# STMicroelectronics 

TEST REPORT FOR<br>915 MHz Low Power RF Module, Model: SP1ML-915

## Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.207 \& 15.247

Report No.: 95078-11

Date of issue: January 13, 2014


Testing Certificates: 803.01, 803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information ..... 3
Test Report Information .....  3
Report Authorization .....  3
Test Facility Information .....  4
Software Versions ..... 4
Site Registration \& Accreditation Information ..... 4
Summary of Results ..... 5
Conditions During Testing ..... 5
Equipment Under Test ..... 6
Peripheral Devices .....  6
FCC Part 15 Subpart C ..... 7
15.31(e) Voltage Variations .....  7
15.207 AC Conducted Emissions .....  9
15.247(a)(2) -6dBc Occupied Bandwidth ..... 28
15.247(b)(3) RF Power Output ..... 35
15.247(d) Radiated Spurious Emissions ..... 39
Band Edge Compliance ..... 62
15.247(e) Power Spectral Density ..... 67
Supplemental Information ..... 74
Measurement Uncertainty ..... 74
Emissions Test Details ..... 74

# ADMINISTRATIVE INFORMATION 

## Test Report Information

## REPORT PREPARED FOR:

STMicroelectronics
Centro Direzionale Colleoni
Palazzo Andromeda 3
Agrate Brianza, 20041
Italy

REPRESENTATIVE: Giuseppe Scrocchi /
Lyle Bainbridge -Fusion Software, Inc.

REPORT PREPARED BY:

Morgan Tramontin
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 95078

DATE OF EQUIPMENT RECEIPT:
DATE(S) OF TESTING:

December 6, 2013
December 6-16, 2013

## Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.


Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information


Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

## Software Versions

| CKC Laboratories Proprietary Software | Version |
| :--- | :--- |
| EMITest Emissions | 5.00 .14 |
| Immunity | 5.00 .07 |

Site Registration \& Accreditation Information

| Location | CB \# | TAIWAN | CANADA | FCC | JAPAN |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Brea D | USO060 | SL2-IN-E-1146R | $3082 D-2$ | 100638 | A-0147 |

LABORATORIES, INC.

## SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

| Description | Test Procedure/Method | Results |
| :--- | :--- | :---: |
|  |  |  |
| Voltage Variation | FCC Part 15 Subpart C Section 15.31(e) / 2.1055(d) / KDB 558074 | Pass |
|  |  | Pass |
| Conducted Emissions | FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003) |  |
|  | FCC Part 15 Subpart C Section 15.209/ ANSI C63.4 (2003) | Pass |
| Radiated Emissions |  | Pass |
|  | FCC Part 15 Subpart C Section 15.247(a)(2) / KDB 558074 |  |
| 6dB Bandwidth | FCC Part 15 Subpart C Section 15.247(b)(3) / KDB 558074 | Pass |
|  |  | Pass |
| RF Power Output | FCC Part 15 Subpart C 15.247(d)/ KDB 558074 |  |
|  |  | Pass |
| Spurious Emissions | FCC Part 15 Subpart C Section 15.247 / ITU-R 55/1 / KDB 558074 |  |
|  |  | Pass |
| Band Edge Compliance | FCC Part 15 Subpart C 15.247(e) / KDB 558074 |  |
|  |  |  |
| Power Spectral Density |  |  |
|  |  |  |

## Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

## Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

## EQUIPMENT UNDER TEST

## 915 MHz Low Power RF Module

Manuf: STMicroelectronics
Model: SP1ML-915
Serial: Unit \#1

## PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

## Module Dev Board

Manuf: STMicroelectronics
Model: SPIRIT1
Serial: 05

## AC to USB Power Adapter

Manuf: Rhino
Model: PSNC-75M
Serial: 12-B013481

## FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

### 15.31(e) Voltage Variations

## Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: STMicroelectronics
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N:
15.31(e)

95078
Voltage Variation on Power

SP1ML-915
Unit \#1

915 MHz Low Power RF Module
STMicroelectronics Tested By: S. Yamamoto

Test Equipment:

| Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- |
| AN02869 | Spectrum Analyzer | E4440A | $2 / 6 / 2013$ | $2 / 6 / 2015$ |
| AN01438 | DC Power Supply | 6306 D | $1 / 11 / 2013$ | $1 / 11 / 2015$ |
| AN01830 | Multimeter | 45 | $1 / 8 / 2013$ | $1 / 8 / 2015$ |
| ANP05555 | Cable | RG223/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |

Equipment Under Test (* = EUT):

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 915 MHz Low Power RF | STMicroelectronics | SP1ML-915 | Unit \#1 |
| Module* |  |  |  |

## Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-$ B013481 |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power to the integral antenna. Frequency range of test 902 MHz to 928 MHz . Operating range of EUT 902 MHz to 928 MHz . RBW=620kHz, VBW=3MHz for 2 FSK and GFSK. RBW $=750 \mathrm{kHz}, \mathrm{VBW}=3 \mathrm{MHz}$ for MSK. Site D. Temperature: $21^{\circ} \mathrm{C}$, Humidity: $38 \%$, Pressure: 100 kPa . Manufacturer declared nominal voltage is 2.5 Vdc . The supply voltage was varied between $85 \%$ and $115 \%$ of the nominal rated voltage. There was no variation in power for the supply voltage at $85 \%$ and $115 \%$ of the nominal rated voltage.

### 15.31(e)

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between $85 \%$ and $115 \%$ of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

### 15.31(e) 2FSK

## Output Power 2FSK

903 MHz at $85 \%$ nominal voltage, and $115 \%$ of nominal voltage $=0.0022 \mathrm{~W}$ 915 MHz at $85 \%$ nominal voltage, and $115 \%$ of nominal voltage $=0.0017 \mathrm{~W}$ 927 MHz at $85 \%$ nominal voltage, and $115 \%$ of nominal voltage $=0.0009 \mathrm{~W}$

### 15.31(e) GFSK

## Output Power GFSK

903 MHz at $85 \%$ nominal voltage, and $115 \%$ of nominal voltage $=0.0022 \mathrm{~W}$
915 MHz at $85 \%$ nominal voltage, and $115 \%$ of nominal voltage $=0.0015 \mathrm{~W}$ 927 MHz at $85 \%$ nominal voltage, and $115 \%$ of nominal voltage $=0.001 \mathrm{~W}$

### 15.31(e) MSK

## Output Power MSK

903 MHz at $85 \%$ nominal voltage, and $115 \%$ of nominal voltage $=0.0025 \mathrm{~W}$
915 MHz at $85 \%$ nominal voltage, and $115 \%$ of nominal voltage $=0.0033 \mathrm{~W}$
927 MHz at $85 \%$ nominal voltage, and $115 \%$ of nominal voltage $=0.0015 \mathrm{~W}$

## Test Setup Photos



### 15.207 AC Conducted Emissions

## Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: STMicroelectronics
Specification: 15.207 AC Mains - Average

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
95078
Conducted Emissions
915 MHz Low Power RF Module
STMicroelectronics
SP1ML-915
S/N:
Unit \#1

Date: 12/6/2013
Time: 4:32:50 PM
Sequence\#: 10
Tested By: S. Yamamoto
120 V 60 Hz

Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :---: | :--- | :--- | :--- | :--- | :--- |
|  | AN02869 | Spectrum Analyzer | E4440A | $2 / 6 / 2013$ | $2 / 6 / 2015$ |
| T1 | AN02343 | High Pass Filter | HE9615-150K- <br> $50-720 B$ | $1 / 10 / 2013$ | $1 / 10 / 2015$ |
| T2 | ANP01910 | Cable | RG-142 | $2 / 6 / 2012$ | $2 / 6 / 2014$ |
| T3 | ANP06085 | Attenuator | SA18N10W-09 | $12 / 14 / 2012$ | $12 / 14 / 2014$ |
| T4 | AN00848.1 | 50uH LISN-Line 1 <br> (L1) (dB) | $3816 / 2 \mathrm{~nm}$ | $3 / 14 / 2013$ | $3 / 14 / 2015$ |
|  | AN00848.1 | 50uH LISN-Line 2 <br> (L2) (dB) | $3816 / 2 \mathrm{~nm}$ | $3 / 14 / 2013$ | $3 / 14 / 2015$ |

## Equipment Under Test (* = EUT):

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 915 MHz Low Power RF | STMicroelectronics | SP1ML-915 | Unit \#1 |
| Module* $^{*}$ |  |  |  |

## Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-$ B013481 |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power with 2 FSK at the highest power channel. Frequency range of data sheet is 150 kHz to $30 \mathrm{MHz} .150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}=\mathrm{VBW}$. Site D. Temperature: $21^{\circ} \mathrm{C}$, Humidity: $43 \%$, Pressure: 100 kPa .

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Lead: L1(L)

| \# | Freq MHz | $\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 3 \\ & \text { dB } \end{aligned}$ | $\begin{aligned} & \mathrm{T} 4 \\ & \text { dB } \end{aligned}$ | Dist <br> Table | $\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$ | $\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | $\underset{\mathrm{dB}}{\substack{\text { Margin }}}$ | Polar Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 673.588k | 35.0 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 41.1 | 46.0 | -4.9 | L1(L) |
| 2 | 665.589k | 33.8 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 39.9 | 46.0 | -6.1 | L1(L) |
| 3 | 11.797M | 29.8 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 36.4 | 50.0 | -13.6 | L1(L) |
| 4 | 12.202M | 29.5 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 36.1 | 50.0 | -13.9 | L1(L) |
| 5 | 537.601k | 25.5 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 31.5 | 46.0 | -14.5 | L1(L) |
| 6 | 549.963k | 25.2 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 31.3 | 46.0 | -14.7 | L1(L) |
| 7 | 525.966k | 25.0 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 31.0 | 46.0 | -15.0 | L1(L) |
| 8 | 544.873k | 24.9 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 30.9 | 46.0 | -15.1 | L1(L) |
| 9 | 163.090k | 33.9 | +0.4 | +0.1 | +5.7 | +0.0 | +0.0 | 40.1 | 55.3 | -15.2 | L1(L) |
| 10 | 1.035M | 24.5 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 30.5 | 46.0 | -15.5 | L1(L) |
| 11 | 1.779M | 24.4 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 30.5 | 46.0 | -15.5 | L1(L) |
| 12 | 2.204M | 24.4 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 30.5 | 46.0 | -15.5 | L1(L) |
| 13 | 2.995M | 24.2 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 30.4 | 46.0 | -15.6 | L1(L) |
| 14 | 12.526M | 27.6 | +0.2 | +0.4 | +5.8 | +0.3 | +0.0 | 34.3 | 50.0 | -15.7 | L1(L) |
| 15 | 2.621M | 23.9 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 30.1 | 46.0 | -15.9 | L1(L) |
| 16 | 561.599k | 24.0 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 30.1 | 46.0 | -15.9 | L1(L) |
| 17 | 230.720k | 30.4 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 36.4 | 52.4 | -16.0 | L1(L) |
| 18 | 244.537 k | 29.9 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 35.9 | 51.9 | -16.0 | L1(L) |
| 19 | 1.375M | 24.0 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 30.0 | 46.0 | -16.0 | L1(L) |
| 20 | 3.335 M | 23.8 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.9 | 46.0 | -16.1 | L1(L) |
| 21 | 4.139M | 23.7 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.8 | 46.0 | -16.2 | L1(L) |
| 22 | 12.589M | 26.7 | +0.2 | +0.4 | +5.8 | +0.3 | +0.0 | 33.4 | 50.0 | -16.6 | L1(L) |
| 23 | 4.577M | 23.2 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.3 | 46.0 | -16.7 | L1(L) |
| 24 | 10.265M | 26.5 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 33.1 | 50.0 | -16.9 | L1(L) |


| 25 | 175.452 k | 31.0 | +0.4 | +0.1 | +5.7 | +0.0 | +0.0 | 37.2 | 54.7 | -17.5 | L1(L) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26 | 1.477 M | 22.4 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 28.5 | 46.0 | -17.5 | L1(L) |
| 27 | 765.216 k | 22.2 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 28.2 | 46.0 | -17.8 | L1(L) |
| 28 | 257.626 k | 27.3 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 33.3 | 51.5 | -18.2 | L1(L) |
| 29 | 8.770 M | 25.3 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 31.8 | 50.0 | -18.2 | L1(L) |
| 30 | 8.328 M | 25.0 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 31.5 | 50.0 | -18.5 | L1(L) |

CKC Laboratories, Inc. Date: 12/6/2013 Time: 4:32:50 PM STMicroelectronics WO\#: 95078 15.207 AC Mains - Average Test Lead: L1(L) 120 V 60 Hz Sequence\#: 10 Ext ATTN: 0 dB

$\begin{array}{ll} & \text { Sweep Data } \\ \text { * } & \text { Peak Readings } \\ \text { * Average Readings }\end{array}$
1-15.207 AC Mains - Average
—— Readings
$\times \quad$ QP Readings
v Ambient

- 2-15.207 AC Mains - Quasi-peak

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: STMicroelectronics
Specification: 15.207 AC Mains - Average
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N: Unit \#1

95078
Conducted Emissions
915 MHz Low Power RF Module
STMicroelectronics
SP1ML-915

Date: 12/6/2013
Time: 4:41:02 PM
Sequence\#: 11
Tested By: S. Yamamoto
120 V 60 Hz

Test Equipment:
\(\left.\begin{array}{|clllll|}\hline ID \& Asset \# \& Description \& Model \& Calibration Date \& Cal Due Date <br>

\& AN02869 \& Spectrum Analyzer \& E4440A \& 2 / 6 / 2013 \& 2 / 6 / 2015\end{array}\right]\)\begin{tabular}{lllll|}

\hline T1 \& AN02343 \& High Pass Filter \& | HE9615-150K- |
| :--- |
| $50-720 B$ | \& $1 / 10 / 2013$ <br>

\hline T2 \& ANP01910 \& Cable \& RG-142 \& $2 / 6 / 2012$ <br>
\hline T3 \& ANP06085 \& Attenuator \& SA18N10W-09 \& $12 / 14 / 2012$ <br>

\hline \& AN00848.1 \& | 50uH LISN-Line 1 |
| :--- |
| (L1) (dB) | \& $3816 / 2 \mathrm{~nm}$ \& $3 / 14 / 2013$ <br>


\hline T4 \& AN00848.1 \& | 50uH LISN-Line 2 |
| :--- |
| (L2) (dB) | \& $3816 / 2 \mathrm{~nm}$ \& $3 / 14 / 2013$ <br>

\hline
\end{tabular}

| Equipment Under Test (* ( $=$ EUT): |
| :--- |
| Function Manufacturer Model \# S/N <br> 915 MHz <br> Module* Sow Power RF STMicroelectronics SP1ML-915 |

Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-$ B013481 |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power with 2 FSK at the highest power channel. Frequency range of data sheet is 150 kHz to 30 MHz . $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}=\mathrm{VBW}$. Site D. Temperature: $21^{\circ} \mathrm{C}$, Humidity: $43 \%$, Pressure: 100 kPa .

Ext Attn: 0 dB

| Measu | ment Data | Reading listed by margin. |  |  |  | Test Lead: (N)L2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Freq MHz | Rdng $\mathrm{dB} \mu \mathrm{V}$ | $\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$ | $\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$ | Dist Table | $\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | Spec <br> $\mathrm{dB} \mu \mathrm{V}$ | Margin dB | Polar Ant |
| 1 | 673.588k | 35.3 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 41.3 | 46.0 | -4.7 | (N)L2 |
| 2 | 187.815k | 37.3 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 43.3 | 54.1 | -10.8 | (N)L2 |
| 3 | 730.310k | 26.5 | +0.1 | +0.1 | +5.7 | +0.0 | +0.0 | 32.4 | 46.0 | -13.6 | (N)L2 |
| 4 | 11.761 M | 29.8 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 36.4 | 50.0 | -13.6 | (N)L2 |
| 5 | 12.166 M | 29.4 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 36.0 | 50.0 | -14.0 | (N)L2 |


| 6 | 620.502k | 25.9 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 31.9 | 46.0 | -14.1 | (N)L2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 547.782k | 25.6 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 31.7 | 46.0 | -14.3 | (N)L2 |
| 8 | 11.418 M | 28.9 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 35.5 | 50.0 | -14.5 | (N)L2 |
| 9 | 1.417 M | 25.2 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 31.3 | 46.0 | -14.7 | (N)L2 |
| 10 | 11.986 M | 28.7 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 35.3 | 50.0 | -14.7 | (N)L2 |
| 11 | 12.076 M | 28.7 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 35.3 | 50.0 | -14.7 | (N)L2 |
| 12 | 515.057 k | 24.2 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 30.3 | 46.0 | -15.7 | (N)L2 |
| 13 | 1.039 M | 24.3 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 30.3 | 46.0 | -15.7 | (N)L2 |
| 14 | 1.813 M | 23.7 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 29.8 | 46.0 | -16.2 | (N)L2 |
| 15 | 3.348 M | 23.6 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.7 | 46.0 | -16.3 | (N)L2 |
| 16 | 2.140 M | 23.5 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 29.6 | 46.0 | -16.4 | (N)L2 |
| 17 | 3.050M | 23.4 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 29.6 | 46.0 | -16.4 | (N)L2 |
| 18 | 572.507 k | 23.4 | $+0.2$ | +0.1 | +5.7 | +0.1 | $+0.0$ | 29.5 | 46.0 | -16.5 | (N)L2 |
| 19 | 2.510 M | 23.3 | $+0.2$ | +0.2 | +5.7 | +0.1 | $+0.0$ | 29.5 | 46.0 | -16.5 | (N)L2 |
| 20 | 4.522 M | 23.2 | +0.1 | +0.2 | +5.7 | +0.1 | $+0.0$ | 29.3 | 46.0 | -16.7 | (N)L2 |
| 21 | 3.807 M | 23.0 | $+0.1$ | +0.2 | +5.7 | +0.1 | $+0.0$ | 29.1 | 46.0 | -16.9 | (N)L2 |
| 22 | 4.390 M | 22.6 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 28.7 | 46.0 | -17.3 | (N)L2 |
| 23 | 9.869 M | 26.1 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 32.7 | 50.0 | -17.3 | (N)L2 |
| 24 | 752.854k | 22.7 | $+0.1$ | +0.1 | +5.7 | $+0.0$ | $+0.0$ | 28.6 | 46.0 | -17.4 | (N)L2 |
| 25 | 269.989k | 27.6 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 33.6 | 51.1 | -17.5 | (N)L2 |
| 26 | 606.685k | 22.0 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 28.0 | 46.0 | -18.0 | (N)L2 |
| 27 | 9.112 M | 25.2 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 31.8 | 50.0 | -18.2 | (N)L2 |
| 28 | 9.508 M | 25.2 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 31.8 | 50.0 | -18.2 | (N)L2 |
| 29 | 9.995 M | 24.9 | $+0.2$ | +0.3 | +5.8 | +0.3 | $+0.0$ | 31.5 | 50.0 | -18.5 | (N)L2 |
| 30 | 7.923 M | 24.6 | $+0.2$ | +0.3 | +5.8 | +0.2 | $+0.0$ | 31.1 | 50.0 | -18.9 | (N)L2 |

CKC Laboratories, Inc. Date: 12/6/2013 Time: 4:41:02 PM STMicroelectronics WO\#: 95078 15.207 AC Mains - Average Test Lead: (N)L2 120 V 60 Hz Sequence\#: 11 Ext ATTN: 0 dB


Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: STMicroelectronics
Specification: 15.207 AC Mains - Average
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N: Unit \#1

95078
Conducted Emissions
915 MHz Low Power RF Module
STMicroelectronics
SP1ML-915

Date: 12/10/2013
Time: 4:15:59 PM
Sequence\#: 12
Tested By: S. Yamamoto
120 V 60 Hz

Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | AN02869 | Spectrum Analyzer | E4440A | 2/6/2013 | 2/6/2015 |
| T1 | AN02343 | High Pass Filter | $\begin{aligned} & \text { HE9615-150K- } \\ & \text { 50-720B } \end{aligned}$ | 1/10/2013 | 1/10/2015 |
| T2 | ANP01910 | Cable | RG-142 | 2/6/2012 | 2/6/2014 |
| T3 | ANP06085 | Attenuator | SA18N10W-09 | 12/14/2012 | 12/14/2014 |
| T4 | AN00848.1 | 50uH LISN-Line 1 (L1) (dB) | 3816/2nm | 3/14/2013 | 3/14/2015 |
|  | AN00848.1 | 50uH LISN-Line 2 <br> (L2) (dB) | 3816/2nm | 3/14/2013 | 3/14/2015 |


| Equipment Under Test (* ( $=$ EUT): |
| :--- |
| Function Manufacturer Model \# S/N <br> 915 MHz <br> Module* Sow Power RF STMicroelectronics SP1ML-915 |

Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-$ B013481 |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power with MSK at the highest power channel. Frequency range of data sheet is 150 kHz to $30 \mathrm{MHz} .150 \mathrm{kHz}-30 \mathrm{MHz} \mathrm{RBW}=9 \mathrm{kHz}=\mathrm{VBW}$. Site D. Temperature: $22^{\circ} \mathrm{C}$, Humidity: $31 \%$, Pressure: 100 kPa .

Ext Attn: 0 dB

| Measu | ment Data | Reading listed by margin. |  |  |  | Test Lead: L1(L) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Freq MHz | Rdng $\mathrm{dB} \mu \mathrm{V}$ | $\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$ | $\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$ | Dist Table | $\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | Spec <br> $\mathrm{dB} \mu \mathrm{V}$ | Margin dB | Polar Ant |
| 1 | 679.406k | 35.0 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 41.1 | 46.0 | -4.9 | L1(L) |
| 2 | 192.178k | 37.3 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 43.3 | 53.9 | -10.6 | L1(L) |
| 3 | 628.502k | 28.5 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 34.6 | 46.0 | -11.4 | L1(L) |
| 4 | 708.494k | 28.0 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 34.0 | 46.0 | -12.0 | L1(L) |
| 5 | 716.493k | 27.4 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 33.4 | 46.0 | -12.6 | L1(L) |


| 6 | 731.038k | 26.7 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 32.7 | 46.0 | -13.3 | L1(L) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 12.175 M | 29.5 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 36.1 | 50.0 | -13.9 | L1(L) |
| 8 | 741.218k | 24.4 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 30.4 | 46.0 | -15.6 | L1(L) |
| 9 | 541.964k | 24.3 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 30.3 | 46.0 | -15.7 | L1(L) |
| 10 | 11.166 M | 27.7 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 34.3 | 50.0 | -15.7 | L1(L) |
| 11 | 11.121 M | 27.6 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 34.2 | 50.0 | -15.8 | L1(L) |
| 12 | 536.146k | 24.0 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 30.0 | 46.0 | -16.0 | L1(L) |
| 13 | 1.039 M | 23.9 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 29.9 | 46.0 | -16.1 | L1(L) |
| 14 | 1.821 M | 23.8 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 29.9 | 46.0 | -16.1 | L1(L) |
| 15 | 2.961 M | 23.6 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 29.8 | 46.0 | -16.2 | L1(L) |
| 16 | 1.383 M | 23.8 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 29.8 | 46.0 | -16.2 | L1(L) |
| 17 | 2.217 M | 23.5 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 29.6 | 46.0 | -16.4 | L1(L) |
| 18 | 3.756M | 23.5 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.6 | 46.0 | -16.4 | L1(L) |
| 19 | 2.617 M | 23.2 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 29.4 | 46.0 | -16.6 | L1(L) |
| 20 | 10.337 M | 26.5 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 33.1 | 50.0 | -16.9 | L1(L) |
| 21 | 4.199 M | 22.9 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.0 | 46.0 | -17.0 | L1(L) |
| 22 | 4.177M | 22.8 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 28.9 | 46.0 | -17.1 | L1(L) |
| 23 | 4.547 M | 22.7 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 28.8 | 46.0 | -17.2 | L1(L) |
| 24 | 4.977M | 22.7 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 28.8 | 46.0 | -17.2 | L1(L) |
| 25 | 750.672k | 22.7 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 28.7 | 46.0 | -17.3 | L1(L) |
| 26 | 3.361 M | 22.6 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 28.7 | 46.0 | -17.3 | L1(L) |
| 27 | 4.428M | 22.6 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 28.7 | 46.0 | -17.3 | L1(L) |
| 28 | 9.968 M | 25.7 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 32.3 | 50.0 | -17.7 | L1(L) |
| 29 | 570.325k | 21.8 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 27.9 | 46.0 | -18.1 | L1(L) |
| 30 | 10.481 M | 25.3 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 31.9 | 50.0 | -18.1 | L1(L) |

Page 16 of 75

CKC Laboratories, Inc. Date: 12/10/2013 Time: 4:15:59 PM STMicroelectronics WO\#: 95078 15.207 AC Mains - Average Test Lead: L1(L) 120 V 60 Hz Sequence\#: 12 Ext ATTN: 0 dB


Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: STMicroelectronics
Specification: $\mathbf{1 5 . 2 0 7}$ AC Mains - Average
Work Order \#: 95078
Test Type:
Equipment:
Conducted Emissions
915 MHz Low Power RF Module
Manufacturer:
Model:
STMicroelectronics
SP1ML-915
Date: 12/10/2013
Time: 4:19:31 PM
Sequence\#: 13
Tested By: S. Yamamoto
120 V 60 Hz
S/N: Unit \#1
Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | AN02869 | Spectrum Analyzer | E4440A | 2/6/2013 | 2/6/2015 |
| T1 | AN02343 | High Pass Filter | $\begin{aligned} & \text { HE9615-150K- } \\ & 50-720 \mathrm{~B} \end{aligned}$ | 1/10/2013 | 1/10/2015 |
| T2 | ANP01910 | Cable | RG-142 | 2/6/2012 | 2/6/2014 |
| T3 | ANP06085 | Attenuator | SA18N10W-09 | 12/14/2012 | 12/14/2014 |
|  | AN00848.1 | 50uH LISN-Line 1 <br> (L1) (dB) | 3816/2nm | 3/14/2013 | 3/14/2015 |
| T4 | AN00848.1 | 50uH LISN-Line 2 $(\mathrm{L} 2)(\mathrm{dB})$ | 3816/2nm | 3/14/2013 | 3/14/2015 |

Equipment Under Test ( * = EUT):

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| $915 ~ M H z ~ L o w ~ P o w e r ~ R F ~$ STMicroelectronics SP1ML-915 <br> Module*  Unit \#1 |  |  |  | 

## Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-B 013481$ |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to 5Vdc USB power adapter. The EUT is continuously transmitting at its rated maximum power with MSK at the highest power channel. Frequency range of data sheet is 150 kHz to 30 MHz . $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}=\mathrm{VBW}$. Site D. Temperature: $22^{\circ} \mathrm{C}$, Humidity: $31 \%$, Pressure: 100 kPa .

Ext Attn: 0 dB

| Measurement Data: |  |  | Reading listed by margin. |  |  | Test Lead: (N)L2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | $\begin{aligned} & \text { Freq } \\ & \text { MHz } \end{aligned}$ | $\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T3} \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$ | Dist Table | $\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | $\underset{\mathrm{dB}}{\mathrm{Margin}}$ | $\begin{gathered} \text { Polar } \\ \text { Ant } \end{gathered}$ |
| 1 | 672.861k | 34.9 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 40.9 | 46.0 | -5.1 | (N)L2 |
| 2 | 553.599k | 26.1 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 32.2 | 46.0 | -13.8 | (N)L2 |
| 3 | 728.129k | 26.1 | +0.1 | +0.1 | +5.7 | +0.0 | +0.0 | 32.0 | 46.0 | -14.0 | (N)L2 |
| 4 | 11.508M | 29.4 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 36.0 | 50.0 | -14.0 | (N)L2 |
| 5 | 11.806M | 29.3 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 35.9 | 50.0 | -14.1 | (N)L2 |


| 6 | 1.035 M | 24.9 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 30.9 | 46.0 | -15.1 | (N)L2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 1.388M | 24.8 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 30.8 | 46.0 | -15.2 | (N)L2 |
| 8 | 1.792M | 24.7 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 30.8 | 46.0 | -15.2 | (N)L2 |
| 9 | 2.574 M | 24.5 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 30.7 | 46.0 | -15.3 | (N)L2 |
| 10 | 11.130 M | 28.0 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 34.6 | 50.0 | -15.4 | (N)L2 |
| 11 | 992.029k | 24.5 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 30.5 | 46.0 | -15.5 | (N)L2 |
| 12 | 2.948M | 24.2 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 30.4 | 46.0 | -15.6 | (N)L2 |
| 13 | 2.999M | 24.2 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 30.4 | 46.0 | -15.6 | (N)L2 |
| 14 | 2.174M | 24.1 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 30.2 | 46.0 | -15.8 | (N)L2 |
| 15 | 2.532 M | 24.0 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 30.2 | 46.0 | -15.8 | (N)L2 |
| 16 | 1.732 M | 23.8 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 29.9 | 46.0 | -16.1 | (N)L2 |
| 17 | 3.391 M | 23.7 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.8 | 46.0 | -16.2 | (N)L2 |
| 18 | 4.173 M | 23.7 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.8 | 46.0 | -16.2 | (N)L2 |
| 19 | 3.038 M | 23.2 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 29.4 | 46.0 | -16.6 | (N)L2 |
| 20 | 3.782 M | 23.3 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.4 | 46.0 | -16.6 | (N)L2 |
| 21 | 3.429 M | 23.2 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.3 | 46.0 | -16.7 | (N)L2 |
| 22 | 3.399 M | 23.1 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.2 | 46.0 | -16.8 | (N)L2 |
| 23 | 229.993k | 29.6 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 35.6 | 52.4 | -16.8 | (N)L2 |
| 24 | 4.564 M | 23.1 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.2 | 46.0 | -16.8 | (N)L2 |
| 25 | 3.722 M | 23.1 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.2 | 46.0 | -16.8 | (N)L2 |
| 26 | 162.363k | 32.1 | +0.5 | +0.1 | +5.7 | +0.0 | +0.0 | 38.4 | 55.3 | -16.9 | (N)L2 |
| 27 | 4.143 M | 23.0 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.1 | 46.0 | -16.9 | (N)L2 |
| 28 | 4.207M | 22.9 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.0 | 46.0 | -17.0 | (N)L2 |
| 29 | 4.785M | 22.9 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.0 | 46.0 | -17.0 | (N)L2 |
| 30 | 9.914 M | 26.3 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 32.9 | 50.0 | -17.1 | (N)L2 |

Page 19 of 75

CKC Laboratories, Inc. Date: 12/10/2013 Time: 4:19:31 PM STMicroelectronics WO\#: 95078 15.207 AC Mains - Average Test Lead: (N)L2 120V 60Hz Sequence\#: 13 Ext ATTN: 0 dB


Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: STMicroelectronics
Specification: 15.207 AC Mains - Average
Work Order \#: 95078
Test Type:
Equipment:
Conducted Emissions
915 MHz Low Power RF Module
Manufacturer:
Model:
STMicroelectronics
S/N: Unit \#1
SP1ML-915
Date: 12/10/2013
Time: 4:24:42 PM
Sequence\#: 14
Tested By: S. Yamamoto
120 V 60 Hz

Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | AN02869 | Spectrum Analyzer | E4440A | 2/6/2013 | 2/6/2015 |
| T1 | AN02343 | High Pass Filter | $\begin{aligned} & \text { HE9615-150K- } \\ & 50-720 \mathrm{~B} \end{aligned}$ | 1/10/2013 | 1/10/2015 |
| T2 | ANP01910 | Cable | RG-142 | 2/6/2012 | 2/6/2014 |
| T3 | ANP06085 | Attenuator | SA18N10W-09 | 12/14/2012 | 12/14/2014 |
| T4 | AN00848.1 | 50uH LISN-Line 1 (L1) (dB) | 3816/2nm | 3/14/2013 | 3/14/2015 |
|  | AN00848.1 | 50uH LISN-Line 2 $(\mathrm{L} 2)(\mathrm{dB})$ | 3816/2nm | 3/14/2013 | 3/14/2015 |

Equipment Under Test ( * = EUT):

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| $915 ~ M H z ~ L o w ~ P o w e r ~ R F ~$ STMicroelectronics SP1ML-915 <br> Module*  Unit \#1 |  |  |  | 

## Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-B 013481$ |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power with GFSK at the highest power channel. Frequency range of data sheet is 150 kHz to $30 \mathrm{MHz} .150 \mathrm{kHz}-30 \mathrm{MHz} \mathrm{RBW}=9 \mathrm{kHz}=\mathrm{VBW}$. Site D. Temperature: $22^{\circ} \mathrm{C}$, Humidity: $31 \%$, Pressure: 100 kPa .

Ext Attn: 0 dB
Measurement Data: $\quad$ Reading listed by margin. Test Lead: L1(L)

| $\#$ | Freq <br> MHz | Rdng <br> $\mathrm{dB} \mu \mathrm{V}$ | T 1 <br> dB | T 2 <br> dB | T 3 <br> dB | T 4 <br> dB | Dist <br> Table | Corr <br> $\mathrm{dB} \mu \mathrm{V}$ | Spec <br> $\mathrm{dB} \mu \mathrm{V}$ | Margin <br> dB | Polar <br> Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 676.497 k | 34.8 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 40.9 | 46.0 | -5.1 | $\mathrm{~L} 1(\mathrm{~L})$ |
| 2 | 192.178 k | 36.6 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 42.6 | 53.9 | -11.3 | $\mathrm{~L} 1(\mathrm{~L})$ |
| 3 | 11.860 M | 29.9 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 36.5 | 50.0 | -13.5 | $\mathrm{~L} 1(\mathrm{~L})$ |
| 4 | 8.202 M | 28.9 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 35.4 | 50.0 | -14.6 | $\mathrm{~L} 1(\mathrm{~L})$ |
| 5 | 12.598 M | 28.4 | +0.2 | +0.4 | +5.8 | +0.3 | +0.0 | 35.1 | 50.0 | -14.9 | L1(L) |


| 6 | 613.957k | 24.7 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 30.8 | 46.0 | -15.2 | L1(L) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 2.591 M | 24.5 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 30.7 | 46.0 | -15.3 | L1(L) |
| 8 | 11.103M | 27.9 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 34.5 | 50.0 | -15.5 | L1(L) |
| 9 | 1.030 M | 24.3 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 30.3 | 46.0 | -15.7 | L1(L) |
| 10 | 1.422 M | 24.2 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 30.3 | 46.0 | -15.7 | L1(L) |
| 11 | 2.991 M | 24.0 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 30.2 | 46.0 | -15.8 | L1(L) |
| 12 | 1.779 M | 24.0 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 30.1 | 46.0 | -15.9 | L1(L) |
| 13 | 531.783k | 24.0 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 30.0 | 46.0 | -16.0 | L1(L) |
| 14 | 3.016 M | 23.7 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 29.9 | 46.0 | -16.1 | L1(L) |
| 15 | 2.638 M | 23.6 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 29.8 | 46.0 | -16.2 | L1(L) |
| 16 | 2.234 M | 23.7 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 29.8 | 46.0 | -16.2 | L1(L) |
| 17 | 3.412 M | 23.6 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.7 | 46.0 | -16.3 | L1(L) |
| 18 | 3.765M | 23.6 | $+0.1$ | +0.2 | +5.7 | +0.1 | $+0.0$ | 29.7 | 46.0 | -16.3 | L1(L) |
| 19 | 3.790 M | 23.6 | $+0.1$ | +0.2 | +5.7 | +0.1 | $+0.0$ | 29.7 | 46.0 | -16.3 | L1(L) |
| 20 | 3.357M | 23.5 | +0.1 | +0.2 | +5.7 | +0.1 | $+0.0$ | 29.6 | 46.0 | -16.4 | L1(L) |
| 21 | 2.153 M | 23.2 | $+0.2$ | +0.1 | +5.7 | +0.1 | $+0.0$ | 29.3 | 46.0 | -16.7 | L1(L) |
| 22 | 3.369 M | 23.2 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.3 | 46.0 | -16.7 | L1(L) |
| 23 | 3.727 M | 23.2 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.3 | 46.0 | -16.7 | L1(L) |
| 24 | 4.169M | 23.1 | $+0.1$ | +0.2 | +5.7 | +0.1 | +0.0 | 29.2 | 46.0 | -16.8 | L1(L) |
| 25 | 4.594 M | 23.1 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.2 | 46.0 | -16.8 | L1(L) |
| 26 | 4.624 M | 22.9 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.0 | 46.0 | -17.0 | L1(L) |
| 27 | 4.675 M | 22.7 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 28.8 | 46.0 | -17.2 | L1(L) |
| 28 | 4.432M | 22.6 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 28.7 | 46.0 | -17.3 | L1(L) |
| 29 | 4.973 M | 22.6 | $+0.1$ | +0.2 | +5.7 | +0.1 | $+0.0$ | 28.7 | 46.0 | -17.3 | L1(L) |
| 30 | 4.794M | 22.5 | $+0.1$ | +0.2 | +5.7 | +0.1 | $+0.0$ | 28.6 | 46.0 | -17.4 | L1(L) |

Page 22 of 75

CKC Laboratories, Inc. Date: 12/10/2013 Time: 4:24:42 PM STMicroelectronics WO\#: 95078 15.207 AC Mains - Average Test Lead: L1(L) 120V 60Hz Sequence\#: 14 Ext ATTN: 0 dB


Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: STMicroelectronics
Specification: 15.207 AC Mains - Average

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N:

95078
Conducted Emissions
915 MHz Low Power RF Module
STMicroelectronics
SP1ML-915
Unit \#1

Date: 12/10/2013
Time: 4:32:15 PM
Sequence\#: 15
Tested By: S. Yamamoto
120 V 60 Hz

Test Equipment:
\(\left.\begin{array}{|clllll|}\hline ID \& Asset \# \& Description \& Model \& Calibration Date \& Cal Due Date <br>

\& AN02869 \& Spectrum Analyzer \& E4440A \& 2 / 6 / 2013 \& 2 / 6 / 2015\end{array}\right]\)\begin{tabular}{lllll|}

\hline T1 \& AN02343 \& High Pass Filter \& | HE9615-150K- |
| :--- |
| $50-720 B$ | \& $1 / 10 / 2013$ <br>

\hline T2 \& ANP01910 \& Cable \& RG-142 \& $2 / 6 / 2012$ <br>
\hline T3 \& ANP06085 \& Attenuator \& SA18N10W-09 \& $12 / 14 / 2012$ <br>

\hline \& AN00848.1 \& | 50uH LISN-Line 1 |
| :--- |
| (L1) (dB) | \& $3816 / 2 \mathrm{~nm}$ \& $3 / 14 / 2013$ <br>


\hline T4 \& AN00848.1 \& | 50uH LISN-Line 2 |
| :--- |
| (L2) (dB) | \& $3816 / 2 \mathrm{~nm}$ \& $3 / 14 / 2013$ <br>

\hline
\end{tabular}

| Equipment Under Test (* ( $=$ EUT): |
| :--- |
| Function Manufacturer Model \# S/N <br> 915 MHz <br> Module* Sow Power RF STMicroelectronics SP1ML-915 |

Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-$ B013481 |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power with GFSK at the highest power channel. Frequency range of data sheet is 150 kHz to 30 MHz . $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}=\mathrm{VBW}$. Site D. Temperature: $22^{\circ} \mathrm{C}$, Humidity: $31 \%$, Pressure: 100 kPa .

Ext Attn: 0 dB

| Measu | ment Data | Reading listed by margin. |  |  |  | Test Lead: (N)L2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Freq MHz | Rdng $\mathrm{dB} \mu \mathrm{V}$ | $\begin{aligned} & \hline \text { T1 } \\ & \text { dB } \end{aligned}$ | $\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$ | $\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$ | $\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$ | Polar Ant |
| 1 | 679.406k | 35.5 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 41.5 | 46.0 | -4.5 | (N)L2 |
| 2 | 537.601 k | 25.9 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 32.0 | 46.0 | -14.0 | (N)L2 |
| 3 | 12.211 M | 29.4 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 36.0 | 50.0 | -14.0 | (N)L2 |
| 4 | 11.544 M | 29.2 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 35.8 | 50.0 | -14.2 | (N)L2 |
| 5 | 970.765k | 24.9 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 30.9 | 46.0 | -15.1 | (N)L2 |


| 6 | 1.741 M | 24.7 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 30.8 | 46.0 | -15.2 | (N)L2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 2.174 M | 24.7 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 30.8 | 46.0 | -15.2 | (N)L2 |
| 8 | 1.005 M | 24.6 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 30.6 | 46.0 | -15.4 | (N)L2 |
| 9 | 3.012 M | 24.4 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 30.6 | 46.0 | -15.4 | (N)L2 |
| 10 | 1.388M | 24.5 | +0.1 | +0.1 | +5.7 | +0.1 | +0.0 | 30.5 | 46.0 | -15.5 | (N)L2 |
| 11 | 2.595 M | 24.2 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 30.4 | 46.0 | -15.6 | (N)L2 |
| 12 | 2.612 M | 23.9 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 30.1 | 46.0 | -15.9 | (N)L2 |
| 13 | 936.743 k | 24.0 | +0.1 | +0.1 | +5.7 | +0.0 | +0.0 | 29.9 | 46.0 | -16.1 | (N)L2 |
| 14 | 2.238 M | 23.6 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 29.8 | 46.0 | -16.2 | (N)L2 |
| 15 | 3.365M | 23.7 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.8 | 46.0 | -16.2 | (N)L2 |
| 16 | 2.145 M | 23.7 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 29.8 | 46.0 | -16.2 | (N)L2 |
| 17 | 2.510 M | 23.5 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 29.7 | 46.0 | -16.3 | (N)L2 |
| 18 | 2.566 M | 23.5 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 29.7 | 46.0 | -16.3 | (N)L2 |
| 19 | 10.752 M | 27.0 | +0.2 | +0.3 | +5.8 | +0.3 | +0.0 | 33.6 | 50.0 | -16.4 | (N)L2 |
| 20 | 2.213 M | 23.4 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 29.5 | 46.0 | -16.5 | (N)L2 |
| 21 | 2.655 M | 23.2 | +0.2 | +0.2 | +5.7 | +0.1 | +0.0 | 29.4 | 46.0 | -16.6 | (N)L2 |
| 22 | 4.564 M | 23.3 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.4 | 46.0 | -16.6 | (N)L2 |
| 23 | 233.629k | 29.6 | +0.2 | +0.1 | +5.7 | +0.0 | +0.0 | 35.6 | 52.3 | -16.7 | (N)L2 |
| 24 | 3.761 M | 23.2 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.3 | 46.0 | -16.7 | (N)L2 |
| 25 | 1.719 M | 23.1 | +0.2 | +0.1 | +5.7 | +0.1 | +0.0 | 29.2 | 46.0 | -16.8 | (N)L2 |
| 26 | 3.722 M | 23.1 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.2 | 46.0 | -16.8 | (N)L2 |
| 27 | 3.812 M | 23.0 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.1 | 46.0 | -16.9 | (N)L2 |
| 28 | 3.352M | 22.9 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.0 | 46.0 | -17.0 | (N)L2 |
| 29 | 4.156M | 22.9 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 29.0 | 46.0 | -17.0 | (N)L2 |
| 30 | 4.811 M | 22.8 | +0.1 | +0.2 | +5.7 | +0.1 | +0.0 | 28.9 | 46.0 | -17.1 | (N)L2 |

Page 25 of 75

CKC Laboratories, Inc. Date: 12/10/2013 Time: 4:32:15 PM STMicroelectronics WO\#: 95078 15.207 AC Mains - Average Test Lead: (N)L2 120V 60Hz Sequence\#: 15 Ext ATTN: 0 dB


## Test Setup Photos



Back View

### 15.247(a)(2) -6dBc Occupied Bandwidth

## Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: STMicroelectronics
Specification: 15.247(a)(2)
Work Order \#: 95078
Test Type: 6dB Bandwidth
Equipment:
915 MHz Low Power RF Module
Manufacturer: STMicroelectronics Tested By: S. Yamamoto
Model: SP1ML-915
S/N: Unit \#1
Test Equipment:

| Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- |
| AN02869 | Spectrum Analyzer | E4440A | $2 / 6 / 2013$ | $2 / 6 / 2015$ |
| ANP04382 | Cable | LDF-50 | $8 / 30 / 2012$ | $8 / 30 / 2014$ |
| ANP05555 | Cable | RG223/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| ANP05569 | Cable | RG-214/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| AN00851 | Biconilog Antenna | CBL6111C | $5 / 16 / 2012$ | $5 / 16 / 2014$ |

Equipment Under Test ( $*=$ EUT):

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 915 MHz Low Power RF <br> Module* | STMicroelectronics | SP1ML-915 | Unit \#1 |

## Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-B 013481$ |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power to the integral antenna. Frequency range of test 902 MHz to 928 MHz . Operating range of EUT 902 MHz to 928 MHz . RBW=100kHz, VBW $=300 \mathrm{kHz}$. Site D. Temperature: $21^{\circ} \mathrm{C}$, Humidity: $38 \%$, Pressure: 100 kPa .

### 15.247(a)(2)

Systems using digital modulation techniques may operate in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz . 1 Testing the Future

## Test Data



Low channel 2FSK


Middle channel 2FSK


High channel 2FSK


Low channel GFSK


Middle channel GFSK


High channel GFSK


Low channel MSK


Middle channel MSK


High channel MSK

Test Setup Photos


Test Setup

### 15.247(b)(3) RF Power Output

## Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: STMicroelectronics
Specification: $\quad \mathbf{1 5 . 2 4 7}(\mathbf{b})(3)$
Work Order \#: 95078 Date: 12/5,9,10/2013
Test Type:
RF Output Power
Equipment:
915 MHz Low Power RF Module
Manufacturer: STMicroelectronics Tested By: S. Yamamoto
Model:
SP1ML-915
S/N:
Unit \#1
Test Equipment:

| Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- |
| AN02869 | Spectrum Analyzer | E4440A | $2 / 6 / 2013$ | $2 / 6 / 2015$ |
| ANP04382 | Cable | LDF-50 | $8 / 30 / 2012$ | $8 / 30 / 2014$ |
| ANP05555 | Cable | RG223/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| ANP05569 | Cable | RG-214/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| AN00851 | Biconilog Antenna | CBL6111C | $5 / 16 / 2012$ | $5 / 16 / 2014$ |

## Equipment Under Test (* = EUT):

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 915 MHz Low Power RF STMicroelectronics <br> Module* SP1ML-915 | Unit \#1 |  |  |

## Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | 12-B013481 |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power to the integral antenna. Data taken at a low, middle, and high channel. Frequency range of test 902 MHz to 928 MHz . Operating range of EUT 902 MHz to 928 MHz . RBW $=620 \mathrm{kHz}, \mathrm{VBW}=3 \mathrm{MHz}$ for 2 FSK and GFSK . RBW $=750 \mathrm{kHz}, \mathrm{VBW}=3 \mathrm{MHz}$ for MSK. Site D. Temperature: $21^{\circ} \mathrm{C}$, Humidity: $38 \%$, Pressure: 100 kPa . Data taken with EUT positioned in each axis system and a total of six orientations. Maximum levels reported.

### 15.247(b)(3)

For systems using digital modulation in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands: 1 Watt . As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

## 558074 D01 DTS Meas Guidance v03r01 April 2013

If a radiated test configuration is used, then the measured power or field strength levels shall be converted to equivalent conducted power levels for comparison to the applicable output power limit. This may be accomplished by first measuring the radiated field strength or power levels using a methodology for maximum peak conducted power or maximum conducted (average) power as applicable and peak or average power spectral density as applicable. The radiated field strength or power level can then be converted to EIRP (see ANSI C63.10 for guidance).

## ANSI C63.10 2013

G. 2 Field strength approach (linear terms)

$$
\mathrm{ERP}=p_{\mathrm{t}} \times g_{4}=(E \times d)^{2} / 30
$$

where
$p_{1} \quad$ is the transmitter output power in watts
$g_{t}$ is the numeric gain of the transmitting antema (dimensionless)
$E \quad$ is the electric field strength in $\mathrm{V} / \mathrm{m}$
d is the measurement distance in meters (m)

$$
\mathrm{ERP}=\operatorname{ERP} / 1.64=(E \times d)^{2} /(30 \times 1.64)=(E \times d)^{2} / 49.2
$$

where all terms are as previously defined.
15.247(b)(3) 2FSK

```
903MHz, E=100.3dBuV/m=0.104V/m
915MHz, E=99.2dBuV/m=0.0912V/m
927MHz, E=96.5dBuV/m=0.0668V/m
d=3 meters
EIRP
903MHz, EIRP=(0.104x3)}\mp@subsup{)}{}{2}/30=0.00324W=+5.1dB
915MHz, EIRP = (0.0912\times3) 2/30=0.00250W }=+4.0\textrm{dBm
927MHz, EIRP = (0.0668x3)
Conducted Output Power 2FSK
903MHz, +5.1dBm - 1.6dBi = +3.5 dBm = 0.0022 W
915MHz, +4.0dBm-1.6dBi = +2.4 dBm = 0.0017 W
927MHz, +1.3dBm-1.6dBi =-0.3 dBm = 0.0009 W
```


### 15.247(b)(3) GFSK

$903 \mathrm{MHz}, \mathrm{E}=100.2 \mathrm{dBuV} / \mathrm{m}=0.102 \mathrm{~V} / \mathrm{m}$
$915 \mathrm{MHz}, \mathrm{E}=99.5 \mathrm{dBuV} / \mathrm{m}=0.0944 \mathrm{~V} / \mathrm{m}$
$927 \mathrm{MHz}, \mathrm{E}=97.0 \mathrm{dBuV} / \mathrm{m}=0.0708 \mathrm{~V} / \mathrm{m}$
d=3 meters
EIRP
903 MHz , EIRP $=(0.102 \times 3)^{2} / 30=0.00314 \mathrm{~W}=+5.0 \mathrm{dBm}$
915 MHz, EIRP $=(0.0944 \times 3)^{2} / 30=0.00267 \mathrm{~W}=+4.3 \mathrm{dBm}$
927 MHz , EIRP $=(0.0708 \times 3)^{2} / 30=0.00150 \mathrm{~W}=+1.8 \mathrm{dBm}$
Conducted Output Power GFSK
$903 \mathrm{MHz},+5.0 \mathrm{dBm}-1.6 \mathrm{dBi}=+3.4 \mathrm{dBm}=0.0022 \mathrm{~W}$
$915 \mathrm{MHz},+4.3 \mathrm{dBm}-1.6 \mathrm{dBi}=+2.7 \mathrm{dBm}=0.0015 \mathrm{~W}$
$927 \mathrm{MHz},+1.8 \mathrm{dBm}-1.6 \mathrm{dBi}=+0.2 \mathrm{dBm}=0.001 \mathrm{~W}$

### 15.247(b)(3) MSK

$903 \mathrm{MHz}, \mathrm{E}=100.8 \mathrm{dBuV} / \mathrm{m}=0.110 \mathrm{~V} / \mathrm{m}$
$915 \mathrm{MHz}, \mathrm{E}=102.1 \mathrm{dBuV} / \mathrm{m}=0.127 \mathrm{~V} / \mathrm{m}$
$927 \mathrm{MHz}, \mathrm{E}=98.6 \mathrm{dBuV} / \mathrm{m}=0.085 \mathrm{~V} / \mathrm{m}$
$\mathrm{d}=3$ meters
EIRP
903 MHz , EIRP $=(0.110 \times 3)^{2} / 30=0.00363 \mathrm{~W}=+5.6 \mathrm{dBm}$
915 MHz, EIRP $=(0.127 \times 3)^{2} / 30=0.00484 \mathrm{~W}=+6.8 \mathrm{dBm}$
927 MHz, EIRP $=(0.085 \times 3)^{2} / 30=0.00217 \mathrm{~W}=+3.4 \mathrm{dBm}$
Conducted Output Power MSK
$903 \mathrm{MHz},+5.6 \mathrm{dBm}-1.6 \mathrm{dBi}=+4.0 \mathrm{dBm}=0.0025 \mathrm{~W}$
$915 \mathrm{MHz},+6.8 \mathrm{dBm}-1.6 \mathrm{dBi}=+5.2 \mathrm{dBm}=0.0033 \mathrm{~W}$
$927 \mathrm{MHz},+3.4 \mathrm{dBm}-1.6 \mathrm{dBi}=+1.8 \mathrm{dBm}=0.0015 \mathrm{~W}$

Test Setup Photos


Test Setup

### 15.247(d) Radiated Spurious Emissions

## Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: STMicroelectronics
Specification: $\quad \mathbf{1 5 . 2 4 7}(\mathbf{d}) / \mathbf{1 5 . 2 0 9}$ Radiated Spurious Emissions
Work Order \#:
95078 (d) / 15.20 Radiated Spurious Emissions

Test Type:
Equipment:
Manufacturer:
Model:
Maximized Emissions
915 MHz Low Power RF Module
STMicroelectronics
SP1ML-915
S/N:

Unit \#1

Date: 12/6/2013
Time: 15:42:56
Sequence\#: 4
Tested By: S. Yamamoto

Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- | :--- |
| T1 | AN02869 | Spectrum Analyzer | E4440A | $2 / 6 / 2013$ | $2 / 6 / 2015$ |
| T2 | ANP04382 | Cable | LDF-50 | $8 / 30 / 2012$ | $8 / 30 / 2014$ |
| T3 | ANP05555 | Cable | RG223/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| T4 | ANP05569 | Cable | RG-214/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| T5 | AN00851 | Biconilog Antenna | CBL6111C | $5 / 16 / 2012$ | $5 / 16 / 2014$ |
| T6 | AN00010 | Preamp | 8447 D | $3 / 29 / 2012$ | $3 / 29 / 2014$ |
|  | AN00314 | Loop Antenna | 6502 | $6 / 29 / 2012$ | $6 / 29 / 2014$ |
| T7 | AN00787 | Preamp | $83017 A$ | $5 / 31 / 2013$ | $5 / 31 / 2015$ |
| T8 | AN01646 | Horn Antenna | 3115 | $4 / 13 / 2012$ | $4 / 13 / 2014$ |
| T9 | ANP06360 | Cable | L1-PNMNM-48 | $8 / 29 / 2012$ | $8 / 29 / 2014$ |
| T10 | AN02946 | Cable | $32022-2-2909 K-$ | $7 / 31 / 2013$ | $7 / 31 / 2015$ |
|  |  |  | 36TC |  |  |
| T11 | AN03169 | High Pass Filter | HM1155-11SS | $7 / 30 / 2013$ | $7 / 30 / 2015$ |

Equipment Under Test (* = EUT):

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 915 MHz Low Power RF $^{\text {Module* }}$ | STMicroelectronics | SP1ML-915 | Unit \#1 |

## Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-$ B013481 |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power with 2FSK. Frequency range of data sheet is 9 kHz to 10 GHz . $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}=\mathrm{VBW}$. $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}=\mathrm{VBW}$. $30 \mathrm{MHz}-$ 1000 MHz RBW $=120 \mathrm{kHz}=$ VBW. $1000 \mathrm{MHz}-10000 \mathrm{MHz}$ RBW $=1 \mathrm{MHz}=\mathrm{VBW}$. Site D. Temperature: $16^{\circ} \mathrm{C}$, Humidity: $41 \%$, Pressure: 100 kPa . Data taken with EUT set to a low, middle, and high channel. Data taken with EUT positioned in each axis system and a total of six orientations.

Ext Attn: 0 dB

Measurement Data: $\quad$ Reading listed by margin.
Test Distance: 3 Meters

| \# | Freq $\mathrm{MHz}$ | Rdng $\mathrm{dB} \mu \mathrm{~V}$ | $\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \mathrm{~dB} \end{gathered}$ | $\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \text { dB } \end{gathered}$ | $\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~T} 8 \\ & \\ & \mathrm{~dB} \\ & \hline \end{aligned}$ | Dist <br> Table | Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$ | Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$ | Margin $\mathrm{dB}$ | Polar <br> Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 896.940M | 37.8 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \end{array}$ | $\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.9 | 46.0 | -6.1 | Vert |
| 2 | 896.537M | 37.8 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.9 | 46.0 | -6.1 | Horiz |
| 3 | 896.523M | 37.3 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.4 | 46.0 | -6.6 | Vert |
| 4 | 896.539M | 37.2 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.3 | 46.0 | -6.7 | Horiz |
| 5 | 896.963M | 37.0 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.1 | 46.0 | -6.9 | Horiz |
| 6 | 896.542M | 37.0 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.1 | 46.0 | -6.9 | Vert |
| 7 | 7222.260 M | 33.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} +10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 47.1 | 54.0 | -6.9 | Vert |
| 8 | 7225.672M | 33.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} +10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 47.1 | 54.0 | -6.9 | Vert |
| 9 | 896.537M | 36.9 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.0 | 46.0 | -7.0 | Vert |
| 10 | 896.967M | 36.5 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 38.6 | 46.0 | -7.4 | Vert |
| 11 | 7321.663 M | 32.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 46.5 | 54.0 | -7.5 | Horiz |
| 12 | 8128.972M | 30.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | +0.0 | 46.3 | 54.0 | -7.7 | Horiz |
| 13 | 1806.556M | 49.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 46.2 | 54.0 | -7.8 | Horiz |
| 14 | 7225.810M | 32.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} +10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 46.1 | 54.0 | -7.9 | Horiz |
| 15 | 2744.347 M | 47.6 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.4 \end{aligned}$ | $\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.8 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.8 \end{array}$ | +0.0 | 46.0 | 54.0 | -8.0 | Horiz |


| 16 | 1806.397M | 49.5 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | $+0.0$ | 45.9 | 54.0 | -8.1 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 7225.631M | 32.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 45.9 | 54.0 | -8.1 | Vert |
| 18 | 7417.630M | 31.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 45.8 | 54.0 | -8.2 | Vert |
| 19 | 7414.292M | 31.4 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | $+0.0$ | 45.8 | 54.0 | -8.2 | Horiz |
| 20 | 1853.503 M | 49.1 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 45.7 | 54.0 | -8.3 | Horiz |
| 21 | 6490.342M | 33.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | +0.0 | 45.7 | 54.0 | -8.3 | Horiz |
| 22 | 7414.439M | 31.3 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 45.7 | 54.0 | -8.3 | Vert |
| 23 | 896.952M | 35.5 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 37.6 | 46.0 | -8.4 | Horiz |
| 24 | 6487.548M | 32.9 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | +0.0 | 45.6 | 54.0 | -8.4 | Horiz |
| 25 | 1829.683M | 49.1 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.2 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 45.6 | 54.0 | -8.4 | Horiz |
| 26 | 8236.897M | 29.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | +0.0 | 45.5 | 54.0 | -8.5 | Vert |
| 27 | 7222.450 M | 31.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | $+0.0$ | 45.5 | 54.0 | -8.5 | Vert |
| 28 | 2744.363M | 47.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.8 \end{array}$ | +0.0 | 45.4 | 54.0 | -8.6 | Horiz |
| 29 | 1830.367M | 48.9 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.2 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 45.4 | 54.0 | -8.6 | Horiz |
| 30 | 896.549M | 35.2 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 37.3 | 46.0 | -8.7 | Horiz |
| 31 | 2709.689M | 47.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.8 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.6 \end{array}$ | +0.0 | 45.3 | 54.0 | -8.7 | Horiz |
| 32 | 7417.539M | 30.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 45.1 | 54.0 | -8.9 | Horiz |

Page 41 of 75

| 331829.580 M | 48.6 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.2 \\ & +0.0 \\ & +0.5 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | $+0.0$ | 45.0 | 54.0 | -9.0 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 341854.578 M | 48.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$ | $\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.4 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 44.7 | 54.0 | -9.3 | Horiz |
| $35 \quad 896.945 \mathrm{M}$ | 34.6 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 36.7 | 46.0 | -9.3 | Vert |
| 367222.231 M | 30.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | $+0.0$ | 44.6 | 54.0 | -9.4 | Horiz |
| 37 1805.317M | 48.2 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 44.6 | 54.0 | -9.4 | Horiz |
| 385491.400 M | 34.5 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+9.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.4 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.8 \end{array}$ | +0.0 | 44.6 | 54.0 | -9.4 | Vert |
| 396490.512 M | 31.9 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | +0.0 | 44.6 | 54.0 | -9.4 | Vert |
| $40 \quad 1853.574 \mathrm{M}$ | 48.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 44.6 | 54.0 | -9.4 | Horiz |
| $41 \quad 8233.147 \mathrm{M}$ | 28.1 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | +0.0 | 44.4 | 54.0 | -9.6 | Horiz |
| $42 \quad 1854.378 \mathrm{M}$ | 47.8 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 44.4 | 54.0 | -9.6 | Horiz |
| 43 6487.464M | 31.6 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | $+0.0$ | 44.3 | 54.0 | -9.7 | Vert |
| 44 2780.336M | 45.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | $+0.0$ | 44.2 | 54.0 | -9.8 | Horiz |
| 456406.413 M | 32.1 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.8 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.1 \end{array}$ | +0.0 | 44.2 | 54.0 | -9.8 | Vert |
| $46 \quad 1829.508 \mathrm{M}$ | 47.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.2 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | $+0.0$ | 44.2 | 54.0 | -9.8 | Vert |
| $47 \quad 896.942 \mathrm{M}$ | 34.1 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 36.2 | 46.0 | -9.8 | Horiz |
| 487321.860 M | 29.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} \hline+0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 44.0 | 54.0 | -10.0 | Horiz |
| 49 2780.344M | 45.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | +0.0 | 44.0 | 54.0 | -10.0 | Horiz |


| 50 | 8129.000 M | 28.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | $+0.0$ | 43.9 | 54.0 | -10.1 | Vert |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | 5560.250 M | 33.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.1 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.7 \end{array}$ | +0.0 | 43.9 | 54.0 | -10.1 | Vert |
| 52 | 8233.013M | 27.5 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | +0.0 | 43.8 | 54.0 | -10.2 | Vert |
| 53 | 7225.747M | 29.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | $+0.0$ | 43.6 | 54.0 | -10.4 | Vert |
| 54 | 7321.983M | 29.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 43.4 | 54.0 | -10.6 | Vert |
| 55 | 896.942M | 33.2 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 35.3 | 46.0 | -10.7 | Vert |
| 56 | 1806.361M | 46.8 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 43.2 | 54.0 | -10.8 | Vert |
| 57 | 896.525M | 33.0 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | $+0.0$ | 35.1 | 46.0 | -10.9 | Vert |
| 58 | 8232.950M | 26.5 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | $+0.0$ | 42.8 | 54.0 | -11.2 | Vert |
| 59 | 2781.790M | 43.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | +0.0 | 42.6 | 54.0 | -11.4 | Horiz |
| 60 | 7226.031M | 28.6 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 42.4 | 54.0 | -11.6 | Horiz |
| 61 | 7414.434M | 28.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | $+0.0$ | 42.4 | 54.0 | -11.6 | Vert |
| 62 | 2709.772M | 44.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.8 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.6 \end{array}$ | +0.0 | 42.3 | 54.0 | -11.7 | Horiz |
| 63 | 896.938M | 32.2 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 34.3 | 46.0 | -11.7 | Vert |
| 64 | 1805.606M | 45.9 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 42.3 | 54.0 | -11.7 | Vert |
| 65 | 896.542M | 32.0 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | $+0.0$ | 34.1 | 46.0 | -11.9 | Horiz |
| 66 | 7322.063M | 27.9 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 42.1 | 54.0 | -11.9 | Horiz |


| 67 | 8341.020M | 25.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | +0.0 | 42.0 | 54.0 | -12.0 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 68 | 6322.460M | 30.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.9 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +33.9 \end{array}$ | +0.0 | 41.8 | 54.0 | -12.2 | Vert |
| 69 | 6406.425M | 29.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.8 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.1 \end{array}$ | +0.0 | 41.8 | 54.0 | -12.2 | Horiz |
| 70 | 1853.478M | 45.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 41.8 | 54.0 | -12.2 | Vert |
| 71 | 6406.650M | 29.5 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.8 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.1 \end{array}$ | +0.0 | 41.6 | 54.0 | -12.4 | Vert |
| 72 | 896.952M | 31.1 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 33.2 | 46.0 | -12.8 | Horiz |
|  | $\begin{aligned} & 8125.072 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 25.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | $+0.0$ | 41.2 | 54.0 | -12.8 | Vert |
| $\wedge$ | 8125.072M | 35.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | $+0.0$ | 51.6 | 54.0 | -2.4 | Vert |
| $\wedge$ | 8125.047M | 26.6 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | $+0.0$ | 42.5 | 54.0 | -11.5 | Vert |
| 76 | 6490.409M | 28.4 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +5.7 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | +0.0 | 41.1 | 54.0 | -12.9 | Vert |
| 77 | 1854.503 M | 44.4 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 41.0 | 54.0 | -13.0 | Vert |
| 78 | 2780.473M | 42.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | +0.0 | 40.9 | 54.0 | -13.1 | Horiz |
| 79 | 2781.525M | 42.0 | $\begin{array}{r} +0.0 \\ +0.0 \\ +3.5 \\ \hline \end{array}$ | $\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ |  | 40.8 | 54.0 | -13.2 | Vert |
| 80 | 5563.248M | 30.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.2 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.7 \end{array}$ | +0.0 | 40.6 | 54.0 | -13.4 | Horiz |
| 81 | 7417.577M | 26.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 40.5 | 54.0 | -13.5 | Vert |
| 82 | 6319.764M | 28.6 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.9 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.9 \end{array}$ | +0.0 | 40.4 | 54.0 | -13.6 | Horiz |
| 83 | 6487.510M | 27.6 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.0 \\ +0.0 \\ +1.3 \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | +0.0 | 40.3 | 54.0 | -13.7 | Vert |


| 84 | 8345.092M | 23.5 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | $+0.0$ | 40.1 | 54.0 | -13.9 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 85 | 6322.400M | 27.9 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.9 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +33.9 \end{array}$ | +0.0 | 39.7 | 54.0 | -14.3 | Vert |
| 86 | 8232.960M | 23.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | +0.0 | 39.7 | 54.0 | -14.3 | Horiz |
| 87 | 2780.270M | 40.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | $+0.0$ | 39.6 | 54.0 | -14.4 | Vert |
| 88 | 1853.590M | 42.7 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 39.3 | 54.0 | -14.7 | Horiz |
| 89 | 933.044M | 28.2 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 31.2 | 46.0 | -14.8 | Vert |
| 90 | 933.478M | 27.9 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 30.9 | 46.0 | -15.1 | Horiz |
| 91 | 933.451M | 27.9 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 30.9 | 46.0 | -15.1 | Vert |
| 92 | 1854.407M | 42.1 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 38.7 | 54.0 | -15.3 | Horiz |
| 93 | 2709.756M | 40.5 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.8 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.6 \end{array}$ | +0.0 | 38.6 | 54.0 | -15.4 | Vert |
| 94 | 933.024M | 27.6 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 30.6 | 46.0 | -15.4 | Vert |
| 95 | 933.044M | 27.4 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | $+0.0$ | 30.4 | 46.0 | -15.6 | Horiz |
| 96 | 2780.433M | 39.5 | $\begin{array}{r} +0.0 \\ +0.0 \\ +3.5 \\ \hline \end{array}$ | $\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | +0.0 | 38.3 | 54.0 | -15.7 | Vert |
| 97 | 933.434M | 27.1 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | $+0.0$ | 30.1 | 46.0 | -15.9 | Horiz |
| 98 | 933.048M | 26.9 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 29.9 | 46.0 | -16.1 | Horiz |
| 99 | 933.454M | 26.9 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 29.9 | 46.0 | -16.1 | Vert |
| 100 | 1853.537M | 41.2 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 37.8 | 54.0 | -16.2 | Vert |


| 101 | 932.984M | 26.6 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 29.6 | 46.0 | -16.4 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 102 | 7318.240M | 23.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | $+0.0$ | 37.5 | 54.0 | -16.5 | Horiz |
| 103 | 8341.250M | 20.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | +0.0 | 37.4 | 54.0 | -16.6 | Vert |
| 104 | 933.458M | 26.4 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 29.4 | 46.0 | -16.6 | Horiz |
| 105 | 8344.860M | 20.5 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | +0.0 | 37.1 | 54.0 | -16.9 | Vert |
| 106 | 1854.377M | 40.5 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 37.1 | 54.0 | -16.9 | Vert |
| 107 | 2781.820M | 38.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \end{aligned}$ | $\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.8 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | $+0.0$ | 37.1 | 54.0 | -16.9 | Vert |

CKC Laboratories, Inc. Date: 12/6/2013 Time: 15:42:56 STMicroelectronics WO\#: 95078 15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Sequence\#: 4 Ext ATTN: 0 dB


Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: STMicroelectronics
Specification: $\quad \mathbf{1 5 . 2 4 7}(\mathbf{d}) / \mathbf{1 5 . 2 0 9}$ Radiated Spurious Emissions
Work Order \#: 95078 Date: 12/9/2013
Test Type:
Equipment:
Maximized Emissions
Time: 17:24:27

Manufacturer:
915 MHz Low Power RF Module
Sequence\#: 4

Model:
STMicroelectronics
Tested By: S. Yamamoto

S/N:
SP1ML-915

Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :---: | :--- | :--- | :--- | :--- | :--- |
| T1 | AN02869 | Spectrum Analyzer | E4440A | $2 / 6 / 2013$ | $2 / 6 / 2015$ |
| T2 | ANP04382 | Cable | LDF-50 | $8 / 30 / 2012$ | $8 / 30 / 2014$ |
| T3 | ANP05555 | Cable | RG223/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| T4 | ANP05569 | Cable | RG-214/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| T5 | AN00851 | Biconilog Antenna | CBL6111C | $5 / 16 / 2012$ | $5 / 16 / 2014$ |
| T6 | AN00010 | Preamp | 8447 D | $3 / 29 / 2012$ | $3 / 29 / 2014$ |
|  | AN00314 | Loop Antenna | 6502 | $6 / 29 / 2012$ | $6 / 29 / 2014$ |
| T7 | AN00787 | Preamp | $83017 A$ | $5 / 31 / 2013$ | $5 / 31 / 2015$ |
| T8 | AN01646 | Horn Antenna | 3115 | $4 / 13 / 2012$ | $4 / 13 / 2014$ |
| T9 | ANP06360 | Cable | L1-PNMNM-48 | $8 / 29 / 2012$ | $8 / 29 / 2014$ |
| T10 | AN02946 | Cable | $32022-2-2909 K-$ | $7 / 31 / 2013$ | $7 / 31 / 2015$ |
|  |  |  | 36TC |  |  |
| T11 | AN03169 | High Pass Filter | HM1155-11SS | $7 / 30 / 2013$ | $7 / 30 / 2015$ |

Equipment Under Test $(*=$ EUT $)$ :

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 915 MHz Low Power RF | STMicroelectronics | SP1ML-915 | Unit \#1 |
| Module* |  |  |  |

Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-$ B013481 |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power with GFSK. Frequency range of data sheet is 9 kHz to 10 GHz . $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}=\mathrm{VBW}$. $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}=\mathrm{VBW}$. 30MHz1000 MHz RBW $=120 \mathrm{kHz}=$ VBW. $1000 \mathrm{MHz}-10000 \mathrm{MHz}$ RBW $=1 \mathrm{MHz}=\mathrm{VBW}$. Site D. Temperature: $16^{\circ} \mathrm{C}$, Humidity: $41 \%$, Pressure: 100 kPa . Data taken with EUT set to a low, middle, and high channel. Data taken with EUT positioned in each axis system and a total of six orientations.

Ext Attn: 0 dB
Measurement Data: $\quad$ Reading listed by margin. Test Distance: 3 Meters

| \# | Freq MHz | Rdng $\mathrm{dB} \mu \mathrm{~V}$ | $\begin{aligned} & \mathrm{T} 1 \\ & \text { T5 } \\ & \text { T9 } \\ & \text { dB } \end{aligned}$ | $\begin{gathered} \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \mathrm{~dB} \end{gathered}$ | $\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \text { dB } \end{gathered}$ | $\begin{gathered} \mathrm{T} 4 \\ \mathrm{~T} 8 \\ \mathrm{~dB} \end{gathered}$ | Dist <br> Table | Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$ | Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$ | Margin <br> dB | Polar <br> Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 896.970M | 38.2 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 40.3 | 46.0 | -5.7 | Vert |
| 2 | 896.543M | 37.8 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.9 | 46.0 | -6.1 | Vert |
| 3 | 896.560M | 37.6 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.7 | 46.0 | -6.3 | Vert |
| 4 | 7222.370M | 33.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 47.6 | 54.0 | -6.4 | Horiz |
| 5 | 896.963M | 37.5 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.4 \\ +0.0 \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.6 | 46.0 | -6.4 | Horiz |
| 6 | 8124.620M | 31.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | +0.0 | 47.6 | 54.0 | -6.4 | Horiz |
| 7 | 6490.380M | 34.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.0 \\ +0.0 \\ +1.3 \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | +0.0 | 47.5 | 54.0 | -6.5 | Horiz |
| 8 | 896.935M | 37.4 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.5 | 46.0 | -6.5 | Vert |
| 9 | 8236.900M | 31.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} +12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | +0.0 | 47.4 | 54.0 | -6.6 | Vert |
| 10 | 1806.537M | 51.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \end{aligned}$ | $\begin{aligned} & +5.1 \\ & +0.0 \\ & +0.6 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 47.4 | 54.0 | -6.6 | Horiz |
| 11 | 1806.160M | 50.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 47.1 | 54.0 | -6.9 | Horiz |
| 12 | 896.534M | 36.9 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | $+0.0$ | 39.0 | 46.0 | $-7.0$ | Horiz |
| 13 | 8129.270M | 31.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | +0.0 | 46.9 | 54.0 | -7.1 | Horiz |
| 14 | 1806.378M | 50.5 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 46.9 | 54.0 | -7.1 | Horiz |
| 15 | 896.937M | 36.7 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{gathered} +3.6 \\ -27.4 \\ +0.0 \end{gathered}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 38.8 | 46.0 | -7.2 | Vert |


| 16 | 6406.420M | 34.5 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.8 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.1 \end{array}$ | +0.0 | 46.6 | 54.0 | -7.4 | Vert |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 1830.475M | 50.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \end{aligned}$ | $\begin{aligned} & +5.2 \\ & +0.0 \\ & +0.5 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 46.6 | 54.0 | -7.4 | Horiz |
| 18 | 1829.658M | 50.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \end{aligned}$ | $\begin{aligned} & +5.2 \\ & +0.0 \\ & +0.5 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 46.5 | 54.0 | -7.5 | Horiz |
| 19 | 896.963M | 36.3 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | $+0.0$ | 38.4 | 46.0 | -7.6 | Horiz |
| 20 | 7417.580M | 31.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 46.2 | 54.0 | -7.8 | Horiz |
| 21 | 7321.850M | 32.0 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 46.2 | 54.0 | -7.8 | Horiz |
| 22 | 7414.330M | 31.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | $+0.0$ | 46.1 | 54.0 | -7.9 | Horiz |
| 23 | 7225.830M | 32.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 46.1 | 54.0 | -7.9 | Horiz |
| 24 | 1806.393M | 49.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | $+0.0$ | 46.1 | 54.0 | -7.9 | Vert |
| 25 | 1805.528M | 49.7 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 46.1 | 54.0 | -7.9 | Vert |
| 26 | 7321.770 M | 31.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | $+0.0$ | 45.9 | 54.0 | -8.1 | Vert |
| 27 | 896.567M | 35.8 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 37.9 | 46.0 | -8.1 | Horiz |
| 28 | 1853.542M | 49.3 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 45.9 | 54.0 | -8.1 | Horiz |
| 29 | 7414.350M | 31.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 45.7 | 54.0 | -8.3 | Vert |
| 30 | 8233.230M | 29.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | +0.0 | 45.4 | 54.0 | -8.6 | Horiz |
| 31 | 6490.280M | 32.6 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \end{aligned}$ | $\begin{array}{r} \hline+10.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | $+0.0$ | 45.3 | 54.0 | -8.7 | Horiz |
| 32 | 7417.820M | 30.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | $+0.0$ | 45.2 | 54.0 | -8.8 | Vert |


| 33 | 1853.558M | 48.6 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 45.2 | 54.0 | -8.8 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | 8232.980M | 28.9 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | +0.0 | 45.2 | 54.0 | -8.8 | Vert |
| 35 | 6322.392M | 33.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.9 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +33.9 \end{array}$ | +0.0 | 45.2 | 54.0 | -8.8 | Horiz |
| 36 | 2745.492M | 46.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.8 \end{array}$ | $+0.0$ | 45.2 | 54.0 | -8.8 | Horiz |
| 37 | 1805.503 M | 48.7 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 45.1 | 54.0 | -8.9 | Vert |
| 38 | 7225.770M | 31.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 45.1 | 54.0 | -8.9 | Horiz |
| 39 | 896.935M | 35.0 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 37.1 | 46.0 | -8.9 | Horiz |
| 40 | 5563.250M | 34.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.2 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.7 \end{array}$ | $+0.0$ | 45.0 | 54.0 | -9.0 | Vert |
| 41 | 1854.458M | 48.2 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 44.8 | 54.0 | -9.2 | Horiz |
| 42 | 7321.800M | 30.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 44.6 | 54.0 | -9.4 | Horiz |
| 43 | 1829.675M | 48.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \end{aligned}$ | $\begin{aligned} & +5.2 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 44.6 | 54.0 | -9.4 | Vert |
| 44 | 7225.730M | 30.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | $+0.0$ | 44.5 | 54.0 | -9.5 | Vert |
| 45 | 6490.580M | 31.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | +0.0 | 44.5 | 54.0 | -9.5 | Horiz |
| 46 | 896.541M | 34.3 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | $+0.0$ | 36.4 | 46.0 | -9.6 | Vert |
| 47 | 7225.930M | 30.6 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 44.4 | 54.0 | -9.6 | Vert |
| 48 | 2709.687M | 46.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.8 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.6 \end{array}$ | +0.0 | 44.3 | 54.0 | -9.7 | Vert |
| 49 | 5491.800 M | 34.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.1 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.4 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.8 \end{array}$ | +0.0 | 44.1 | 54.0 | -9.9 | Vert |

Page 50 of 75

| 50 | 2709.220 M | 46.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.8 \\ & +0.0 \\ & +0.8 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.6 \end{array}$ | $+0.0$ | 44.1 | 54.0 | -9.9 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | 5418.220 M | 34.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.2 \end{aligned}$ | $\begin{aligned} & +9.0 \\ & +0.0 \\ & +1.2 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.4 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.8 \end{array}$ | +0.0 | 44.0 | 54.0 | -10.0 | Vert |
| 52 | 2744.592M | 45.5 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.8 \end{array}$ | +0.0 | 43.9 | 54.0 | -10.1 | Horiz |
| 53 | 8341.030M | 27.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | $+0.0$ | 43.8 | 54.0 | -10.2 | Horiz |
| 54 | 2781.525M | 45.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | +0.0 | 43.8 | 54.0 | -10.2 | Horiz |
| 55 | 6322.860M | 31.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.9 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.9 \end{array}$ | +0.0 | 43.6 | 54.0 | -10.4 | Vert |
| 56 | 8232.820M | 27.3 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | +0.0 | 43.6 | 54.0 | -10.4 | Vert |
| 57 | 2780.800M | 44.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | +0.0 | 43.6 | 54.0 | -10.4 | Horiz |
| 58 | 933.018M | 32.1 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 35.1 | 46.0 | -10.9 | Horiz |
| 59 | 6406.800M | 31.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +9.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -38.8 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.1 \end{array}$ | +0.0 | 43.1 | 54.0 | -10.9 | Vert |
| 60 | 7222.170M | 29.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | $+0.0$ | 43.0 | 54.0 | -11.0 | Vert |
| 61 | 1830.383M | 46.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.2 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 42.9 | 54.0 | -11.1 | Vert |
| 62 | 7318.350M | 28.5 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 42.7 | 54.0 | -11.3 | Vert |
| 63 | 6406.750M | 30.6 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.8 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.1 \end{array}$ | $+0.0$ | 42.7 | 54.0 | -11.3 | Horiz |
| 64 | 933.463M | 31.5 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 34.5 | 46.0 | -11.5 | Horiz |
| 65 | 933.037M | 31.4 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 34.4 | 46.0 | -11.6 | Vert |
| 66 | 933.037M | 31.1 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 34.1 | 46.0 | -11.9 | Horiz |

Page 51 of 75

| 67 | 5563.350M | 31.9 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.2 \end{aligned}$ | $\begin{aligned} & +9.2 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.7 \end{array}$ | $+0.0$ | 42.1 | 54.0 | -11.9 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 68 | 1854.367M | 45.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$ | $\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.4 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 42.0 | 54.0 | -12.0 | Vert |
| 69 | 2745.692M | 43.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.8 \end{array}$ | +0.0 | 41.5 | 54.0 | -12.5 | Vert |
| 70 | 6319.830M | 29.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.9 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +33.9 \end{array}$ | $+0.0$ | 41.5 | 54.0 | -12.5 | Vert |
| 71 | 933.422M | 30.2 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 33.2 | 46.0 | -12.8 | Vert |
| 72 | 2780.467M | 41.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | +0.0 | 40.6 | 54.0 | -13.4 | Vert |
| 73 | 933.030M | 29.2 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 32.2 | 46.0 | -13.8 | Horiz |
| 74 | 8345.150M | 23.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | $+0.0$ | 40.0 | 54.0 | -14.0 | Horiz |
| 75 | 8345.220M | 22.6 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | +0.0 | 39.2 | 54.0 | -14.8 | Vert |
| 76 | 933.058M | 28.0 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 31.0 | 46.0 | -15.0 | Vert |
| 77 | 1853.592M | 42.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 38.8 | 54.0 | -15.2 | Vert |
| 78 | 2709.687M | 40.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.8 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.6 \end{array}$ | $+0.0$ | 38.5 | 54.0 | -15.5 | Vert |
|  | $\begin{aligned} & \text { 8128.750M } \\ & \text { Ave } \end{aligned}$ | 22.1 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | +0.0 | 38.0 | 54.0 | -16.0 | Vert |
| $\wedge$ | 8128.750M | 35.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | $+0.0$ | 51.6 | 54.0 | -2.4 | Vert |
| 81 | 8341.070M | 20.9 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | +0.0 | 37.5 | 54.0 | -16.5 | Vert |
| 82 | 933.424M | 26.2 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 29.2 | 46.0 | -16.8 | Horiz |
| 83 | 933.041 M | 26.1 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 29.1 | 46.0 | -16.9 | Vert |

Page 52 of 75

CKC Laboratories, Inc. Date: 12/9/2013 Time: 17:24:27 STMicroelectronics WO\#: 95078 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Sequence\#: 4 Ext ATTN: 0 dB


[^0]* Average Reading
_- 1-15.247(d) / 15.209 Radiated Spurious Emissions

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: STMicroelectronics
Specification: $\quad \mathbf{1 5 . 2 4 7}(\mathrm{d}) / \mathbf{1 5 . 2 0 9}$ Radiated Spurious Emissions
Work Order \#: 95078 Date: 12/16/2013
Test Type:
Equipment:
Maximized Emissions
Time: 12:56:58

Manufacturer
915 MHz Low Power RF Module
Sequence\#: 4

Model:
STMicroelectronics
Tested By: S. Yamamoto

S/N:
SP1ML-915

Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :---: | :--- | :--- | :--- | :--- | :--- |
| T1 | AN02869 | Spectrum Analyzer | E4440A | $2 / 6 / 2013$ | $2 / 6 / 2015$ |
| T2 | ANP04382 | Cable | LDF-50 | $8 / 30 / 2012$ | $8 / 30 / 2014$ |
| T3 | ANP05555 | Cable | RG223/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| T4 | ANP05569 | Cable | RG-214/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| T5 | AN00851 | Biconilog Antenna | CBL6111C | $5 / 16 / 2012$ | $5 / 16 / 2014$ |
| T6 | AN00010 | Preamp | 8447 D | $3 / 29 / 2012$ | $3 / 29 / 2014$ |
|  | AN00314 | Loop Antenna | 6502 | $6 / 29 / 2012$ | $6 / 29 / 2014$ |
| T7 | AN00787 | Preamp | $83017 A$ | $5 / 31 / 2013$ | $5 / 31 / 2015$ |
| T8 | AN01646 | Horn Antenna | 3115 | $4 / 13 / 2012$ | $4 / 13 / 2014$ |
| T9 | ANP06360 | Cable | L1-PNMNM-48 | $8 / 29 / 2012$ | $8 / 29 / 2014$ |
| T10 | AN02946 | Cable | $32022-2-2909 K-$ | $7 / 31 / 2013$ | $7 / 31 / 2015$ |
|  |  |  | 36TC |  |  |
| T11 | AN03169 | High Pass Filter | HM1155-11SS | $7 / 30 / 2013$ | $7 / 30 / 2015$ |

Equipment Under Test $(*=$ EUT $)$ :

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 915 MHz Low Power RF | STMicroelectronics | SP1ML-915 | Unit \#1 |
| Module* |  |  |  |

Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-$ B013481 |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power with MSK. Frequency range of data sheet is 9 kHz to 10 GHz . $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}=\mathrm{VBW}$. $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}=\mathrm{VBW}$. 30MHz1000 MHz RBW $=120 \mathrm{kHz}=$ VBW. $1000 \mathrm{MHz}-10000 \mathrm{MHz}$ RBW $=1 \mathrm{MHz}=\mathrm{VBW}$. Site D. Temperature: $16^{\circ} \mathrm{C}$, Humidity: $41 \%$, Pressure: 100 kPa . Data taken with EUT set to a low, middle, and high channel. Data taken with EUT positioned in each axis system and a total of six orientations.

Ext Attn: 0 dB
Measurement Data: $\quad$ Reading listed by margin. Test Distance: 3 Meters

| \# | Freq $\mathrm{MHz}$ | Rdng $\mathrm{dB} \mu \mathrm{~V}$ | $\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { T9 } \\ & \text { dB } \end{aligned}$ | $\begin{gathered} \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \mathrm{~dB} \end{gathered}$ | $\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \text { dB } \\ \hline \end{gathered}$ | T4 <br> T8 <br> dB | Dist <br> Table | Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$ | Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$ | Margin <br> dB | Polar <br> Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6486.980M | 36.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \\ & \hline \end{aligned}$ | $\begin{array}{r} +10.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | +0.0 | 48.7 | 54.0 | -5.3 | Horiz |
| 2 | 8232.780M | 32.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | +0.0 | 48.6 | 54.0 | -5.4 | Vert |
| 3 | 7221.770M | 34.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} +10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 48.5 | 54.0 | $-5.5$ | Horiz |
| 4 | 1805.550M | 52.0 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.1 \\ & +0.0 \\ & +0.6 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 48.4 | 54.0 | -5.6 | Horiz |
| 5 | 7226.220M | 34.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 48.2 | 54.0 | -5.8 | Vert |
| 6 | 7413.980M | 33.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 48.2 | 54.0 | -5.8 | Horiz |
| 7 | 1806.692M | 51.7 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 48.1 | 54.0 | -5.9 | Horiz |
| 8 | 7226.420M | 34.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} +10.9 \\ +0.0 \\ +1.2 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 48.1 | 54.0 | -5.9 | Horiz |
| 9 | 8237.400M | 31.8 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | +0.0 | 48.1 | 54.0 | -5.9 | Vert |
| 10 | 7221.670 M | 34.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$ | $\begin{array}{r} +10.9 \\ +0.0 \\ +1.2 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 48.1 | 54.0 | -5.9 | Vert |
| 11 | 7321.620 M | 33.8 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} +11.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 48.0 | 54.0 | -6.0 | Horiz |
| 12 | 8124.580M | 31.9 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} +11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | +0.0 | 47.8 | 54.0 | -6.2 | Horiz |
| 13 | 7418.300M | 33.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 47.8 | 54.0 | -6.2 | Horiz |
| 14 | 7418.100M | 33.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 47.8 | 54.0 | -6.2 | Vert |
| 15 | 1829.275M | 51.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.2 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 47.7 | 54.0 | -6.3 | Horiz |


| 16 | 6491.130M | 35.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \end{aligned}$ | $\begin{array}{r} +10.0 \\ +0.0 \\ +1.3 \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | +0.0 | 47.7 | 54.0 | -6.3 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 1853.460M | 51.1 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 47.7 | 54.0 | -6.3 | Horiz |
| 18 | 1853.580M | 51.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 47.6 | 54.0 | -6.4 | Horiz |
| 19 | 7221.580M | 33.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | $+0.0$ | 47.6 | 54.0 | -6.4 | Vert |
| 20 | 1854.377M | 50.9 | $\begin{array}{r} +0.0 \\ +0.0 \\ +2.9 \\ \hline \end{array}$ | $\begin{array}{r} +5.3 \\ +0.0 \\ +0.4 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 47.5 | 54.0 | -6.5 | Horiz |
| 21 | 1830.658M | 51.0 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.2 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 47.5 | 54.0 | -6.5 | Horiz |
| 22 | 7413.750M | 33.0 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.3 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 47.4 | 54.0 | -6.6 | Vert |
| 23 | 6491.280M | 34.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | $+0.0$ | 47.4 | 54.0 | -6.6 | Vert |
| 24 | 896.516M | 37.2 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 39.3 | 46.0 | -6.7 | Horiz |
| 25 | 8124.430M | 31.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | $+0.0$ | 47.2 | 54.0 | -6.8 | Vert |
| 26 | 8237.330M | 30.9 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | $+0.0$ | 47.2 | 54.0 | -6.8 | Horiz |
| 27 | 6406.950M | 35.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.8 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.1 \end{array}$ | $+0.0$ | 47.1 | 54.0 | -6.9 | Vert |
| 28 | 896.971M | 36.8 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 38.9 | 46.0 | -7.1 | Vert |
| 29 | 1830.333M | 50.4 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.2 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 46.9 | 54.0 | -7.1 | Vert |
| 30 | 1854.633M | 50.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 46.8 | 54.0 | -7.2 | Horiz |
| 31 | 1806.558M | 50.3 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | $+0.0$ | 46.7 | 54.0 | -7.3 | Horiz |
| 32 | 1805.367M | 50.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 46.6 | 54.0 | -7.4 | Horiz |

Page 56 of 75

| 33 | 1829.400M | 50.2 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \end{aligned}$ | $\begin{aligned} & \hline+5.2 \\ & +0.0 \\ & +0.5 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 46.6 | 54.0 | -7.4 | Vert |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | 2710.233 M | 48.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \end{aligned}$ | $\begin{aligned} & +5.8 \\ & +0.0 \\ & +0.8 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.7 \end{array}$ | +0.0 | 46.6 | 54.0 | -7.4 | Horiz |
| 35 | 1806.425M | 50.1 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \end{aligned}$ | $\begin{aligned} & \hline+5.1 \\ & +0.0 \\ & +0.6 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 46.5 | 54.0 | -7.5 | Vert |
| 36 | 897.012M | 36.3 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 38.4 | 46.0 | -7.6 | Horiz |
| 37 | 5560.100 M | 36.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.1 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.7 \end{array}$ | +0.0 | 46.3 | 54.0 | -7.7 | Vert |
| 38 | 2745.767M | 47.9 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.8 \end{array}$ | +0.0 | 46.3 | 54.0 | -7.7 | Vert |
| 39 | 2745.725M | 47.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \end{aligned}$ | $\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.8 \end{array}$ | $+0.0$ | 46.2 | 54.0 | -7.8 | Horiz |
| 40 | 6487.070M | 33.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.7 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -38.7 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.3 \end{array}$ | +0.0 | 46.1 | 54.0 | -7.9 | Vert |
| 41 | 7226.280M | 32.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+10.9 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.8 \end{array}$ | +0.0 | 46.1 | 54.0 | -7.9 | Vert |
| 42 | 8129.080M | 30.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | +0.0 | 46.0 | 54.0 | -8.0 | Horiz |
| 43 | 2744.125M | 47.6 | $\begin{array}{r} +0.0 \\ +0.0 \\ +3.4 \\ \hline \end{array}$ | $\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.8 \end{array}$ | +0.0 | 46.0 | 54.0 | -8.0 | Vert |
| 44 | 1853.433M | 49.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 45.9 | 54.0 | -8.1 | Vert |
| 45 | 1805.342M | 49.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 45.7 | 54.0 | -8.3 | Vert |
| 46 | 8340.970M | 29.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | $+0.0$ | 45.6 | 54.0 | -8.4 | Vert |
| 47 | 7317.950M | 31.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 45.5 | 54.0 | -8.5 | Vert |
| 48 | 7322.220 M | 31.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | +0.0 | 45.5 | 54.0 | -8.5 | Vert |
| 49 | 7318.020 M | 31.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.1 \\ +0.0 \\ +1.2 \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.9 \end{array}$ | $+0.0$ | 45.5 | 54.0 | -8.5 | Horiz |


| 50 | 8232.780M | 29.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} +12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.8 \end{array}$ | $+0.0$ | 45.4 | 54.0 | -8.6 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | 8345.500M | 28.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | +0.0 | 45.3 | 54.0 | -8.7 | Vert |
| 52 | 2708.192M | 47.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.8 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.6 \end{array}$ | +0.0 | 45.2 | 54.0 | -8.8 | Horiz |
| 53 | 896.995M | 35.1 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | $+0.0$ | 37.2 | 46.0 | -8.8 | Vert |
| 54 | 2744.142M | 46.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.8 \end{array}$ | +0.0 | 45.1 | 54.0 | -8.9 | Horiz |
| 55 | 896.492M | 34.9 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 37.0 | 46.0 | -9.0 | Vert |
| 56 | 8345.500M | 28.3 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | +0.0 | 44.9 | 54.0 | -9.1 | Horiz |
| 57 | 1854.593 M | 48.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | $+0.0$ | 44.8 | 54.0 | -9.2 | Vert |
| 58 | 896.465M | 34.7 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 36.8 | 46.0 | -9.2 | Horiz |
| 59 | 1806.575M | 48.4 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 44.8 | 54.0 | -9.2 | Vert |
| 60 | 896.995M | 34.5 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{gathered} +3.6 \\ -27.4 \\ +0.0 \end{gathered}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | +0.0 | 36.6 | 46.0 | -9.4 | Vert |
| 61 | 2782.025 M | 45.8 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | $+0.0$ | 44.6 | 54.0 | -9.4 | Horiz |
| 62 | 5489.330M | 34.4 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +5.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+9.1 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.4 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.8 \end{array}$ | +0.0 | 44.5 | 54.0 | -9.5 | Vert |
| 63 | 5494.470M | 34.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.1 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.4 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.8 \end{array}$ | $+0.0$ | 44.5 | 54.0 | -9.5 | Horiz |
| 64 | 2780.267M | 45.6 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | +0.0 | 44.4 | 54.0 | -9.6 | Horiz |
| 65 | 8129.370M | 28.4 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} \hline+0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | +0.0 | 44.3 | 54.0 | -9.7 | Vert |
| 66 | 6323.120M | 32.5 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.9 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.9 \end{array}$ | +0.0 | 44.3 | 54.0 | -9.7 | Vert |

Page 58 of 75

| 67 | 6319.430M | 32.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.9 \\ +0.1 \end{array}$ | $\begin{array}{r} +0.0 \\ +33.9 \end{array}$ | $+0.0$ | 44.2 | 54.0 | -9.8 | Vert |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 68 | 6404.230M | 32.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.8 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.1 \end{array}$ | $+0.0$ | 44.1 | 54.0 | -9.9 | Vert |
| 69 | 1805.317M | 47.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & +5.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.3 \end{array}$ | +0.0 | 44.1 | 54.0 | -9.9 | Vert |
| 70 | 8129.080M | 28.1 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+11.7 \\ +0.0 \\ +1.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.2 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +35.6 \end{array}$ | +0.0 | 44.0 | 54.0 | -10.0 | Vert |
| 71 | 8340.750M | 27.3 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline+12.0 \\ +0.0 \\ +1.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +36.0 \end{array}$ | $+0.0$ | 43.9 | 54.0 | -10.1 | Horiz |
| 72 | 5563.520M | 33.7 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +5.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.2 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.3 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.7 \end{array}$ | +0.0 | 43.9 | 54.0 | -10.1 | Horiz |
| 73 | 897.005M | 33.2 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | $+0.0$ | 35.3 | 46.0 | -10.7 | Horiz |
| 74 | 6403.270M | 31.1 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.8 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +34.1 \end{array}$ | $+0.0$ | 43.2 | 54.0 | -10.8 | Horiz |
| 75 | 6323.230M | 30.8 | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.9 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.9 \end{array}$ | $+0.0$ | 42.6 | 54.0 | -11.4 | Horiz |
| 76 | 896.995M | 32.5 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | $+0.0$ | 34.6 | 46.0 | -11.4 | Vert |
| 77 | 6319.230M | 30.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & +9.9 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -38.9 \\ +0.1 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +33.9 \end{array}$ | $+0.0$ | 42.5 | 54.0 | -11.5 | Horiz |
| 78 | 896.482M | 32.3 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | $+0.0$ | 34.4 | 46.0 | -11.6 | Horiz |
| 79 | 2781.867M | 43.6 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | +0.0 | 42.4 | 54.0 | -11.6 | Horiz |
| 80 | 2780.108M | 43.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ |  | 41.8 | 54.0 | -12.2 | Horiz |
| 81 | 932.977 M | 30.7 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$ | $+0.0$ | 33.7 | 46.0 | -12.3 | Horiz |
| 82 | 896.468M | 31.4 | $\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$ | $+0.0$ | 33.5 | 46.0 | -12.5 | Horiz |
| 83 | 2780.192M | 42.4 | $\begin{array}{r} +0.0 \\ +0.0 \\ +3.5 \\ \hline \end{array}$ | $\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | +0.0 | 41.2 | 54.0 | -12.8 | Vert |

Page 59 of 75

| 84 | 932.977M | 29.3 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 32.3 | 46.0 | -13.7 | Vert |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 85 | 933.541M | 29.0 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+3.6 \\ -27.3 \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 32.0 | 46.0 | -14.0 | Horiz |
| 86 | 933.507M | 28.9 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \end{array}$ | $\begin{array}{r} +0.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 31.9 | 46.0 | -14.1 | Vert |
| 87 | 2781.667M | 41.0 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \end{aligned}$ | $\begin{aligned} & \hline+6.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \end{array}$ | $\begin{array}{r} +0.0 \\ +28.0 \end{array}$ | +0.0 | 39.8 | 54.0 | -14.2 | Vert |
| 88 | 933.520M | 28.6 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 31.6 | 46.0 | -14.4 | Horiz |
| 89 | 2709.942M | 41.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \end{aligned}$ | $\begin{aligned} & +5.8 \\ & +0.0 \\ & +0.8 \end{aligned}$ | $\begin{gathered} +0.0 \\ -39.7 \\ +0.2 \end{gathered}$ | $\begin{array}{r} +0.0 \\ +27.6 \end{array}$ | +0.0 | 39.3 | 54.0 | -14.7 | Vert |
| 90 | 933.527M | 28.1 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \end{array}$ | $\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 31.1 | 46.0 | -14.9 | Vert |
| 91 | 933.007M | 27.6 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$ | $\begin{array}{r} +0.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 30.6 | 46.0 | -15.4 | Vert |
| 92 | 1853.460M | 41.9 | $\begin{array}{r} +0.0 \\ +0.0 \\ +2.9 \end{array}$ | $\begin{array}{r} +5.3 \\ +0.0 \\ +0.4 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 38.5 | 54.0 | -15.5 | Horiz |
| 93 | 1854.510M | 41.8 | $\begin{array}{r} +0.0 \\ +0.0 \\ +2.9 \\ \hline \end{array}$ | $\begin{array}{r} +5.3 \\ +0.0 \\ +0.4 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.3 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.4 \end{array}$ | +0.0 | 38.4 | 54.0 | -15.6 | Horiz |
| 94 | 2708.150M | 40.3 | $\begin{array}{r} +0.0 \\ +0.0 \\ +3.4 \\ \hline \end{array}$ | $\begin{aligned} & +5.8 \\ & +0.0 \\ & +0.8 \end{aligned}$ | $\begin{array}{r} +0.0 \\ -39.7 \\ +0.2 \\ \hline \end{array}$ | $\begin{array}{r} +0.0 \\ +27.6 \end{array}$ | +0.0 | 38.4 | 54.0 | -15.6 | Vert |
| 95 | 932.984M | 27.3 | $\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \end{array}$ | $\begin{array}{r} +3.6 \\ -27.3 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+0.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$ | +0.0 | 30.3 | 46.0 | -15.7 | Horiz |

CKC Laboratories, Inc. Date: 12/16/2013 Time: 12:56:58 STMicroelectronics WO\#: 95078 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Sequence\#: 4 Ext ATTN: 0 dB


[^1]1-15.247(d) / 15.209 Radiated Spurious Emissions

## Band Edge Compliance

## Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: STMicroelectronics
Work Order \#: $95078 \quad$ Date: $12 / 6,9,10 / 2013$
Test Type: Band Edge Compliance
Equipment: $\quad 915 \mathbf{M H z}$ Low Power RF Module
Manufacturer: STMicroelectronics Tested By: S. Yamamoto
Model: SP1ML-915
S/N: Unit \#1
Test Equipment:

| Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- |
| AN02869 | Spectrum Analyzer | E4440A | $2 / 6 / 2013$ | $2 / 6 / 2015$ |
| ANP04382 | Cable | LDF-50 | $8 / 30 / 2012$ | $8 / 30 / 2014$ |
| ANP05555 | Cable | RG223/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| ANP05569 | Cable | RG-214/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| AN00851 | Biconilog Antenna | CBL6111C | $5 / 16 / 2012$ | $5 / 16 / 2014$ |

## Equipment Under Test (* = EUT):

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 915 MHz Low Power RF <br> Module* | STMicroelectronics | SP1ML-915 | Unit \#1 |

## Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-$ B013481 |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power to the integral antenna with 2FSK, GFSK, or MSK. Frequency range of test 902 MHz to 928 MHz . Operating range of EUT 902 MHz to 928 MHz . RBW $=100 \mathrm{kHz}$, VBW $=300 \mathrm{kHz}$. Site D. Temperature: $21^{\circ} \mathrm{C}$, Humidity: $38 \%$, Pressure: 100 kPa .

Test Data


Low channel 2FSK


High channel 2FSK


Low channel GFSK


High channel GFSK


Low channel MSK


High channel MSK

Test Setup Photos


Test Setup

### 15.247(e) Power Spectral Density

## Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112
Customer: STMicroelectronics
Specification: 15.247(e)
Work Order \#:
95078
Test Type:
Equipment:
Manufacturer:
Power Spectral Density
915 MHz Low Power RF Module
Model: SP1ML-915
S/N: Unit \#1
Test Equipment:

| Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- |
| AN02869 | Spectrum Analyzer | E4440A | $2 / 6 / 2013$ | $2 / 6 / 2015$ |
| ANP04382 | Cable | LDF-50 | $8 / 30 / 2012$ | $8 / 30 / 2014$ |
| ANP05555 | Cable | RG223/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| ANP05569 | Cable | RG-214/U | $6 / 19 / 2012$ | $6 / 19 / 2014$ |
| AN00851 | Biconilog Antenna | CBL6111C | $5 / 16 / 2012$ | $5 / 16 / 2014$ |

Equipment Under Test (* = EUT):

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 915 MHz Low Power RF | STMicroelectronics | SP1ML-915 | Unit \#1 |
| Module* |  |  |  |

## Support Devices:

| Function | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Module Dev Board | STMicroelectronics | SPIRIT1 | 05 |
| AC to USB Power Adapter | Rhino | PSNC-75M | $12-\mathrm{B} 013481$ |

## Test Conditions / Notes:

The equipment under test (EUT) is installed on the module dev board. The module dev board and EUT are powered from the USB cable port on the module dev board. The USB cable is connected to an AC to USB power adapter. The EUT is continuously transmitting at its rated maximum power to the integral antenna. Frequency range of test 902 MHz to 928 MHz . Operating range of EUT 902 MHz to 928 MHz . RBW=620kHz, VBW=3MHz for 2FSK and GFSK. RBW $=750 \mathrm{kHz}, \mathrm{VBW}=3 \mathrm{MHz}$ for MSK. Power spectral density RBW=3kHz, VBW=10kHz. Site D. Data taken with EUT set to a low, middle and high channel. Temperature: $21^{\circ} \mathrm{C}$, Humidity: $38 \%$, Pressure: 100 kPa .

### 15.247(e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

## Data plots

LABORATORIES, INC.

The peak output power was measured using a peak radiated emissions measurement due to EUT uses an integral antenna. The radiated measurement was used to calculate an equivalent maximum peak conducted output power in accordance with ANSI C63.10. The spectrum analyzer offset was adjusted so that the yellow trace read the calculated value for maximum peak conducted output power. The blue trace indicates the power spectral density taken with a 3 kHz bandwidth. The peak amplitude of the blue trace is compared with the 8 dBm limit (green display line on plot).

Test Data


Copyright 2000-2006 Agilent Technologies

Low channel 2FSK


LABORATORIES, INC.


Middle channel 2FSK


High channel 2FSK

LABORATORIES, INC.


Low channel GFSK


File Operation Status, C:ITEMP.WMF file saved

Middle channel GFSK


High channel GFSK


Low channel MSK


Middle channel MSK


High channel MSK

Test Setup Photos


Test Setup

## SUPPLEMENTAL INFORMATION

## Measurement Uncertainty

| Uncertainty Value | Parameter |
| :---: | :---: |
| 4.73 dB | Radiated Emissions |
| 3.34 dB | Mains Conducted Emissions |
| 3.30 dB | Disturbance Power |

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the $95 \%$ confidence level using a coverage factor of $k=2$. Compliance is deemed to occur provided measurements are below the specified limits.

## Emissions Test Details

TESTING PARAMETERS
Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

## CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

| SAMPLE CALCULATIONS |  |  |  |
| :--- | :--- | :--- | :---: |
|  | Meter reading | $(\mathrm{dB} \mathrm{\mu V})$ |  |
| + | Antenna Factor | $(\mathrm{dB})$ |  |
| + | Cable Loss | $(\mathrm{dB})$ |  |
| - | Distance Correction | $(\mathrm{dB})$ |  |
| - | Preamplifier Gain | $(\mathrm{dB})$ |  |
| $=$ | Corrected Reading | $(\mathrm{dB} \mathrm{\mu V/m)}$ |  |

## TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE |  |  |  |
| :---: | :---: | :---: | :---: |
| TEST | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
| CONDUCTED EMISSIONS | 150 kHz | 30 MHz | 9 kHz |
| RADIATED EMISSIONS | 9 kHz | 150 kHz | 200 Hz |
| RADIATED EMISSIONS | 150 kHz | 30 MHz | 9 kHz |
| RADIATED EMISSIONS | 30 MHz | 1000 MHz | 120 kHz |
| RADIATED EMISSIONS | 1000 MHz | $>1 \mathrm{GHz}$ | 1 MHz |

## SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

## Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

## Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

## Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.


[^0]:    - Readings QP Readings
    - Ambient

[^1]:    - Readings QP Readings
    - Ambient

