§15.247(e)(i),§2.1091 - RF EXPOSURE

According to §15.247(e)(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to \$1.1310 and \$2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range (MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(minute)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

MPE Prediction

For MM2225

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

 \mathbf{R} = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: <u>23.0(dBm)</u> Maximum peak output power at antenna input terminal: <u>200.00 (mW)</u> Prediction distance: <u>20 (cm)</u> Predication frequency: <u>2400 (MHz)</u> Antenna Gain (typical): <u>3.3 (dBi)</u> antenna gain: <u>2.14 (numeric)</u> Power density at predication frequency at 20 cm: <u>0.085(mW/cm²)</u>

MPE limit for uncontrolled exposure at prediction frequency: $1.0 \text{ (mW/cm}^2)$

For MM22X1

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

- P = power input to antenna
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator

 $\mathbf{R} = \hat{\mathbf{d}}$ istance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: <u>23.0(dBm)</u> Maximum peak output power at antenna input terminal: <u>200.00 (mW)</u> Prediction distance: <u>20 (cm)</u> Predication frequency: <u>2400 (MHz)</u> Antenna Gain (typical): <u>3.3 (dBi)</u> Antenna gain: <u>2.14 (numeric)</u> Power density at predication frequency at 20 cm: <u>0.085(mW/cm²)</u>

MPE limit for uncontrolled exposure at prediction frequency: <u>1.0 (mW/cm²)</u>

Test Result

The EUT is a mobile device. The power density level at 20 cm is 0.085mW/cm², which is below the uncontrolled exposure limit of 1.0mW/cm² at 2400 MHz. for MM2225 and MM22X1