

FCC CFR47 PART 15 SUBPART C CERTIFICATION

TEST REPORT

FOR

TRUE MIMO ACCESS POINT

MODEL NUMBER: AGN1202AP

FCC ID: SA3-AGN1202AP0000

REPORT NUMBER: 04U2821-1

ISSUE DATE: JULY 27, 2004

Prepared for AIRGO NETWORKS INC. 900 ARASTRADERO ROAD PALO ALTO, CA 94304, USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1.	TEST RESULT CERTIFICATION	
2.	EUT DESCRIPTION	4
3.	TEST METHODOLOGY	5
4.	FACILITIES AND ACCREDITATION	5
5.	CALIBRATION AND UNCERTAINTY	6
5.	.1. MEASURING INSTRUMENT CALIBRATION	6
5.	.2. MEASUREMENT UNCERTAINTY	6
5.	.3. TEST AND MEASUREMENT EQUIPMENT	7
6.	SETUP OF EQUIPMENT UNDER TEST	8
7.	APPLICABLE LIMITS AND TEST RESULTS	10
7.	.1. 6 dB BANDWIDTH	
7.	.2. 99% BANDWIDTH	
7.	.3. PEAK OUTPUT POWER	
7.	.4. MAXIMUM PERMISSIBLE EXPOSURE	
7.	.5. AVERAGE POWER	
7.	.6. PEAK POWER SPECTRAL DENSITY	
7.	.7. CONDUCTED SPURIOUS EMISSIONS	
7.	.8. RADIATED EMISSIONS	
	7.8.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	
	7.8.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ7.8.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	
, ,	.9. POWERLINE CONDUCTED EMISSIONS	
8.	SETUP PHOTOS	

Page 2 of 113

1. TEST RESULT CERTIFICATION

COMPANY NAME:	AIRGO NETWORKS INC 900 ARASTRADERO ROAD PALO ALTO, CA 94304 U.S.A.
EUT DESCRIPTION:	True MIMO Access Point
MODEL:	AGN1202AP
DATE TESTED:	JULY 7, 2004 to JULY 23, 2004

APPLICABLE STANDARDS		
STANDARD	TEST RESULTS	
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED	

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Note: The 2.4 and 5.8 GHz bands are applicable to this report; another band of operation (5.2 GHz) is documented in a separate report.

Approved & Released For CCS By:

MH

MICHAEL HECKROTTE EMC MANAGER COMPLIANCE CERTIFICATION SERVICES

Tested By:

Antongu

THANH NGUYEN EMC TECHNICIAN COMPLIANCE CERTIFICATION SERVICES

Page 3 of 113

2. EUT DESCRIPTION

The EUT is an 802.11a/b/g Access Point employs two transmitters and three receivers on each of two radio cards.

The transmitter has a maximum peak conducted output power as follows:

Frequency Band	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	802.11b	23.51	224.39
2412 - 2462	802.11g	25.13	325.84
5745 - 5805	802.11a	25.28	337.29

The radio utilizes five identical external dipole antennas for diversity, each with a maximum gain of 2dBi in 2.4GHz band and 3dBi in 5.8GHz band.

Page 4 of 113

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/2001, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 5 of 113

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 113

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment were utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	Cal Due	
Peak Power Meter	Agilent	E4416A	GB41291160	11/7/2004	
Peak / Average Power Sensor	Agilent	E9327A	US40440755	11/7/2004	
EMI Test Receiver	R & S	ESIB40	100192	11/21/2004	
Antenna, Horn 1 ~ 18 GHz	EMCO	3117	29301	12/26/2004	
Preamplifier, 1 ~ 26 GHz	Miteq	NSP10023988	646456	6/10/2005	
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/21/2004	
RF Filter Section	HP	85420E	3705A00256	11/21/2004	
30MHz 2Ghz	Sunol Sciences	JB1 Antenna	A121003	12/22/2004	
Antenna, Horn 26 ~ 40 GHz	ARA	MWH-2640/B	1029	38324	
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/2005	
EMI Test Receiver	R & S	ESHS 20	827129/006	7/17/2004	
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	10/13/2004	
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	10/13/2004	
AC Power Source, 10KVA	ACS	AFC-10K-AFC-2	J1568	CNR	
Site A Line Stabilizer / Conditioner	Tripplite	LC-1800a	A0051681	CNR	
PreAmplifier 26-40 GHz	MITEQ	NSP4000-SP2	924343	38139	

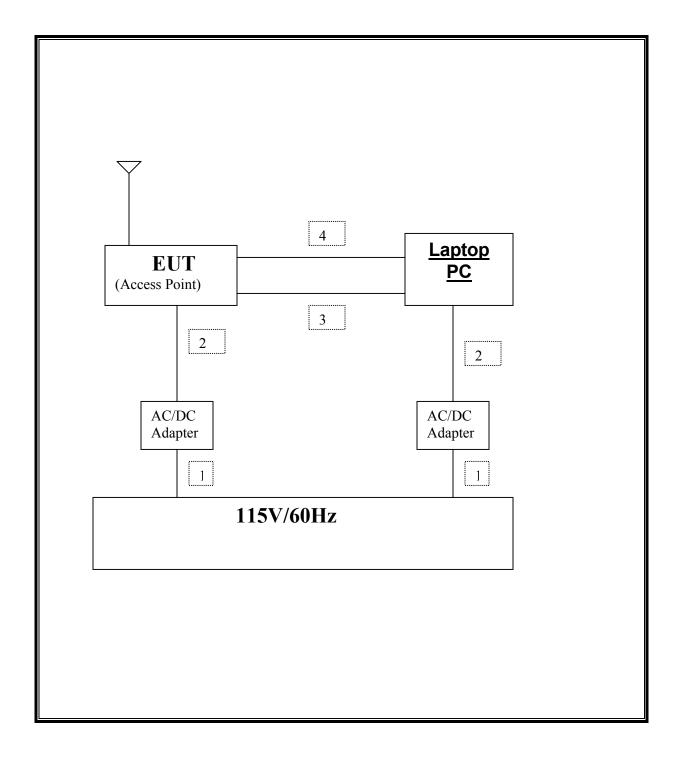
Page 7 of 113

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	FCC ID
Laptop PC	Sony	PCG-5312	28315730 3303321	AK8JPN-35452-M5-E

I/O CABLES


	I/O CABLE LIST						
Cable	Port	# of	Connector	Cable	Cable	Remarks	
No.		Identical	Туре	Туре	Length		
		Ports					
1	AC	2	US115	UNSHIELDED	2m	NO	
2	DC	2	DC	UNSHIELDED	2m	NO	
3	Serial	1	9 Pin	UNSHIELDED	2m	To PC USB Port	
4	Ethernet	1	RJ 45	UNSHIELDED	2m	To PC RJ45 Port	

TEST SETUP

The EUT was controlled by the laptop via Ethernet cable. The test software exercised the radio card during tests.

Page 8 of 113

SETUP DIAGRAM FOR TESTS

Page 9 of 113

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. 6 dB BANDWIDTH

<u>LIMIT</u>

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

2.4 GHz BAND RESULTS

No non-compliance noted:

802.11b Mode

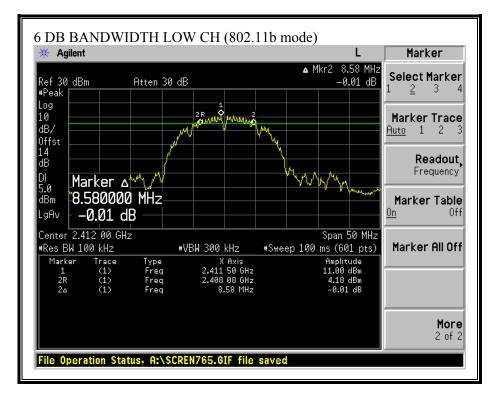
Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	2412	8580	500	8080
Middle	2437	9000	500	8500
High	2462	9500	500	9000

802.11g Mode

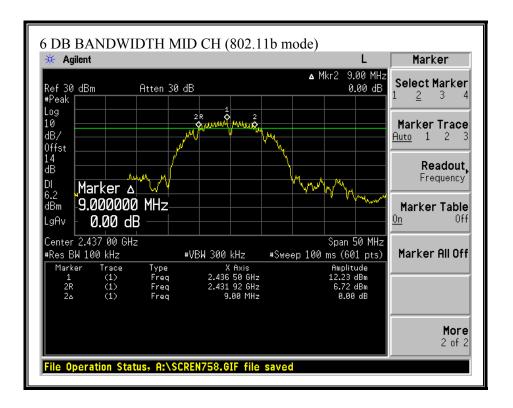
Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	15330	500	14830
Middle	2437	15200	500	14700
High	2462	15330	500	14830

Page 10 of 113

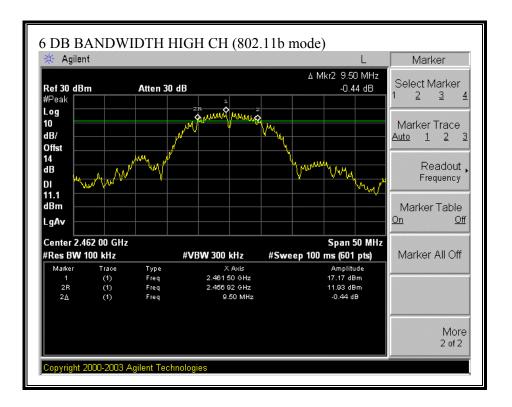
5.8 GHz BAND RESULTS


No non-compliance noted:

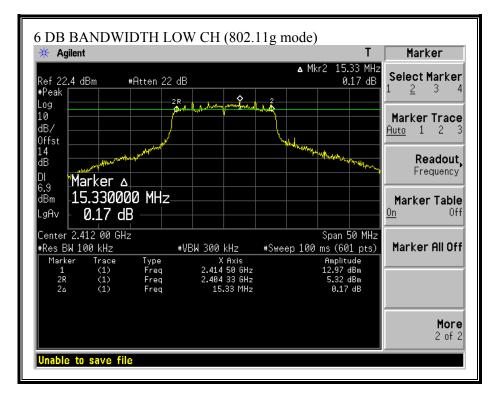
802.11a Mode


Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	5745	15750	500	15250
Middle	5785	15830	500	15330
High	5805	15670	500	15170

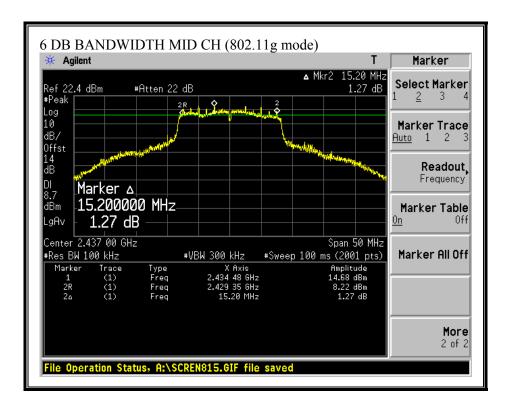
Page 11 of 113


6 DB BANDWIDTH (802.11b MODE)

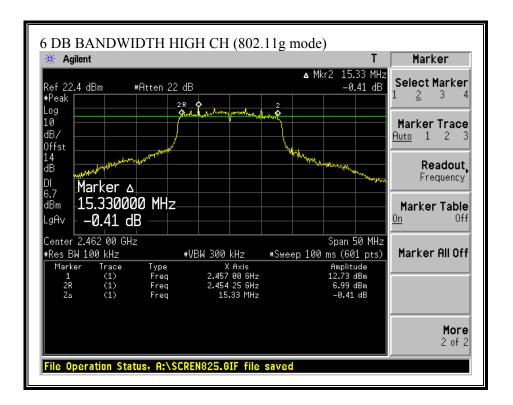
Page 12 of 113



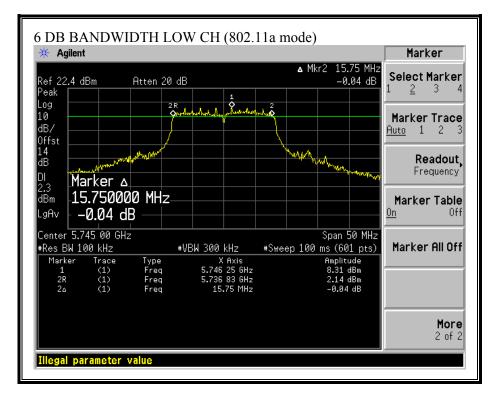
Page 13 of 113



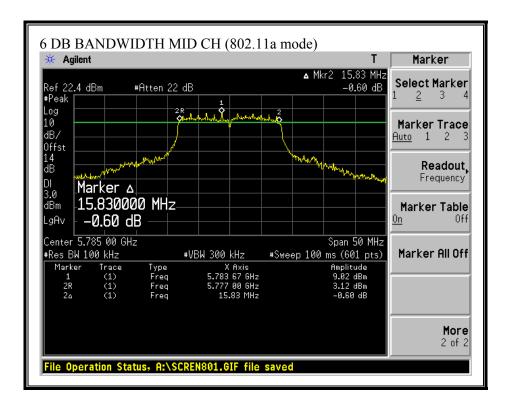
Page 14 of 113


6 DB BANDWIDTH (802.11g MODE)

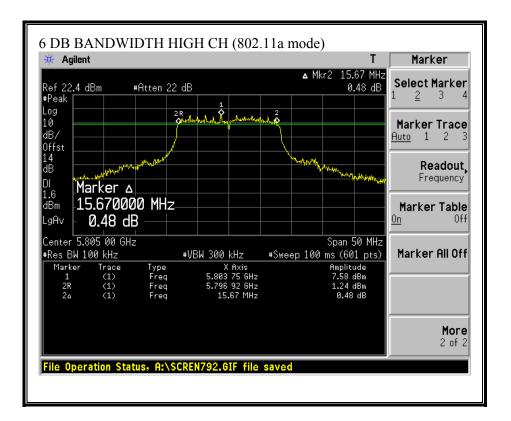
Page 15 of 113



Page 16 of 113



Page 17 of 113


6 DB BANDWIDTH (802.11a MODE)

Page 18 of 113

Page 19 of 113

Page 20 of 113

7.2. 99% **BANDWIDTH**

LIMIT

None: for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

2.4 GHz BAND RESULTS

No non-compliance noted:

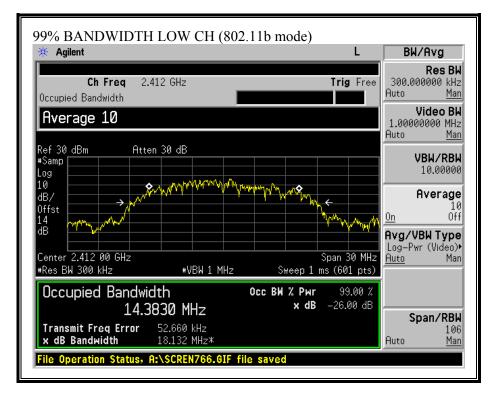
802.11b Mode				
Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		
Low	2412	14.3830		
Middle	2437	14.6018		
High	2462	15.0072		

802.11g Mode

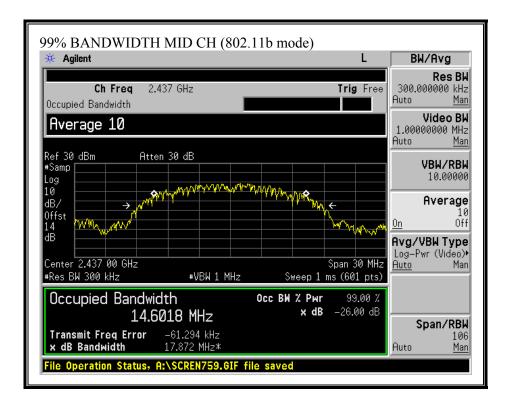
Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.3246
Middle	2437	16.4114
High	2462	16.2537

Page 21 of 113

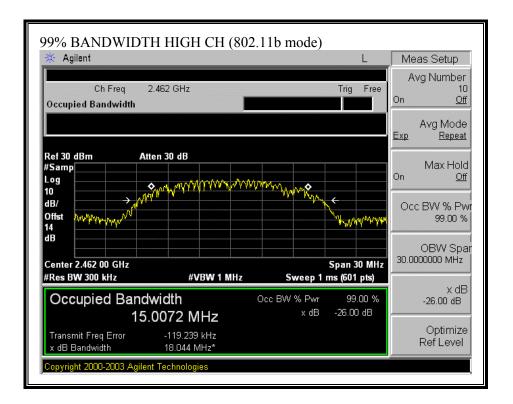
5.8 GHz BAND RESULTS


No non-compliance noted:

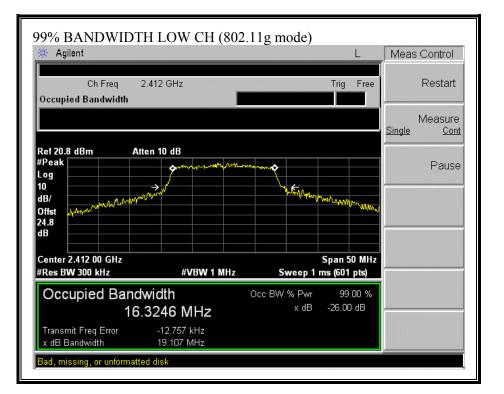
802.11a Mode


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5745	16.5055
Middle	5785	16.4615
High	5805	16.5980

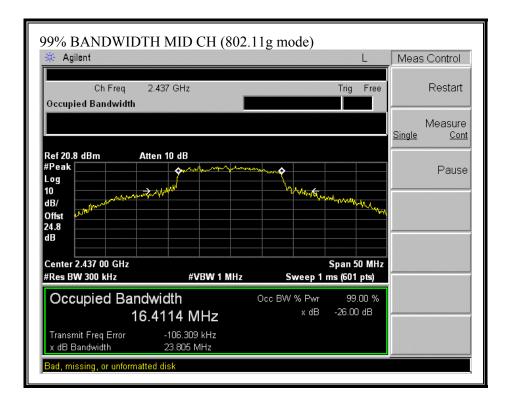
Page 22 of 113


99% BANDWIDTH (802.11b MODE)

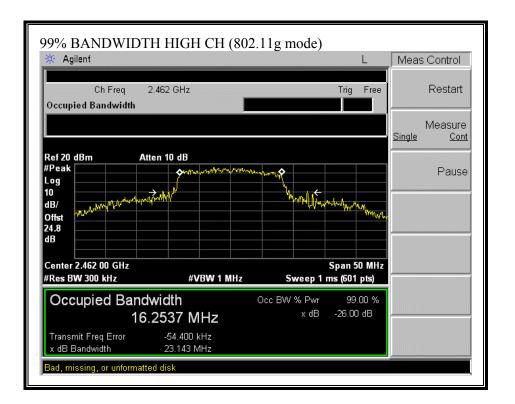
Page 23 of 113



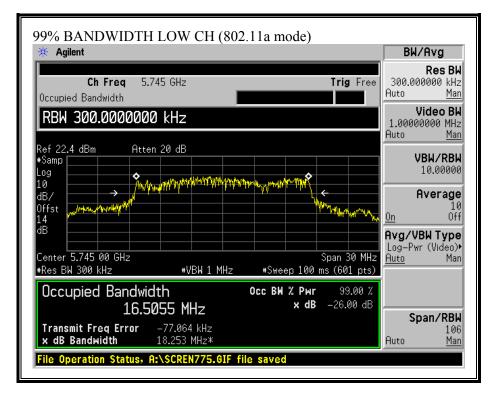
Page 24 of 113



Page 25 of 113


99% BANDWIDTH (802.11g MODE)

Page 26 of 113



Page 27 of 113

Page 28 of 113

99% BANDWIDTH (802.11a MODE)

Page 29 of 113

🔆 Agilent			T	Sweep
Ch Freq 5.7 Occupied Bandwidth	785 GHz	T	rig Free	Sweep Time 100.0 ms Auto <u>Man</u>
Sweep Time 100.0) ms			Sweep Single Cont
*Samp Log 10 dB/ dB/ 0ffst 14 dB Center 5.785 00 GHz		Spa	M () () () () () () () () () (Auto Sweep Time Norm Accy Gate On <u>Off</u> Gate Setup•
*Res BW 300 kHz Occupied Bandwic 16.4		#Sweep 100 ms (Осс ВЖ % Рwr х dB —2	99.00 %	Points 601
Transmit Freq Error × dB Bandwidth				

Page 30 of 113

🔆 Agilent				Sweep
Ch Freq 5.84 Occupied Bandwidth	95 GHz	Tri	g Free Au	Sweep Time 100.0 ms to <u>Man</u>
Sweep Time 100.0	ms		Sir	Sweep I <u>gle</u> Cont
Ref 22.4 dBm	22 dB	nayalay vyvinija Mintauresay	No On	Gate Off
Center 5.805 00 GHz +Res BW 300 kHz	#VBW 1 MHz	Span #Sweep 100 ms (6	30 MHz 01 pts)	Gate Setup
Occupied Bandwid 16.59	th or 80 MHz	с В₩ % Рwr 9 х dB –26		Points 601
Transmit Freq Error × dB Bandwidth File Operation Status, A:	18.101 MHz*			

Page 31 of 113

7.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 3 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

Page 32 of 113

2.4 GHZ BAND RESULTS

No non-compliance noted:

802.11b Mode

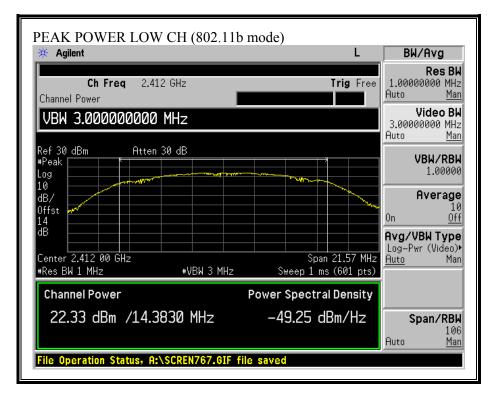
Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	22.33	30	-7.67
Middle	2437	23.51	30	-6.49
High	2462	22.33	30	-7.67

802.11g Mode

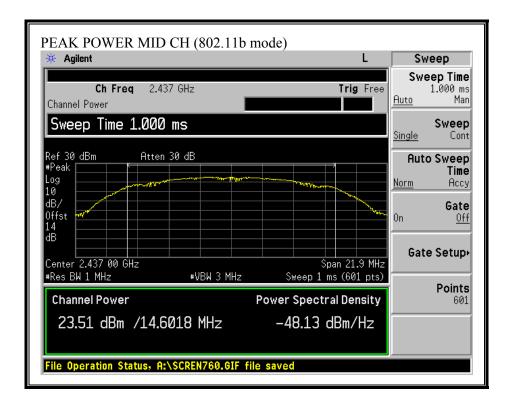
Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	25.13	30	-4.87
Middle	2437	24.70	30	-5.30
High	2462	24.75	30	-5.25

Page 33 of 113

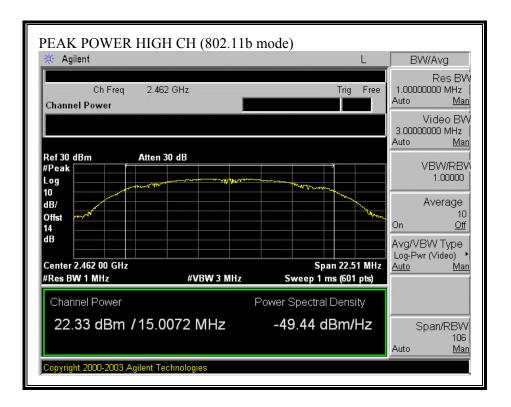
5.8 GHZ BAND RESULTS


No non-compliance noted:

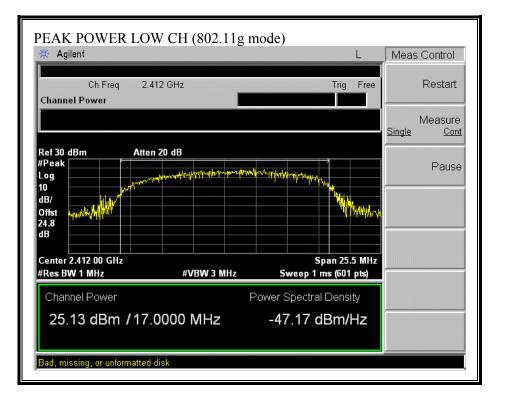
802.11a Mode


Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	24.89	30	-5.11
Middle	5785	25.28	30	-4.72
High	5805	23.85	30	-6.15

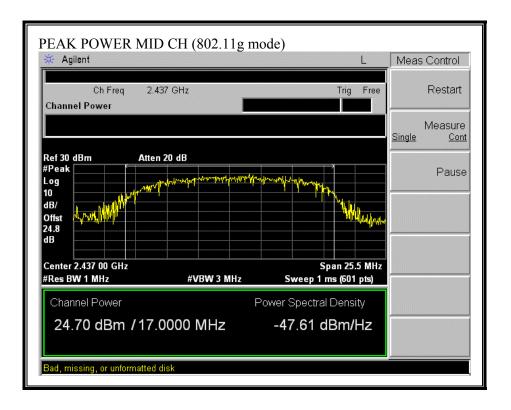
Page 34 of 113


OUTPUT POWER (802.11b MODE)

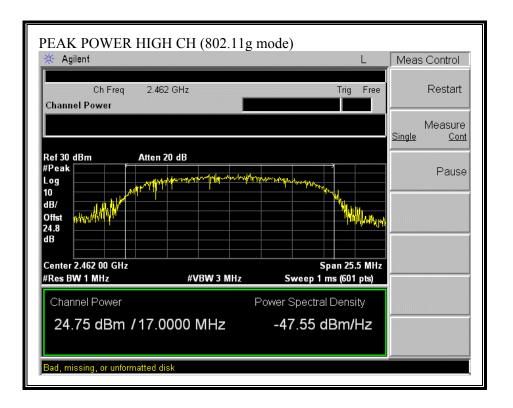
Page 35 of 113



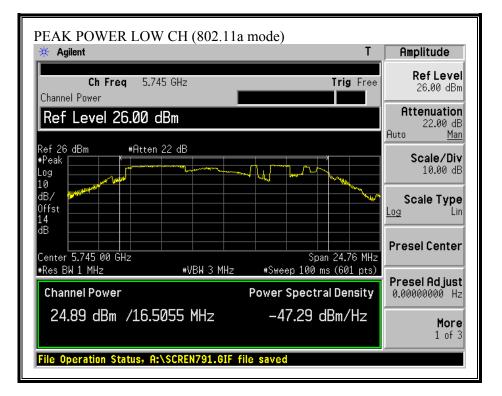
Page 36 of 113



Page 37 of 113


OUTPUT POWER (802.11g MODE)

Page 38 of 113



Page 39 of 113

Page 40 of 113

OUTPUT POWER (802.11a MODE)

Page 41 of 113

* Agilent		T	Amplitude
Ch Freq 5.785 GHz Channel Power		Trig Free	RefLeve 26.00 dBn
Ref Level 26.00 dBm			Attenuation 22.00 dE Auto <u>Mar</u>
Ref 26 dBm #Atten 22 dB #Peak Log 10	~~ <u>~~</u>		Scale/Div 10.00 dE
10		Markey Markey	Scale Type Log Lir
Center 5.785 00 GHz	Spar 3 MHz #Sweep 100 m	1 24.69 MHz	Presel Center
Channel Power	Power Spectra		Presel Adjust
25.28 dBm /16.4615 MH		_	More 1 of 3
File Operation Status, A:\SCREN8	03.GIF file saved	,	

Page 42 of 113

🔆 Agilent		T F	Amplitude
Ch Freq 5.805 GHz Channel Power		Trig Free	RefLevel 26.00 dBm
Ref Level 26.00 dBm		f	Attenuation 22.00 dB
Ref 26 dBm #Atten 22 dB #Peak			Scale/Div 10.00 dB
10 dB/ 0ffst 14			Scale Type Lin
dB		Span 24.9 MHz	esel Center
	·	ms (601 pts)	esel Adjust
Channel Power 23.85 dBm /16.5980 MH	Power Spec Iz –48.35	dBm/Hz	00000000 Hz More 1 of 3
File Operation Status, A:\SCREN7	24 GTE file equed		

Page 43 of 113

7.4. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0	614 1842/f	1.63 4.89/f	*(100) *(900/f²)	6
30–300	61.4	0.163	1.0 f/300	6
1500-100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposed are the exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

Page 44 of 113

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

 $S = E^{2}/3770$

where

and

E = Field Strength in Volts/meter P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 45 of 113

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

2.4 GHz BAND RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11b	1.0	23.51	2.00	5.32
802.11g	1.0	25.13	2.00	6.41

5.8 GHz BAND RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11a	1.0	25.28	3.00	7.32

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 46 of 113

7.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

2.4 GHZ BAND RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11.1 dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2412	20.84
Middle	2437	20.72
High	2462	19.37

802.11g Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2412	20.20
Middle	2437	19.90
High	2462	20.10

Page 47 of 113

5.8 GHZ BAND RESULTS

No non-compliance noted:

The cable assembly insertion loss of 12.2 dB (including 10 dB pad and 2.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11a Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	5745	19.75
Middle	5785	18.63
High	5805	17.10

Page 48 of 113

7.6. PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

2.4 GHz BAND RESULTS

No non-compliance noted:

802.11b Mode

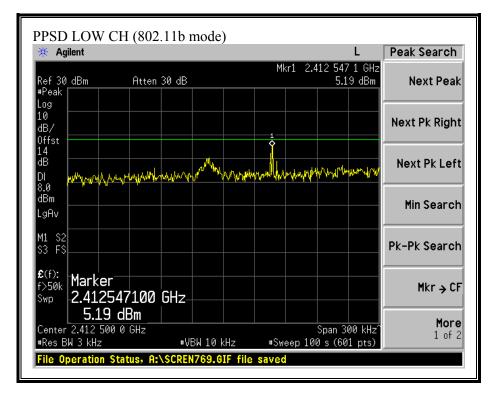
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	5.19	8	-2.81
Middle	2437	-0.31	8	-8.31
High	2462	3.32	8	-4.68

802.11g Mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-4.67	8	-12.67
Middle	2437	-0.94	8	-8.94
High	2462	-2.02	8	-10.02

Page 49 of 113

5.8 GHz BAND RESULTS


No non-compliance noted:

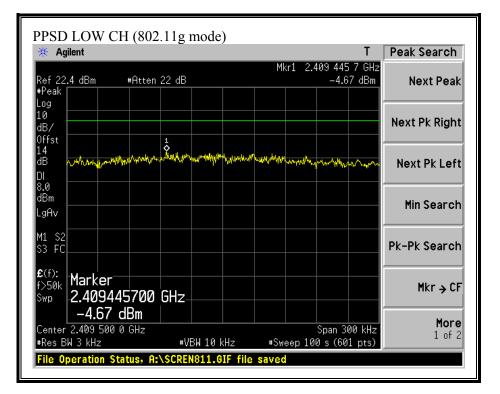
802.11a Mode

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	-6.22	8	-14.22
Middle	5785	-3.09	8	-11.09
High	5805	-5.91	8	-13.91

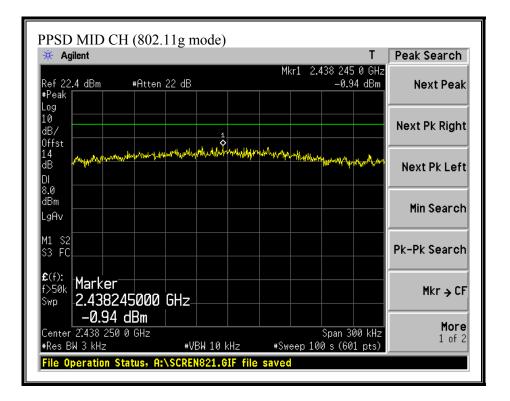
Page 50 of 113

PEAK POWER SPECTRAL DENSITY (802.11b MODE)

Page 51 of 113


PPSD MID CH (802.	11b mode)		
🔆 Agilent	,	L	Peak Search
Ref 30 dBm Atten #Peak	30 dB	Mkr1 2.437 673 0 GHz -0.31 dBm	Next Peak
Log 10 dB/ Offst			Next Pk Right
14	wybyldewalarynityw	MANNO MANNA	Next Pk Left
dBm LgAv			Min Search
M1 S2 S3 FC			Pk-Pk Search
£(f): f>50k Swp -0.31 dBm	GHz		Mkr → CF
Center 2.437 750 0 GHz #Res BW 3 kHz File Operation Status, A:	#VBW 10 kHz		More 1 of 2

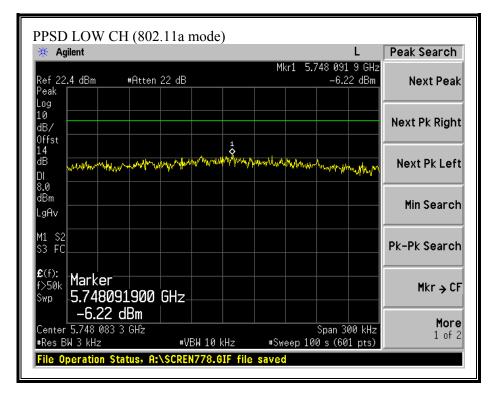
Page 52 of 113


🔆 Agilent			L	Peak Search
Ref 30 dBm #Peak	Atten 30 dB	M	lkr1 2.461 354 7 GHz -3.32 dBm	Next Peak
Log 10 dB/ Offst				Next Pk Right
14 dB DI ^{whij} th,he ^o l 8.0		handrenant	norman the second terms and the second terms are second to second terms are second terms ar	Next Pk Left
dBm LgAv				Min Search
M1 S2 S3 FC				Pk-Pk Search
¤(f): f>50k Swp				Mkr © Cl
Center 2.461 250 #Res BW 3 kHz		 10 kHz #Sv	Span 300 kHz veep 100 s (601 pts)	More 1 of 2

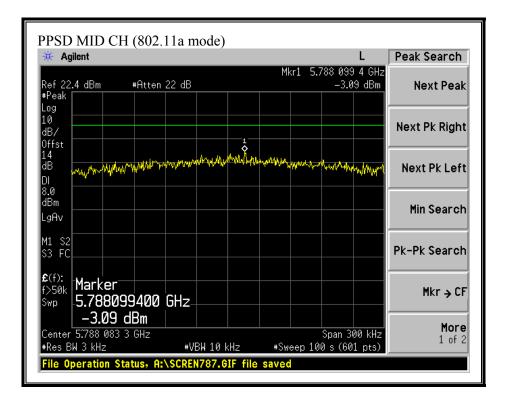
Page 53 of 113

PEAK POWER SPECTRAL DENSITY (802.11g MODE)

Page 54 of 113



Page 55 of 113


PPSD HIGH CH (802	2.11g mode)		
🔆 Agilent	<i>U</i> ,	Т	Peak Search
Ref 22.4 dBm #Atten #Peak	22 dB	Mkr1 2.459 475 4 GHz -2.02 dBm	Next Peak
Log 10 dB/ Offst	1		Next Pk Right
14 dB DI	~mymythandy	t Mutherman with many and	Next Pk Left
8.0 dBm LgAv			Min Search
M1 S2 S3 FS			Pk-Pk Search
£(f): f>50k Swp 2.459475400	GHz		Mkr → CF
	#VBW 10 kHz	Span 300 kHz^ *Sweep 100 s (601 pts)	More 1 of 2
File Operation Status, A:	\SCREN830.GIF file so	aved	

Page 56 of 113

PEAK POWER SPECTRAL DENSITY (802.11a MODE)

Page 57 of 113

Page 58 of 113

PPSD HIGH CH (802	2.11a mode)		Ŧ	D = -1-0 = = 1-
🔆 Agilent					Peak Search
Ref 22.4 dBm #Atten #Peak	22 dB	Mk	r1 5.806 8 _5	07 2 GHz 5.91 dBm	Next Peak
Log 10 dB/ Offst					Next Pk Right
14 dB DI 8.0	unnutu tompon	dendellan Antonen Anto	manthe	whenter	Next Pk Left
dBm LgAv					Min Search
M1 S2 S3 FC					Pk-Pk Search
£(f): f)50k Swp 5.806807200	GHz				Mkr → CF
-5.91 dBm Center 5.806 %33 3 GHz #Res BW 3 kHz	#VBW 10 k	Hz #Swe	Span Span eep 100 s (1	300 kHz 301 pts)	More 1 of 2
File Operation Status, A:	\SCREN797.G	IF file saved			

Page 59 of 113

7.7. CONDUCTED SPURIOUS EMISSIONS

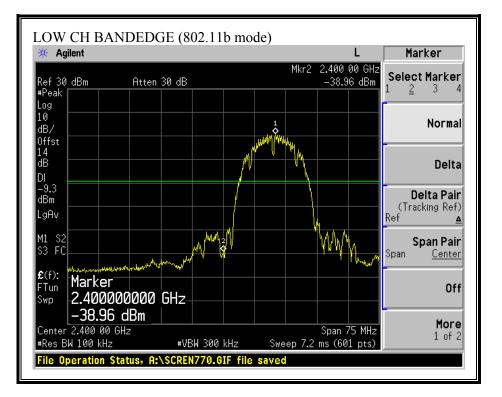
LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions, which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

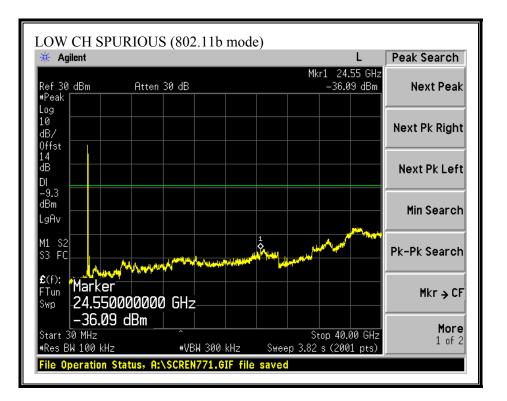
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

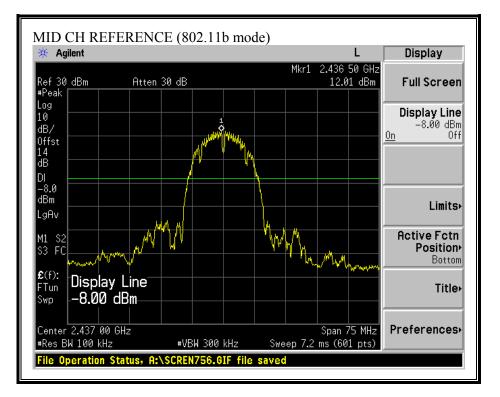

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 5.8 GHz band.

RESULTS

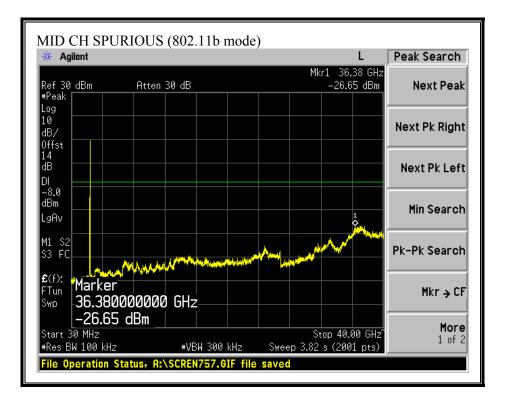

No non-compliance noted:

Page 60 of 113

SPURIOUS EMISSIONS, LOW CHANNEL (802.11b MODE)

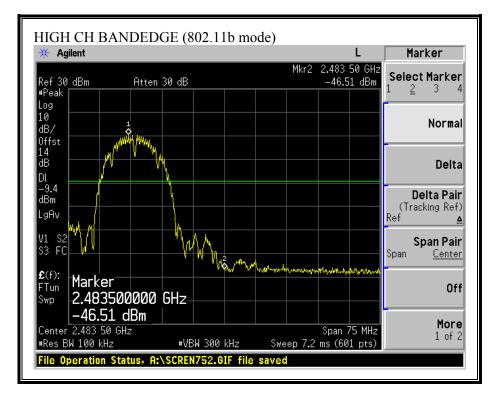


Page 61 of 113

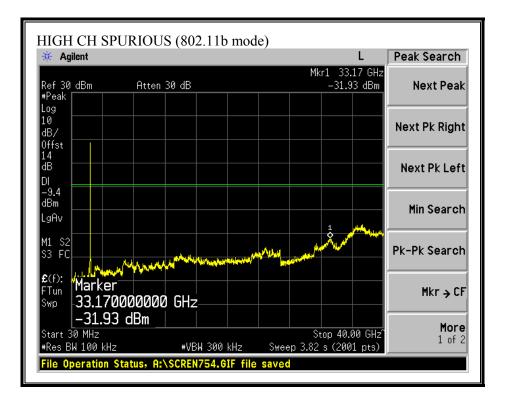


Page 62 of 113

SPURIOUS EMISSIONS, MID CHANNEL (802.11b MODE)

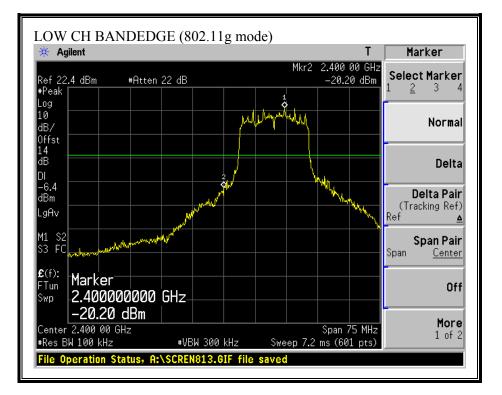


Page 63 of 113

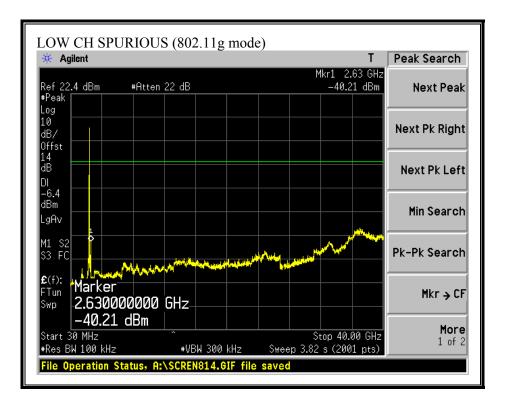


Page 64 of 113

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11b MODE)

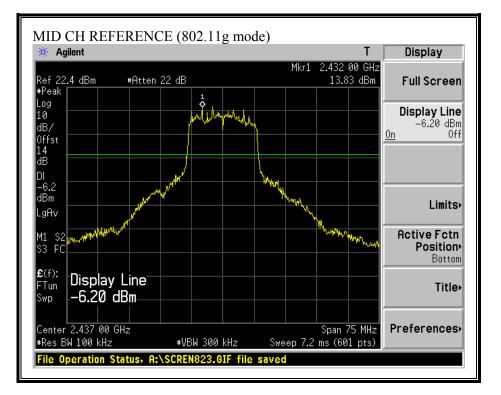


Page 65 of 113

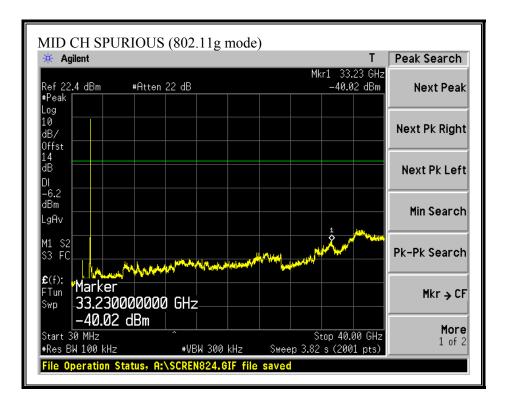


Page 66 of 113

SPURIOUS EMISSIONS, LOW CHANNEL (802.11g MODE)

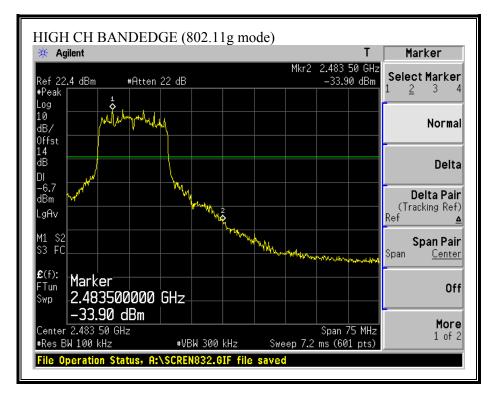


Page 67 of 113

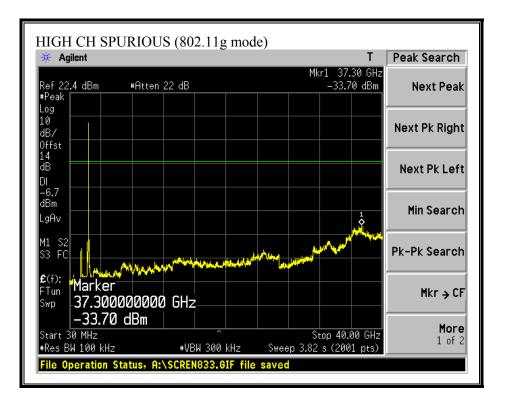


Page 68 of 113

SPURIOUS EMISSIONS, MID CHANNEL (802.11g MODE)

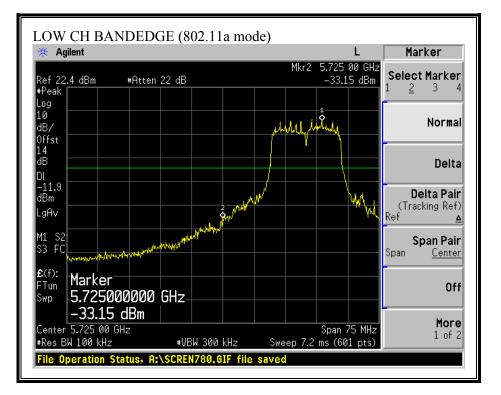


Page 69 of 113

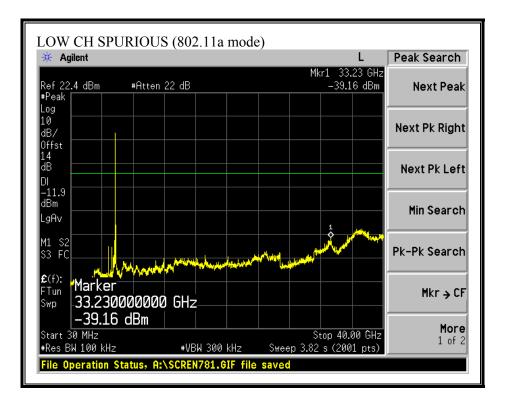


Page 70 of 113

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11g MODE)

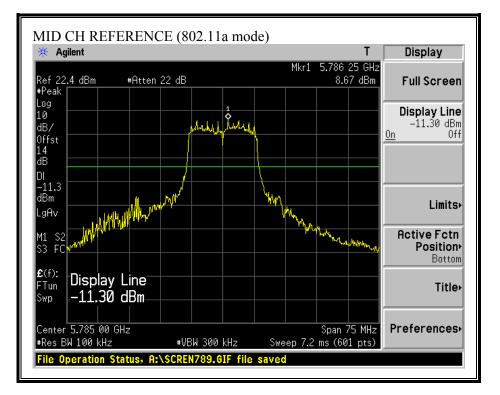


Page 71 of 113

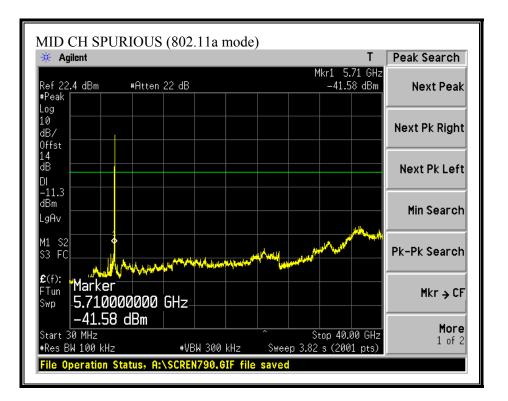


Page 72 of 113

SPURIOUS EMISSIONS, LOW CHANNEL (802.11a MODE)

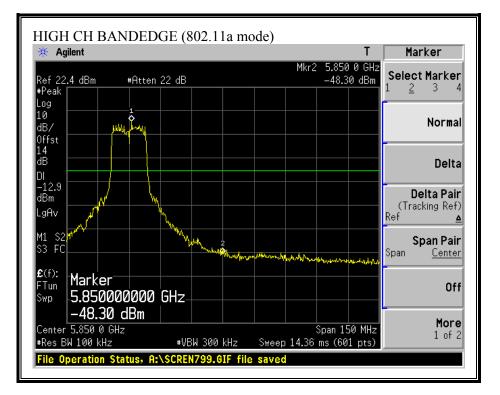


Page 73 of 113

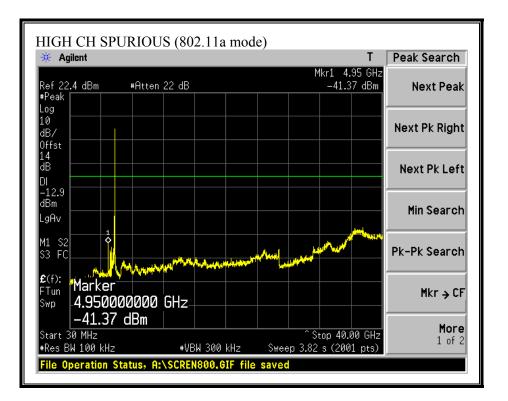


Page 74 of 113

SPURIOUS EMISSIONS, MID CHANNEL (802.11a MODE)



Page 75 of 113



Page 76 of 113

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11a MODE)

Page 77 of 113

Page 78 of 113

7.8. RADIATED EMISSIONS

7.8.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 79 of 113

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
30 - 88	100 **	3	
88 - 216	150 **	3	
216 - 960	200 **	3	
Above 960	500	3	

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 80 of 113

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

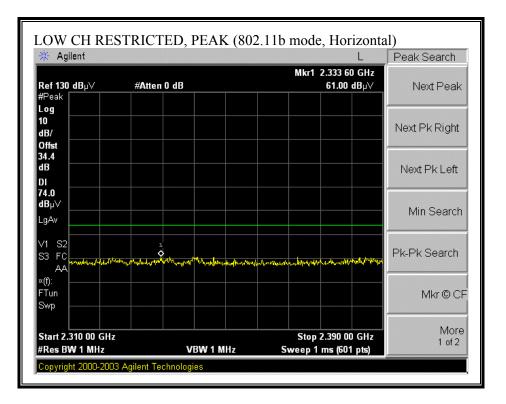
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels of the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels of the 5.8 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

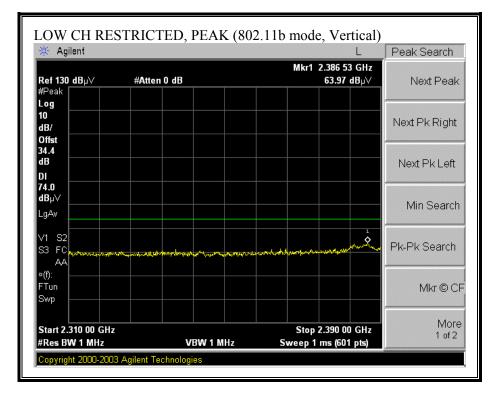

RESULTS

No non-compliance noted:

Page 81 of 113

7.8.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)

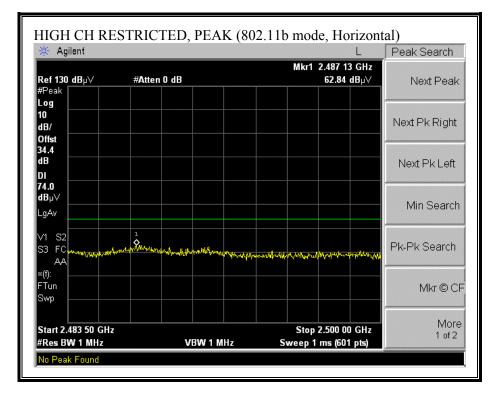


Page 82 of 113

🔆 Agilent		L	Peak Search
Ref 130 dB µ∨ #Peak	#Atten 0 dB	Mkr1 2.342 27 GHz 50.58 dBµ∨	Next Peak
Log 10 dB/			Next Pk Right
Offst 34.4 dB DI			Next Pk Left
01 54.0 dBµ∨ LgAv			Min Search
V1 S2 S3 FC			Pk-Pk Search
AA ×(f): FTun			 Mkr © Cf
Swp Start 2.310 00 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 2.390 00 GHz Sweep 6.238 s (601 pts)	More 1 of 2

Page 83 of 113

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)

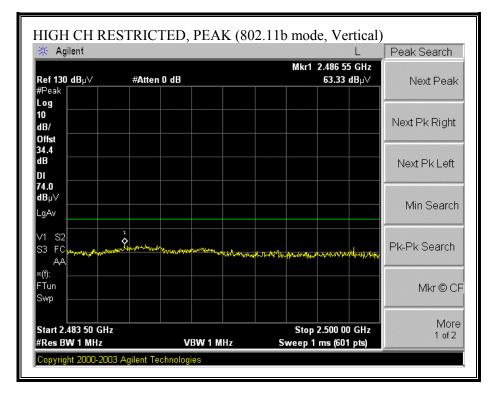


Page 84 of 113

		L	Peak Search
#Atten 0 dB			Next Peak
			Next Pk Right
			Next Pk Left
			Min Search
			Pk-Pk Search
	 		 Mkr © Cf
	Stop 2.390	00 GHz	More
	#Atten 0 dB Image: I	#Atten 0 dB 53.6 Image: Constraint of the second	

Page 85 of 113

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)



Page 86 of 113

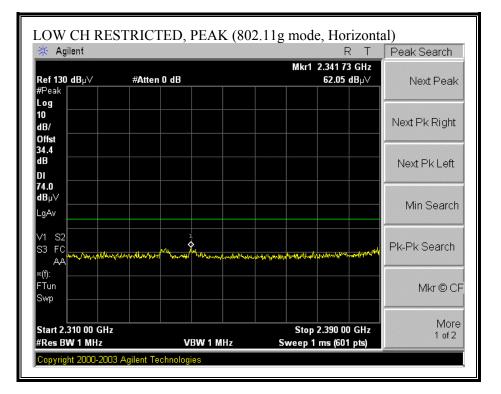
🔆 Agilent			L Marker ©
Ref 130 dB µ∨ #Peak	#Atten 0 dB	Mkr1 2.487 51.9	43 GHz) dBµ∨ Mkr©CF
Log 10 dB/			Mkr © CF Step
Offst 34.4 dB DI			Mkr © Start
54.0 dBµ∨ LgAv			Mkr © Stop
V1 S2 S3 FC	1		MkrƩ Span
≈(f): FTun Swp			Mkr ∆ © CF
Start 2.483 50 GHz #Res BW 1 MHz	#VBW 10	Stop 2.500 Hz Sweep 1.287 s (60	

Page 87 of 113

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)

Page 88 of 113

🔆 Agilent				L	Peak Search
Ref 130 dB µ∨ #Peak	#Atten 0 dB			87 40 GHz 3.67 dBµ∨	Next Peak
Log 10 dB/					Next Pk Right
Offst 34.4 dB DI					Next Pk Left
54.0 dBµ∨ _gAv					Min Search
-9AV V1 S2 S3 FC					Pk-Pk Search
AA «(f): FTun	1				 Mkr © CF
Swp Start 2.483 50 GHz			Stop 2.5	00 00 GHz ^	More
#Res BW 1 MHz	#	VBW 10 Hz	Sweep 1.287 s		1 of 2

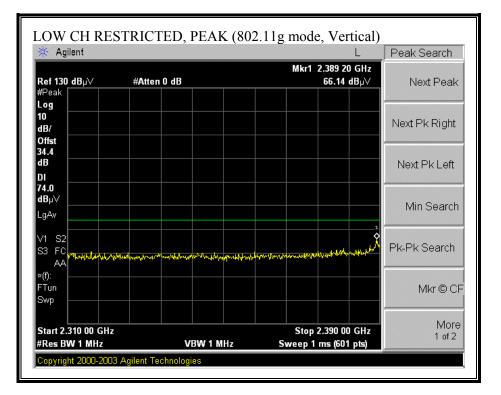

Page 89 of 113

HARMONICS AND SPURIOUS EMISSIONS (b MODE)

02/09/04 Complia			/ Measureme Services, Mo		ill Op	en Field	Site								
Test Eng Project # Compan EUT Des EUT M/I Test Tar Mode Oj	#: y: scrip.: N: rget:	Airgo Netwo 802.11abg M 1200AP/WS FCC 15.247, B Mode	IMO AP 112												
Test Equ	ipment:														
	O Horn 1	-18GHz 0 @3n 🖕	Spect HP 85931	trum Ana			Pre-am			Pre-am	plifer 26-40G	Hz		Horn > 1	8GHz
						•	103 MI	eq 6464	50 -			-			
	quency Cab ft)		□ (4 ~ 6 ft)	✔ (12 ft)]					Peak Meas 1 MHz Reso 1 MHz Video	lution Bandw	ridth		easurements: lution Bandwidth Bandwidth
f	Dist	Read Pk	Read Avg.	AF dP/m	CL	Amp	D Corr	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz B Mode		dBuV 2	dBuV	dB/m	dB	dB	dB		dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	
Low Ch 4.824	9.8	45.4	37.5	33.7	3.2	-35.3	0.0	1.0	47.9	40.0	74.0	54.0	-26.1	-14.0	V
4.824 Mid Char		40.8	28.3	33.7	3.2	-35.3	0.0	1.0	43.3	30.8	74.0	54.0	-30.7	-23.2	Н
4.874 4.874	9.8 9.8	47.3 40.4	33.1 29.6	33.7 33.7	3.2 3.2	-35.3 -35.3	0.0 0.0	1.0 1.0	49.8 43.0	35.7 32.2	74.0 74.0	54.0 54.0	-24.2 -31.0	-18.3 -21.8	V H
High Cha 4.924		45.3	39.0	33.8	3.2	-35.3	0.0	1.0	47.9	41.6	74.0	54.0	-26.1	-12.4	V
4.924	9.8	41.3	30.1	33.8	3.2	-35.3	0.0	1.0	43.9	32.7	74.0	54.0	-30.1	-21.3	Н
G Mode V														ļ	
Low Ch 4.824	9.8	47.7	30.0	33.7	3.2	-35.3	0.0	1.0	50.3	32.5	74.0	54.0	-23.7	-21.5	V
4.824 Mid Char	9.8 nnel	41.7	29.4	33.7	3.2	-35.3	0.0	1.0	44.2	31.9	74.0	54.0	-29.8	-22.1	Н
4.874 4.874	9.8	46.0 41.2	32.1	33.7	3.2	-35.3	0.0 0.0	1.0 1.0	48.6 43.8	34.7	74.0	54.0	-25.4 -30.2	-19.3	V H
High Cha			26.9	33.7	3.2	-35.3				29.5	74.0	54.0		-24.5	
4.924 4.924	9.8 9.8	43.5 37.4	30.5 27.1	33.8 33.8	3.2 3.2	-35.3 -35.3	0.0 0.0	1.0 1.0	46.1 40.0	33.1 29.7	74.0 74.0	54.0 54.0	-27.9 -34.0	-20.9 -24.3	V H
	f Dist Read AF CL	Measureme Distance to Analyzer R Antenna Fa Cable Loss	Reading actor	ý		Amp D Corr Avg Peak HPF	Average	Correc Field S ed Peal	ct to 3 meto Strength @ c Field Stre r	3 m		Pk Lim Avg Mar	Peak Field Margin vs	Field Streng d Strength L s. Average I s. Peak Limi	.imit .imit

Page 90 of 113

RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, HORIZONTAL)

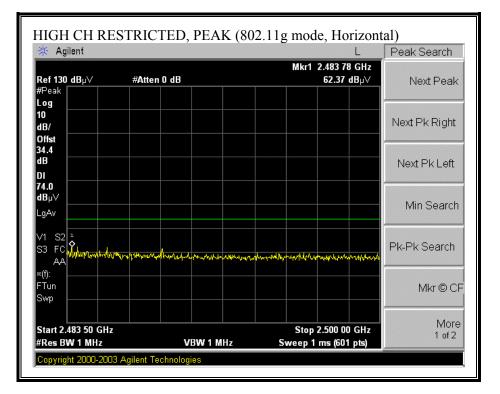


Page 91 of 113

🔆 Agilent		L	Peak Search
Ref 130 dB µ∨ #Peak	#Atten 0 dB	Mkr1 2.335 33 GHz 51.35 dBµ∨	Next Peak
Log 10 dB/ Offst			Next Pk Right
dB DI			Next Pk Left
54.0 dBµ∨ LgAv			Min Search
V1 S2 S3 FC			Pk-Pk Search
≈(f): FTun Swp	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Mkr © CF
Start 2.310 00 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 2.390 00 GHz Sweep 6.238 s (601 pts)	More 1 of 2

Page 92 of 113

RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, VERTICAL)

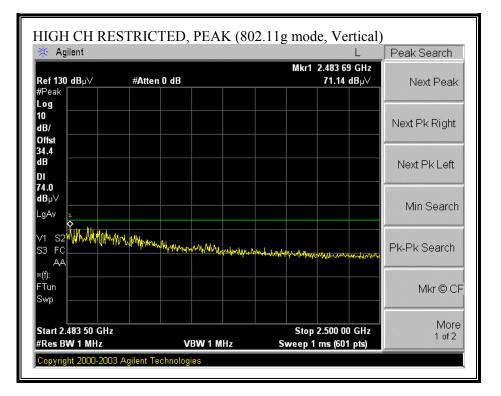


Page 93 of 113

🔆 Agilent				L	Peak Search
Ref 130 dB µ∨ #Peak	#Atten 0 dB			89 33 GHz 1.19 dBµ∨	Next Peak
Log 10 dB/					Next Pk Right
Offst 34.4 dB DI					Next Pk Left
54.0 dBµ∨					Min Search
_gAv v1 S2 S3 FC					Pk-Pk Search
AA «(f): =Tun					 Mkr © CF
Swp					More
Start 2.310 00 GHz #Res BW 1 MHz	;	¢VBW 10 Hz	Stop 2.3 Sweep 6.238 s	9000GHz (601 pts)	1 of 2

Page 94 of 113

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, HORIZONTAL)



Page 95 of 113

🔆 Agilent				L	Peak Search
Ref 130 dB µ∨ #Peak	#Atten 0 dB		Mkr1 2	2.483 66 GHz 48.50 dBµ∨	Next Peak
Log 10 dB/					Next Pk Right
Offst 34.4 dB DI					Next Pk Left
54.0 dBµ∨ LgAv					Min Search
V1 S2 S3 FC					Pk-Pk Search
«(f):		,			Mkr © CF
Start 2.483 50 GHz #Res BW 1 MHz	#V	BW 10 Hz	Stop 2 Sweep 1.287	500 00 GHz s (601 pts)	More 1 of 2

Page 96 of 113

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, VERTICAL)

Page 97 of 113

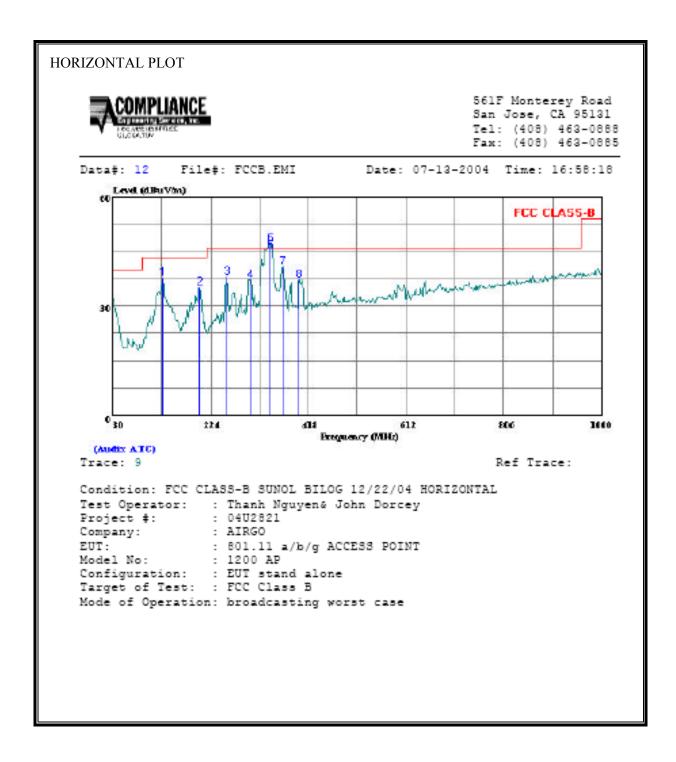
🔆 Agilent				L	Peak Search
Ref 130 dBµ∨ #Peak	#Atten 0 dB			.483 53 GHz 52.14 dBµ∨	Next Peak
Log 10 dB/ Offst					Next Pk Right
dfist 34.4 dB DI					Next Pk Left
54.0 dBµ∨ LgAv					Min Search
V1 S2 53 FC					Pk-Pk Search
«(f): =Tun Swp					Mkr © CF
Start 2.483 50 GHz #Res BW 1 MHz	#VBW	10 Hz	Stop 2 Sweep 1.287	.500 00 GHz	More 1 of 2

Page 98 of 113

HARMONICS AND SPURIOUS EMISSIONS (g MODE)

est Eq	uipment:														1
	O Horn 1 S/N: 2931		Spect HP 85931	trum Ans	-		Pre-amp			Pre-amp	difer 26-40G	Hz		Horn >1	8GHz
	quency Cab	les	□ (4 ~ 6 ft)]		_		T63 Mit	eq 0404	50 T		Peak Meas 1 MHz Reso 1 MHz Video	lution Bandw	idth		easurements: ution Bandwidth Bandwidth
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m		Pk Mar dB	Avg Mar dB	Notes
B Mod	e WS11		4.547	uD/m					3150 ¥/111	abu t/ill	abu t/ill	3154 ¥/11	uD	<u>un</u>	
Low Cl .824	9.8	45.4	37.5	33.7	3.2	-35.3	0.0	1.0	47.9	40.0	74.0	54.0	-26.1	-14.0	V
.824 1id Cha	9.8 nnel	40.8	28.3	33.7	3.2	-35.3	0.0	1.0	43.3	30.8	74.0	54.0	-30.7	-23.2	Н
.874 .874	9.8	47.3 40.4	33.1 29.6	33.7 33.7	3.2 3.2	-35.3 -35.3	0.0 0.0	1.0 1.0	49.8 43.0	35.7 32.2	74.0 74.0	54.0 54.0	-24.2 -31.0	-18.3 -21.8	V H
ligh Cha	annel		39.0	33.8	3.2	-35.3			43.0		74.0				N N
.924 .924	9.8 9.8	45.3 41.3	39.0 30.1	33.8	3.2	-35.3	0.0	1.0 1.0	47.9	41.6 32.7	74.0	54.0 54.0	-26.1 -30.1	-12.4 -21.3	V H
Mode '	ws111														
.ow Cł .824	nannel 9.8	47.7	30.0	33.7	3.2	-35.3	0.0	1.0	50.3	32.5	74.0	54.0	-23.7	-21.5	v
.824	9.8	41.7	30.0 29.4	33.7	3.2	-35.3	0.0	1.0	50.3 44.2	32.5 31.9	74.0	54.0 54.0	-23.7 -29.8	-21.5 -22.1	V H
/lid Cha .874	9.8	46.0	32.1	33.7	3.2	-35.3	0.0	1.0	48.6	34.7	74.0	54.0	-25.4	-19.3	V
.874 Iigh Cha	9.8 annel	41.2	26.9	33.7	3.2	-35.3	0.0	1.0	43.8	29.5	74.0	54.0	-30.2	-24.5	Н
.924 .924	9.8	43.5 37.4	30.5 27.1	33.8 33.8	3.2 3.2	-35.3 -35.3	0.0	1.0 1.0	46.1 40.0	33.1 29.7	74.0 74.0	54.0 54.0	-27.9 -34.0	-20.9 -24.3	V H
	f Dist Read AF CL	Measureme Distance to Analyzer R Antenna Fa Cable Loss	teading actor	y		Amp D Corr Avg Peak HPF	Average	Correc Field S ed Peak	et to 3 mete strength @ a Field Stre	3 m		Pk Lim Avg Mar	Peak Field Margin vs	Field Strengt d Strength L s. Average L s. Peak Limi	.imit .imit

Page 99 of 113

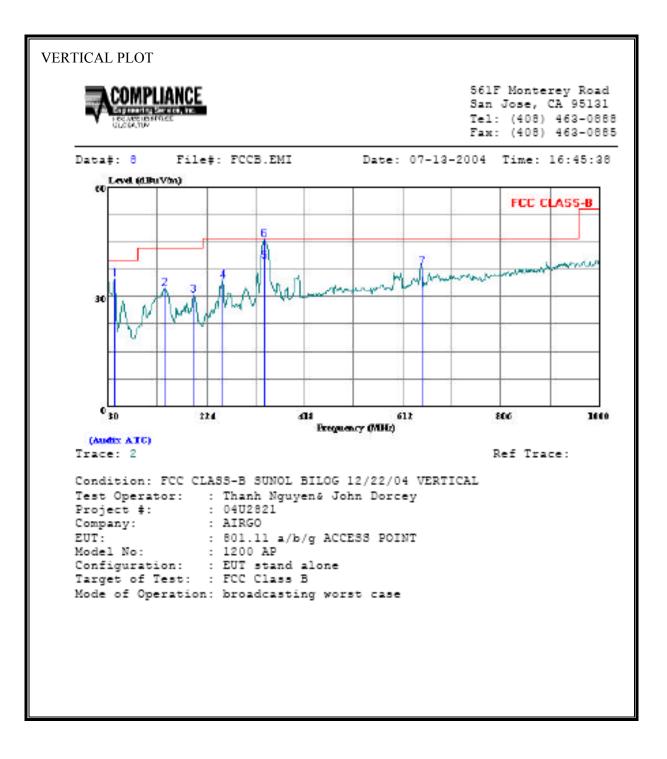

HARMONICS AND SPURIOUS EMISSIONS (a MODE)

	lorn 1-18			trum Ana			Pre-amp			Pre-amp	plifer 26-400	Hz		Horn >18	GHz
T120; S/N	ncy Cables		HP 85931			-	T63 Mite	eq 6464	56 -		Peak Meas 1 MHz Reso 1 MHz Video	lution Bandw	idth		asurements: tion Bandwidth andwidth
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	HPF	Peak	Avg	Pk Lim	Avg Lim		Avg Mar	Notes
GHz DTS WS1	feet 12	dBuV	dBuV	dB/m	dB	dB	dB		dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	
Low Chan	nel														
11.490 11.490	9.8 9.8	42.6 41.5	29.6 29.5	38.5 38.5	5.1 5.1	-34.2 -34.2	0.0	1.0 1.0	53.0 51.9	40.0 39.9	74.0	54.0 54.0	-21.0 -22.1	-14.0 -14.1	<u>V</u> Н
Mid Channe	l														
1.570 1.570	9.8 9.8	43.1 43.1	29.8 29.6	38.6 38.6	5.1 5.1	-34.3 -34.3	0.0	1.0 1.0	53.5 53.5	40.2 40.0	74.0 74.0	54.0 54.0	-20.5 -20.5	-13.8 -14.0	V H
ligh Chann	el														
1.610 1.610	9.8 9.8	43.1 41.6	29.8 29.9	38.6 38.6	5.1 5.1	-34.3 -34.3	0.0	1.0 1.0	53.5 51.9	40.2 40.3	74.0 74.0	54.0 54.0	-20.5 -22.1	-13.8 -13.7	<u></u> Н
UNII WS11		41.0	47.7	50.0	3.1	-34.3	0.0	1.0	31.7	40.5	/4.0	34.0	-22.1	-13.7	н
Low Chan	nel														
0.360 0.360	9.8 9.8	41.9 41.6	28.8 28.6	37.6 37.6	4.7 4.7	-33.4 -33.4	0.0	1.0 1.0	51.8 51.5	38.7 38.5	74.0 74.0	54.0 54.0	-22.2 -22.5	-15.3 -15.5	<u>V</u> Н
Mid Channe	l														
0.520	9.8	42.7	28.0	37.7	4.8	-33.5	0.0	1.0	52.7	38.0	74.0	54.0	-21.3	-16.0	V H
0.520 Iigh Chann	9.8 el	40.2	28.2	37.7	4.8	-33.5	0.0	1.0	50.2	38.2	74.0	54.0	-23.8	-15.8	Н
0.640	9.8 9.8	41.9 41.9	28.7 28.7	37.8 37.8	4.8 4.8	-33.5 -33.5	0.0	1.0 1.0	52.0 52.0	38.8 38.8	74.0 74.0	54.0 54.0	-22.0	-15.2 -15.2	V H
	f Dist Read AF CL	Measureme Distance to Analyzer R Antenna Fa Cable Loss	teading actor	ÿ		Amp D Corr Avg Peak HPF	Average	Correc Field S ed Peal	et to 3 mete Strength @ Field Stre	3 m		Pk Lim Avg Mar	Peak Field Margin vs	Field Strengtl d Strength Li 3. Average Li 3. Peak Limit	mit mit

Page 100 of 113

7.8.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



Page 101 of 113

HORIZONTAL DATA					.	
Freq	Remark	Read Level	Factor	Level	Limit Line	
MHz		dBuV	dB	dBuV/m	dBuV/m	dB
1 128.940 2 201.690 3 256.980 4 302.570 5 342.340 6 * 342.340 7 367.560 8 399.570	Peak Peak Peak Peak Peak Peak		13.78 14.45 15.97 16.70 16.71 17.40	35.12 37.97 37.15 45.30 47.36 40.73	46.00	-8.37 -8.03 -8.85 -0.70 1.36 -5.27

Page 102 of 113

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 103 of 113

VERTIC	CAL DATA		Read			Limit	Over
	Freq	Remark		Factor	Level		
-	MHz		dBuV	dB	dBuV/m	dBuV/m	dB
1 2 3 4 5 6 7	41.640 140.580 196.840 256.010 337.490 337.490 649.830	Peak Peak Peak QP Peak		15.23 13.36 14.41 16.60 16.61	32.31 30.39 34.37	43.50 43.50 46.00 46.00 46.00	-6.25 -0.32

Page 104 of 113

7.9. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 °	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

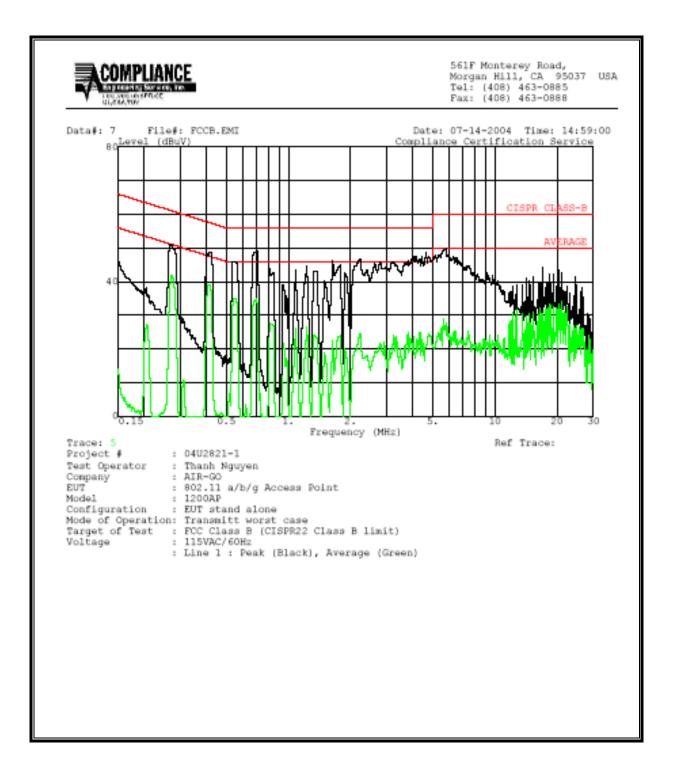
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

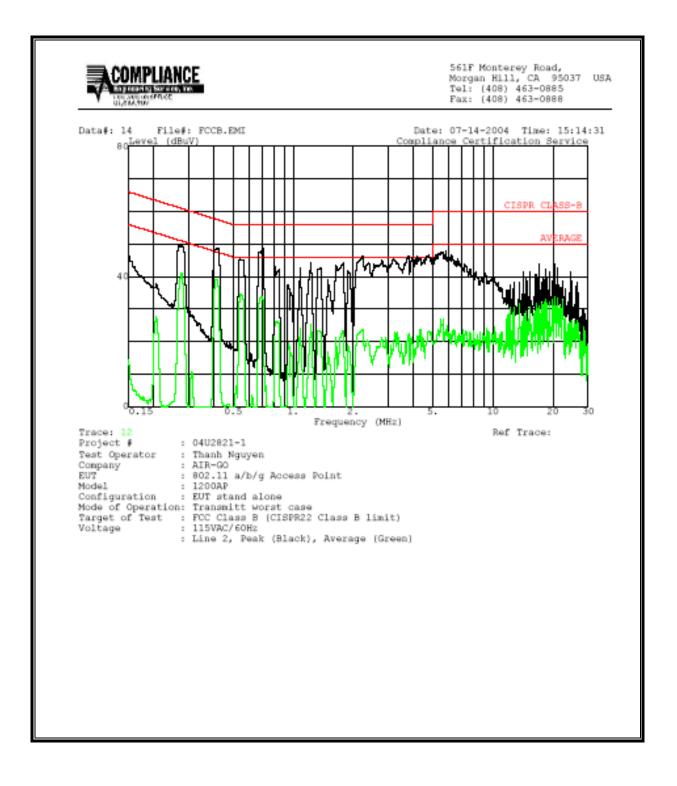
RESULTS

No non-compliance noted:


Page 105 of 113

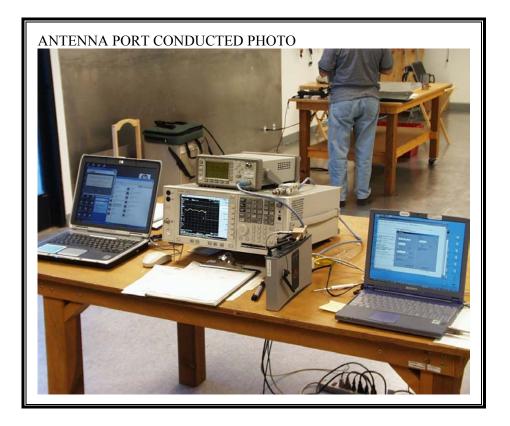
<u>6 WORST EMISSIONS</u>

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)											
Freq.	Reading			Closs	Limit	EN_B	Margin		Remark			
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2			
0.71	49.22		34.76	0.00	56.00	46.00	-6.78	-11.24	L1			
5.74	49.46		28.93	0.00	60.00	50.00	-10.54	-21.07	L1			
0.42	48.72		39.05	0.00	58.37	48.37	-9.65	-9.32	L1			
0.71	48.64		33.92	0.00	56.00	46.00	-7.36	-12.08	L2			
0.42	48.55		38.97	0.00	58.37	48.37	-9.82	-9.40	L2			
4.77	48.86		23.52	0.00	56.00	46.00	-7.14	-22.48	L2			
6 Worst I	Data											


Page 106 of 113

LINE 1 RESULTS

Page 107 of 113


LINE 2 RESULTS

Page 108 of 113

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 109 of 113

RADIATED RF MEASUREMENT SETUP

Page 110 of 113

Page 111 of 113

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

Page 112 of 113

END OF REPORT

Page 113 of 113