

FCC CO-LOCATION RADIO TEST REPORT

FCC ID	:	S9GR750
Equipment	:	Acess Point
Brand Name	:	RUCKUS
Model Name	:	R750
Applicant	:	Ruckus Wirelss Inc.
		350 W. Java Dr., Sunnyvale CA 94089 USA
Manufacturer	:	Ruckus Wirelss Inc.
		350 W. Java Dr., Sunnyvale CA 94089 USA
Standard	:	FCC Part 15 Subpart E §15.407

The product was received on Apr. 30, 2020 and testing was started from May 05, 2020 and completed on May 05, 2020. We, Sporton International (USA) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of government.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval of Sporton International (USA) Inc., the test report shall not be reproduced except in full.

Ven Chen

Approved by: Ken Chen **Sporton International (USA) Inc.** 1175 Montague Expressway, Milpitas, CA 95035

Table of Contents

His	story o	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	5
2	Test	Configuration of Equipment Under Test	6
	2.1	Carrier Frequency and Channel	6
	2.2	Test Mode	6
	2.3	Connection Diagram of Test System	6
3	Test	Result	7
	3.1	Unwanted Emissions Measurement	7
	3.2	Antenna Requirements	10
4	List o	of Measuring Equipment	11
5	Unce	rtainty of Evaluation	12
Ap	pendi	x A. Radiated Spurious Emission	
Ap	pendi	x B. Radiated Spurious Emission Plots	
Ар	pendi	x C. Duty Cycle Plots	

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR200504001D	01	Initial issue of report	Jun. 19, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.407(b)	Unwanted Emissions	Pass	Under limit 0.42 dB at 5352.160 MHz
3.2	15.203 15.407(a)	Antenna Requirement	Pass	-

Note: This is a spot check data report and data performed in appendix of this report are chosen from the worst case of the original FCC ID (S9GR750) report.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth-LE, Wi-Fi 2.4GHz 802.11b/g/n/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, and Zigbee.

Product Specification subjective to this standard			
	WLAN:		
	<ant. 1="">: PCB Antenna</ant.>		
	<ant. 2="">: PCB Antenna</ant.>		
	<ant. 3="">: PCB Antenna</ant.>		
	<ant. 4="">: PCB Antenna</ant.>		
Antenna Type	<ant. 5="">: PCB Antenna</ant.>		
	<ant. 6="">: PCB Antenna</ant.>		
	<ant. 7="">: PCB Antenna</ant.>		
	<ant. 8="">: PCB Antenna</ant.>		
	Bluetooth: PIFA Antenna		
	Zigbee: PIFA Antenna		

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International (USA) Inc.			
Test Site Location	1175 Montague Expressway, Milpitas, CA 95035 TEL : 408 9043300			
Toot Site No	Sporton Site No.			
Test Sile NO.	03CH02-CA			

Note: The test site complies with ANSI C63.4 2014 requirement.

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.

Test Configuration of Equipment Under Test 2

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

2.1 Carrier Frequency and Channel

5180-52	40 MHz	5260-5320 MHz					
802.11ax HE80		802.11ax HE80					
Channel	Channel Freq. (MHz)		Freq. (MHz)				
42	42 5210		5290				
5500-5720 MHz							
	802.11ax HE80						
Channel	Channel Freq. (MHz)		Freq. (MHz)				
106	5530	122	5610				

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table. <Co-Location>

Modulation	Data Rate
5GHz 802.11ax HE80 + 5GHz 802.11ax HE80	MCS0 + MCS0

2.3 Connection Diagram of Test System

3 Test Result

3.1 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.1.1 Limit of Unwanted Emissions

(1) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$

- μ V/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)		
- 27	68.3		

- (2) KDB789033 D02 v02r01 G)2)c)
 - (i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of −27 dBm/MHz.
 - (ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section G) Unwanted emissions measurement.
 - (1) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (2) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.1.4 Test Setup

For radiated emissions above 1GHz

3.1.5 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.1.6 Duty Cycle

Please refer to Appendix C.

3.1.7 Test Result of Radiated Spurious Emissions

Please refer to Appendix A and B.

3.2 Antenna Requirements

3.2.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.2.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Horn Antenna	SCHWARZBE CK	BBHA 9120D	01895	1GHz~18GHz	Aug. 20, 2019	May 05, 2020	Aug. 19, 2020	Radiation (03CH02-CA)
Preamplifier	Keysight	83017A	MY532703 23	1GHz~26.5GHz	Jul. 26, 2019	May 05, 2020	Jul. 25, 2020	Radiation (03CH02-CA)
Preamplifier	E-instrument	ERA-10M-18 G-56-01-A70	EC190025 1	N/A	Nov. 26, 2019	May 05, 2020	Nov. 25, 2020	Radiation (03CH02-CA)
Spectrum Analyzer	Keysight	N9010A	MY574202 21	10Hz~44GHz	Sep. 11, 2019	May 05, 2020	Sep. 10, 2020	Radiation (03CH02-CA)
Filter	Wainwright	WHKX8-5872. 5-6750-18000 -40ST	SN8	6.75 Highpass	Aug. 02, 2019	May 05, 2020	Aug. 01, 2020	Radiation (03CH02-CA)
Hygrometer	TESEO	608-H1	45142602	N/A	Jul. 25, 2019	May 05, 2020	Jul. 24, 2020	Radiation (03CH02-CA)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	May 05, 2020	N/A	Radiation (03CH02-CA)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	May 05, 2020	N/A	Radiation (03CH02-CA)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	May 05, 2020	N/A	Radiation (03CH02-CA)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	6.5
of 95% (U = 2Uc(y))	0.0

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	6.2
of 95% (U = 2Uc(y))	0.3

Appendix A. Radiated Spurious Emission

Test Engineer :	Calvin Wu	Temperature :	19~22°C
rest Engineer :		Relative Humidity :	36~45%

5GHz 5210MHz + 5GHz 5290MHz

802.11ax HE80_Tx_CH 42 + 802.11ax HE80_Tx_CH 58 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.	ļ			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
Simultaneously		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5139.62	62.65	-11.35	74	49.6	32.02	10.96	29.93	386	77	Р	Н
		5139.1	53.5	-0.5	54	40.45	32.02	10.96	29.93	386	77	А	Н
802.11ax	*	5210	112.99	-	-	100.12	31.64	11.15	29.92	386	77	Р	Н
HE80	*	5210	103.1	-	-	90.23	31.64	11.15	29.92	386	77	А	Н
CH 42		5148.72	60.46	-13.54	74	47.42	31.98	10.99	29.93	321	75	Р	V
5210 MHz		5149.5	52.63	-1.37	54	39.59	31.98	10.99	29.93	321	75	А	V
	*	5210	110.95	-	-	98.02	31.7	11.15	29.92	321	75	Р	V
	*	5210	100.02	-	-	87.09	31.7	11.15	29.92	321	75	А	V
Remark	1. N 2. A	o other spuric Il results are I	ous found. PASS again	st Peak	and Avera	ge limit li	ne.						

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
Simultaneously		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	5290	108.57	-	-	95.87	31.37	11.25	29.92	323	92	Ρ	Н
	*	5290	99.22	-	-	86.52	31.37	11.25	29.92	323	92	А	н
802.11ax		5350.24	61.97	-12.03	74	49.1	31.45	11.33	29.91	323	92	Ρ	Н
HE80		5352.16	53.58	-0.42	54	40.71	31.45	11.33	29.91	323	92	А	н
CH58	*	5290	108.84	-	-	96.11	31.4	11.25	29.92	400	307	Ρ	V
5290 MHz	*	5290	99.41	-	-	86.68	31.4	11.25	29.92	400	307	А	V
		5351.2	60.95	-13.05	74	48.13	31.4	11.33	29.91	400	307	Ρ	V
		5350.08	52.66	-1.34	54	39.84	31.4	11.33	29.91	400	307	А	V
Remark	1. N 2. A	No other spuri	ous found. PASS agair	nst Pea	k and Avera	ige limit l	ine.						

5GHz 5210MHz + 5GHz 5290MHz 802.11ax HE80_Tx_CH 42 + 802.11ax HE80_Tx_CH 58 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
Simultaneously		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ax												_	
HE80		10580	52.66	-15.54	68.2	63.69	39.78	16.65	67.46	206	136	Р	Н
CH 42													
5210 MHz		10580	42.48	-11.52	54	53.51	39.78	16.65	67.46	206	136	А	Н
+													
802.11ax		10580	52.14	-16.06	68.2	63.18	39.77	16.65	67.46	400	10	Ρ	V
HE80													
CH58		10580	42 55	-11 45	54	53 59	39 77	16 65	67 46	400	10	Δ	V
5290 MHz		10000	42.00	11.40		00.00	00.17	10.00	07.40	400	10	~	v
Remark	 No other spurious found. All results are PASS against Peak and Average limit line. 												

5GHz 5530MHz + 5GHz 5610MHz
802.11ax HE80_Tx_CH 106 + 802.11ax HE80_Tx_CH 122 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
Simultaneously		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5445.84	58.12	-15.88	74	44.91	31.69	11.42	29.9	314	183	Р	Н
		5467.6	59.49	-8.71	68.2	46.22	31.73	11.44	29.9	314	183	Р	Н
		5370	50.01	-3.99	54	37.08	31.49	11.35	29.91	314	183	А	Н
802.11ax	*	5530	109.18	-	-	95.77	31.84	11.48	29.91	314	183	Р	Н
HE80	*	5530	98.95	-	-	85.54	31.84	11.48	29.91	314	183	А	Н
CH 106		5455.12	55.06	-18.94	74	41.75	31.78	11.43	29.9	261	83	Р	V
5530 MHz		5466.64	54.07	-14.13	68.2	40.72	31.81	11.44	29.9	261	83	Р	V
		5456.08	45.36	-8.64	54	32.04	31.79	11.43	29.9	261	83	А	V
	*	5530	105.19	-	-	91.78	31.84	11.48	29.91	261	83	Р	V
	*	5530	95.93	-	-	82.52	31.84	11.48	29.91	261	83	А	V
Remark	1. N 2. A	o other spurid Il results are I	ous found. PASS again	st Peak	and Avera	ige limit li	ne.						

TEL: 408 9043300

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
Simultaneously		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	5610	106.7	-	-	93.26	31.83	11.55	29.94	312	101	Р	Н
802.11ax	*	5610	97.44	-	-	84	31.83	11.55	29.94	312	101	А	Н
HE80		5760.12	53.97	-14.23	68.2	40.06	32.12	11.78	29.99	312	101	Р	Н
CH122	*	5610	108.95	-	-	95.55	31.79	11.55	29.94	311	30	Р	V
5610 MHz	*	5610	98.91	-	-	85.51	31.79	11.55	29.94	311	30	Α	V
		5744.84	53.17	-15.03	68.2	39.36	32.04	11.75	29.98	311	30	Р	V
Remark	1. N 2. A	No other spuri	ous found. PASS agair	nst Peal	k and Avera	ige limit I	ine.						

5GHz 5530MHz + 5GHz 5610MHz 802.11ax HE80_Tx_CH 106 + 802.11ax HE80_Tx_CH 122 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
Simultaneously		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ax												_	
HE80		11220	52.16	-21.84	74	62.04	39.75	17.07	66.7	220	246	Р	Н
CH 106													
5530 MHz		11220	41.94	-12.06	54	51.82	39.75	17.07	66.7	220	246	А	н
+													
802.11ax		11220	52.53	-21.47	74	62.37	39.79	17.07	66.7	218	356	Р	V
HE80													
CH122		11220	12 80	_11 11	54	52 73	30 70	17 07	66 7	218	356	Δ	V
5610 MHz		11220	42.00			02.70	00.70	17.07	00.7	210	000	~	v
Remark	1. N 2. A	lo other spuri	ous found. PASS agair	nst Peal	k and Avera	age limit I	ine.						

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix B. Radiated Spurious Emission Plots

Tost Engineer :	Calvin Wu	Temperature :	19~22°C
Test Engineer :		Relative Humidity :	36~45%

5GHz 5210MHz + 5GHz 5290MHz

802.11ax HE80_Tx_CH 42 + 802.11ax HE80_Tx_CH 58 (Band Edge @ 3m)

5GHz 5210MHz + 5GHz 5290MHz

802.11ax HE80_Tx_CH 42 + 802.11ax HE80_Tx_CH 58 (Harmonic @ 3m)

5GHz 5530MHz + 5GHz 5610MHz

802.11ax HE80_Tx_CH 106 + 802.11ax HE80_Tx_CH 122 (Band Edge @ 3m)

5GHz 5530MHz + 5GHz 5610MHz

802.11ax HE80_Tx_CH 106 + 802.11ax HE80_Tx_CH 122 (Harmonic @ 3m)

Appendix C. Duty Cycle Plots

Mode	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
4*4	5GHz 802.11ax HE80 for Ant. 1	95.42	5420	0.18	300Hz	0.20

802.11ax HE80

									iwept SA	Analyzer - :	trum /	nt Spec	eysigh	n Ke
Marker	May 06, 2020	06:13:49 AI TRAC	RMS	#Avg Typ	NSE:INT	s			Ω DC)ms	.6800	RF Δ 5.	r 3 /	rkei	a R Mar
Select Marker		DE			e Run) dB	Atten:	t ++- w	PNO: Fast IFGain:Lov						
3	680 ms 0.81 dB	Mkr3 5.	Δ						9 dBµV	f 106.9	Ref	iv	IB/di	10 d
Normal	manipul	manda	Ingrany	www.hope.com	3∆4	and a start of the	where	Whenmore	on Maria	-	w	rw4U		.og 97.0
											_			97.C
											-		⊢	77.0
Delta								_			+		⊢	67.C
														57.0
Fixed⊳			All the second											97.U 87.D
									_					27.0
														17.0
	nan û Hz	S							GH7	იიიიი	100	52	L_ hter	er
Off	s BW 8 MHz VBW 8.0 MHz Sweep 20.00 ms (1001 pts)										les			
	DN VALUE	FUNCTION	TION WIDTH	CTION FUI	40	Y		E 400 mm	Х	(4)	SCL		MOD	IKR
Properties►					αB βμV	98.94 d	(Δ) (Δ)	4.120 ms		(Δ) (Δ)	t		F	2
	- 1				αB βμV	98.94 d	(Δ)	4.120 ms		(Δ)	ť		F	4
	- 1													6
More	- 1													8
1 of														10
	> [×]													n
ed	ow All require	😵 Align N	STATUS							allowed	not a	uffix	S	iG