

DFS PORTION OF FCC CFR47 PART 15 SUBPART E DFS PORTION OF INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11a/b/g/n 2x2 MIMO MASTER DEVICE

MODEL NUMBER: ZONEFLEX 7055

FCC ID: S9GZF7055 IC: 5912A-ZF7055

REPORT NUMBER: 12U14738-1

ISSUE DATE: DECEMBER 21, 2012

Prepared for RUCKUS WIRELESS, INC. 350 WEST JAVA DRIVE SUNNYVALE, CA 94089, U.S.A.

Prepared by UL CCS 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	12/21/12	Initial Issue	T. Lee

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 2 of 70

TABLE OF CONTENTS

1.	ATTE	STATION OF TEST RESULTS	4
2.	TEST	METHODOLOGY	5
3.	FACIL	LITIES AND ACCREDITATION	5
4.	CALIE	BRATION AND UNCERTAINTY	5
2	4.1. I	MEASURING INSTRUMENT CALIBRATION	5
4	1.2.	SAMPLE CALCULATION	5
2	4.3. I	MEASUREMENT UNCERTAINTY	5
5.	DYNA	AMIC FREQUENCY SELECTION	6
ţ	5. <i>1.</i> (5.1.1. 5.1.2. 5.1.3. 5.1.4.	TEST AND MEASUREMENT SYSTEM	6 9 2
ł	5.2. 5.2.1. 5.2.2. 5.2.3. 5.2.4. 5.2.5. 5.2.6. 5.2.7.	RADAR WAVEFORMS AND TRAFFIC14CHANNEL AVAILABILITY CHECK TIME21OVERLAPPING CHANNEL TESTS26MOVE AND CLOSING TIME26DETECTION BANDWIDTH32	4 4 6 2
ł	5.3. 5.3.1. 5.3.2. 5.3.3. 5.3.4. 5.3.5. 5.3.6. 5.3.7. 5.3.8.	RADAR WAVEFORMS AND TRAFFIC41CHANNEL AVAILABILITY CHECK TIME48OVERLAPPING CHANNEL TESTS53MOVE AND CLOSING TIME53NON-OCCUPANCY PERIOD59DETECTION BANDWIDTH60	1 1 3 3 9 0
6.	SETU	P PHOTOS	9

Page 3 of 70

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	RUCKUS WIRELESS, INC. 350 WEST JAVA DRIVE SUNNYVALE, CA 94089, U.S.A.
EUT DESCRIPTION:	802.11a/b/g/n 2x2 MIMO MASTER DEVICE
MODEL:	ZONEFLEX 7055
SERIAL NUMBER:	431202001945
DATE TESTED:	DECEMBER 17, 2012
F	

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
DFS Portion of CFR 47 Part 15 Subpart E	Pass				
DFS Portion of INDUSTRY CANADA RSS-210 Issue 8 Annex 9	Pass				

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

TIM LEE WISE PROGRAM MANAGER UL CCS

Tested By:

Douclas Combuser

DOUG ANDERSON EMC ENGINEER **UL CCS**

UL CCS

Page 4 of 70

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, ANSI C63.10-2009, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MEASUREMENT UNCERTAINTY 4.3.

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 70

5. DYNAMIC FREQUENCY SELECTION

5.1. OVERVIEW

5.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Page 6 of 70

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode			
	Master	Client (without radar detection)	Client (with radar detection)	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
Uniform Spreading	Yes	Not required	Not required	

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode			
	Master	Client	Client	
		(without DFS)	(with DFS)	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm
Note 1: This is the level at the input of the receiver as Note 2: Throughout these test procedures an addition of the test transmission waveforms to account for var will ensure that the test signal is at or above the dete response.	nal 1 dB has been added to the amplitude riations in measurement equipment. This

Page 7 of 70

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds +
	approx. 60 milliseconds
	over remaining 10 second
	period

The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the *Burst*.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

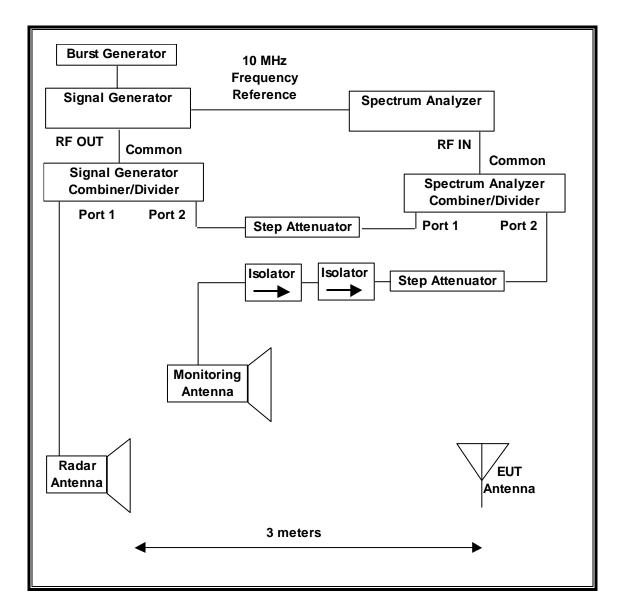
Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum		
Туре	Type (Microseconds)			Percentage of	Trials		
				Successful			
				Detection			
1	1	1428	18	60%	30		
2	1-5	150-230	23-29	60%	30		
3	6-10	200-500	16-18	60%	30		
4	11-20	200-500	12-16	60%	30		
Aggregate (F	Aggregate (Radar Types 1-4) 80% 120						

Table 6 – Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30

Table 7 – Frequency Hopping Radar Test Signal


	-						
Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)	,	(ms)	Нор	(kHz)	Successful	
	/		. ,	•		Detection	
6	1	333	300	9	.333	70%	30

UL CCS

Page 8 of 70

5.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 9 of 70

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

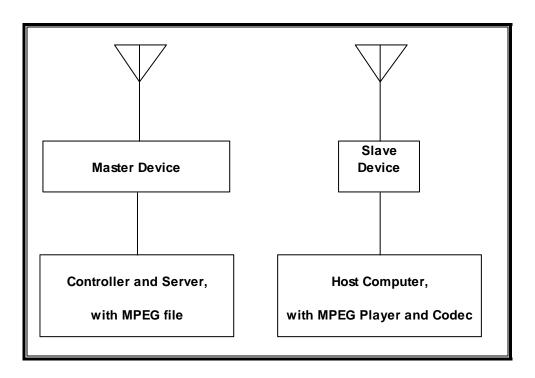
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Page 10 of 70

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT


The following test and measurement equipment was utilized for the DFS tests documented in this report:

Т	EST EQUIPMENT	LIST		
Description	Manufacturer	Model	Serial Number	Cal Due
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/18/13
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	11/20/13
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	09/25/13

Page 11 of 70

5.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

P	ERIPHERAL SUP	PORT EQUIPMEN	T LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
P.O.E. Injector (EUT)	Ruckus Wireless	NPE-5818	None	N/A
AC Adapter (P.O.E. Injector)	PEC	PA1060- 480T1A125	1050	DoC
Notebook PC (Controller/Server)	Dell	PP18L	24863465053	DoC
AC Adapter (Controller PC)	Lite On Technology	LA65NS0-00	CN-0DF266-71615- 941-1194	DoC
Notebook PC (Host)	Apple	A1286	C02GM3MKDV7N	DoC
AC Adapter (Host PC)	Dongguan Samsung Electro- Mechanics	A1344	RR1340BU8AL3A	DoC
802.11a/n Multi-Media Adapter (Slave Radio Device)	Ruckus Wireless	VF7111	02292	S9GVF7XX1
AC Adapter (Slave Device)	Ruckus Wireless	DSA-12R-12AUS 120120	01031	DoC

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

5.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding operation in the 5600 to 5650 MHz band.

The EUT is a Master Device.

The highest power level within these bands is 25.06 dBm EIRP in the 5250-5350 MHz band and 24.96 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT has a gain of 5.4 dBi.

Two identical antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to an antenna to perform radiated tests.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using media player, VLC version 1.1.12 at the slave and VLC version 0.9a at the master.

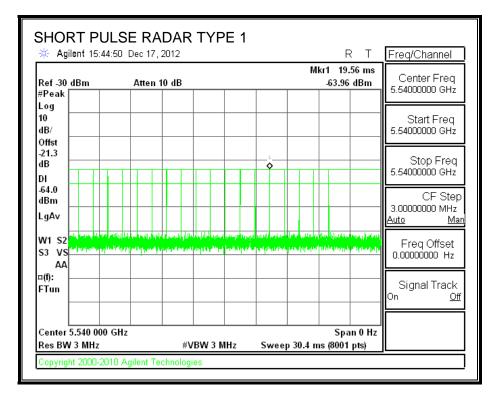
TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. Two nominal channel bandwidths are implemented: 20 MHz and 40 MHz.

The software installed in the access point is revision 9.6.0.177.

UNIFORM CHANNEL SPREADING

See Manufacturer's Attestation.


5.2. RESULTS FOR 20 MHz BANDWIDTH

5.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5540 MHz.

5.2.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 14 of 70

🔆 Agi	ient 16	:47:	03	L)ec	17	, 2	U1.	2											F	I	Fre)/p{	Jha	nne	
Ref-30 #Peak∣	dBm				At	ten	10) d	B			 Т		 	Τ				r1 -64		 ms 3m			iter 000(
Log 10 dB/ Offst																						5.5		art 0000		
-21.3 dB DI						п				Π	_					>						5.5		top 000(
-64.0 dBm																						3.0)000	CF	= St	
LgAv W1 S2 S3 VS AA	en de alter A legitation																						- Fre	q C 1000	ffse	
¤(f): FTun																						On	Sigr	nal ⁻	Tra	:k <u>Of</u> f
Center Dec RM	5.540 0 / 3 MHz		GH	z						BV	v :		47	 	<u> </u>		 10	.13 ו		•	0 Hz					

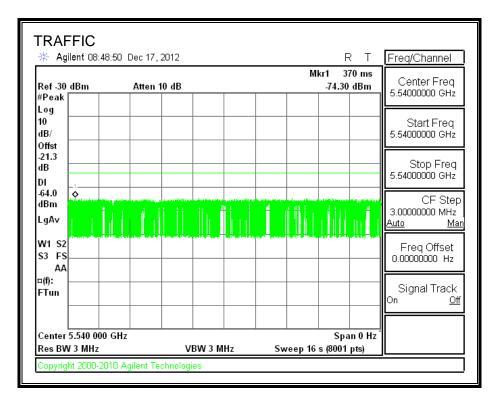
Page 15 of 70

🔆 Agi		 		-									 	 			м	kr1		२ 97	ms	┑╠	109	/Cha		-
Ref-30 #Peak∣	dBm	 			Att	ten	1	0 (dΒ												Bm	-		enter 10000		
Log 10 dB/ Offst																						- [Start 10000		
-21.3 dB DI		0						_														Ę		Stop)0000		
-64.0 dBm LgAv																							3.000	C 10000		itep IHz <u>Mar</u>
W1 S2 S3 VS AA																					ille diş slatlıştır			eq (
¤(f): FTun																							Si('n	gnal	Tra	ick <u>Off</u>
Center Res BW		 00 (GH	z						#14	/B\	N :	 III 2	 	 	15 4	7 m	IS (8	•		0 Hz					

Page 16 of 70

🔆 Agilei	nt 15:4	19:26	De	ec 17	, 20	12					F		Freq/Channel
Ref-30 d£ #Peak ∏	Bm		4	Atten	10	dB				M	kr1 1.8 -64.00	94 ms dBm	Center Freq 5.54000000 GHz
Log 10 dB/ Offst													Start Freq 5.54000000 GHz
-21.3 dB			•										Stop Freq 5.54000000 GHz
-64.0 dBm LgAv													CF Step 3.00000000 MHz <u>Auto Mar</u>
W1 S2 S3 VS										urten (end uffigurer)			Freq Offset 0.00000000 Hz
⊐(f): FTun													Signal Track On <u>Off</u>
Center 5. Res BW 3		0 GH	 z			#	3W 3 N	147	Sween	10.13 m		in 0 Hz	

Page 17 of 70


SAMPLE OF SINGL		RADAR TYPE 5	Freq/Channel
Ref-30 dBm Atten 1 #Peak	0 dB	Mkr1 4.763 ms -64.00 dBm	Center Freq 5.54000000 GHz
Log 10 dB/ Offst			Start Freq 5.54000000 GHz
-21.3 dB DI		×	Stop Freq 5.54000000 GHz
-64.0 dBm LgAv			CF Step 3.00000000 MHz <u>Auto Mar</u>
		ti terdena, setarah di adastara dalambira Adati di bila bata dari pangati ta pangana	
¤(f): FTun			Signal Track On <u>Off</u>
Center 5.540 000 GHz Res BW 3 MHz	#VBW 3 MHz	Span 0 Hz Sweep 8 ms (8001 pts)	

Page 18 of 70

#Peak Log 10								-64.02	dBm	Center Freq 5.54000000 GHz
dB/ Offst										Start Freq 5.54000000 GHz
-21.3 dB				1						Stop Freq 5.54000000 GHz
-64.0 dBm LgAv										CF Step 3.00000000 MHz <u>Auto Ma</u> i
W1 S2 (1) S3 VS AA 11	astintinia mirija	et solpton Without we	le na kana Na kana	and you are	lan dan k	llyddiad yn a Myddiad yn ar	ne entri P Nilentela pè	nan lada Alabankan	ulionegilen Nergenenig	
¤(f): FTun						. 1				Signal Track On <u>Off</u>

Page 19 of 70

TRAFFIC

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 20 of 70

5.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

Page 21 of 70

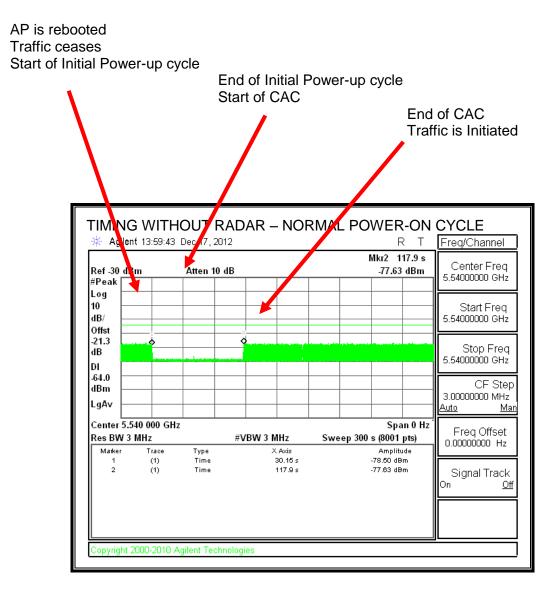
QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
30.15	117.8	87.7	27.7

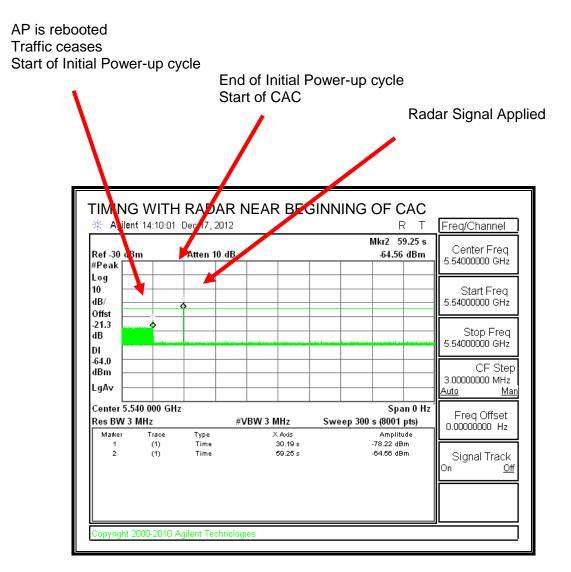
Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.19	59.3	29.1	1.4


Radar Near End of CAC

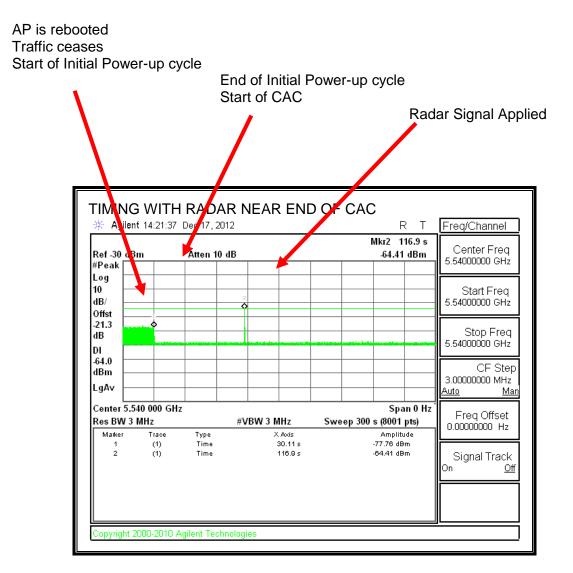
Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.11	116.9	86.8	59.1

QUALITATIVE RESULTS


Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.


TIMING WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

Page 24 of 70

TIMING WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

Page 25 of 70

5.2.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

5.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

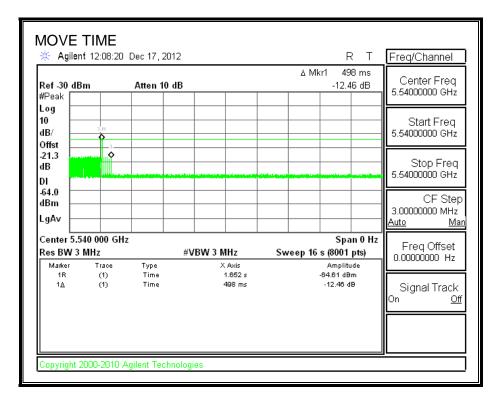
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

```
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)
```

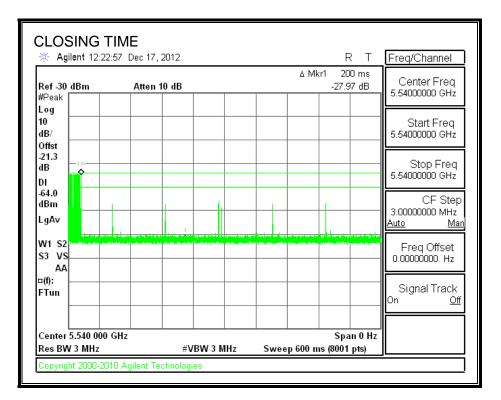
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).


The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

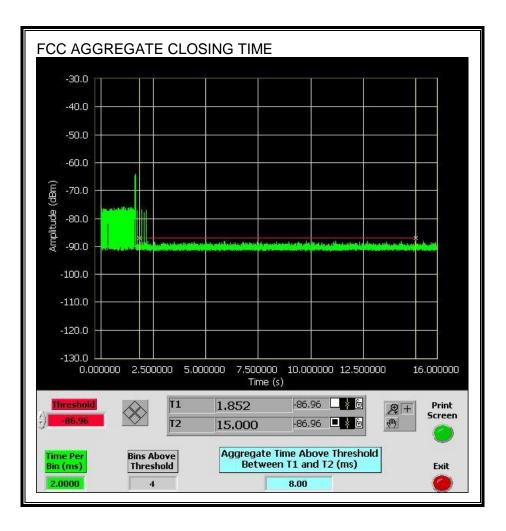
Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.498	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	8.0	60
IC	12.0	260

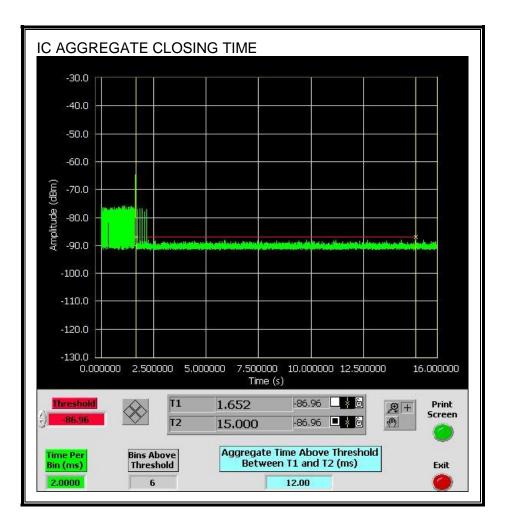

MOVE TIME

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 27 of 70

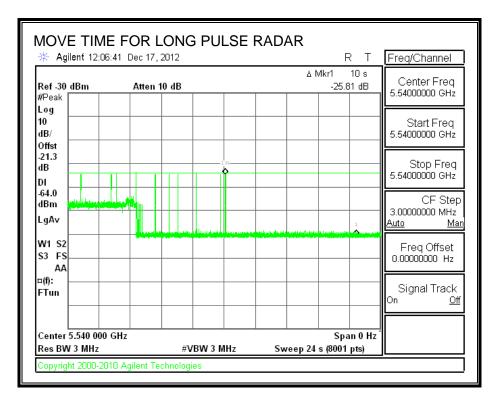

CHANNEL CLOSING TIME

Page 28 of 70


AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.

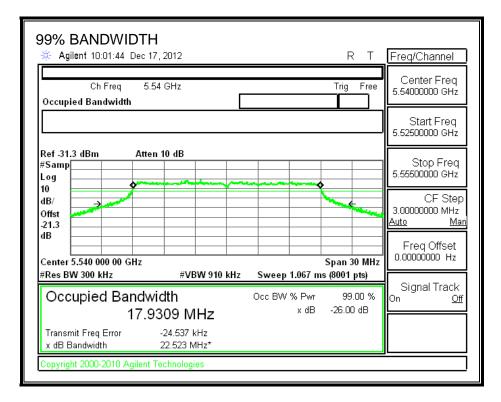
Page 29 of 70


Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 30 of 70

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.



UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 31 of 70

5.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5532	5548	16	17.931	89.2	80

Page 32 of 70

DETECTION BANDWIDTH PROBABILITY

	NDWIDTH PROBAB			
	dwidth Test Results			
ECC Type 1 W	aveform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per l	Burst
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5532	10	10	100	FL
5533	10	10	100	
5534	10	10	100	
5535	10	10	100	
5536	10	10	100	
5537	10	10	100	
5538	10	10	100	
5539	10	10	100	
5540	10	10	100	
5541	10	10	100	
5542	10	10	100	
5543	10	10	100	
5544	10	10	100	
5545	10	10	100	
5546	10	10	100	
5547	10	10	100	
5548	10	10	100	FH

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 33 of 70

5.2.7. IN-SERVICE MONITORING

RESULTS

CC Radar Test Summ	ary			
Signal Type	Number of Trials	Detection (%)	Limit (%)	Pass/Fail
FCC Short Pulse Type 1	30	93.33	60	Pass
FCC Short Pulse Type 2	30	96.67	60	Pass
FCC Short Pulse Type 3	30	93.33	60	Pass
FCC Short Pulse Type 4	30	93.33	60	Pass
Aggregate		94.17	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	34	94.12	70	Pass

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 34 of 70

TYPE 1 DETECTION PROBABILITY

us Pulse Width, 14	28 us PRI, 18 Pulses per Burst	
Trial	Successful Detection	
	(Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	No	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	No	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 35 of 70

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	2.8	211.00	26	Yes
2002	2.7	208.00	24	Yes
2003	1.4	197.00	26	Yes
2004	1.2	185.00	25	Yes
2005	4.8	192.00	23	Yes
2006	4.8	215.00	28	Yes
2007	1	225.00	29	Yes
2008	2.5	206.00	29	Yes
2009	1.7	189.00	24	Yes
2010	2.5	150.00	27	Yes
2011	4.5	217.00	25	Yes
2012	2.2	215.00	23	Yes
2013	1.5	223.00	29	Yes
2014	4.9	186.00	26	Yes
2015	3	153.00	26	Yes
2016	2.4	167.00	27	Yes
2017	3.5	173.00	23	Yes
2018	3.1	158.00	24	Yes
2019	2.4	153.00	29	Yes
2020	4	171.00	24	Yes
2021	2.7	181.00	28	Yes
2022	2.8	155.00	25	No
2023	3.6	198.00	25	Yes
2024	4.8	173.00	29	Yes
2025	1.4	190.00	25	Yes
2026	3.7	220.00	24	Yes
2027	1.9	205.00	23	Yes
2028	2.3	161.00	27	Yes
2029	2.2	152.00	26	Yes
2030	1.7	184.00	25	Yes

Page 36 of 70

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	9.8	323.00	17	Yes
3002	9.8	377.00	18	Yes
3003	8.7	398.00	18	Yes
3004	5.2	259.00	18	Yes
3005	7.4	495.00	16	Yes
3006	9.3	269.00	16	Yes
3007	5.7	457.00	18	Yes
3008	8.2	255.00	18	Yes
3009	5.4	286.00	17	No
3010	9.9	382.00	17	Yes
3011	7.4	500.00	16	Yes
3012	5.6	321.00	17	Yes
3013	5.4	286.00	17	Yes
3014	6.9	294.00	18	Yes
3015	8	386.00	18	Yes
3016	9.3	446.00	17	Yes
3017	7	278.00	16	Yes
3018	6.7	498.00	18	Yes
3019	5.7	287.00	17	Yes
3020	8.1	446.00	17	No
3021	6.4	491.00	17	Yes
3022	6	403.00	16	Yes
3023	8.1	440.00	16	Yes
3024	9.2	476.00	18	Yes
3025	6.3	296.00	18	Yes
3026	8.2	436.00	17	Yes
3027	7.6	257.00	16	Yes
3028	7.5	472.00	16	Yes
3029	9.3	347	18	Yes
3030	6.2	445	18	Yes

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	15	297.00	12	Yes
4002	18.4	431.00	13	Yes
4003	11.6	371.00	16	Yes
4004	10.7	442.00	16	Yes
4005	14.3	358.00	14	Yes
4006	10.1	441.00	12	Yes
4007	17.8	403.00	14	Yes
4008	13.4	375.00	12	Yes
4009	10.1	420.00	15	Yes
4010	19.2	486.00	14	Yes
4011	14.2	407.00	14	Yes
4012	10.5	395.00	13	Yes
4013	15.4	422.00	12	Yes
4014	12.4	264.00	16	Yes
4015	12.6	299.00	13	Yes
4016	11.8	276.00	15	Yes
4017	19.5	381.00	12	Yes
4018	11.2	357.00	15	Yes
4019	19.9	462.00	13	Yes
4020	16.5	292.00	14	Yes
4021	17.7	471.00	16	Yes
4022	13.4	335.00	16	Yes
4023	14.7	495.00	16	No
4024	19.6	433.00	14	Yes
4025	13.7	476.00	16	Yes
4026	19.4	478.00	16	Yes
4027	11.1	294.00	15	Yes
4028	10.2	314.00	15	No
4029	15.8	410.00	12	Yes
4030	12.2	410.00	16	Yes

Page 38 of 70

TYPE 5 DETECTION PROBABILITY

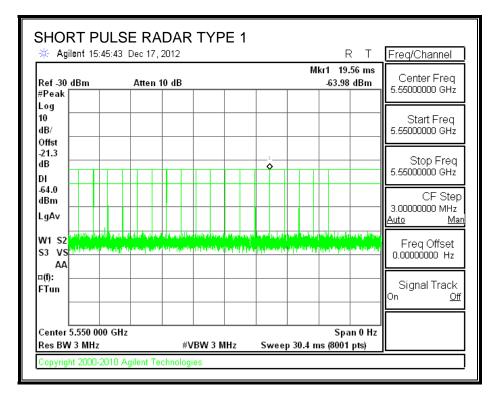
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

1 us Pulse	t for FCC Hopping Rada e Width, 333 us PRI, ust 2005 Hopping Se	9 Pulses per Burst,	1 Burst per Hop	
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	279	5532	1	No
2	754	5533	5	Yes
3	1229	5534	5	Yes
4	1704	5535	4	Yes
5	2179	5536	2	Yes
6	3129	5537	1	Yes
7	4079	5538	6	Yes
8	4554	5539	3	Yes
9	5029	5540	4	Yes
10	5504	5541	7	Yes
11	5979	5542	5	Yes
12	6454	5543	5	Yes
13	6929	5544	7	Yes
14	7404	5545	5	Yes
15	7879	5546	4	Yes
16	8354	5547	2	Yes
17	8829	5548	5	Yes
18	9304	5532	5	Yes
19	10254	5533	1	No
20	10729	5534	2	Yes
21	11204	5535	4	Yes
22	11679	5536	3	Yes
23	12154	5537	4	Yes
24	12629	5538	5	Yes
25	13104	5539	2	Yes
26	13579	5540	5	Yes
27	14054	5541	4	Yes
28	14529	5542	4	Yes
29	15004	5543	5	Yes
30	15479	5544	3	Yes
31	15954	5545	2	Yes
32	16429	5546	5	Yes
33	16904	5547	2	Yes
34	17379	5548	3	Yes

Page 40 of 70


5.3. RESULTS FOR 40 MHz BANDWIDTH

5.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5550 MHz.

5.3.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 41 of 70

🔆 Agi	ilent 15	:46	:15	5 [Der	: 1	7,	20)12	2																		R	Т	-	Fre	eq/	′Ch	anr	nel	_
Ref-30 #Peak∣	dBm				A	tte	n	10	d	B					Т										Mk				5 m IBn						req GHz	
Log 10 dB/ Offst																															5.5		tar 000		req GHz	
-21.3 dB DI							<u>п</u>							_						1_ \$										_	5.5				req GHz	
-64.0 dBm																			1												3.0	000			Ste MHz	
LgAv W1 S2 S3 VS AA	lanna an Disigna	4414 - 1444		vi -	141		ηı ü.i		1,1	n) rif	- - -		1 ¹¹	11		1.1	1	4		- 4	ulte dite	())) (†)	nu dit	N an In A land	." -"	han' (" () ;	11 11		lider Alth	unk 4 ₁ -1	<u>Aut</u>	Fr	eq 1			-
¤(f): FTun																															S On	Sig	gnal	Tr	ack <u>0</u>	
Center Pos BW	5.550 0 / 3 MHz		Gł	łz						#		BV	N -	3		H-7							10	13			Sp 001		0 H	-lz						

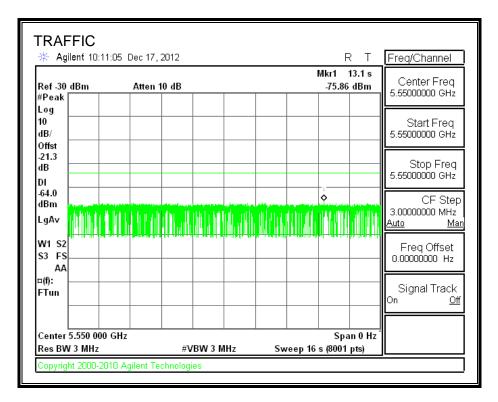
Page 42 of 70

🔆 Agi	lent	15:	48	:US	1	De	с 1	Ζ,	20	J1	2										2	I	-12	Frec	/Ch	ann	el
Ref-30 #Peak∣	dBn	1				A	tte	n	10	d	в							M				5 ms Bm		Ce 5.55	ente Doool		
Log 10 dB/ Offst																								5.55	Star 2000		
-21.3 dB DI				_	1 >			T																5.55	Stoj 2000		
-64.0 dBm LgAv																								3.00 <u>Auto</u>			Step 1Hz <u>Mar</u>
W1 S2 S3 VS AA															itudijevi zajilati ju									F 0.00	req (0000	Offs 100	iet Hz
¤(f): FTun																								Si On	gnal	Tra	ack <u>Off</u>
Center Res BW				GI	Ιz							 BV	V 3	 M	H7	Swe	 15 /	17 17	1000	•		0 Hz					

Page 43 of 70

🔆 Agilen	t 15:4	8:48	i L	Jec.	17,	201.	2						 F		Freq/Channel
Ref₋30 dB #Peak	m			Att	en í	0 d	В	Τ				N	 	95 ms dBm	Center Freq 5.55000000 GHz
Log 10 dB/ Offst															Start Freq 5.5500000 GHz
-21.3 dB		1					T								Stop Freq 5.5500000 GHz
-64.0 dBm LgA∨															CF Step 3.0000000 MHz <u>Auto Ma</u>
W1 S2 S3 VS AA														ala kada	
⊐(f): FTun															Signal Track
Center 5.5 Res BW 3		0 Gł	łz				#\		W 3 N	/H-7	 	10.13	•	in 0 Hz	J

Page 44 of 70


🔆 Agi	ilent 15	:50:54	Dec 17,	2012					F		Freq/Channel
Ref-30 #Peak	dBm		Atten 1	10 dB				M	kr1 1. -64.06	01 ms dBm	Center Freq 5.55000000 GHz
Log 10 dB/ Offst											Start Freq 5.55000000 GHz
-21.3 dB DI											Stop Freq 5.55000000 GHz
-64.0 dBm LgA∨											CF Step 3.00000000 MHz <u>Auto Mar</u>
								harreshha Namendalar			
¤(f): FTun											Signal Track On <u>Off</u>
Center Res BW				#\	/BW 3 N	 /Hz	Sw	veep 8 m	•	n 0 Hz pts)	

Page 45 of 70

	•				Mkr1 2.332 m	Contor Frod
Ref -30 dBm #Peak	Atten	10 dB			-63.99 dBm	5.55000000 GHz
Log 10 dB/ Offst						Start Freq 5.55000000 GHz
-21.3 dB			1 O			Stop Freq 5.5500000 GHz
-64.0 dBm						CF Step 3.0000000 MHz
W1 S2 Division S3 VS AA	un e tana in televitar Na lahiti philatati		n a selve beter Hiller	an mathiatha Alkana A' freenn Allia ta bh	uterte di data para da	Freq Offset 0.00000000 Hz
¤(f): FTun						Signal Track On
Center 5.550 000) GHz				Span 0 H	

Page 46 of 70

TRAFFIC

Page 47 of 70

5.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

Page 48 of 70

QUANTITATIVE RESULTS

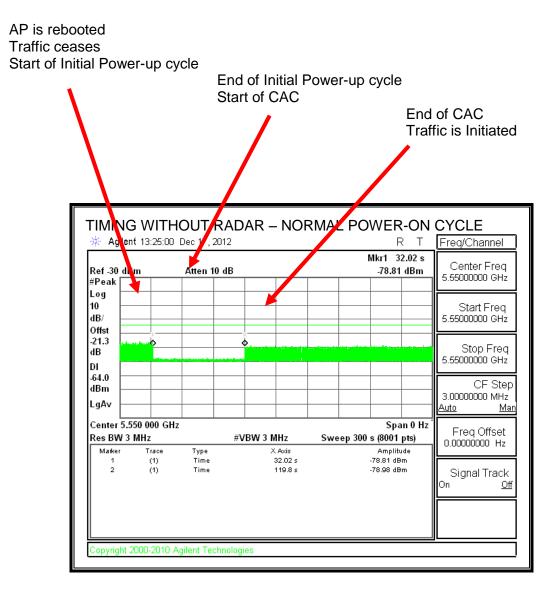
No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
32.02	119.8	87.8	27.8

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.3	59.0	28.7	0.9

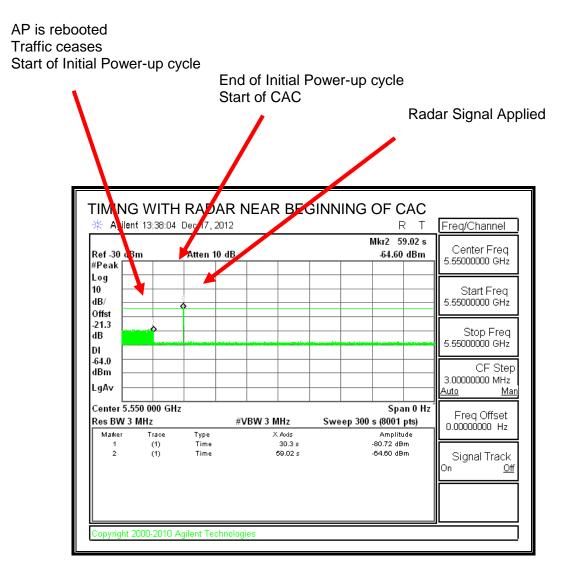
Radar Near End of CAC


Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.23	117.1	86.9	59.1

QUALITATIVE RESULTS

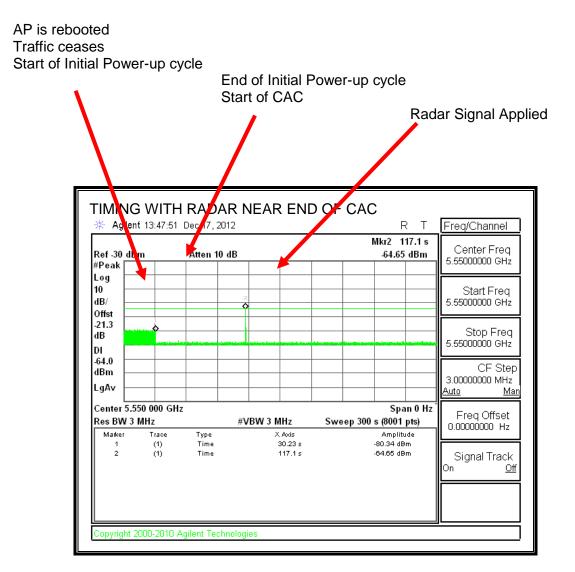
Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

Page 49 of 70


TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

Page 50 of 70


TIMING WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

Page 51 of 70

TIMING WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

Page 52 of 70

5.3.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

5.3.5. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

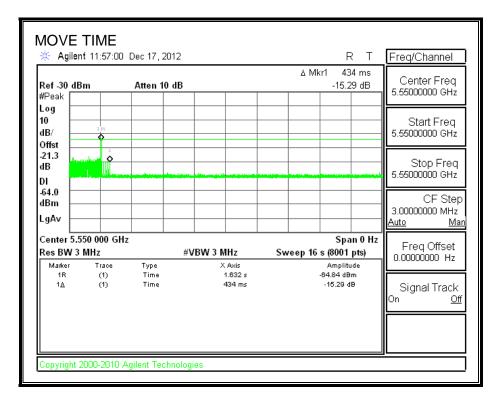
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

```
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)
```

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

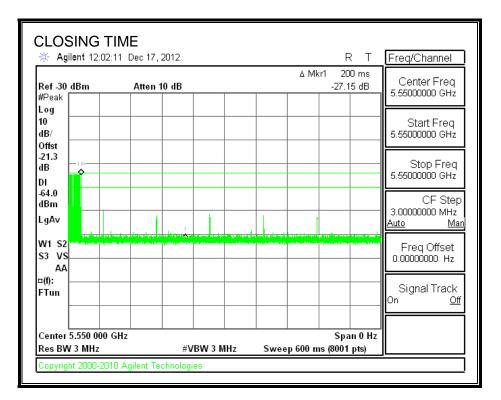
The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).


<u>RESULTS</u>

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.434	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	8.0	60
IC	12.0	260

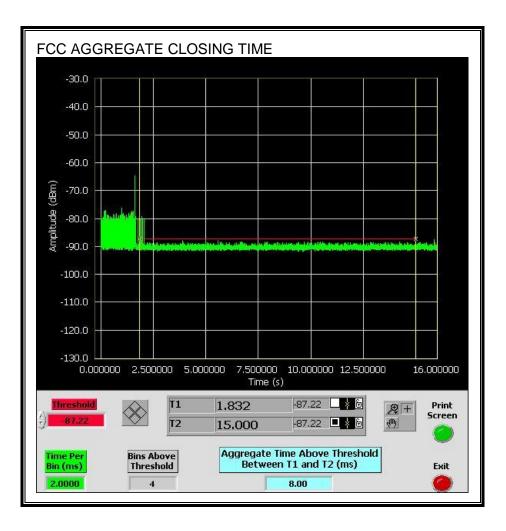
Page 53 of 70


MOVE TIME

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

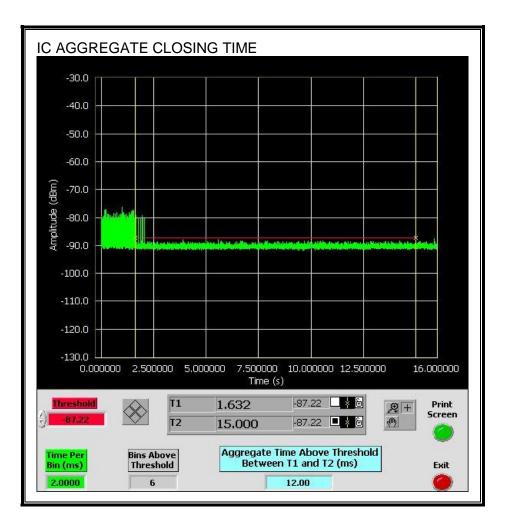
Page 54 of 70

CHANNEL CLOSING TIME



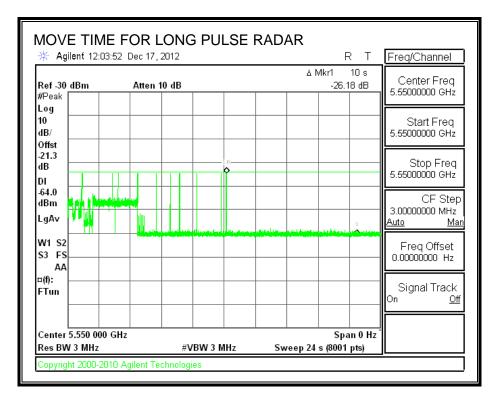
UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 55 of 70


AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.

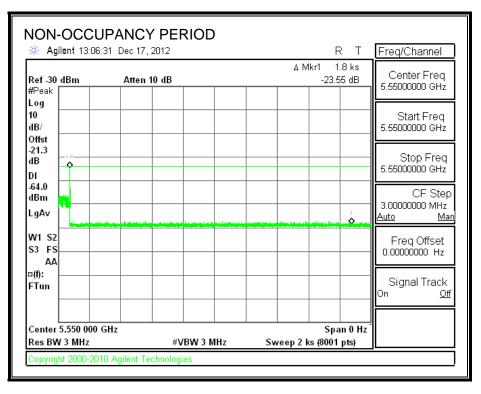
Page 56 of 70


Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 57 of 70

LONG PULSE CHANNEL MOVE TIME

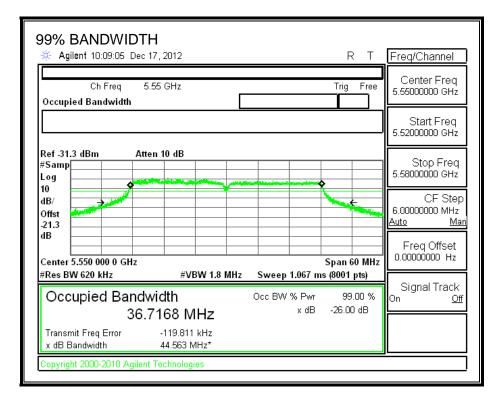
The traffic ceases prior to 10 seconds after the end of the radar waveform.



UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

5.3.6. NON-OCCUPANCY PERIOD

RESULTS


No EUT transmissions were observed on the test channel during the 30-minute observation time.

Page 59 of 70

5.3.7. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5532	5568	36	36.717	98.0	80

Page 60 of 70

DETECTION BANDWIDTH PROBABILITY

ETECTION BAN	DWIDTH PROBABI	LITY RESULTS		
Detection Band	width Test Results			
	veform: 1 us Pulse V	Nidth, 1428 us PRI, 1	8 Pulses per l	Burst
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)		Humber Detected	(%)	mark
5532	10	10	100	FL
5533	10	10	100	
5534	10	10	100	
5535	10	10	100	
5536	10	10	100	
5537	10	10	100	
5538	10	10	100	
5539	10	10	100	
5540	10	10	100	
5541	10	10	100	
5542	10	10	100	
5543	10	10	100	
5544	10	10	100	
5545	10	10	100	
5546	10	10	100	
5547	10	10	100	
5548	10	9	90	
5549	10	10	100	
5550	10	10	100	
5551	10	10	100	
5552	10	10	100	
5553	10	10	100	
5554	30	27	90	
5555	10	10	100	
5556	10	10	100	
5557	10	10	100	
5558	10	10	100	
5559	10	10	100	
5560	10	10	100	
5561	10	10	100	
5562	60	54	90	
5563	10	10	100	
5564	10	10	100	
5565	10	10	100	
5566	10	10	100	
5567	10	10	100	
5568	10	10	100	FH

Page 61 of 70

5.3.8. IN-SERVICE MONITORING

RESULTS

Signal Type Number of Trials		Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	93.33	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		98.33	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	37	94.60	70	Pass

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 62 of 70

TYPE 1 DETECTION PROBABILITY

Data Sheet for FCC Short Pulse Radar Type 1 I us Pulse Width, 1428 us PRI, 18 Pulses per Burst				
Trial	Successful Detection			
	(Yes/No)			
1	Yes			
2	Yes			
3	Yes			
4	Yes			
5	Yes			
6	Yes			
7	Yes			
8	Yes			
9	Yes			
10	Yes			
11	Yes			
12	Yes			
13	Yes			
14	Yes			
15	Yes			
16	Yes			
17	Yes			
18	Yes			
19	Yes			
20	Yes			
21	Yes			
22	Yes			
23	Yes			
24	Yes			
25	Yes			
26	Yes			
27	Yes			
28	Yes			
29	Yes			
30	Yes			

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 63 of 70

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection	
	(us)	(us)		(Yes/No)	
2001	2.8	211.00	26	Yes	
2002	2.7	208.00	24	Yes	
2003	1.4	197.00	26	Yes	
2004	1.2	185.00	25	Yes	
2005	4.8	192.00	23	Yes	
2006	4.8	215.00	28	Yes	
2007	1	225.00	29	Yes	
2008	2.5	206.00	29	No	
2009	1.7	189.00	24	Yes	
2010	2.5	150.00	27	Yes	
2011	4.5	217.00	25	Yes	
2012	2.2	215.00	23	Yes	
2013	1.5	223.00	29	Yes	
2014	4.9	186.00	26	Yes	
2015	3	153.00	26	Yes	
2016	2.4	167.00	27	Yes	
2017	3.5	173.00	23	Yes	
2018	3.1	158.00	24	Yes	
2019	2.4	153.00	29	No	
2020	4	171.00	24	Yes	
2021	2.7	181.00	28	Yes	
2022	2.8	155.00	25	Yes	
2023	3.6	198.00	25	Yes	
2024	4.8	173.00	29	Yes	
2025	1.4	190.00	25	Yes	
2026	3.7	220.00	24	Yes	
2027	1.9	205.00	23	Yes	
2028	2.3	161.00	27	Yes	
2029	2.2	152.00	26	Yes	
2030	1.7	184.00	25	Yes	

Page 64 of 70

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
3001	9.8	323.00	17	Yes
3002	9.8	377.00	18	Yes
3003	8.7	398.00	18	Yes
3004	5.2	259.00	18	Yes
3005	7.4	495.00	16	Yes
3006	9.3	269.00	16	Yes
3007	5.7	457.00	18	Yes
3008	8.2	255.00	18	Yes
3009	5.4	286.00	17	Yes
3010	9.9	382.00	17	Yes
3011	7.4	500.00	16	Yes
3012	5.6	321.00	17	Yes
3013	5.4	286.00	17	Yes
3014	6.9	294.00	18	Yes
3015	8	386.00	18	Yes
3016	9.3	446.00	17	Yes
3017	7	278.00	16	Yes
3018	6.7	498.00	18	Yes
3019	5.7	287.00	17	Yes
3020	8.1	446.00	17	Yes
3021	6.4	491.00	17	Yes
3022	6	403.00	16	Yes
3023	8.1	440.00	16	Yes
3024	9.2	476.00	18	Yes
3025	6.3	296.00	18	Yes
3026	8.2	436.00	17	Yes
3027	7.6	257.00	16	Yes
3028	7.5	472.00	16	Yes
3029	9.3	347	18	Yes
3030	6.2	445	18	Yes

Page 65 of 70

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	15	297.00	12	Yes
4002	18.4	431.00	13	Yes
4003	11.6	371.00	16	Yes
4004	10.7	442.00	16	Yes
4005	14.3	358.00	14	Yes
4006	10.1	441.00	12	Yes
4007	17.8	403.00	14	Yes
4008	13.4	375.00	12	Yes
4009	10.1	420.00	15	Yes
4010	19.2	486.00	14	Yes
4011	14.2	407.00	14	Yes
4012	10.5	395.00	13	Yes
4013	15.4	422.00	12	Yes
4014	12.4	264.00	16	Yes
4015	12.6	299.00	13	Yes
4016	11.8	276.00	15	Yes
4017	19.5	381.00	12	Yes
4018	11.2	357.00	15	Yes
4019	19.9	462.00	13	Yes
4020	16.5	292.00	14	Yes
4021	17.7	471.00	16	Yes
4022	13.4	335.00	16	Yes
4023	14.7	495.00	16	Yes
4024	19.6	433.00	14	Yes
4025	13.7	476.00	16	Yes
4026	19.4	478.00	16	Yes
4027	11.1	294.00	15	Yes
4028	10.2	314.00	15	Yes
4029	15.8	410.00	12	Yes
4030	12.2	410.00	16	Yes

Page 66 of 70

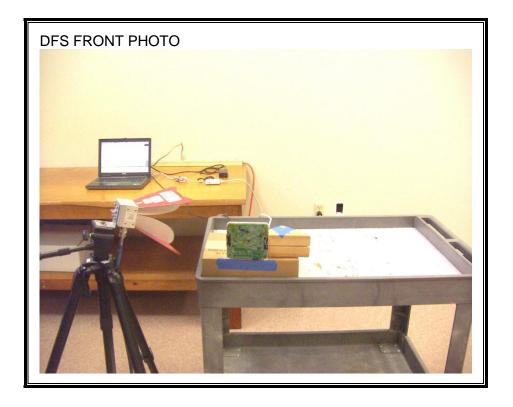
TYPE 5 DETECTION PROBABILITY

Trial	ong Pulse Radar Type 5 Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

Page 67 of 70

TYPE 6 DETECTION PROBABILITY


	e Width, 333 us PRI,		1 Burst per Hop)
<u>TIA Aug</u> Trial	ust 2005 Hopping Se Starting Index Within Sequence	quence Signal Generator Frequency (MHz)	Hops within Detection BW	Successfu Detection (Yes/No)
1	275	5532	5	Yes
2	750	5533	9	Yes
3	1225	5534	7	Yes
4	1700	5535	9	Yes
5	2175	5536	6	Yes
6	2650	5537	5	Yes
7	3125	5538	5	Yes
8	3600	5539	5	Yes
9	4075	5540	7	Yes
10	4550	5541	6	Yes
11	5025	5542	10	Yes
12	5500	5543	10	Yes
13	5975	5544	12	Yes
14	6450	5545	7	Yes
15	6925	5546	14	Yes
16	7400	5547	10	Yes
17	7875	5548	11	Yes
18	8350	5549	3	No
19	8825	5550	8	Yes
20	9300	5551	4	Yes
21	9775	5552	9	Yes
22	10250	5553	3	Yes
23	10725	5554	2	No
24	11200	5555	9	Yes
25	11675	5556	7	Yes
26	12150	5557	6	Yes
27	12625	5558	9	Yes
28	13100	5559	7	Yes
29	13575	5560	9	Yes
30	14050	5561	7	Yes
31	14525	5562	7	Yes
32	15000	5563	7	Yes
33	15475	5564	6	Yes
34	15950	5565	6	Yes
35	16425	5566	10	Yes
36	16900	5567	8	Yes
37	17375	5568	5	Yes

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 68 of 70

6. SETUP PHOTOS

DYNAMIC FREQUENCY SELECTION MEASUREMENT SETUP

Page 69 of 70

END OF REPORT

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 70 of 70