11.SAR Test Results

11.1. NB Bottom Touch

Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	L'Actille
	1	2412(Low)	CCK	15.9	-	-	-	-
802.11b	6	2437(Mid)	CCK	15.9	-0.1	0.000189	1.6	Pass
	11	2462(High)	CCK	15.9	-	ı	-	-

11.2. NB Back Side Touch

Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	L'Actille
	1	2412(Low)	CCK	15.9	-0.2	0.222	1.6	Pass
802.11b	6	2437(Mid)	CCK	15.9	-0.1	0.289	1.6	Pass
	11	2462(High)	CCK	15.9	-0.1	0.183	1.6	Pass

11.3. NB Back Side with 1.5cm Gap

Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	RACILITE
	1	2412(Low)	CCK	15.9	-	-	-	-
802.11b	6	2437(Mid)	CCK	15.9	0.0009	0.019	1.6	Pass
	11	2462(High)	CCK	15.9	-	-	-	-

12. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques", April 21, 2003
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Meaurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of Noth Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 07/21/04 16:03:50

System Check_Body_2450MHz_20040721

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ mho/m; $\epsilon_r = 50.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

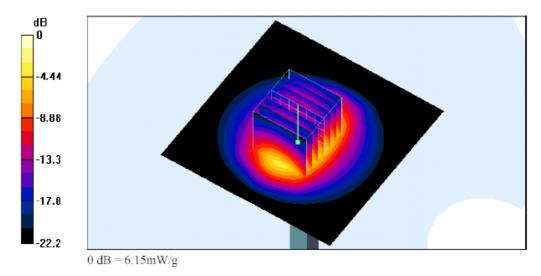
- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Pin=100mW/Area Scan (81x81x1): Measurement grid: dx=12mm, dy=12mm

Reference Value = 57.6 V/m; Power Drift = -0.1 dB Maximum value of SAR (interpolated) = 6.43 mW/g


Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.6 V/m; Power Drift = -0.1 dB

Maximum value of SAR (measured) = 6.15 mW/g

Peak SAR (extrapolated) = 11.9 W/kg

SAR(1 g) = 5.46 mW/g; SAR(10 g) = 2.53 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 07/21/04 16:30:51

Body_802.11b Ch6_NB Bottom Touch_20040721

DUT: Green553; Type: NoteBook

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 50.2$; $\rho = 1000$ kg/m³

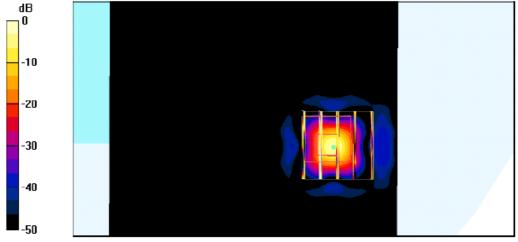
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Ch6/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.494 V/m; Power Drift = -0.1 dB Maximum value of SAR (interpolated) = 0.00153 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.494 V/m; Power Drift = -0.1 dB

Maximum value of SAR (measured) = 0.00264 mW/g

Peak SAR (extrapolated) = 0.00264 W/kg

SAR(1 g) = 0.000189 mW/g; SAR(10 g) = 2.9e-005 mW/g

0 dB = 0.00264 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 07/21/04 19:32:52

Body_802.11b Ch1_NB Back Side Touch_20040721

DUT: Green553; Type: NoteBook

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 50.1$; $\rho = 1000$ kg/m³

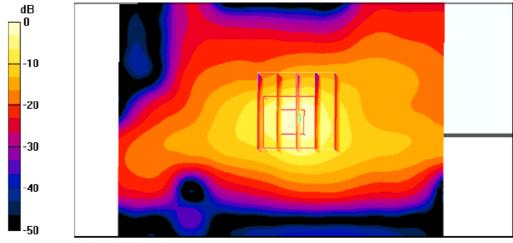
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Ch1/Area Scan (71x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 6.04 V/m; Power Drift = -0.2 dB Maximum value of SAR (interpolated) = 0.272 mW/g


Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.04 V/m; Power Drift = -0.2 dB

Maximum value of SAR (measured) = 0.263 mW/g

Peak SAR (extrapolated) = 0.710 W/kg

SAR(1 g) = 0.222 mW/g; SAR(10 g) = 0.072 mW/g

0 dB = 0.263 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 07/21/04 19:05:03

Body_802.11b Ch6_NB Back Side Touch_20040721

DUT: Green553; Type: NoteBook

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 50.2$; $\rho = 1000$ kg/m³

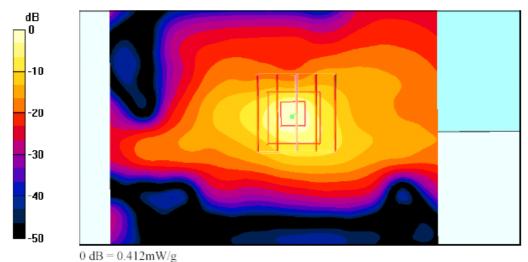
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Ch6/Area Scan (71x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 8.44 V/m; Power Drift = -0.1 dB Maximum value of SAR (interpolated) = 0.445 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.44 V/m; Power Drift = -0.1 dB

Maximum value of SAR (measured) = 0.412 mW/g

Peak SAR (extrapolated) = 0.934 W/kg

SAR(1 g) = 0.289 mW/g; SAR(10 g) = 0.093 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 07/21/04 19:49:45

Body_802.11b Ch11_NB Back Side Touch_20040721

DUT: Green553; Type: NoteBook

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2462 MHz; $\sigma = 2.04 \text{ mho/m}$; $\varepsilon_r = 50.3$; $\rho = 1000 \text{ kg/m}^3$

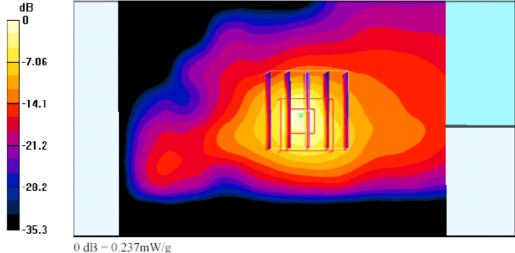
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Ch11/Area Scan (71x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 6.57 V/m; Power Drift = -0.1 dB Maximum value of SAR (interpolated) = 0.178 mW/g


Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.57 V/m; Power Drift = -0.1 dB

Maximum value of SAR (measured) = 0.237 mW/g

Peak SAR (extrapolated) = 0.590 W/kg

SAR(1 g) = 0.183 mW/g; SAR(10 g) = 0.060 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 07/21/04 20:09:51

Body_802.11b Ch6_NB Back Side With 1.5cm Gap_20040721

DUT: Green553; Type: NoteBook

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2437 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 50.2$; $\rho = 1000 \text{ kg/m}^3$

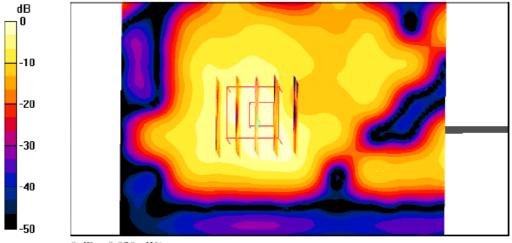
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Ch6/Area Scan (71x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.988 V/m; Power Drift = 0.0009 dB Maximum value of SAR (interpolated) = 0.018 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.988 V/m; Power Drift = 0.0009 dB

Maximum value of SAR (measured) = 0.020 mW/g

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.019 mW/g; SAR(10 g) = 0.00763 mW/g

0 dB = 0.020 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 07/21/04 19:05:03

Body 802.11b Ch6 NB Back Side Touch 20040721

DUT: Green553; Type: NoteBook

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 50.2$; $\rho = 1000$ kg/m³

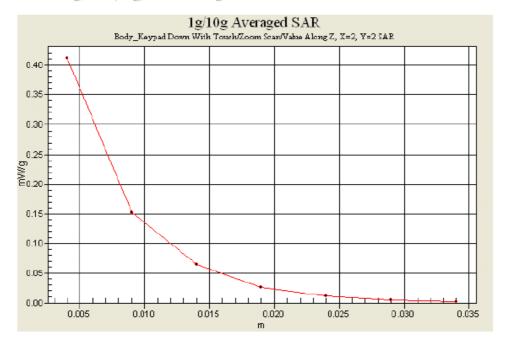
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Ch6/Area Scan (71x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 8.44 V/m; Power Drift = -0.1 dB Maximum value of SAR (interpolated) = 0.445 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.44 V/m; Power Drift = -0.1 dB

Maximum value of SAR (measured) = 0.412 mW/g

Peak SAR (extrapolated) = 0.934 W/kg

SAR(1 g) = 0.289 mW/g; SAR(10 g) = 0.093 mW/g

Page 1 (1)

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden > Sporton Int. Inc.

Object(s)	D2450V2 - SI	N:736	
Calibration procedure(s)	north believe work of	2 ocedure for dipole validation kits	
Calibration date:	August 27, 20	003	
Condition of the calibrated item	In Tolerance	(according to the specific calibration	on document)
17025 international standard.		E used in the calibration procedures and conformity tory facility: environment temperature 22 +/- 2 degree	
Calibration Equipment used (M&)	E critical for calibration)		
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
F generator R&S SML-03	100698	27-Mar-2002 (R&S, No. 20-92389)	In house check: Mar-05
ower sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Oct-04
ower sensor HP 8481A	US37292783	30-Oct-02 (METAS, No. 252-0236)	Oct-03
ower meter EPM E442	GB37480704	30-Oct-02 (METAS, No. 252-0236)	Oct-03
letwork Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03
,			
,	Name	Function	Signature
	Name Judith Mueller	Function Technician	Signature
Calibrated by:	Jodnh Mueller	Technician	Signature
Calibrated by:	CARCOCCOCALUS UNA PARTALISMO CO		Signature Signature
Calibrated by: Approved by:	Jodnh Mueller	Technician	Signature Julian Julian Date issued: August 28, 2003
Calibrated by: Approved by:	Judith Mueller Katja Pokovic	Technician Laboratory Director ution until the accreditation process (based on ISO/I	Date issued: August 28, 2003

880-KP0301061-A

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 736

Manufactured: August 26, 2003

Calibrated: August 27, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity 38.2 \pm 5% Conductivity 1.89 mho/m \pm 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.8 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2-SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 55.6 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue: 25.0 mW/g \pm 16.2 % (k=2)

1 validation uncertainty

Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.158 ns (one direction)

Transmission factor:

0.983

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:

 $Re{Z} = 52.5 \Omega$

Im $\{Z\} = 3.6 \Omega$

Return Loss at 2450 MHz

-27.5 dB

Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity

± 5%

Conductivity

2.03 mho/m ± 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.2 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm3 (1 g) of tissue:

56.0 mW/g \pm 16.8 % (k=2)²

averaged over 10 cm3 (10 g) of tissue:

25.8 mW/g \pm 16.2 % (k=2)²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:

 $Re{Z} = 48.7 \Omega$

Im $\{Z\} = 4.8 \Omega$

Return Loss at 2450 MHz

-25.8 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Sections 1 and 4. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Page 1 of 1

Date/Time: 08/27/03 15:43:04

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736 SN3013 M2450 270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: Muscle 2450 MHz ($\sigma = 2.03 \text{ mho/m}, \epsilon_p = 50.75, \rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.2, 4.2, 4.2); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

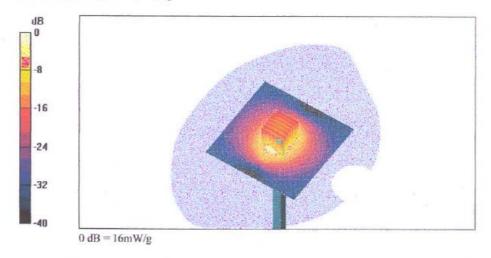
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

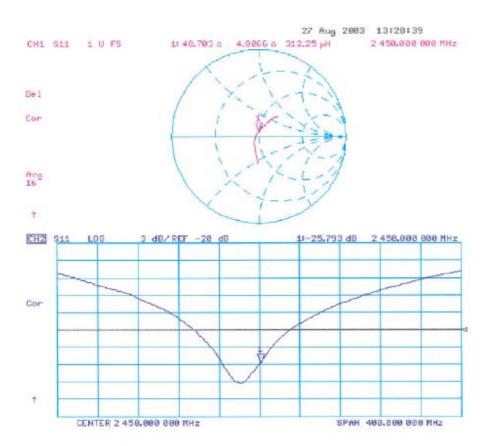
Reference Value = 91 V/m

Power Drift = -0.02 dB

Maximum value of SAR = 15.7 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm


Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 14 mW/g; SAR(10 g) = 6.46 mW/g Reference Value = 91 V/m

Power Drift = -0.02 dB

Maximum value of SAR = 16 mW/g

Page 1 of 1

Date/Time: 08/27/03 11:42:12

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736_SN3013_HSL2450_270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL 2450 MHz (σ = 1.89 mho/m, ϵ_r = 38.19, ρ = 1000 kg/m³)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.8, 4.8, 4.8); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

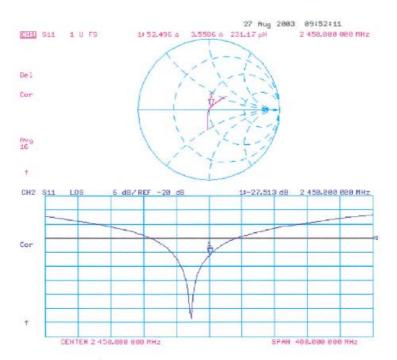
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 91.5 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 15.3 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.25 mW/gReference Value = 91.5 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 15.5 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden > Sporton Int. Inc.

ET3DV6 - SN	1/88	
Calibration pro	ocedure for dosimetric E-field probl	es
August 29, 20	03	
In Tolerance (according to the specific calibration	n document)
ents traceability of M&TE	used in the calibration procedures and conformity of	f the procedures with the ISO/IEC
eted in the closed laborate	ory facility: environment temperature 22 +/- 2 degrees	s Celsius and humidity < 75%.
TE critical for calibration)		
ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
		Sep-03
		Apr-04
	18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360)	In house check: Oct 03 Sep-03
Name	Function	Signature
Nico Vetterii	Teolytician	Dietel
Katja Pokovis	Laberatory Director	flow thety
		Date issued: August 28, 2003
	Calibration pro August 29, 20 In Tolerance (lents traceability of M&TE leted in the closed laborate TE critical for calibration) ID # US3842U01700 MY41495277 MY41092180 GB41293874 US37390585 D2 SN: 6295803 Name Nice Vellerii	ID # Cal Date (Calibrated by, Certificate No.) US3642U01700

880-KP0301061-A

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1788

Manufactured: Last calibration:

May 28, 2003 August 29, 2003

Calibrated for DASY Systems

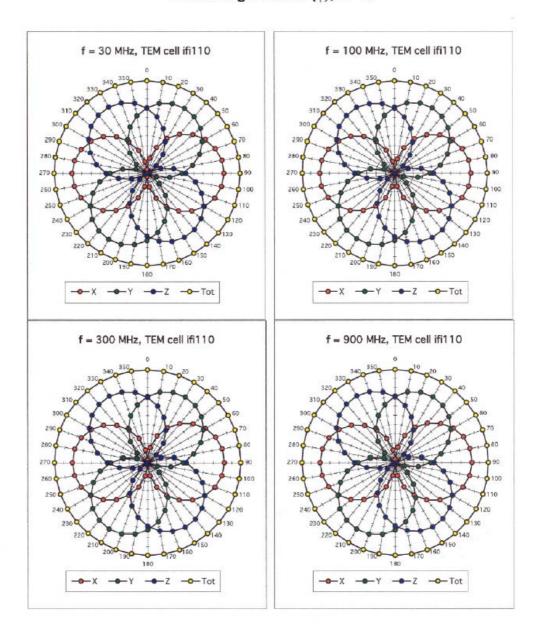
(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1788 August 29, 2003

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitiv	vity in Free	Space		Diode Compres	ssion	
	NormX	1.	.68 μV/(V/m) ²	DCP X	95	mV
	NormY	1	.62 μV/(V/m) ²	DCP Y	95	mV
	NormZ	1	71 μV/(V/m) ²	DCP Z	95	mV
Sensitiv	ity in Tissue	e Simulat	ing Liquid			
Head	90	0 MHz	ε_r = 41.5 ± 5%	σ = 0.97 ±	5% mho/m	
Valid for f=	800-1000 MHz v	with Head Tis	sue Simulating Liquid accordin	g to EN 50361, P1528-	200X	
	ConvF X	6	6.6 ± 9.5% (k=2)	Bounda	ry effect:	
	ConvF Y	6	6.6 ± 9.5% (k=2)	Alpha	0.34	
	ConvF Z	6	6.6 ± 9.5% (k=2)	Depth	2.48	
Head	180	0 MHz	ε_r = 40.0 ± 5%	σ= 1.40 ±	5% mho/m	
Valid for f=	1710-1910 MHz	with Head T	issue Simulating Liquid accordi	ng to EN 50361, P1528	3-200X	
	ConvF X	5	5.3 ± 9.5% (k=2)	Bounda	ry effect:	
	ConvF Y		5.3 ±9.5% (k=2)	Alpha	0.43	
	ConvF Z	ţ	5.3 ±9.5% (k=2)	Depth	2.80	
Bounda	ry Effect					
Head	90	0 MHz	Typical SAR gradient: 5	% per mm		
	Probe Tip to	Boundary		1 mm	2 mm	
	SAR _{be} [%]	Without C	Correction Algorithm	8.7	5.0	
	SAR _{be} [%]	With Corr	ection Algorithm	0.3	0.5	
Head	180	00 MHz	Typical SAR gradient: 1	0 % per mm		
	Probe Tip to	Boundary		1 mm	2 mm	
	SAR _{be} [%]		Correction Algorithm	12.8	8.9	
	SAR _{be} [%]	With Corr	ection Algorithm	0.3	0.1	
Sensor	Offset					
	Probe Tip to	Sensor Cen	ter	2.7	mm	

Page 2 of 10

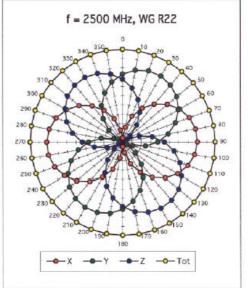


ET3DV6 SN:1788

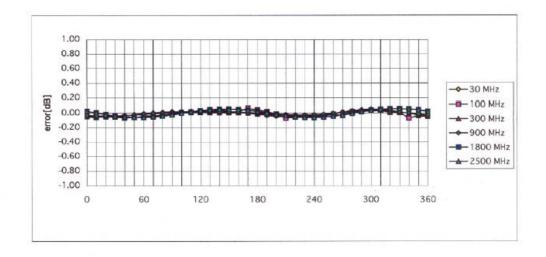
Test Report No : 0470904-1-2-01

August 29, 2003

Receiving Pattern (ϕ), θ = 0°



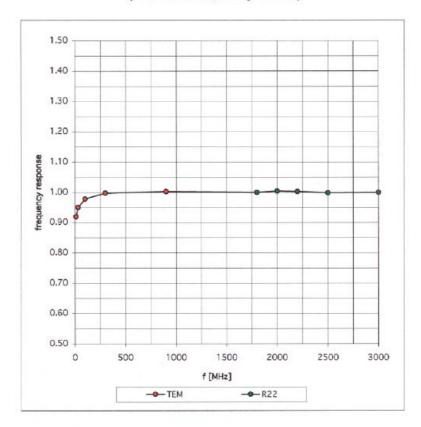
Page 3 of 10


ET3DV6 SN:1788

August 29, 2003

Isotropy Error (ϕ), $\theta = 0^{\circ}$

Page 4 of 10

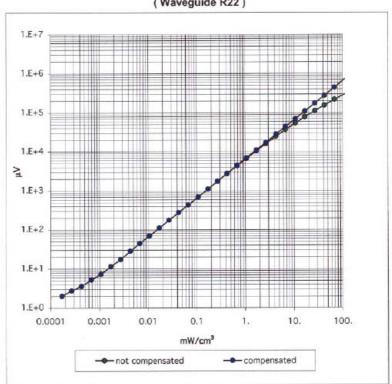


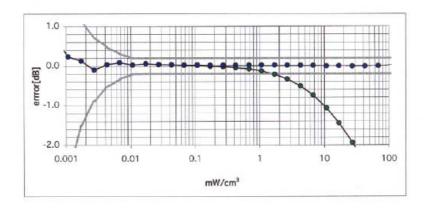
ET3DV6 SN:1788

August 29, 2003

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

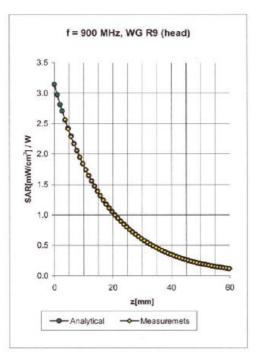


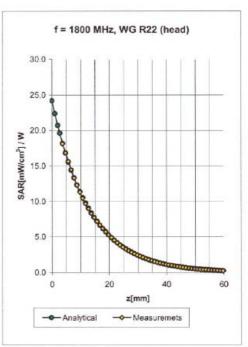

ET3DV6 SN:1788

August 29, 2003

Dynamic Range f(SAR_{brain})

(Waveguide R22)


Page 6 of 10

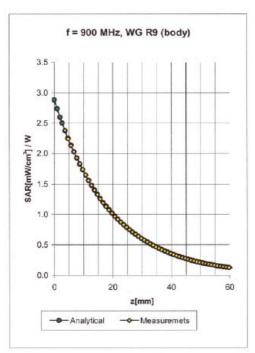


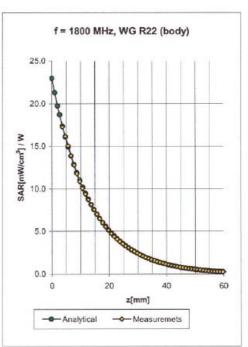
ET3DV6 SN:1788

August 29, 2003

Conversion Factor Assessment

Head	900 MHz	2	ε _τ = 41.5 ± 5%	σ = 0.97 ± 5% n	nho/m
Valid for f=	800-1000 MHz with He	ead Tissue	Simulating Liquid according to	EN 50361, P1528-200	X
	ConvF X	6.6	±9.5% (k=2)	Boundary effe	ct:
	ConvF Y	6.6	±9.5% (k=2)	Alpha	0.34
	ConvF Z	6.6	± 9.5% (k=2)	Depth	2.48
Head	1800 MHz	ż	ϵ_r = 40.0 \pm 5%	σ= 1.40 ± 5% n	nho/m
Valid for fe	-1710-1910 MHz with I	Head Tissu	e Simulating Liquid according	to EN 50361, P1528-20	0X
	ConvF X	5.3	±9.5% (k=2)	Boundary effe	ct
	ConvF Y	5.3	± 9.5% (k=2)	Alpha	0.43
	ConvF Z	5.3	± 9.5% (k=2)	Depth	2.80

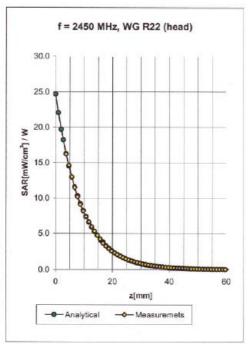

Page 7 of 10

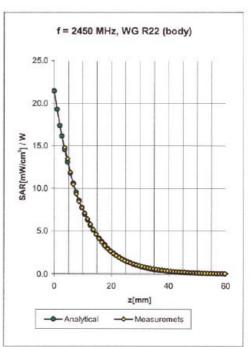


ET3DV6 SN:1788

August 29, 2003

Conversion Factor Assessment


Body	900 MH	z	e,= 55.0 ± 5%	σ = 1.05 ± 5% n	nho/m
Valid for f	=800-1000 MHz with B	lody Tissue Simu	lating Liquid according to	OET 65 Suppl. C	
	ConvF X	6.5 ±9.5	5% (k=2)	Boundary effe	ect:
	ConvF Y	6.5 ±9.5	5% (k=2)	Alpha	0.31
	ConvF Z	6.5 ±9.5	5% (k=2)	Depth	2.92
Body	1800 MH	z	ϵ_r = 53.3 \pm 5%	σ= 1.52 ± 5% n	nho/m
Valid for f	=1710-1910 MHz with	Body Tissue Sin	nulating Liquid according t	to OET 65 Suppl. C	
	ConvF X	5.0 ±9.5	5% (k=2)	Boundary effe	ect
	ConvF Y	5.0 ±9.5	5% (k=2)	Alpha	0.51
	ConvF Z	5.0 ±9.8	5% (k=2)	Depth	2.78


Page 8 of 10

ET3DV6 SN:1788 August 29, 2003

Conversion Factor Assessment

Test Report No : 0470904-1-2-01

Head	2450 MHz		ϵ_r = 39.2 ± 5%	σ=	1.80 ± 5%	mho/m
Valid for f=	2400-2500 MHz with H	ead Tiss	sue Simulating Liquid according	to EN 503	61, P1528-20	oox
	ConvF X	4.7	± 8.9% (k=2)		Boundary eff	ect:
	ConvF Y	4.7	± 8.9% (k=2)		Alpha	0.99
	ConvF Z	4.7	± 8.9% (k=2)		Depth	1.81
Body	2450 MHz		ϵ_r = 52.7 ± 5%	σ=	1.95 ± 5%	mho/m
Valid for f=	2400-2500 MHz with B	ody Tisa	sue Simulating Liquid according	to OET 65	Suppl. C	
	ConvF X	4.5	± 8.9% (k=2)		Boundary effe	ect:
	ConvF Y	4.5	± 8.9% (k=2)		Alpha	1.01
	ConvF Z	4.5	± 8.9% (k=2)		Depth	1.74


Page 9 of 10

ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ,ϕ) , f = 900 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Sporton (Auden)

Object(s)	DAE3 - SD 000 D03	3 AA - SN:577	
Calibration procedure(s)	QA CAL-06.v4 Calibration procedure	re for the data acquisi	ition unit (DAE)
Calibration date:	21.11.2003		
Condition of the calibrated item	In Tolerance (accord	ding to the specific ca	libration document)
This will be a second of the s	ents traceability of M&TE used in	the calibration procedures and o	conformity of the procedures with the ISO/IE
This calibration statement docum 17025 international standard			
7025 international standard	cted in the closed laboratory facilit	ly environment temperature 22	+/- 2 degrees Celsius and humidity < 75%.
17025 international standard		ly environment temperature 22	+/- 2 degrees Celsius and humidity < 75%.
17025 international standard All calibrations have been conduct Calibration Equipment used (M& Model Type	TE critical for calibration)	Cal Date	Scheduled Calibration
17025 international standard	TE critical for calibration)		
17025 international standard All calibrations have been conduct Calibration Equipment used (M& Model Type	TE critical for calibration)	Cal Date	Scheduled Calibration
17025 international standard NI calibrations have been conduct Calibration Equipment used (M& Model Type	TE critical for calibration)	Cal Date	Scheduled Calibration
17025 international standard NI calibrations have been conduct Calibration Equipment used (M& Model Type	ID # 22 SN. 6295803	Cai Date 8-Sep-03	Scheduled Calibration Sep-05
7025 international standard NI calibrations have been conducted in the conducted in the calibration Equipment used (M& Model Type) Type 70 Type 70	ID # 22 SN. 6295803	Cai Date 8-Sep-03	Scheduled Calibration Sep-05

DAE3 SN: 577 DATE: 21.11.2003

1. Cal Lab. Incoming Inspection & Pre Test

Modification Status	Note Status here → → → →	BC
Visual Inspection	Note anomalies	None
Pre Test	Indication	Yes/No
Probe Touch	Function	Yes
Probe Collision	Function	Yes
Probe Touch&Collision	Function	Yes

2. DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = 400 mVLow Range: 1LSB = 61nV, full range = 4 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.434	403.889	404.352
Low Range	3.94303	3.94784	3.9501
Connector Angle to be used	in DASY System	127 °	

High Range	Input	Reading in µV	% Error
Channel X + Input	200mV	200000.6	0.00
	20mV	20000.9	0.00
Channel X - Input	20mV	-19992.7	-0.04
Channel Y + Input	200mV	200000.6	0.00
	20mV	19999.1	0.00
Channel Y - Input	20mV	-19994.7	-0.03
Channel Z + Input	200mV	199999.8	0.00
	20mV	19998.1	-0.01
Channel Z - Input	20mV	-19999.2	0.00

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	1999.94	0.00
	0.2mV	199.08	-0.46
Channel X - Input	0.2mV	-200.24	0.12
Channel Y + Input	2mV	1999.98	0.00
	0.2mV	199.50	-0.25
Channel Y - Input	0.2mV	-200.80	0.40
Channel Z + Input	2mV	1999.98	0.00
	0.2mV	199.11	-0.44
Channel Z - Input	0.2mV	-201.12	0.56

Page 2 of 4

DAE3 SN: 577 DATE: 21.11.2003

3. Common mode sensitivity

DASY measurement parameters:

Auto Zero Time: 3 sec, Measuring time: 3 sec

High/Low Range

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	12.00	11.9
	- 200mV	-10.76	-12.44
Channel Y	200mV	-8.55	-8.51
	- 200mV	7.58	6.67
Channel Z	200mV	-0.86	-0.58
	- 200mV	-0.85	-0.77

4. Channel separation

DASY measurement parameters:

Auto Zero Time: 3 sec, Measuring time: 3 sec

High Range

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	_	1.96	0.28
Channel Y	200mV	0.66	-	3.59
Channel Z	200mV	-0.89	-0.11	-

5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

in Zero Low	Low Range Max - Min	Max.	Min
Channel X	17	16137	16120
Channel Y	27	16767	16740
Channel Z	8	15103	15077

5.2 AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16134	15955
Channel Y	16740	15960
Channel Z	15093	16252

6. Input Offset Measurement

DAE3 SN: 577

DATE: 21.11.2003

DASY measurement parameters:

Auto Zero Time: 3 sec, Measuring time: 3 sec Number of measurements: 100, Low Range

Input 10MΩ

TIPUT TOWISZ				
in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.64	-1.84	0.71	0.49
Channel Y	-1.77	-3.93	0.94	0.58
Channel Z	-2.21	-3.14	-0.81	0.34

Input shorted

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.12	-1.34	1.45	0.69
Channel Y	-0.69	-1.39	0.30	0.26
Channel Z	-0.94	-1.58	-0.30	0.23

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2000	197.1
Channel Y	0.1999	200.3
Channel Z	0.2001	198.3

9. Low Battery Alarm Voltage

in V	Alarm Level
Supply (+ Vcc)	7.58
Supply (- Vcc)	-7.65

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	5.65	13.7
Supply (- Vcc)	-0.01	-7.69	-8.97