

Exhibit: RF Exposure – FCC/ISED

FCC/ISED RF exposure evaluation of the System in accordance with FCC 1.1310 & RSS-102

COMMERCIAL-IN-CONFIDENCE

FCC: SAPPIXELPLUS IC: 4652A-PIXELPLUS

Client	Dormakaba	
Product	Saflok Quantum® Pixel and Quantum Pixel Plus	SUD
Standard(s)	FCC 1.1310 & RSS-102	Canada

RF Exposure – ISED

The EUT contains an several types of transmitters as depicted in the table below.

Radiofrequency Radiation Exposure Evaluation: Mobile Devices

The power density can be calculate using the formula:

$$P_d = (P_{out}*G) / (4*pi*R^2)$$

where,

f = frequency in MHz

 P_d = Power density in mW/cm²

 $P_{out} = Conducted$ output power to antenna in mW

G = Numeric Antenna Gain

Pi = 3.1416

R = uncontrolled distance of 20 cm as per normal operation.

Client	Dormakaba	
Product	Saflok Quantum® Pixel and Quantum Pixel Plus	TÜV
Standard(s)	FCC 1.1310 & RSS-102	Canada

MPE Calculation (RFID):

	11001	CHOIL OF IIII	PE limit at a given dis	anoc .		
E	quation from p	age 18 of C	ET Bulletin 65, Edition	97-01		
		$\frac{PG}{4\pi R^2}$				
w	here: S = p	ower densit	y			
	P = p	ower input t	o the antenna			
	G = p	ower gain o	f the antenna in the dire	ction of interest	relative to an isotrop	oic radiator
	R = di	stance to t	ne center of radiation of	the antenna		
	Maximum nea	ak output po	ower at antenna input ter	minal·	-29 10	(dBm)
			ower at antenna input ter		0.001230269	
		output pr	Number of		1	()
			Antenna gain(ty	pical):	0	
			Antenna gain		0	(dBi)
			Maximum antenna		1	(numeric)
			Time Aver	aging:	100	(%)
			Prediction dis	tance:	20	(cm)
			Prediction frequ	Jency:		(MHz)
FCC MPE	limit for unco	ntrolled exp	oosure at prediction frequ	iency:	0.978933354	(mW/cm ²
		Power d	ensity at prediction frequ	uency:	0.000000	(mW/cm ²
			Margin of comp	iance:	-66.0	
			This equates to		2.44754E-06	
			RSS-102 Issue 5 limit		0.155568538	W/m^2
			FCC Percentage		0.00003%	
			RSS-102 Percentage	of limit	0.00157%	
. This device de	on not avenue	1 +b = 60 / f /	GHz) in mW limit as per	ECC KDB 447	108 2/5/6)	

	Page 3 of 4	Report Issued: 6/10/2024	7169014286B-000
--	-------------	--------------------------	-----------------

Client	Dormakaba	
Product	Saflok Quantum® Pixel and Quantum Pixel Plus	SUD
Standard(s)	FCC 1.1310 & RSS-102	Canada

MPE Calculation (BlueTooth TM):

	Frediction of Wil	PE limit at a given distance		
Fa	uation from page 18 of C	DET Bulletin 65, Edition 97-01		
Ly	$S = \frac{PG}{4\pi R^2}$	ET Bandan 65, Editori 57 67		
who	ere: S = power density	v		
	P = power input t			
		f the antenna in the direction of inter	est relative to an isotro	oic radiator
		ne center of radiation of the antenna		
N	laximum peak output po	ower at antenna input terminal:	-6.10	(dBm)
N	laximum peak output po	wer at antenna input terminal:	0.245470892	(mW)
		Number of Ports	1	
		Antenna gain(typical):	0	
		Antenna gain(total):	0	(dBi)
		Maximum antenna gain:	1	(numeric)
		Time Averaging:	100	(%)
		Prediction distance:	20	(cm)
		Prediction frequency:		(MHz)
FCC MPE I	imit for uncontrolled exp	oosure at prediction frequency:	1	(mW/cm ²
	Power d	ensity at prediction frequency:	0.000049	(mW/cm ²
		Margin of compliance:	-43.1	(dB)
		This equates to	0.000488349	W/m^2
		RSS-102 Issue 5 limit	5.408510856	W/m^2
		FCC Percentage of limit	0.00488%	
		RSS-102 Percentage of limit	0.00903%	
ota: This davisa daa	s not exceed the 60 / f /	GHz) in mW limit as per FCC KDB	447498 2(a)(i)	
		ure conditions with no restrictions of		