / 2013$
T3	ANP00880	Cable	RG214U	$7 / 30 / 2012$	$7 / 30 / 2014$
T4	ANP05298	Cable	RG217/U	$3 / 7 / 2011$	$3 / 7 / 2013$
T5	ANP05440	Cable		$3 / 7 / 2011$	$3 / 7 / 2013$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Keypad with Dimmer*	Smartlabs	$2334-2$	None
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

Harmonic and Spurious Emission for FCC15.249
Frequency Range: 30 MHz to 1000 MHz
Frequency Range of Measurement= Fundamental
TX $=914.9 \mathrm{MHz}$ to 915.1 MHz
Frequency Operation: 914.9 MHz to 915.1 MHz
Software Used: None
Temperature: $20.5^{\circ} \mathrm{C}$
Humidity: 55\%
Atmospheric Pressure: 101.8 kPa
Firmware

RBW=VBW $=120 \mathrm{kHz}$
Voltage of Power: 120V-60Hz (100\%)
The EUT is a fixed device. The EUT is placed on an 80 cm table and at the center of turning table. The EUT is installed in fix position.

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \text { dB } \end{aligned}$	T2 dB	T3 dB	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	32.263 M	44.0	$\begin{array}{r} \hline+16.3 \\ +0.3 \end{array}$	-27.6	+0.5	+0.0	+0.0	33.5	40.0	-6.5	Vert
2	44.241 M	44.9	$\begin{array}{r} +13.1 \\ +0.3 \end{array}$	-27.6	+0.6	+0.0	+0.0	31.3	40.0	-8.7	Vert
3	43.110 M	39.5	$\begin{array}{r} \hline+14.3 \\ +0.3 \end{array}$	-27.6	+0.6	+0.0	+0.0	27.1	40.0	-12.9	Vert
4	945.027 M	29.4	$\begin{array}{r} \hline+24.1 \\ +2.0 \\ \hline \end{array}$	-27.7	+3.5	+0.2	+0.0	31.5	46.0	-14.5	Horiz
5	955.421 M	29.0	$\begin{array}{r} \hline+24.3 \\ +2.0 \end{array}$	-27.7	+3.5	+0.2	+0.0	31.3	46.0	-14.7	Horiz
6	896.788M	29.5	$\begin{array}{r} \hline+23.3 \\ +1.9 \end{array}$	-27.3	+3.4	+0.3	+0.0	31.1	46.0	-14.9	Horiz

CKC Laboratories, Inc Date: 12/5/2012 Time: 11:42:23 Smartlabs, Inc WO\#: 93833 Test Distance: 3 Meters Sequence\#: 16

Test Location: CKC Laboratories, Inc. • 1120 Fulton Places • Fremont, CA 94539 • (510) 249-1170

Customer: Smartlabs, Inc.
Specification: 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

Work Order \#: 93833
Test Type:
Equipment:
Manufacturer: Smartlabs
Model: 2334-2
S/N: None

Date: 12/5/2012
Time: 10:19:21
Sequence\#: 7
Tested By: Hieu Song Nguyenpham/ Christine

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	$2 / 23 / 2011$	$2 / 23 / 2013$
T1	AN03114	Preamp	AMF-7D- $00101800-30-10 P ~$	$5 / 13 / 2011$	$5 / 13 / 2013$
			Horn Antenna-ANSI C63.5	3115	$1 / 17 / 2011$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Keypad with Dimmer*	Smartlabs	$2334-2$	None
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

```
Harmonic and Spurious Emission
Frequency Range: 1000 MHz to 10000 MHz
Frequency Range of Measurement= Fundamental
TX= 914.9 MHz to 915.1 MHz
Frequency Operation: 914.9 MHz to 915.1 MHz
Software Used: None
Temperature: \(20.5^{\circ} \mathrm{C}\)
Humidity: 55\%
Atmospheric Pressure: 101.8 kPa
Firmware
\(\mathrm{RBW}=\mathrm{VBW}=1 \mathrm{MHz}\)
Voltage of Power: 120V-60Hz (100\%)
The EUT is a fixed device. The EUT is placed on an 80 cm table and at the center of turning table. The EUT is installed in fix position. The EUT is set in constant transmit mode
```

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Distance: 3 Meters

CKC Laboratories, Inc Date: 12/5/2012 Time: 10:19:21 Smartlabs, Inc WO\#: 93833 Test Distance: 3 Meters Sequence\#: 7

0 Peak Readings

Test Setup Photos

9kHz-30MHz, Front View

9kHz-30MHz, Back View

$30 \mathrm{MHz}-1 \mathrm{GHz}$, Front View

30MHz-1GHz, Back View

1-10GHz, Front View

1-10GHz, Back View

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $k=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS
Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mathrm{\mu V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mathrm{\mu V/m)}$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: Sweep Data

 - Peak Readings
 * Average Readings

 1-15.207 AC Mains - Average

