

Elliott Laboratories www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15, Subpart E on the Ruckus Wireless Transmitter Model: 7962

> UPN: 5912A-7962 S9G7962 FCC ID:

GRANTEE: **Ruckus Wireless** 880 West Maude Ave. Suite 101 Sunnyvale, CA 94085

TEST SITE(S): **Elliott Laboratories** 684 W. Maude Ave Sunnyvale, CA 94086

IC Site Registration #: IC 2845A-1; IC 2845A-2

REPORT DATE:

March 2, 2009

FINAL TEST DATE:

February 9, February 10, February 11 and February 19, 2009

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev #	Date	Comments	Modified By
1			

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	7
MEASUREMENT UNCERTAINTIES	9
EQUIPMENT UNDER TEST (EUT) DETAILS	10
GENERALOTHER EUT DETAILS ANTENNA SYSTEM ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION	10 10 10 10 10 10 10 11
TEST SITE	12
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION.	13 13 14 14 14 14
INSTRUMENT CALIBRATION	

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	15
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	15
RADIATED EMISSIONS	16
CONDUCTED EMISSIONS FROM ANTENNA PORT	17
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS –LELAN DEVICES	
OUTPUT POWER AND SPURIOUS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	22
EXHIBIT 1: Test Equipment Calibration Data.	1
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	
EXHIBIT 4: Proposed FCC ID Label & Label Location	4
EXHIBIT 5: Detailed Photographs	
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams EXHIBIT 9: Theory of Operation	
EXHIBIT 9: Theory of Operation EXHIBIT 10: RF Exposure Information	
EXHIBIT TO, RF Exposure information	10

SCOPE

An electromagnetic emissions test has been performed on the Ruckus Wireless model 7962 pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Ruckus Wireless model 7962 and therefore apply only to the tested sample. The sample was selected and prepared by Craig Owens of Ruckus Wireless.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Ruckus Wireless model 7962 complied with the requirements of the following regulations:

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (1)		26dB Bandwidth	802.11a 33.2 MHz 802.11 HT20 26.3 MHz 802.11 HT40 51.3 MHz	N/A – limits output power if < 20MHz	N/A
15.407 (a) (1)	A9.2(1)	Output Power	802.11a 16.5 dBm (0.045W) 802.11 HT20 16.2 dBm (0.042W) 802.11 HT40 16.3 dBm (0.043)	17dBm	Complies
15.407 (a) (1)		Power Spectral	802.11a 2.5 dBm/MHz 802.11 HT20 3.9 dBm/MHz 802.11 HT40 0.4 dBm/MHz	4 dBm/MHz	Complies
	A9.5 (2)	Density	802.11a 2.5 dBm/MHz 802.11 HT20 3.9 dBm/MHz 802.11 HT40 0.4 dBm/MHz	7 dBm/MHz	Complies

	rements for all		34 1371 /	T • • •	
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
	A9.5a	Modulation	Digital Modulation is used	Digital modulation is required	Complies
	RSP 100	99% bandwidth	802.11a 19.1 MHz 802.11 HT20 18.9 MHz 802.11 HT40 37.2 MHz	Information only	
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	No emissions below 1GHz	Refer to Standard	Complies
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	53.9dBµV/m @ 5150.0MHz (-0.1dB)	Refer to Standard	Complies
15.407(a)(6)	-	Peak Excursion Ratio	12.9dB	< 13dB	Complies
	A9.5 (3)	Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom and center channels	N/A
15			Measurements on three channels in each band	in each band	
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information	Device shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)	A9.5 (5)	Frequency Stability	Frequency stability is better than 10ppm		Complies
	A9.7	User Manual information	Refer to Exhibit 6 for details		Complies

FCC Rule	RSS		Measured Value /	Limit /	Result
Part	Rule part	Description	Comments	Requirement	(margin)
15.203	-	RF Connector	All antennas are internal		Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	50.9dBµV/m @ 7066.7MHz	Refer to standard	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	52.6dBµV @ 13.853MHz (-7.4dB)	Refer to standard	Complies (- ?.? dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding detachable antenna	

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$\pm 2.4 \\ \pm 3.0 \\ \pm 3.6 \\ \pm 6.0$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Ruckus Wireless model 7962 is an Access Point that is designed to distribute WiFi. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/230 Volts, 50/60 Hz, 0.5 Amps. The EUT can also be powered over the POE port.

The sample was received on November 13, 2008 and tested on February 9, February 10, February 11 and February 19, 2009. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Ruckus Wireless,	7962	802.11a/b/g/n	0901000003	S9G7962
Inc.		Access Point		

OTHER EUT DETAILS

The following power supplies are supported in addition to any PoE injector or switch. Ruckus does not supply the PoE supply.

DVE S024EU1200150 Power Supply -	-
----------------------------------	---

ANTENNA SYSTEM

The antenna is integral to the device.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 19 cm wide by 15 cm deep by 10 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

No equipment was used as local support equipment for emissions testing.

The following equipment was used as remote support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	-	Laptop Computer	-	DoC

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)			
Fon		Description	Shielded or Unshielded	Length(m)	
Ethernet	Laptop	CAT5	Unshielded	3m	
DC Power	AC/DC Adapter	Multiconductor	Shielded	1.5	

EUT OPERATION

During transmit mode testing, the EUT was set to continuously transmit at the desired channel, power, and mode. For receive mode testing, the EUT was configured in a receive only mode.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on February 9, February 10, February 11 and February 19, 2009 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	n Numbers	Location
Site	FCC	Canada	
SVOATS #1	90592	IC 2845-1	684 West Maude Ave,
SVOATS #2	90593	IC 2845-2	Sunnyvale CA 94085-3518

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception, on OATS sites, of predictable local TV, radio, and mobile communications traffic. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

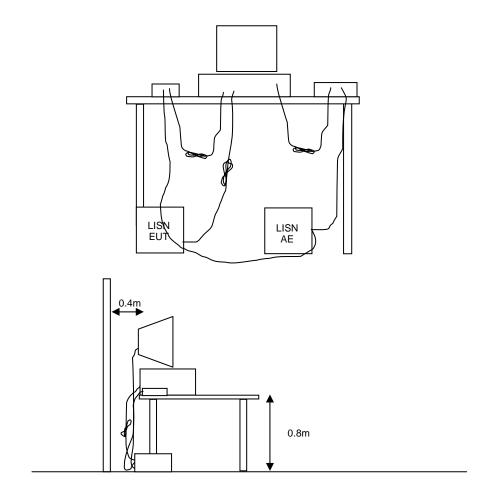
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

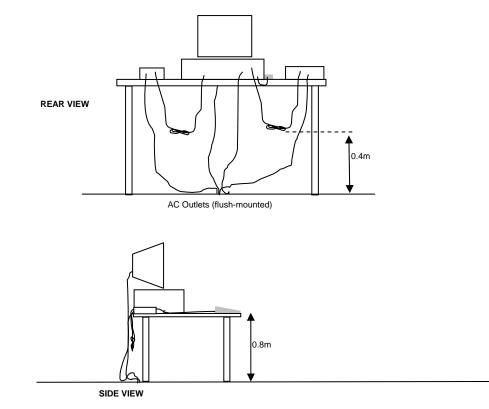

TEST PROCEDURES

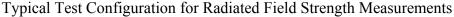
EUT AND CABLE PLACEMENT

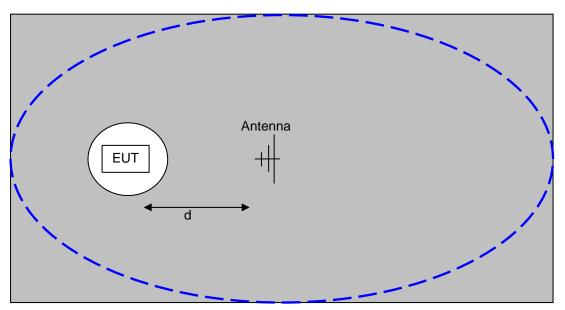
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

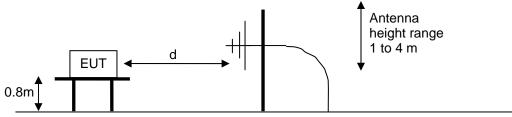
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.


RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

Test Configuration for Radiated Field Strength Measurements OATS- Plan and Side Views

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

OUTPUT POWER LIMITS -LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
	200 W(22 ID) :	2
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	250 mW (24 dBm) ¹ 1W (30dBm) eirp	11 dBm/MHz
5470 - 5725	$250 \text{ mW} (24 \text{ dBm})^2$ 1W (30dBm) eirp	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density) by more than 3dB. The "average" power spectral density is determined by dividing the output power by 10log(EBW) where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

OUTPUT POWER AND SPURIOUS LIMITS –UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed -7dBm/MHz (68.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to -17dBm/MHz.

¹ If EIRP exceeds 500mW the device must employ TPC

² If EIRP exceeds 500mW the device must employ TPC

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 $\begin{array}{lll} F_d &=& \text{Distance Factor in } dB \\ D_m &=& \text{Measurement Distance in meters} \\ D_S &=& \text{Specification Distance in meters} \end{array}$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter 3 where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

3 Pages

Radiated Emissions, 30 - 2	6,500 MHz, 13-Nov-08		
Engineer: Rafael Varelas			
<u>Manufacturer</u>	Description	Model #	Asset # Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487 15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Nov-08
Radiated Emissions, 30 - 2	6,500 MHz, 23-Nov-08		
Engineer: Rafael Varelas			
Manufacturer	Description	Model #	Asset # Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785 06-Jun-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Nov-08
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683 05-Aug-09
EMCO	Antenna, Horn, 1-18 GHz	3115	487 15-Jul-10
Radiated Emissions, 30 - 2	6,500 MHz, 18-Dec-08		
Engineer: Rafael Varelas			
<u>Manufacturer</u>	Description	Model #	Asset # Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 09-Oct-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Dec-08
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152 13-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	1561 10-Jun-10
Radiated Emissions, 1000	- 18,000 MHz, 04-Feb-09		
Engineer: Rafael Varelas			
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset # Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785 06-Jun-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Mar-09
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152 13-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	1561 10-Jun-10
Radiated Emissions, 30 - 1	8,000 MHz, 11-Feb-09		
Engineer: Joseph Cadigal			
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset # Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54 26-Mar-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263 09-Oct-09
Narda West	High Pass Filter, 8 GHz	HPF 180	821 18-Mar-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Mar-09
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337 02-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	1561 10-Jun-10
Radiated Emissions, 1000	- 18,000 MHz, 12-Feb-09		
Engineer: Rafael Varelas			
Manufacturer	Description	Model #	Asset # Cal Due
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non-Program	8563E	284 29-Dec-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 09-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	1561 10-Jun-10

Radiated Emissions, 30 - 2	6,500 MHz, 13-Nov-08		
Engineer: Rafael Varelas			
<u>Manufacturer</u>	Description	Model #	Asset # Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487 15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Nov-08
Radiated Emissions, 30 - 2	6,500 MHz, 23-Nov-08		
Engineer: Rafael Varelas			
<u>Manufacturer</u>	Description	Model #	Asset # Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785 06-Jun-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Nov-08
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683 05-Aug-09
EMCO	Antenna, Horn, 1-18 GHz	3115	487 15-Jul-10
Radiated Emissions, 30 - 2	6,500 MHz, 18-Dec-08		
Engineer: Rafael Varelas			
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset # Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 09-Oct-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Dec-08
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152 13-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	1561 10-Jun-10
Radiated Emissions, 1000	- 18,000 MHz, 04-Feb-09		
Engineer: Rafael Varelas			
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset # Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785 06-Jun-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Mar-09
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152 13-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	1561 10-Jun-10
Radiated Emissions, 30 - 1	8,000 MHz, 11-Feb-09		
Engineer: Joseph Cadigal			
Manufacturer	Description	Model #	Asset # Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54 26-Mar-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263 09-Oct-09
Narda West	High Pass Filter, 8 GHz	HPF 180	821 18-Mar-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Mar-09
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337 02-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	1561 10-Jun-10
Radiated Emissions, 1000	- 18,000 MHz, 12-Feb-09		
Engineer: Rafael Varelas		 <i></i>	
Manufacturer	Description	Model #	Asset # Cal Due
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non-Program	8563E	284 29-Dec-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 09-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	1561 10-Jun-10

Radiated Emissions, 30 - 1	,000 MHz, 13-Nov-08			
Engineer: Peter Sales	Description	Madal #	A	Col Duo
Manufacturer Sunol Sciences	Description Biconilog, 30-3000 MHz	<u>Model #</u> JB3		Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1549 1630	23-May-09 22-Feb-09
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1630	22-Feb-09 22-May-09
com-rower corp.		1 A-103	1032	22-11/ay-09
Radiated Emissions, 30 - 1 Engineer: Chris Groat	,000 MHz, 26-Nov-08			
Manufacturer	Description	Model #		Cal Due
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1543	14-Nov-09
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	23-May-10 04-Dec-08
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	04-Dec-08
Radiated Emissions, 30 - 1 Engineer: rvarelas	,000 MHz, 17-Jan-09			
Manufacturer	Description	Model #	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	19-Sep-09
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	13-Jun-10
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447E	1606	29-May-09
Conducted Emissions - AC	C Power Ports, 22-Jan-09			
Engineer: Riaz Momand				
Manufacturer	Description	Model #	Asset #	
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non-Program	8563E	284	29-Dec-09
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304	31-Jul-09
Solar Electronics	LISN	8028-50-TS-24-BNC support	904	15-Feb-09
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337	02-Oct-09
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1398	12-Feb-09
Conducted Emissions - I-C Engineer: Riaz Momand) Ports, 22-Jan-09			
Manufacturer	Description	Model #	Assat #	Cal Due
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non-Program	8563E	284	29-Dec-09
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304	31-Jul-09
Solar Electronics	LISN	8028-50-TS-24-BNC support	904	15-Feb-09
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337	02-Oct-09
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1398	12-Feb-09
Fischer Custom Comm.	FCC-TLISN-T8-02 (Includes 1907)	FCC-TLISN-T8-02	1906	05-Jul-09
Conducted Emissions - AC	Power and Telecommunications Ports, 29-Jan-	-09		
Conducted Emissions - AC Engineer: Chris Groat	C Power and Telecommunications Ports, 29-Jan-	-09		
	C Power and Telecommunications Ports, 29-Jan- Description	09 <u>Model #</u>	Asset #	Cal Due
Engineer: Chris Groat	Description LISN, FCC / CISPR		<u>Asset #</u> 362	<u>Cal Due</u> 31-Jul-09
Engineer: Chris Groat <u>Manufacturer</u> Elliott Laboratories Hewlett Packard	<u>Description</u> LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	Model #	362 787	
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter	<u>Model #</u> LISN-4, OATS 8595EM ESH3 Z2	362 787 812	31-Jul-09 19-Feb-09 12-Feb-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN	<u>Model #</u> LISN-4, OATS 8595EM ESH3 22 8028-50-TS-24-BNC support	362 787 812 904	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm.	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1	362 787 812 904 1296	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN	362 787 812 904 1296 1332	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm.	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1	362 787 812 904 1296	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm.	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907)	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M	362 787 812 904 1296 1332 1820	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10
Engineer: Chris Groat <u>Manufacturer</u> Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm.	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907)	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M	362 787 812 904 1296 1332 1820	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10
Engineer: Chris Groat <u>Manufacturer</u> Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02	362 787 812 904 1296 1332 1820 1906	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09
Engineer: Chris Groat <u>Manufacturer</u> Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal <u>Manufacturer</u>	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) c,000 MHz, 21-Feb-09 Description	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02	362 787 812 904 1296 1332 1820 1906	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09
Engineer: Chris Groat <u>Manufacturer</u> Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal <u>Manufacturer</u> Hewlett Packard	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) C000 MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B	362 787 812 904 1296 1332 1820 1906 <u>Asset #</u> 263	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 30-Jan-09 26-Mar-10 05-Jul-09 <u>Cal Due</u> 09-Oct-09
Engineer: Chris Groat <u>Manufacturer</u> Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal <u>Manufacturer</u> Hewlett Packard EMCO	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) ,000 MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu)	Model # LISN-4, OATS 8595EM ESH3 22 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10
Engineer: Chris Groat <u>Manufacturer</u> Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal <u>Manufacturer</u> Hewlett Packard EMCO Sunol Sciences	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) cool MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 09-Oct-09 02-Sep-10 13-Jun-10
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) c,000 MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 02-Sul-09 02-Sep-10 13-Jun-10 10-Feb-10
Engineer: Chris Groat <u>Manufacturer</u> Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal <u>Manufacturer</u> Hewlett Packard EMCO Sunol Sciences	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) cool MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 09-Oct-09 02-Sep-10 13-Jun-10
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) Cool MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C)	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 02-Sep-10 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) cool MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Idecommunications Ports, 21-Feb-09	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C)	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 02-Sep-10 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09
Engineer: Chris Groat <u>Manufacturer</u> Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal <u>Manufacturer</u> Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) COOD MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Idecommunications Ports, 21-Feb-09 Description	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 02-Sul-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) COOD MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Idecommunications Ports, 21-Feb-09 Description LISN, 10 kHz-100 MHz	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8664E (84125C) 8447D OPT Model # 3825/2	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 Cal Due 22-Feb-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) coord MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Iecommunications Ports, 21-Feb-09 Description LISN, 10 kHz-100 MHz Pulse Limiter	Model # LISN-4, OATS 8595EM ESH3 22 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 Cal Due 22-Feb-09 17-Apr-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) c,000 MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Idecommunications Ports, 21-Feb-09 Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8664E (84125C) 8447D OPT Model # 3825/2 ESIB7 8325/2 ESIB7	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 22-Feb-09 17-Apr-09 10-Feb-10
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Pac	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) C000 MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Iecommunications Ports, 21-Feb-09 Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2 ESIB7 F-16M	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756 1820	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 Cal Due 22-Feb-09 17-Apr-09 10-Feb-10 26-Mar-10
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) c,000 MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Idecommunications Ports, 21-Feb-09 Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8664E (84125C) 8447D OPT Model # 3825/2 ESIB7 8325/2 ESIB7	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 22-Feb-09 17-Apr-09 10-Feb-10
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Manufacturer Emgineer: Joseph Cadigal Manufacturer EMCO Rohde & Schwarz Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm.	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) C000 MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Iecommunications Ports, 21-Feb-09 Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2 ESIB7 F-16M	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756 1820	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 Cal Due 22-Feb-09 17-Apr-09 10-Feb-10 26-Mar-10
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm.	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) COO MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Hecommunications Ports, 21-Feb-09 Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF Non-Contact Voltage Probe Hecommunications Ports, 05-Mar-09	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESIB7 F-16M F-CVP-1	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756 1820 1958	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 22-Feb-09 17-Apr-09 10-Feb-10 26-Mar-10 11-Dec-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm.	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) COOD MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Idecommunications Ports, 21-Feb-09 Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF Non-Contact Voltage Probe Idecommunications Ports, 05-Mar-09 Description	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2 ESIB7 F-16M F-CVP-1	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1548 1756 1548 1771 2115 Asset # 1292 1401 1756 1820 1958 Asset #	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 Cal Due 22-Feb-09 17-Apr-09 10-Feb-10 26-Mar-10 11-Dec-09 Cal Due
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Conducted Emissions - Te Engineer: Mark Hill Manufacturer Elliott Laboratories	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) C000 MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Idecommunications Ports, 21-Feb-09 Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF Non-Contact Voltage Probe Idecommunications Ports, 05-Mar-09 Description LISN, FCC / CISPR	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESIB7 F-16M F-CVP-1 Model # 13825/2 ESIB7 LISN-3, OATS	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756 1820 1958 Asset # 304	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 <u>30-Jan-09</u> 26-Mar-10 05-Jul-09 26-Mar-10 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 19-Nov-09 19-Nov-09 10-Feb-10 22-Feb-09 17-Apr-09 10-Feb-10 26-Mar-10 11-Dec-09 21-Feb-10 26-Mar-10 26-Mar-10 27-Apr-09 26-Mar-10 26-Mar-10 27-Apr-09 26-Mar-10 26-Mar-10 27-Apr-09 27-Apr-09 26-Mar-10 26-Mar-10 27-Apr-09 27-Apr-09 26-Mar-10 26-Mar-10 27-Apr-09 27-Apr-09 27-Apr-09 26-Mar-10 27-Apr-09 27-Apr-09 27-Apr-09 27-Apr-09 27-Apr-09 27-Apr-09 27-Apr-09 26-Mar-10 27-Apr-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer: Mark Hill Manufacturer Elliott Laboratories Rohde & Schwarz	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) C000 MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Idecommunications Ports, 21-Feb-09 Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF Non-Contact Voltage Probe Idecommunications Ports, 05-Mar-09 Description LISN, FCC / CISPR Test Receiver, 9 kHz-2750 MHz	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESIB7 F-16M F-CVP-1	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1548 1771 2115 Asset # 1292 1401 1756 1820 1958 Asset # 304 1337	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 30-Jan-09 26-Mar-10 05-Jul-09 26-Mar-10 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 22-Feb-09 17-Apr-09 10-Feb-10 26-Mar-10 11-Dec-09 02-Oct-09 02-Oct-09 02-Sep-10 13-Jul-09 02-Oct-09
Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - 2 Engineer: Joseph Cadigal Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Conducted Emissions - Te Engineer: Mark Hill Manufacturer Elliott Laboratories	Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) C000 MHz, 21-Feb-09 Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Idecommunications Ports, 21-Feb-09 Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF Non-Contact Voltage Probe Idecommunications Ports, 05-Mar-09 Description LISN, FCC / CISPR	Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESIB7 F-16M F-CVP-1 Model # 13825/2 ESIB7 LISN-3, OATS	362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756 1820 1958 Asset # 304	31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 <u>30-Jan-09</u> 26-Mar-10 05-Jul-09 26-Mar-10 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 19-Nov-09 19-Nov-09 10-Feb-10 22-Feb-09 17-Apr-09 10-Feb-10 26-Mar-10 11-Dec-09 21-Feb-10 26-Mar-10 21-Feb-10

EXHIBIT 2: Test Measurement Data

84 Pages

	IIOTT
	ΠΟΓΓ
4	
	A division of 17AS

EMC Test Data

Adminiono			
Client	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian	T-Log Number:	T73745
		Account Manager:	Dean Eriksen
Contact	Craig Owens		-
Emissions Standard(s):	FCC Part 15.247/RSS-210	Class:	В
Immunity Standard(s):	-	Environment:	-
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Ruckus Wireless

Model

Dalmatian

Date of Last Test: 2/11/2009

C Elli	ott			F	MC Test Data
A	livision of 4245				
	Client: Ruckus Wirele	SS		o Number	
	Model: Dalmatian			g Number:	
C	ontact: Craig Owens		Accour	it Manger	Dean Eriksen
	17/RSS-210		Class	B	
Emissions Standard(s): FCC Part 15.247/RSS-210 Immunity Standard(s): -			En	/ironment:	
		EUT INFORM	MATION		l
was treated as table	-top equipment during	General Desc ed to distribute WiFi. Since the testing to simulate the end-use DC adapter. The EUT can also	EUT would be placed on r environment. The elect	ical rating	•
		Equipment Un	der Test		
Manufacturer	Mod				FCC ID
Ruckus Wireless,	Inc. 796	2 802.11a/b/g/n A	ccess 09010000	003	S9G7962
DVE The six antennas		200150 Power Supp EUT Antenna (Intentiona d in the system are internal to the	al Radiators Only)		-
The EUT enclosur	e is primarily construc	EUT Enclos ted of plastic. It measures app	roximately 19 cm wide by	15 cm dee	ep by 10 cm high.
NA 1 //		Modification			
Mod. # 1	Test	Date	Moc ications were made to the	lification	a testina
	ied are assumed to be	e used on subsequent tests unle			

Ellio	f ATAS			MC Test Da
	Ruckus Wireless		Job Number:	
Model	: Dalmatian	-	T-Log Number: Account Manger:	
Contact	: Craig Owens		ACCOUNT Manyer.	Deall Elikseli
	: FCC Part 15.247/RSS-210	0	Class:	В
Immunity Standard(s): -			Environment:	-
	The following infor	est Configuration mation was collected during	g the test session(s).	
Manufacturer	Model	Description	Serial Number	FCC ID
-	-	-	-	-
Manufacturer Dell	Re Model	emote Support Equipm Description Laptop Computer	Serial Number	FCC ID DoC
		Cabling and Darta		
		Cabling and Ports		
Port	Connected To	Description	Cable(s) Shielded or Unshield	od Longth(n
E4	Laptop	Description CAT5	Unshielded	ed Length(n 3m
Ethernet		0/110		
Ethernet DC Power	AC/DC Adapter	Multiconductor	Shielded	1.5
DC Power During transmit mode te	EUT Op	peration During Emission ontinuously transmit at the de	Shielded	1.5

Model: D Contact: C Standard: F	Craig Owen	s				Job Number: T-Log Number: Account Manager:	T73745
Contact: C Standard: F	Craig Owen					8	
Standard: F	0						Douri Linkson
I	CC Part 15	5.247/RSS-21					
F			0			Class:	N/A
	RSS 2 [']	10 and I	FCC 1	5.407 (L	JNII) Radiated	Spurious Emi	ssions
est Specif				•		•	
•	Objective:				perform final qualification	testing of the EUT with r	espect to the
Test	t Engineer:	Refer to indiv Refer to indiv Refer to indiv	idual run		Config. Used: 7 Config Change: 1 EUT Voltage: 7	none	
General Te The EUT and		0	ent were loc	cated on the t	urntable for radiated spuric	ous emissions testing.	
or radiated e	emissions te	esting the mea	asurement a	antenna was	located 3 meters from the	EUT.	
Ambient Co	ondition	S:	T	emperature:	20 °C		
			R	el. Humidity:	38 %		
Summary o	of Result	S	Power	Measured	Г		
Run #	Mode	Channel	Setting	Power	Test Performed	Limit	Result / Margin
	802.11a	5150-5250	14dBm		Restricted Band Edge at	15.209	73.1dBµV/m@
_	Legacy	Low			5150 MHz		5150MHz (-0.9dB)
1	802.11a Legacy	5150-5250 Low	21dBm		Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	56.8dBµV/m @ 10360.1MHz (-11.5c
F	802.11a Legacy	5150-5250 Center	21dBm		Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	59.0dBµV/m @ 10400.5MHz (-9.3d
	802.11a Legacy	5150-5250 High	21dBm		Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	60.3dBµV/m @ 10480.0MHz (-8.0d

Elliott

EMC Test Data

	An Z(ZZZ) company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian	T-Log Number:	T73745
wouer.	Daimatian	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

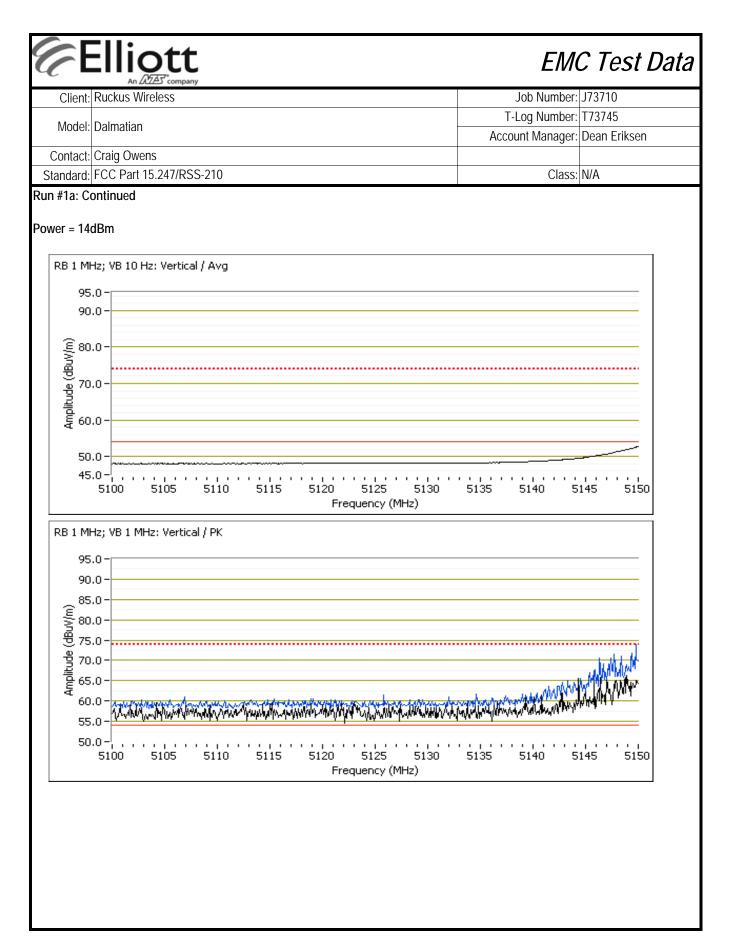
Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band

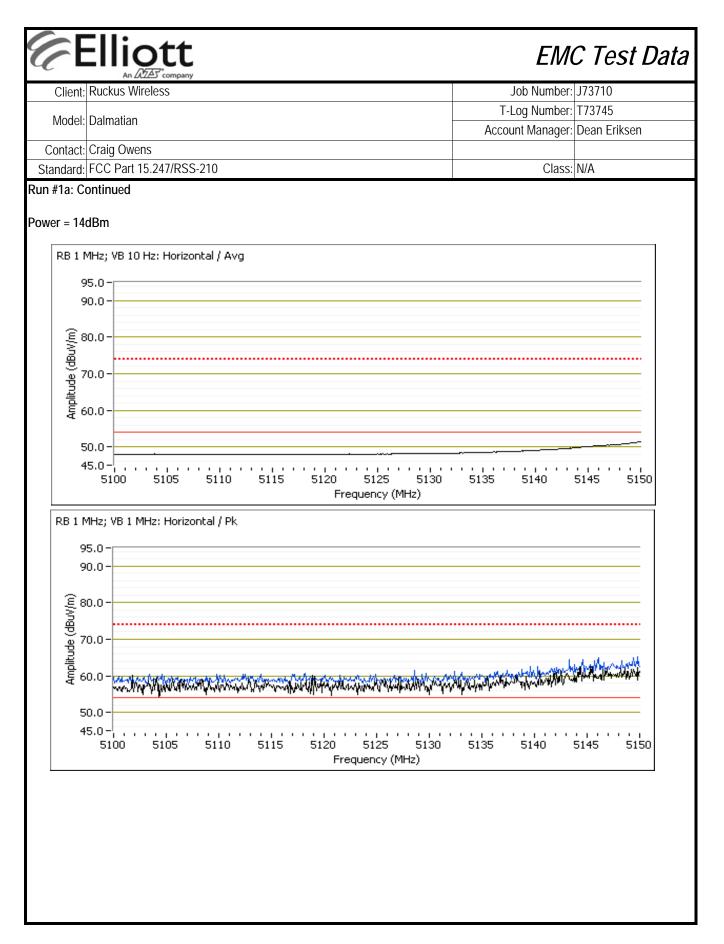
Date of Test: 2/9/2009 & 2/11/09 Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1

Run #1a: Low Channel @ 5180 MHz

Fundamental Signal Field Strength	
-----------------------------------	--

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5181.600	106.4	V	-	-	AVG	287	1.2	RB 1 MHz; VB: 10 Hz, 14dbm
5180.300	115.2	V	-	-	PK	287	1.2	RB 1 MHz; VB: 1 MHz, 14dbm
5182.570	98.2	Н	-	-	AVG	358	1.4	RB 1 MHz; VB: 10 Hz, 21dBm
5182.730	107.6	Н	-	-	PK	358	1.4	RB 1 MHz; VB: 1 MHz, 21dBm

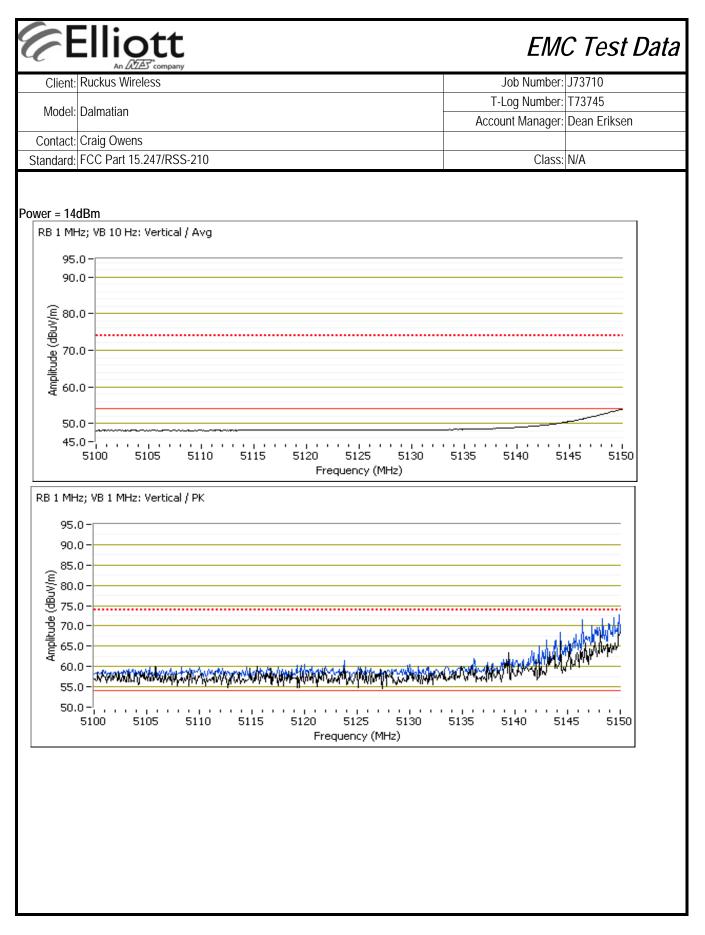

5150 MHz Band Edge Signal Radiated Field Strength

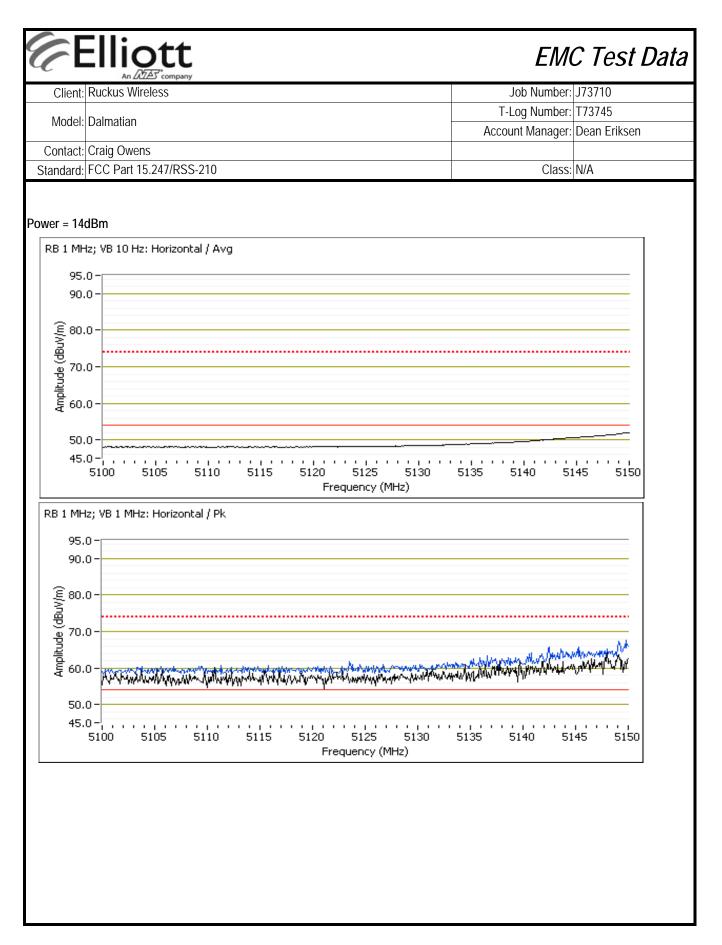

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5149.980	73.1	V	74.0	-0.9	PK	287	1.2	RB 1 MHz; VB: 1 MHz, 14dbm
5149.900	52.7	V	54.0	-1.3	Avg	287	1.2	RB 1 MHz; VB: 10 Hz, 14dbm
5149.900	51.5	Н	54.0	-2.5	Avg	358	1.4	RB 1 MHz; VB: 10 Hz, 21dBm
5149.880	67.5	Н	74.0	-6.5	PK	358	1.4	RB 1 MHz; VB: 1 MHz, 21dBm

Spurious Radiated Emissions:

Power Setting = 21dbm

Frequency	Level	Pol	15.20	9/15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10360.130	56.8	V	68.3	-11.5	AVG	238	1.0	RB 1 MHz; VB: 10 Hz
10360.490	56.6	Н	68.3	-11.7	AVG	163	1.1	RB 1 MHz; VB: 10 Hz
10359.960	68.9	V	88.3	-19.4	PK	238	1.0	RB 1 MHz; VB: 1 MHz
10360.120	68.6	Н	88.3	-19.7	PK	163	1.1	RB 1 MHz; VB: 1 MHz
Note 1:	For emission	ns in restricte	ed bands, the	e limit of 15.2	09 was used.	For all othe	er emissions	, the average limit was set to -
NOLE T.	27dBm/MHz	: (~68dBuV/n	n).					

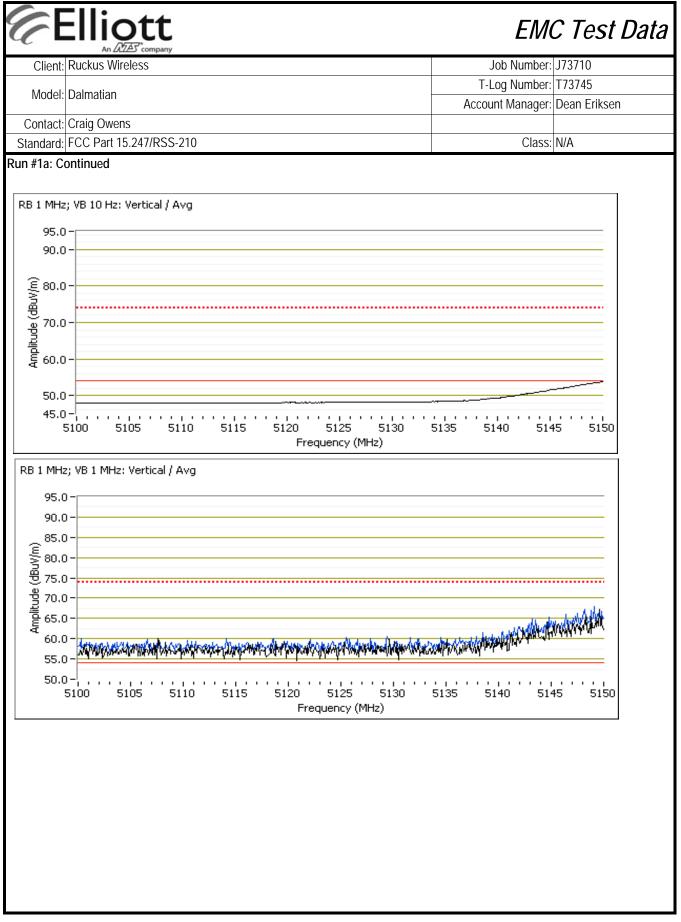


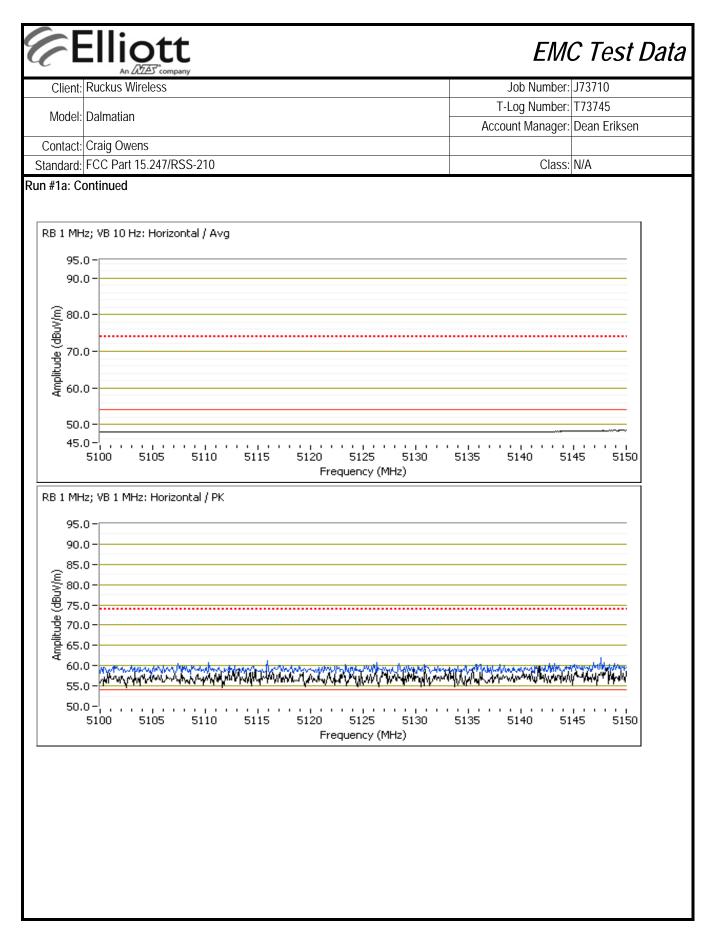

Client	Ruckus Wire	Company Deless						Job Number:	J73710
		1000					T	Log Number:	
Model:	Dalmatian							unt Manager:	
Contact	Craig Owen:	c					ALLU	uni manayer.	
	FCC Part 15		10					Class:	NI/A
	Center Chan		10					01033.	
		IEI							
	Date of Test:	2/9/2009							
Te	est Engineer:	Joseph Cad	igal						
	est Location:								
•	Radiated Emi								
	ing = 21dbm						1		
Frequency		Pol		9/15E	Detector	Azimuth	Height	Comments	
		v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
MHz	dBµV/m								
10400.510	59.0	V	68.3	-9.3	AVG	120	1.4	RB 1 MHz; V	
10400.510 10401.500	59.0 56.7	V H	68.3	-11.6	AVG	163	1.1	RB 1 MHz;	/B: 10 Hz
10400.510 10401.500 10401.150	59.0 56.7 70.6	V H V	68.3 88.3	-11.6 -17.7	AVG PK	163 120	1.1 1.4	RB 1 MHz; RB 1 MHz;	/B: 10 Hz /B: 1 MHz
10400.510 10401.500 10401.150	59.0 56.7	V H	68.3	-11.6	AVG	163	1.1	RB 1 MHz;	/B: 10 Hz /B: 1 MHz
10400.510 10401.500 10401.150	59.0 56.7 70.6 68.3	V H V H	68.3 88.3 88.3	-11.6 -17.7 -20.0	AVG PK PK	163 120 163	1.1 1.4 1.1	RB 1 MHz; RB 1 MHz; RB 1 MHz;	/B: 10 Hz /B: 1 MHz /B: 1 MHz
10400.510 10401.500 10401.150 10399.420	59.0 56.7 70.6 68.3 For emission	V H V H	68.3 88.3 88.3 ed bands, the	-11.6 -17.7 -20.0	AVG PK PK	163 120 163	1.1 1.4 1.1	RB 1 MHz; RB 1 MHz;	/B: 10 Hz /B: 1 MHz /B: 1 MHz
10400.510 10401.500 10401.150 10399.420	59.0 56.7 70.6 68.3	V H V H	68.3 88.3 88.3 ed bands, the	-11.6 -17.7 -20.0	AVG PK PK	163 120 163	1.1 1.4 1.1	RB 1 MHz; RB 1 MHz; RB 1 MHz;	/B: 10 Hz /B: 1 MHz /B: 1 MHz
10400.510 10401.500 10401.150 10399.420	59.0 56.7 70.6 68.3 For emission	V H V H	68.3 88.3 88.3 ed bands, the	-11.6 -17.7 -20.0	AVG PK PK	163 120 163	1.1 1.4 1.1	RB 1 MHz; RB 1 MHz; RB 1 MHz;	/B: 10 Hz /B: 1 MHz /B: 1 MHz
10400.510 10401.500 10401.150 10399.420 Note 1:	59.0 56.7 70.6 68.3 For emission	V H V H ns in restricte	68.3 88.3 88.3 ed bands, the n).	-11.6 -17.7 -20.0	AVG PK PK	163 120 163	1.1 1.4 1.1	RB 1 MHz; RB 1 MHz; RB 1 MHz;	/B: 10 Hz /B: 1 MHz /B: 1 MHz
10400.510 10401.500 10401.150 10399.420 Note 1:	59.0 56.7 70.6 68.3 For emissior 27dBm/MHz	V H V H ns in restricte	68.3 88.3 88.3 ed bands, the n).	-11.6 -17.7 -20.0	AVG PK PK	163 120 163	1.1 1.4 1.1	RB 1 MHz; RB 1 MHz; RB 1 MHz;	/B: 10 Hz /B: 1 MHz /B: 1 MHz
10400.510 10401.500 10401.150 10399.420 Jote 1: Run #1c: H	59.0 56.7 70.6 68.3 For emissior 27dBm/MHz igh Channel Radiated Emi	V H V H is in restricte (~68dBuV/n @ 5240MHz	68.3 88.3 88.3 ed bands, the n).	-11.6 -17.7 -20.0	AVG PK PK	163 120 163	1.1 1.4 1.1	RB 1 MHz; RB 1 MHz; RB 1 MHz;	/B: 10 Hz /B: 1 MHz /B: 1 MHz
10400.510 10401.500 10401.150 10399.420 Note 1: Run #1c: H Spurious R Power Sett	59.0 56.7 70.6 68.3 For emissior 27dBm/MHz igh Channel Radiated Emi ing = 21dbm	V H V H ms in restricte c (~68dBuV/n @ 5240MHz	68.3 88.3 88.3 ed bands, the n).	-11.6 -17.7 -20.0	AVG PK PK	163 120 163 For all othe	1.1 1.4 1.1 er emissions	RB 1 MHz; ' RB 1 MHz; ' RB 1 MHz; '	/B: 10 Hz /B: 1 MHz /B: 1 MHz
10400.510 10401.500 10401.150 10399.420 Note 1: Run #1c: H Spurious R Power Sett Frequency	59.0 56.7 70.6 68.3 For emissior 27dBm/MHz igh Channel Radiated Emi ing = 21dbm Level	V H V H s in restricte (~68dBuV/n @ 5240MHz issions: Pol	68.3 88.3 88.3 ed bands, the n).	-11.6 -17.7 -20.0 Imit of 15.2	AVG PK PK 09 was used. Detector	163 120 163 For all othe	1.1 1.4 1.1	RB 1 MHz; RB 1 MHz; RB 1 MHz;	/B: 10 Hz /B: 1 MHz /B: 1 MHz
10400.510 10401.500 10401.150 10399.420 Note 1: Run #1c: H Spurious R Power Sett Frequency MHz	59.0 56.7 70.6 68.3 For emission 27dBm/MHz igh Channel Radiated Emi ing = 21dbm Level dBµV/m	V H V H ms in restricte (~68dBuV/n @ 5240MHz <i>©</i> ssions: Pol v/h	68.3 88.3 88.3 ed bands, the n). 15.20 Limit	-11.6 -17.7 -20.0 Ilimit of 15.2 Margin	AVG PK PK 09 was used. Detector Pk/QP/Avg	163 120 163 For all othe Azimuth degrees	1.1 1.4 1.1 er emissions Height meters	RB 1 MHz; ^v RB 1 MHz; ^v RB 1 MHz; ^v , the average Comments	/B: 10 Hz /B: 1 MHz /B: 1 MHz limit was set
10400.510 10401.500 10401.150 10399.420 Note 1: Run #1c: H Spurious R Power Sett Frequency MHz 10480.000	59.0 56.7 70.6 68.3 For emissior 27dBm/MHz igh Channel adiated Emi ing = 21dbm Level dBμV/m 60.3	V H V H is in restricte (~68dBuV/n @ 5240MHz <i>issions:</i> Pol V/h V	68.3 88.3 88.3 ed bands, the n). 15.200 Limit 68.3	-11.6 -17.7 -20.0 Ilmit of 15.2	AVG PK PK 09 was used. 09 was used. NG	163 120 163 For all othe Azimuth degrees 360	1.1 1.4 1.1 er emissions Height meters 1.4	RB 1 MHz; ¹ RB 1 MHz; ¹ RB 1 MHz; ¹ , the average , the average RB 1 MHz; ¹	/B: 10 Hz /B: 1 MHz /B: 1 MHz limit was set /B: 10 Hz
10400.510 10401.500 10399.420 Note 1: Run #1c: H Spurious R Power Sett Frequency MHz 10480.000 10479.740	59.0 56.7 70.6 68.3 For emissior 27dBm/MHz igh Channel Radiated Emi ing = 21dbm Level dBμV/m 60.3 54.8	V H V H s in restricte (~68dBuV/n @ 5240MHz <i>issions:</i> Pol V/h V H	68.3 88.3 88.3 ed bands, the n). 15.200 Limit 68.3 68.3	-11.6 -17.7 -20.0 Imit of 15.2 Margin -8.0 -13.5	AVG PK PK 09 was used. 09 was used.	163 120 163 For all other Azimuth degrees 360 162	1.1 1.4 1.1 er emissions Height meters 1.4 1.1	RB 1 MHz; ' RB 1 MHz; ' RB 1 MHz; ' , the average , the average RB 1 MHz; ' RB 1 MHz; '	/B: 10 Hz /B: 1 MHz /B: 1 MHz · limit was se /B: 10 Hz /B: 10 Hz
10400.510 10401.500 10401.150 10399.420 Note 1: Run #1c: H Spurious R Power Sett Frequency MHz 10480.000	59.0 56.7 70.6 68.3 For emissior 27dBm/MHz igh Channel Radiated Emi ing = 21dbm Level dBμV/m 60.3 54.8 73.8	V H V H is in restricte (~68dBuV/n @ 5240MHz <i>issions:</i> Pol V/h V	68.3 88.3 88.3 ed bands, the n). 15.200 Limit 68.3	-11.6 -17.7 -20.0 Ilmit of 15.2	AVG PK PK 09 was used. 09 was used. NG	163 120 163 For all othe Azimuth degrees 360	1.1 1.4 1.1 er emissions Height meters 1.4	RB 1 MHz; ¹ RB 1 MHz; ¹ RB 1 MHz; ¹ , the average , the average RB 1 MHz; ¹	/B: 10 Hz /B: 1 MHz /B: 1 MHz - limit was set /B: 10 Hz /B: 10 Hz /B: 10 Hz

Client: Model: Contact:	Ruckus Min					EMO	C Test Data
	IVUCKUS MIII	eless				Job Number:	J73710
	Dalmatian					T-Log Number:	T73745
Contact:						Account Manager:	Dean Eriksen
	Craig Owen						
Standard:	FCC Part 1	5.247/RSS-21	10			Class:	N/A
	RSS 2	10 and	FCC 1	5.407 (L	JNII) Radiated	Spurious Emi	ssions
Test Spec	ific Detai	ls					
	Objective:	The objective specification			perform final qualification	testing of the EUT with r	espect to the
D	ate of Test:	Refer to indi	vidual run		Config. Used:		
	•	Refer to indi			Config Change:		
le	st Location:	Refer to indi	vidual run		EUT Voltage:	120V/60Hz	
	d all local su	ipport equipm			urntable for radiated spurio located 3 meters from the		
Ambient C	Condition	۶.	1	Femperature:	20 °C		
	Sonanion			Rel. Humidity:			
Summary	of Result	ts					
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
	802.11a	5150-5250	14dBm		Restricted Band Edge at	15.209	53.9dBµV/m @
-	Legacy	Low	THUDIN		5150 MHz	13.207	5150.0MHz (-0.1dB)
	802.11a Legacy	5150-5250 Low	21dBm		Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	56.6dBµV/m @ 10359.5MHz (-11.7dB)
1	802.11a	5150-5250	01dDm		Radiated Emissions,	FCC 15.209 / 15 E	58.8dBµV/m @
_	Legacy	Center	21dBm		1 - 40 GHz	FUU 15.2097 15 E	10401.3MHz (-9.5dB)
	802.11a Legacy	5150-5250 High	21dBm		Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	59.9dBµV/m @ 10479.9MHz (-8.4dB)

|--|

		Company							
Client:	Ruckus Wire	less						Job Number:	J73710
Maria I.	Delmalia						T-	-Log Number:	T73745
Wodel:	Dalmatian							-	Dean Eriksen
Contact:	Craig Owens							<u>v</u>	
Standard: FCC Part 15.247/RSS-210								Class:	N/A
	ions Made tions were ma	-	-	sting					
Deviation	s From Th	e Standar	'n						
	is were made			of the standa	rd				
to domation									
	ng = 21dbm IT20 mode								
I1n MCS0 F [Te T€ Run #1a: Lo		Joseph Cad SVOATS #1 @ 5180 MH 2	igal/Rafael V						
In MCSO F E Te Run #1a: Lo Fundament Frequency	HT20 mode Date of Test: 2 st Engineer: 4 est Location: 9 bw Channel of tal Signal Fie Level	Joseph Cad SVOATS #1 @ 5180 MH z <i>Id Strength</i> Pol	igal/Rafael V z 15.209	/ 15.247	Detector	Azimuth	Height	Comments	
1n MCSO F Te Te Run #1a: Lo Fundament Frequency MHz	HT20 mode Date of Test: St Engineer: est Location: bw Channel of tal Signal Fie Level dBμV/m	Joseph Cad SVOATS #1 @ 5180 MH z <i>Id Strength</i> Pol v/h	igal/Rafael V		Pk/QP/Avg	degrees	meters		
In MCSO F Te Te Run #1a: Lo Fundament Frequency MHz 5181.630	HT20 mode Date of Test: ast Engineer: est Location: bw Channel tal Signal Fie Level dBμV/m 106.0	Joseph Cad SVOATS #1 @ 5180 MHz Id Strength Pol V/h V	igal/Rafael V z 15.209	/ 15.247	Pk/QP/Avg AVG	degrees 287	meters 1.2	RB 1 MHz;	VB: 10 Hz, 14dbm
11n MCS0 F [Te Te Run #1a: Le Fundament Frequency MHz 5181.630 5184.170	HT20 mode Date of Test: 2 st Engineer: 2 est Location: 3 bw Channel of tal Signal Fiel dBµV/m 106.0 114.5	Joseph Cad SVOATS #1 @ 5180 MHz Id Strength Pol V/h V V	igal/Rafael V z 15.209	/ 15.247	Pk/QP/Avg AVG PK	degrees 287 287	meters 1.2 1.2	RB 1 MHz; RB 1 MHz;	VB: 1 MHz, 14dbm
In MCS0 F	HT20 mode Date of Test: 2 st Engineer: 2 est Location: 3 bw Channel of tal Signal Fie Level dBµV/m 106.0 114.5 98.3	Joseph Cad SVOATS #1 @ 5180 MHz Id Strength Pol V/h V V V H	igal/Rafael V z 15.209	/ 15.247	Pk/QP/Avg AVG PK AVG	degrees 287 287 358	meters 1.2 1.2 1.4	RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz;	VB: 1 MHz, 14dbm VB: 10 Hz, 21dBm
11n MCS0 F [Te Te Run #1a: Le Fundament Frequency MHz 5181.630 5184.170	HT20 mode Date of Test: 2 st Engineer: 2 est Location: 3 bw Channel of tal Signal Fiel dBµV/m 106.0 114.5	Joseph Cad SVOATS #1 @ 5180 MHz Id Strength Pol V/h V V	igal/Rafael V z 15.209	/ 15.247	Pk/QP/Avg AVG PK	degrees 287 287	meters 1.2 1.2	RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz;	VB: 1 MHz, 14dbm
In MCS0 F Te Te Te Run #1a: Lo Frequency MHz 5181.630 5184.170 5182.930 5181.130	HT20 mode Date of Test: St Engineer: est Location: bw Channel of tal Signal Fie Level dBμV/m 106.0 114.5 98.3 106.7	Joseph Cad SVOATS #1 @ 5180 MHz Id Strength Pol V/h V V V H H H	igal/Rafael V z 15.209 Limit - - - -	/ 15.247 Margin - - - -	Pk/QP/Avg AVG PK AVG	degrees 287 287 358	meters 1.2 1.2 1.4	RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz;	VB: 1 MHz, 14dbm VB: 10 Hz, 21dBm
In MCSO F [Te Te Run #1a: Le Fundament Frequency MHz 5181.630 5184.170 5182.930 5181.130	HT20 mode Date of Test: 2 st Engineer: 2 est Location: 3 bw Channel of tal Signal Fie Level dBµV/m 106.0 114.5 98.3	Joseph Cad SVOATS #1 @ 5180 MHz Id Strength Pol V/h V V V H H H	igal/Rafael V 15.209 Limit - - - ted Field Sti	/ 15.247 Margin - - - -	Pk/QP/Avg AVG PK AVG	degrees 287 287 358	meters 1.2 1.2 1.4	RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz;	VB: 1 MHz, 14dbm VB: 10 Hz, 21dBm
1n MCS0 H [Te Te Run #1a: Le Fundament Frequency MHz 5181.630 5184.170 5182.930 5181.130	HT20 mode Date of Test: 2 st Engineer: 2 est Location: 3 ow Channel of al Signal Fiel (dBµV/m 106.0 114.5 98.3 106.7 Band Edge Si Level	Joseph Cad SVOATS #1 @ 5180 MHz Id Strength Pol V/h V V V H H H	igal/Rafael V 15.209 Limit - - - ted Field Sti	/ 15.247 Margin - - - - - - - rength 15.209	Pk/QP/Avg AVG PK AVG PK	degrees 287 287 358 358 358 Azimuth	meters 1.2 1.2 1.4 1.4	RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz;	VB: 1 MHz, 14dbm VB: 10 Hz, 21dBm
1n MCS0 F E Te Te Run #1a: Lo Fundament Frequency MHz 5181.630 5184.170 5182.930 5181.130 5181.130 5150 MHz E Frequency MHz	HT20 mode Date of Test: 2 St Engineer: 2 Sest Location: 3 Dw Channel of tal Signal Fiel dBµV/m 106.0 114.5 98.3 106.7 Band Edge Si	Joseph Cad SVOATS #1 @ 5180 MHz Id Strength Pol V/h V V V V H H H	igal/Rafael V 15.209 Limit - - ted Field Str FCC	/ 15.247 Margin - - - - -	Pk/QP/Avg AVG PK AVG PK Detector	degrees 287 287 358 358	meters 1.2 1.2 1.4 1.4 Height	RB 1 MHz; ¹ RB 1 MHz; ¹ RB 1 MHz; ¹ RB 1 MHz; ¹ RB 1 MHz; ¹ Comments	VB: 1 MHz, 14dbm VB: 10 Hz, 21dBm
In MCSO F Te Te Te Run #1a: Lo Fundament Frequency MHz 5181.630 5184.170 5182.930 5184.130 51850 MHz E Frequency	HT20 mode Date of Test: 2 st Engineer: 2 est Location: 3 bw Channel @ tal Signal Fie Level dBμV/m 106.0 114.5 98.3 106.7 Band Edge Si Level dBμV/m	Joseph Cad SVOATS #1 @ 5180 MHz Id Strength Pol V/h V V H H H H	igal/Rafael V 15.209 Limit - - ted Field Str FCC Limit	/ 15.247 Margin - - - - rength 15.209 Margin	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg	degrees 287 287 358 358 358 Azimuth degrees	meters 1.2 1.2 1.4 1.4 Height meters	RB 1 MHz; ' RB 1 MHz; ' RB 1 MHz; ' RB 1 MHz; ' Comments RB 1 MHz; '	VB: 1 MHz, 14dbm VB: 10 Hz, 21dBm VB: 1 MHz, 21dBm VB: 10 Hz, 14dbm
In MCS0 F E Te Te Run #1a: Lo Fundament Frequency MHz 5181.630 5184.170 5182.930 5181.130 5181.130 5150 MHz E Frequency MHz 5149.970	HT20 mode Date of Test: 2 st Engineer: 4 cest Location: 2 cest Location:	Joseph Cad SVOATS #1 @ 5180 MHz Id Strength Pol V/h V V H H H Sgnal Radia Pol v/h V	igal/Rafael V 15.209 Limit - - ted Field Str FCC Limit 54.0	/ 15.247 Margin - - - rength 15.209 Margin -0.1	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg Avg	degrees 287 287 358 358 Azimuth degrees 287	meters 1.2 1.4 1.4 1.4 1.4 1.4 1.2	RB 1 MHz; ' RB 1 MHz; '	VB: 1 MHz, 14dbm VB: 10 Hz, 21dBm VB: 1 MHz, 21dBm


E	liott
	An ATAS company


Client:	Ruckus Wire	less						Job Number:	J73710
							T-Log Number:		T73745
Model:	Dalmatian							5	Dean Eriksen
Contact:	Craig Owens							5	
	FCC Part 15		10					Class:	N/A
Spurious D	adiated Emi	scions							
	ng = 21dbm	5510115.							
Frequency	Level	Pol	15.20	9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
10359.530	56.6	V	68.3	-11.7	AVG	238	1.0	MHz; VB: 1	0 Hz
10358.870	68.7	V	88.3	-19.6	PK	238	1.0	MHz; VB: 1	MHz
10361.080	56.3	Н	68.3	-12.0	AVG	163	1.1	MHz; VB: 1	
10360.740	68.6	Н	88.3	-19.7	PK	163	1.1	MHz; VB: 1	MHz
	enter Chanr	iel							
5 200MHz C Te Te	Date of Test: st Engineer: est Location:	2/10/2009 Joseph Cad SVOATS #1	0						
5 200MHz E Te Te Spurious R	Date of Test: st Engineer: est Location: adiated Emi	2/10/2009 Joseph Cad SVOATS #1	0						
5 200MHz E Te Te Spurious R	Date of Test: st Engineer: est Location:	2/10/2009 Joseph Cad SVOATS #1	0	9 / 15E	Detector	Azimuth	Height	Comments	
5200MHz Te Te Spurious R Power Setti Frequency MHz	Date of Test: st Engineer: st Location: adiated Emi ng = 21dbm Level dBμV/m	2/10/2009 Joseph Cad SVOATS #1 <i>ssions:</i> Pol v/h	0	9 / 15E Margin	Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
5200MHz Te Te Spurious R Power Setti Frequency MHz 10401.250	Date of Test: st Engineer: est Location: adiated Emi ng = 21dbm Level dBμV/m 58.8	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol v/h V	15.20 Limit 68.3	Margin -9.5	Pk/QP/Avg AVG	degrees 120	meters 1.4	MHz; VB: 1	
5200MHz Te Te Spurious R Power Setti Frequency MHz 10401.250 10399.580	Date of Test: st Engineer: est Location: adiated Emi. ng = 21dbm Level dBµV/m 58.8 70.0	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol V/h V V	15.20 ⁰ Limit 68.3 88.3	Margin -9.5 -18.3	Pk/QP/Avg AVG PK	degrees 120 120	meters 1.4 1.4	MHz; VB: 1 MHz; VB: 1	MHz
200MHz E Te Te Spurious R Power Setti Frequency MHz 10401.250 10399.580 10400.820	Date of Test: st Engineer: est Location: adiated Emi. ng = 21dbm Level dBµV/m 58.8 70.0 57.1	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol V/h V V H	15.20 ⁰ Limit 68.3 88.3 68.3	Margin -9.5 -18.3 -11.2	Pk/QP/Avg AVG PK AVG	degrees 120 120 163	meters 1.4 1.4 1.1	MHz; VB: 1 MHz; VB: 1 MHz; VB: 1	MHz 0 Hz
5200MHz Te Te Spurious R Power Setti Frequency MHz 10401.250	Date of Test: st Engineer: est Location: adiated Emi. ng = 21dbm Level dBµV/m 58.8 70.0	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol V/h V V	15.20 ⁰ Limit 68.3 88.3	Margin -9.5 -18.3	Pk/QP/Avg AVG PK	degrees 120 120	meters 1.4 1.4	MHz; VB: 1 MHz; VB: 1	MHz 0 Hz
5200MHz Te Te Te 5 5 5 5 5 5 5 5 5 5 5 5 5	Date of Test: st Engineer: est Location: adiated Emi. ng = 21dbm Level dBµV/m 58.8 70.0 57.1 69.1 For emissior 27dBm/MHz	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol V/h V V V H H H s in restricte (~68dBuV/n	15.20 Limit 68.3 88.3 68.3 88.3 ed bands, the n).	Margin -9.5 -18.3 -11.2 -19.2	Pk/QP/Avg AVG PK AVG PK	degrees 120 120 163 163	meters 1.4 1.4 1.1 1.1 1.1	MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1	MHz 0 Hz
5200MHz Te Te Te 5 5 5 5 5 5 5 5 5 5 5 5 5	Date of Test: st Engineer: est Location: adiated Emi. ng = 21dbm Level dBμV/m 58.8 70.0 57.1 69.1 For emission	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol V/h V V V H H H s in restricte (~68dBuV/n	15.20 Limit 68.3 88.3 68.3 88.3 ed bands, the n).	Margin -9.5 -18.3 -11.2 -19.2	Pk/QP/Avg AVG PK AVG PK	degrees 120 120 163 163	meters 1.4 1.4 1.1 1.1 1.1	MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1	MHz 0 Hz MHz
200MHz E Te Te Te Te Spurious R Power Setti Frequency MHz 10401.250 10401.250 10400.820 10400.820 10400.820 10401.140 Note 1: Run #1a: Hi Spurious R Power Setti	Date of Test: st Engineer: st Location: adiated Emi. adiated Emi. dBµV/m 58.8 70.0 57.1 69.1 For emission 27dBm/MHz gh Channel adiated Emi. ng = 21dbm	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol v/h V V H H H sin restricte (~68dBuV/n @ 5240MHz ssions:	15.20 Limit 68.3 88.3 68.3 88.3 ed bands, the n).	Margin -9.5 -18.3 -11.2 -19.2	PK/QP/Avg AVG PK AVG PK 209 was used.	degrees 120 120 163 163 For all othe	meters 1.4 1.4 1.1 1.1 r emissions	MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1	MHz 0 Hz MHz
200MHz E Te Te Te Frequency MHz 10401.250 10401.250 10400.820 10401.140 Note 1: Run #1a: Hi Spurious R Power Setti Frequency	Date of Test: st Engineer: st Location: adiated Emi. ng = 21dbm Level dBµV/m 58.8 70.0 57.1 69.1 For emissior 27dBm/MHz gh Channel adiated Emi. ng = 21dbm Level	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol v/h V V H H sin restricte (~68dBuV/n @ 5240MHz ssions: Pol	15.20 ⁰ Limit 68.3 88.3 68.3 88.3 ed bands, the n).	Margin -9.5 -18.3 -11.2 -19.2 e limit of 15.2	PK/QP/Avg AVG PK AVG PK 209 was used.	degrees 120 120 163 163	meters 1.4 1.4 1.1 1.1 r emissions Height	MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1	MHz 0 Hz MHz
200MHz Te Te Te Te Spurious R Power Setti Frequency MHz 10401.250 10401.250 10400.820 10400.820 10400.820 10400.820 10401.140 Note 1: Run #1a: Hi Spurious R Power Setti Frequency MHz	Date of Test: st Engineer: st Location: adiated Emi. ng = 21dbm Level dBµV/m 58.8 70.0 57.1 69.1 For emissior 27dBm/MHz gh Channel adiated Emi. ng = 21dbm Level dBµV/m	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol v/h V V H H H sin restricte (~68dBuV/n @ 5240MHz ssions: Pol v/h	15.20 Limit 68.3 88.3 68.3 88.3 ed bands, the n).	Margin -9.5 -18.3 -11.2 -19.2 e limit of 15.2 e limit of 15.2 Margin	Pk/QP/Avg AVG PK AVG PK 209 was used. 209 was used. Pk/QP/Avg	degrees 120 120 163 163 For all othe Azimuth degrees	meters 1.4 1.4 1.1 1.1 r emissions Height meters	MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1	MHz 0 Hz MHz e limit was set to -
200MHz Te Te Te Te Spurious R Power Setti Frequency MHz 10401.250 10399.580 10400.820 10401.140 Note 1: Note 1: Run #1a: Hi Spurious R Power Setti Frequency MHz 10479.890	Date of Test: st Engineer: est Location: adiated Emi. ng = 21dbm Level dBµV/m 58.8 70.0 57.1 69.1 For emissior 27dBm/MHz gh Channel adiated Emi. ng = 21dbm Level dBµV/m 59.9	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol v/h V V H H H s in restricte (~68dBuV/n @ 5240MHz ssions: Pol v/h V	15.20 Limit 68.3 88.3 68.3 88.3 ed bands, the n). 15.20 Limit 68.3	Margin -9.5 -18.3 -11.2 -19.2 e limit of 15.2 e limit of 15.2 Margin -8.4	PK/QP/Avg AVG PK AVG PK 209 was used. 209 was used. PK/QP/Avg AVG	degrees 120 163 163 For all othe Azimuth degrees 360	meters 1.4 1.4 1.1 1.1 r emissions Height meters 1.4	MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 , the average	MHz 0 Hz MHz e limit was set to -
5200MHz Te Te Te 50wer Setti Frequency MHz 10401.250 10399.580 10400.820 10401.140 Note 1: Note 1: Run #1a: Hi Spurious R Power Setti Frequency MHz 10479.890 10479.850	bate of Test: st Engineer: st Location: adiated Emi. ng = 21dbm Level dBμV/m 58.8 70.0 57.1 69.1 For emission 27dBm/MHz gh Channel adiated Emi. ng = 21dbm Level dBμV/m 59.9 72.7	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol V/h V V H H H is in restricter (~68dBuV/n @ 5240MHz ssions: Pol V/h V V	15.20 ⁰ Limit 68.3 88.3 68.3 88.3 ed bands, the n). 15.20 ⁰ Limit 68.3 88.3	Margin -9.5 -18.3 -11.2 -19.2 e limit of 15.2 e limit of 15.2 9 / 15E Margin -8.4 -15.6	PK/QP/Avg AVG PK AVG PK 209 was used. 209 was used. 209 was used. 209 was used. 209 was used. 209 was used.	degrees 120 120 163 163 For all othe For all othe Azimuth degrees 360 360	meters 1.4 1.4 1.1 1.1 r emissions Height meters 1.4 1.4	MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 , the average Comments MHz; VB: 1 MHz; VB: 1	MHz 0 Hz MHz e limit was set to - 0 Hz MHz
5200MHz Te Te Te Te 50wer Setti Frequency MHz 10401.250 10399.580 10400.820 10400.820 10401.140 Note 1: Note 1: Run #1a: Hi Spurious R Power Setti Frequency MHz 10479.890	Date of Test: st Engineer: est Location: adiated Emi. ng = 21dbm Level dBµV/m 58.8 70.0 57.1 69.1 For emissior 27dBm/MHz gh Channel adiated Emi. ng = 21dbm Level dBµV/m 59.9	2/10/2009 Joseph Cad SVOATS #1 ssions: Pol v/h V V H H H s in restricte (~68dBuV/n @ 5240MHz ssions: Pol v/h V	15.20 Limit 68.3 88.3 68.3 88.3 ed bands, the n). 15.20 Limit 68.3	Margin -9.5 -18.3 -11.2 -19.2 e limit of 15.2 e limit of 15.2 Margin -8.4	PK/QP/Avg AVG PK AVG PK 209 was used. 209 was used. PK/QP/Avg AVG	degrees 120 163 163 For all othe Azimuth degrees 360	meters 1.4 1.4 1.1 1.1 r emissions Height meters 1.4	MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 MHz; VB: 1 , the average	MHz 0 Hz MHz e limit was set to - 0 Hz MHz 0 Hz

Ruckus Wireless Dalmatian Craig Owens FCC Part 15.247/RSS-210 igh Channel @ 5260 MHz Date of Test: 2/10/2009 st Engineer: Joseph Cadigal est Location: SVOATS #1 adiated Emissions: ng = 17dbm Level Pol 15.209 dBµV/m v/h Limit					Log Number: T73745 unt Manager: Dean Erikse Class: N/A
Craig Owens FCC Part 15.247/RSS-210 igh Channel @ 5260 MHz Date of Test: 2/10/2009 st Engineer: Joseph Cadigal est Location: SVOATS #1 adiated Emissions: ng = 17dbm Level Pol 15.209				Acco	-
FCC Part 15.247/RSS-210 igh Channel @ 5260 MHz Date of Test: 2/10/2009 st Engineer: Joseph Cadigal est Location: SVOATS #1 adiated Emissions: ng = 17dbm Level Pol 15.209					Class: N/A
igh Channel @ 5260 MHz Date of Test: 2/10/2009 st Engineer: Joseph Cadigal est Location: SVOATS #1 adiated Emissions: ng = 17dbm Level Pol 15.209					Class: N/A
Date of Test: 2/10/2009 st Engineer: Joseph Cadigal est Location: SVOATS #1 adiated Emissions: ng = 17dbm Level Pol 15.209					
st Engineer: Joseph Cadigal est Location: SVOATS #1 adiated Emissions: ng = 17dbm Level Pol 15.209					
st Engineer: Joseph Cadigal est Location: SVOATS #1 adiated Emissions: ng = 17dbm Level Pol 15.209					
est Location: SVOATS #1 adiated Emissions: ng = 17dbm Level Pol 15.209					
ng = 17dbm Level Pol 15.209					
ng = 17dbm Level Pol 15.209					
Level Pol 15.209					
	/ 15E	Detector	Azimuth	Height	Comments
	Margin	Pk/QP/Avg	degrees	meters	
58.8 V 68.3	-9.5	AVG	360	1.7	MHz; VB: 10 Hz
71.6 V 88.3	-16.7	PK	360	1.7	MHz; VB: 1 MHz
55.7 H 68.3	-12.6	AVG	198	1.1	MHz; VB: 10 Hz
69.5 H 88.3	-18.8	PK	198	1.1	MHz; VB: 1 MHz

(CE	Ellic	ott				EM	C Test Data
	An 🕅 Ruckus Wir	Company Company	Job Number:	J73710			
Model [.]	Dalmatian				_	T-Log Number:	
-						Account Manager:	Dean Eriksen
	Craig Owen	s 5.247/RSS-21	10			Class:	N/A
Standard.	r o'o'r uit rt						
	RSS 2	10 and	FCC 15	5.407 (L	JNII) Radiated	Spurious Emi	ssions
Test Spec	cific Detai	ls					
	Objective:	The objective	e of this test listed above	session is to e.	perform final qualification	testing of the EUT with r	respect to the
Те	st Engineer:	Refer to indi Refer to indi Refer to indi	vidual run		Config. Used: Config Change: EUT Voltage:	none	
	d all local su	pport equipm			urntable for radiated spuri located 3 meters from the		
Ambient	Condition	S:		emperature: el. Humidity:			
Summary	of Result	ts			00 /0		
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
	MCS0 HT40	5150-5250 Low	12.5dBm	-	Restricted Band Edge at 5150 MHz	15.209	53.9dBµV/m @ 5149.9MHz (-0.1dB)
1	MCS0 HT40	5150-5250 Low	20dBm	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	42.5dBµV/m @ 10381.4MHz (-25.8dB)
	MCS0 HT40	5150-5250 High	20dBm	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	41.9dBµV/m @ 10461.4MHz (-26.4dB)

Client Ruckus Wireless Job Number: J73710 Collent Ruckus Wireless Job Number: J73710 Model: Daimatian Account Manager: Dean Eriksen Contact: Craig Owens Class: N/A Addifications Made During Testing Domotifications were made to the EUT during testing Class: N/A Addifications were made to the EUT during testing Deviations were made to the EUT during testing Deviations were made to the EUT during testing Deviations were made to the EUT during testing Deviations were made to the equirements of the standard. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band In MCS0 H140 mode Date of Test: 2/10/2009 & 2/11/09 Test Engineer: Joseph Cadiga/Rafael Varelas Test Location: SVOATS #1 Maturemental Steph Field Strength Comments MHz Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBgu/Vm vh - AVG 303 1.3 RB 1MHz: VB: 10 Hz Stop 0700 95.6 <t< th=""><th>Æ</th><th></th><th>ott</th><th></th><th></th><th></th><th></th><th></th><th>EM</th><th>C Test Da</th></t<>	Æ		ott						EM	C Test Da	
Model: Data Data Account Manager Dean Eriksen Contact: Craig Ovens Calass: N/A Addifications Made During Testing Calass: N/A Nodifications were made to the EUT during testing Calass: N/A Deviations From The Standard Io deviations were made from the requirements of the standard. Num #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band In MCS0 HT40 mode Date of Test: 2/10/2009 & 2/11/09 Test Engineer: Ioseph Cadiga/Rafael Varelas Test Location: SVOATS #1 Num #1a: Level Pol 15/209 / 15/247 Detector Azimuth Height Comments Mez Trequency Level Pol 15/209 / 15/247 Detector Azimuth Height Comments MHz dBju/Vm Vh Limit Margin PKOPA/Vag degrees meters 5207/07 95.6 V - AVG 303 1.3 RB 1 MHz. VB: 10 Hz 5207/07 95.6 V - AVG	An ZALIZS company								Job Number:	J73710	
Account Manage: Dean Eriksen Standard: FCC Part 15.247/RSS-210 Class: N/A Account Manage:: Dean Eriksen Criag Owens Standard: FCC Part 15.247/RSS-210 Class: N/A Modifications Made During Testing Deviations From The Standard Ide of The Esting Deviations were made to the EUT during testing Deviations From The Standard Ide of Test:: 2/10/2009 & 2/11/09 Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Rum #1a: Low Channel @ 5190 MHz Information Signal Field Strength Tegency Level Pol Tegency Level Pol Detector Azimuth MHz digit/M MHz Margin Provency Level Pol State Cadigat/Rafael Varelas Tegency Level Pol State Cadigat/Rafael Varelas State Cadigat/Rafael Varelas <tr< td=""><td>Medal</td><td>Delmetien</td><td></td><td></td><td></td><td></td><td></td><td>Ţ.</td><td>Log Number:</td><td>T73745</td></tr<>	Medal	Delmetien						Ţ.	Log Number:	T73745	
Standard: Class: N/A Addifications Made During Testing Jour outling Testing Low outlifications were made to the EUT during testing Deviations From The Standard Identifications were made from the requirements of the standard. Review of Test: 2/10/2009 & 2/11/09 Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Rum #1a: Low Channel @ 5190 MHz Immediate Signal Field Strength Tequency Level Pol Strengt Device Test Signal Field Strength Tequency Level Pol Strength Teguency Level Pol Strength Control 9 Strength Teguency Level Pol FCC 15.209 Detector <	woder:	Daimatian						Acco	unt Manager:	Dean Eriksen	
Addifications Made During Testing Io modifications were made to the EUT during testing Deviations From The Standard Io deviations were made from the requirements of the standard. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band In MCS0 HT40 mode Date of Test: 2/10/2009 & 2/11/09 Test Engineer: Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: Stratt Stratt War #1a: Low Channel @ 5190 MHz "indemntal Signal Field Strength" Terguency Level Pol T5181.600 10.4.4 V V - PK 303 Still Add Du/A. V - PK 350 1.7 RB 1 MHz; VB: 10 Hz Still Add Du/A. Still Add Du/A. V - PK 350 1.7 RB 1 MHz; VB: 10 Hz Still Add Du/A. V - PK 350 1.7 Still Add Du/A. V - PK 350 1.7<	Contact:										
lo modifications were made to the EUT during testing Deviations From The Standard Io deviations were made from the requirements of the standard. In MCS0 HT40 mode Date of Test: 2/10/2009 & 2/11/09 Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Point 15:209 / 15:247 Detector Azimuth Height Comments MHz dB ₂ U/m v/h Limit Margin Pk/QP/Avg degrees meters F207.070 95.6 V AVG 303 1.3 RB 1 MHz; VB: 10 Hz 5207.070 95.6 V AVG 303 1.3 RB 1 MHz; VB: 10 Hz 5207.070 95.6 V PK 303 1.3 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 4.8 PK 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 4.8 PK 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 4.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.990 61.2 V 74.0 4.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.930 61.2 V 74.0 514.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.930 61.2 V 74.0 54.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.930 61.2 V 74.0 54.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.930 51.3 RB 1 MHz; VB: 10 Hz 5148.930 51.2 V 74.0 54.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.930 51.2 V 74.0 54.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.930 51.2 V 74.0 54.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.930 51.2 V 74.0 54.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.930 51.2 V 74.0 54.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.930 51.2 V 74.0 54.8 PK 51.3 S 51.8 S 51.								Class:	N/A		
Deviations From The Standard to deviations were made from the requirements of the standard. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band In MCS0 HT40 mode Date of Test: 2/10/2009 & 2/11/09 Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Run #1a: Low Channel @ 5190 MHz Standamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµ//m Vih Limit Margin Pk/OP/Avg 5207.070 95.6 V - AVG 303 5207.070 83.5 H - S206.730 91.7 H - S206.730 91.7 H - Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµ.V/m Stras 30 0.1			•	0							
lo deviations were made from the requirements of the standard. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band In MCS0 HT40 mode Date of Test: 2/10/2009 & 2/11/09 Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Run #1a: Low Channel @ 5190 MHz Sundanental Signal Field Strength Trequency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBuV/m v/h Limit Margin Pk/OP/Avg degrees meters 5207.070 95.6 V AVG 303 1.3 RB 1 MHz: VB: 10 Hz 5207.070 95.6 V PK 3003 1.7 RB 1 MHz: VB: 10 Hz 5206.730 91.7 H PK 350 1.7 RB 1 MHz: VB: 10 Hz 5206.730 91.7 H PK 350 1.7 RB 1 MHz: VB: 10 Hz 5206.730 91.7 H PK 350 1.7 RB 1 MHz: VB: 10 Hz 5206.730 91.7 H PK 350 1.7 RB 1 MHz: VB: 10 Hz 5206.730 91.7 H PK 350 1.7 RB 1 MHz: VB: 10 Hz 5206.730 91.7 H PK 350 1.7 RB 1 MHz: VB: 10 Hz 5206.730 91.7 H PK 350 1.7 RB 1 MHz: VB: 10 Hz 5206.730 91.7 RJ 1 MHz: VB: 10 Hz 5206.730 91.7 H PK 350 1.7 RB 1 MHz: VB: 10 Hz 5206.730 91.7 H PK 350 1.7 RB 1 MHz: VB: 10 Hz 5148.830 69.2 V 74.0 -4.8 PK 303 1.3 RB 1 MHz: VB: 10 Hz 5148.830 69.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz: VB: 10 Hz 5148.830 69.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 130 1.3 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 10 1.0 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 10 1.0 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 10 1.0 MHz: VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 10 1.0 MHz: VB: 10 Hz 5148.790 61.2 V 81.1 MHz 5148.10 MHz VB: 10 Hz 51	No modificat	ions were ma	ade lo lhe El	Ji during tes	sung						
Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band In MCS0 HT40 mode Date of Test: 2/10/2009 & 2/11/09 Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Run #1a: Low Channel @ 5190 MHz Summental Signal Field Strength Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m Vh Limit Margin Pk/OP/Avg degrees meters 5207.070 95.6 V - AVG 303 1.3 RB 1 MHz: VB: 10 Hz 5207.070 95.5 H - - AVG 303 1.3 RB 1 MHz: VB: 10 Hz 5207.070 95.5 H - - PK 303 1.3 RB 1 MHz: VB: 10 Hz 5207.070 95.5 H - - PK 303 1.3 RB 1 MHz: VB: 10 Hz 5207.070 95.5 H - - PK 303 1.3 RB 1 MHz: VB: 10 Hz 5207.070 95.5 V 54.0<					fthe standa	rd					
In MCS0 HT40 mode Date of Test: 2/10/2009 & 2/11/09 Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Run #1a: Low Channel @ 5190 MHz Comments MHz Comments MHz Comments Comments MHz Comments Comments MHz Comments Comments MHz Comments Comments MHz Comments MHz Comments MHz Comments Comments <t< td=""><td></td><td>s were made</td><td></td><td>quirements c</td><td>i ine standa</td><td>IU.</td><td></td><td></td><td></td><td></td></t<>		s were made		quirements c	i ine standa	IU.					
In MCS0 HT40 mode Date of Test: 2/10/2009 & 2/11/09 Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Run #1a: Low Channel @ 5190 MHz Comments MHz Comments MHz Comments Comments MHz Comments Comments MHz Comments Comments MHz Comments Comments MHz Comments MHz Comments MHz Comments Comments <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Date of Test: 2/10/2009 & 2/11/09 Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Run #1a: Low Channel @ 5190 MHz Commental Signal Field Strength Frequency Level Pol 15.207 / 15.247 Detector Azimuth Height Comments MHz dBu//m V/ - AVG 303 1.3 RB 1 MHz; VB: 10 Hz Signal Radiated Field Strength Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµ//m v/h Limit Margin PK/OP/Avg degrees meters Signal Radiated Field Strength Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµ//m v/h Limit Margin PK/OP/Avg degrees meters Site Signal Radiated Field			ous Emissio	ons, 30 - 40,	000 MH. Op	eration in the	5150-5250	MHz Band			
Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Run #1a: Low Channel @ 5190 MHz Standard Signal Field Strength Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m Vh Limit Margin PK/QP/Avg degrees meters 5207.070 95.6 V - AVG 303 1.3 RB 1 MHz; VB: 10 Hz 5207.070 83.5 H - AVG 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5107.07 83.5 H - - AVG AVG 1.7 RB 1 MHz; VB: 10 Hz 5107.07 <t< td=""><td></td><td>1140 mode</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		1140 mode									
Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Run #1a: Low Channel @ 5190 MHz Standard Signal Field Strength Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m Vh Limit Margin PK/QP/Avg degrees meters 5207.070 95.6 V - AVG 303 1.3 RB 1 MHz; VB: 10 Hz 5207.070 83.5 H - AVG 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5107.07 83.5 H - - AVG AVG 1.7 RB 1 MHz; VB: 10 Hz 5107.07 <t< td=""><td>Г</td><td>ate of Test</td><td>2/10/2009 &</td><td>2/11/09</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Г	ate of Test	2/10/2009 &	2/11/09							
Test Location: SVOATS #1 Run #1a: Low Channel @ 5190 MHz Sundamental Signal Field Strength Tequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m vh Limit Margin Pk/QP/Avg degrees meters 5207.070 95.6 V - AVG 303 1.3 RB 1 MHz; VB: 10 Hz 5207.070 83.5 H - AVG 350 1.7 RB 1 MHz; VB: 10 Hz 5207.070 83.5 H - AVG 350 1.7 RB 1 MHz; VB: 10 Hz 520.730 91.7 H Colspan="2">Colspan= 2 V 7 7 Frequency <td colspa<="" td=""><td></td><td></td><td></td><td></td><td>'arelas</td><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td>'arelas</td> <td></td> <td></td> <td></td> <td></td> <td></td>					'arelas					
Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 5207.070 95.6 V - - AVG 303 1.3 RB 1 MHz; VB: 10 Hz 5181.600 104.4 V - - PK 303 1.3 RB 1 MHz; VB: 10 Hz 5207.070 83.5 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5106.0730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5140.900 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5149.900 53.9 V 54.0 -5.6 Avg 350 1.7 <td></td> <td>0</td> <td></td> <td>J</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0		J							
Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 5207.070 95.6 V - - AVG 303 1.3 RB 1 MHz; VB: 10 Hz 5181.600 104.4 V - - PK 303 1.3 RB 1 MHz; VB: 10 Hz 5207.070 83.5 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5106.730 91.7 H - - PK 303 1.3 RB 1 MHz; VB: 10 Hz 5140.900 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5149.900 53.9 V 54.0 -5.6 Avg 350 1.7											
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5207.070 95.6 V - - AVG 303 1.3 RB 1 MHz; VB: 10 Hz 5181.600 104.4 V - - PK 303 1.3 RB 1 MHz; VB: 10 Hz 5207.070 83.5 H - - AVG 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5109.00 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5149.900 51.2 V 74.0 -4.8 PK 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830											
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5207.070 95.6 V - - AVG 303 1.3 RB 1 MHz; VB: 10 Hz 5181.600 104.4 V - - PK 303 1.3 RB 1 MHz; VB: 10 Hz 5207.070 83.5 H - - PK 303 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5145.00.0 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz 5148.790					115 047						
5207.070 95.6 V - - AVG 303 1.3 RB 1 MHz; VB: 10 Hz 5181.600 104.4 V - - PK 303 1.3 RB 1 MHz; VB: 10 Hz 5207.070 83.5 H - - PK 303 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5140.900 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 -4.8 PK 303 1.7 RB 1 MHz; VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz			-					<u> </u>	Comments		
5181.600 104.4 V - - PK 303 1.3 RB 1 MHz; VB: 1 MHz 5207.070 83.5 H - - AVG 350 1.7 RB 1 MHz; VB: 1 MHz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 1 MHz 5100 MHz Band Edge Signal Radiated Field Strength - PK 350 1.7 RB 1 MHz; VB: 1 MHz 6100 MHz Band Edge Signal Radiated Field Strength - PK 350 1.7 RB 1 MHz; VB: 1 MHz 6110 MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5149.900 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 -4.8 PK 303 1.7 RB 1 MHz; VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 1 MHz Spurious Radiated Emissions:					Margin	U	ŭ			/D 1011-	
5207.070 83.5 H - - AVG 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5105 MHz Band Edge Signal Radiated Field Strength - - PK 350 1.7 RB 1 MHz; VB: 10 Hz 5149.900 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 -4.8 PK 303 1.3 RB 1 MHz; VB: 10 Hz 5147.310 48.4 H 54.0 -5.6 Avg 350 1.7 RB 1 MHz; VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz Sourcious Radiated Emissions: - - 74.0 -12.8 PK 120 1.0 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>					-						
5206.730 91.7 H - - PK 350 1.7 RB 1 MHz; VB: 1 MHz 6150 MHz Band Edge Signal Radiated Field Strength Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5149.900 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 -4.8 PK 303 1.3 RB 1 MHz; VB: 10 Hz 5147.310 48.4 H 54.0 -5.6 Avg 350 1.7 RB 1 MHz; VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 1 MHz Spurious Radiated Emissions: Yower Setting = 20dBm Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz <td></td>											
Site Site <t< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>				-	-						
Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5149.900 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 -4.8 PK 303 1.3 RB 1 MHz; VB: 10 Hz 5147.310 48.4 H 54.0 -5.6 Avg 350 1.7 RB 1 MHz; VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz Spurious Radiated Emissions: Power Setting = 20dBm PK 350 1.7 RB 1 MHz; VB: 1 MHz Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10381.370 42.5	3200.730	91.7	Π	-	-	۲N	300	1.7	KD I IVINZ,	VD. I IVINZ	
Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5149.900 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 -4.8 PK 303 1.3 RB 1 MHz; VB: 10 Hz 5147.310 48.4 H 54.0 -5.6 Avg 350 1.7 RB 1 MHz; VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 10 Hz Spurious Radiated Emissions: Power Setting = 20dBm PK 350 1.7 RB 1 MHz; VB: 1 MHz Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10381.370 42.5	5150 MHz B	and Fdae S	ional Radia	ted Field Sti	renath						
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 5149.900 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 -4.8 PK 303 1.3 RB 1 MHz; VB: 1 MHz 5147.310 48.4 H 54.0 -5.6 Avg 350 1.7 RB 1 MHz; VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 1 MHz Spurious Radiated Emissions: Power Setting = 20dBm Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10381.370 42.5 V 68.3 -25.8 AVG 120 1.0 MHz; VB: 10 Hz 10378.910 53.5 V 88.3 -34.8 PK 120 1.0 MHz; VB: 10 Hz		· · ·	•			Detector	Azimuth	Heiaht	Comments		
5149.900 53.9 V 54.0 -0.1 Avg 303 1.3 RB 1 MHz; VB: 10 Hz 5148.830 69.2 V 74.0 -4.8 PK 303 1.3 RB 1 MHz; VB: 10 Hz 5147.310 48.4 H 54.0 -5.6 Avg 350 1.7 RB 1 MHz; VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 1 MHz Spurious Radiated Emissions: Cover Setting = 20dBm Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10381.370 42.5 V 68.3 -25.8 AVG 120 1.0 MHz; VB: 10 Hz 10378.910 53.5 V 88.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 68.3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>oommento</td> <td></td>									oommento		
States V 74.0 -4.8 PK 303 1.3 RB 1 MHz; VB: 1 MHz 5148.830 69.2 V 74.0 -4.8 PK 303 1.3 RB 1 MHz; VB: 1 MHz 5147.310 48.4 H 54.0 -5.6 Avg 350 1.7 RB 1 MHz; VB: 1 MHz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 1 MHz Spurious Radiated Emissions: V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 1 MHz Spurious Radiated Emissions: V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 1 MHz Spurious Radiated Emissions: Pool 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10381.370 42.5 V 68.3 -25.8 AVG 120 1.0 MHz; VB: 10 Hz 10378.910									RB 1 MHz [.] \	/B [.] 10 Hz	
5147.310 48.4 H 54.0 -5.6 Avg 350 1.7 RB 1 MHz; VB: 10 Hz 5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 1 MHz Spurious Radiated Emissions: Cover Setting = 20dBm Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10381.370 42.5 V 68.3 -25.8 AVG 120 1.0 MHz; VB: 10 Hz 10378.910 53.5 V 88.3 -34.8 PK 120 1.0 MHz; VB: 10 Hz 10381.470 42.5 H 68.3 -25.8 AVG 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz Iota 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to -			=			<u> </u>					
5148.790 61.2 V 74.0 -12.8 PK 350 1.7 RB 1 MHz; VB: 1 MHz Spurious Radiated Emissions: Power Setting = 20dBm Power Setting = 20dBm Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10381.370 42.5 V 68.3 -25.8 AVG 120 1.0 MHz; VB: 10 Hz 10378.910 53.5 V 88.3 -34.8 PK 120 1.0 MHz; VB: 10 Hz 10381.470 42.5 H 68.3 -25.8 AVG 113 1.3 MHz; VB: 10 Hz 10381.470 42.5 H 68.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz Iota 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to -											
Spurious Radiated Emissions: Power Setting = 20dBm Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10381.370 42.5 V 68.3 -25.8 AVG 120 1.0 MHz; VB: 10 Hz 10378.910 53.5 V 88.3 -34.8 PK 120 1.0 MHz; VB: 1 MHz 10381.470 42.5 H 68.3 -25.8 AVG 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 1 MHz Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to - -	5148.790										
Prover Setting = 20dBm Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10381.370 42.5 V 68.3 -25.8 AVG 120 1.0 MHz; VB: 10 Hz 10378.910 53.5 V 88.3 -34.8 PK 120 1.0 MHz; VB: 10 Hz 10381.470 42.5 H 68.3 -25.8 AVG 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 1 MHz For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to -					•				. ,		
Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 10381.370 42.5 V 68.3 -25.8 AVG 120 1.0 MHz; VB: 10 Hz 10378.910 53.5 V 88.3 -34.8 PK 120 1.0 MHz; VB: 1 MHz 10381.470 42.5 H 68.3 -25.8 AVG 113 1.3 MHz; VB: 10 Hz 103879.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz Iota 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to - Iota 1: Iota 1: Iota 2:											
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 10381.370 42.5 V 68.3 -25.8 AVG 120 1.0 MHz; VB: 10 Hz 10378.910 53.5 V 88.3 -34.8 PK 120 1.0 MHz; VB: 1 MHz 10381.470 42.5 H 68.3 -25.8 AVG 113 1.3 MHz; VB: 1 MHz 10387.970 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz Iota 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to - -	Power Setti	ng = 20dBm									
10381.370 42.5 V 68.3 -25.8 AVG 120 1.0 MHz; VB: 10 Hz 10378.910 53.5 V 88.3 -34.8 PK 120 1.0 MHz; VB: 1 MHz 10381.470 42.5 H 68.3 -25.8 AVG 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 1 MHz	Frequency	Level	Pol	15.20	9/15E	Detector		Height	Comments		
10378.910 53.5 V 88.3 -34.8 PK 120 1.0 MHz; VB: 1 MHz 10381.470 42.5 H 68.3 -25.8 AVG 113 1.3 MHz; VB: 1 0 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 1 0 Hz Integration of the second se					× ×	Ŭ					
10381.470 42.5 H 68.3 -25.8 AVG 113 1.3 MHz; VB: 10 Hz 10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 10 Hz Integration of the second	10381.370										
10379.570 53.5 H 88.3 -34.8 PK 113 1.3 MHz; VB: 1 MHz Intent: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to -	10378.910										
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to -	10381.470										
	10379.570	53.5	Н	88.3	-34.8	PK	113	1.3	MHz; VB: 1	MHz	
	I	For emission	ns in restricte	d bands the	limit of 15.2	09 was used	For all othe	r emissions	the average	limit was set to -	
				'/·							

Art ACEST company Other Ruckus Wireless Job Number: 1737 Model: balmatian Account Manager: Dean Contact: Craig Owens Contin: State ThisSions: <	45
Model: Dalifiatian Account Manager: Dean Contact: Craig Owens	
Contact: Craig Owens Account Manager: Dean Standard: FCC Part 15.247/RSS-210 Class: N/A un #1b: High Channel @ 5230 MHz Class: N/A power Setting = 20dBm Date of Test: 2/10/2009 Test Engineer: Joseph Cadigal Test Location: SVOATS #1 Svoer Setting = 20dbm Svoer Setting = 20dbm requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0460.340 53.1 V 88.3 -35.2 PK 219 1.0 MHz; VB: 1 MHz For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used.	Eriksen
Standard: FCC Part 15.247/RSS-210 Class: N/A un #1b: High Channel @ 5230 MHz Date of Test: 2/10/2009 Date of Test: 2/10/2009 Test Engineer: Joseph Cadigal Test Location: SVOATS #1 purious Radiated Emissions: Detector Azimuth Height Comments ower Setting = 20dbm requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0461.420 41.9 V 68.3 -26.4 AVG 219 1.0 MHz; VB: 10 Hz 0460.340 53.1 V 88.3 -35.2 PK 219 1.0 MHz; VB: 1 MHz For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used.	
un #1b: High Channel @ 5230 MHz bwer Setting = 20dBm Date of Test: 2/10/2009 Test Engineer: Joseph Cadigal Test Location: SVOATS #1 burious Radiated Emissions: bwer Setting = 20dbm requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0461.420 41.9 V 68.3 -26.4 AVG 219 1.0 MHz; VB: 10 Hz 0460.340 53.1 V 88.3 -35.2 PK 219 1.0 MHz; VB: 1 MHz pto 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used.	
Date of Test: 2/10/2009 Test Engineer: Joseph Cadigal Test Location: SVOATS #1 Durious Radiated Emissions: Dwer Setting = 20dbm requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees 0461.420 41.9 V 68.3 -26.4 0460.340 53.1 V 88.3 -35.2 PK 219 1.0 MHz; VB: 10 Hz Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used.	
Test Engineer: Joseph Cadigal Test Location: SVOATS #1 Durious Radiated Emissions: over Setting = 20dbm requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0461.420 41.9 V 68.3 -26.4 AVG 219 1.0 MHz; VB: 10 Hz 0460.340 53.1 V 88.3 -35.2 PK 219 1.0 MHz; VB: 1 MHz Test Engineer: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used.	
Test Location: SVOATS #1 Durious Radiated Emissions: ower Setting = 20dbm requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0461.420 41.9 V 68.3 -26.4 AVG 219 1.0 MHz; VB: 10 Hz 0460.340 53.1 V 88.3 -35.2 PK 219 1.0 MHz; VB: 1 MHz Toto 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used.	
burious Radiated Emissions:ower Setting = 20dbmrequencyLevelPol15.209 / 15EDetectorAzimuthHeightCommentsMHzdBμV/mv/hLimitMarginPk/QP/Avgdegreesmeters0461.42041.9V68.3-26.4AVG2191.0MHz; VB: 10 Hz0460.34053.1V88.3-35.2PK2191.0MHz; VB: 1 MHzFor emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used.	
bower Setting = 20dbmrequencyLevelPol15.209 / 15EDetectorAzimuthHeightCommentsMHzdB μ V/mv/hLimitMarginPk/QP/Avgdegreesmeters0461.42041.9V68.3-26.4AVG2191.0MHz; VB: 10 Hz0460.34053.1V88.3-35.2PK2191.0MHz; VB: 1 MHzFor emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used.	
requencyLevelPol15.209 / 15EDetectorAzimuthHeightCommentsMHzdBµV/mv/hLimitMarginPk/QP/Avgdegreesmeters0461.42041.9V68.3-26.4AVG2191.0MHz; VB: 10 Hz0460.34053.1V88.3-35.2PK2191.0MHz; VB: 1 MHzFor emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used.	
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0461.420 41.9 V 68.3 -26.4 AVG 219 1.0 MHz; VB: 10 Hz 0460.340 53.1 V 88.3 -35.2 PK 219 1.0 MHz; VB: 1 MHz For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used.	
D460.340 53.1 V 88.3 -35.2 PK 219 1.0 MHz; VB: 1 MHz No. 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used. For all other emissions, the average limit of 15.209 was used.	
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit	
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit to	

	An Dill Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian	T-Log Number:	T73745
MOUEI.	Daimatian	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	В

Radiated Emissions - Receive Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/10/2009 & 2/11/09 Test Engineer: Joseph Cadigal/R. Varelas Test Location: SVOATS #1 / Chamber #2

Config. Used: 1 Config Change: none EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing. Remote support equipment was located approximately 30 meters from the test area with all I/O connections running on top of the groundplane.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions:	Temperature:	20 °C
	Rel. Humidity:	38 %

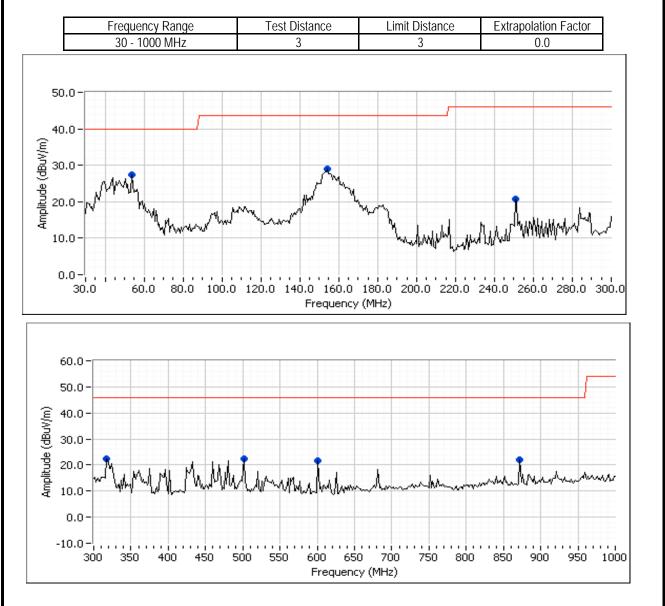
Summary of Results

Run #	Test Performed	Limit	Result	Morgin
		LIIIIIL	Result	Margin
2 - RX on 5200 MHz	RE, 30 - 1000MHz, Maximized	RSS GEN	Pass	28.9dBµV/m@
Legacy Mode	Emissions	NOO OEN	1 435	153.215MHz (-14.6dB)
3a - RX on 5200 MHz	RE, 1000 - 18000MHz, Maximized	RSS GEN	Pass	44.1dBµV/m @
Legacy Mode	Emissions	K33 GEN	F 855	6933.4MHz (-9.9dB)
3b - RX on 5200 MHz	RE, 1000 - 18000MHz, Maximized	RSS GEN	Dece	46.0dBµV/m@
HT40 Mode	Emissions	K33 GEN	Pass	6933.4MHz (-8.0dB)
5 - RX on 5300 MHz	RE, 30 - 1000MHz, Maximized	RSS GEN	Dece	26.9dBµV/m@
Legacy Mode	Emissions	K33 GEN	Pass	53.771MHz (-13.1dB)
6a - RX on 5300 MHz	RE, 1000 - 18000MHz, Maximized	RSS GEN	Deee	50.9dBµV/m@
Legacy Mode	Emissions	K33 GEN	Pass	7066.7MHz (-3.1dB)
6b - RX on 5300 MHz	RE, 1000 - 18000MHz, Maximized	RSS GEN	Deee	50.7dBµV/m@
HT40 Mode	Emissions	K33 GEN	Pass	7066.7MHz (-3.3dB)
8 - RX on 5600 MHz	RE, 30 - 1000MHz, Maximized	RSS GEN	Dece	26.0dBµV/m@
Legacy Mode	Emissions	K33 GEN	Pass	53.847MHz (-14.0dB)
9a - RX on 5600 MHz	RE, 1000 - 18000MHz, Maximized	RSS GEN	Dece	49.7dBµV/m @
Legacy Mode	Emissions	KOO GEN	Pass	7466.7MHz (-4.3dB)
9b - RX on 5600 MHz	RE, 1000 - 18000MHz, Maximized	RSS GEN	Docc	49.9dBµV/m@
HT40 Mode	Emissions	KOO GEN	Pass	7466.7MHz (-4.1dB)

C	An AZAS [*] company							
Client:	Ruckus Wireless	Job Number:	J73710					
Model	Dalmatian	T-Log Number:	T73745					
MOUCH.		Account Manager:	Dean Eriksen					
Contact:	Craig Owens							
Standard:	FCC Part 15.247/RSS-210	Class:	В					
	a life a line of Market Device Tradition							

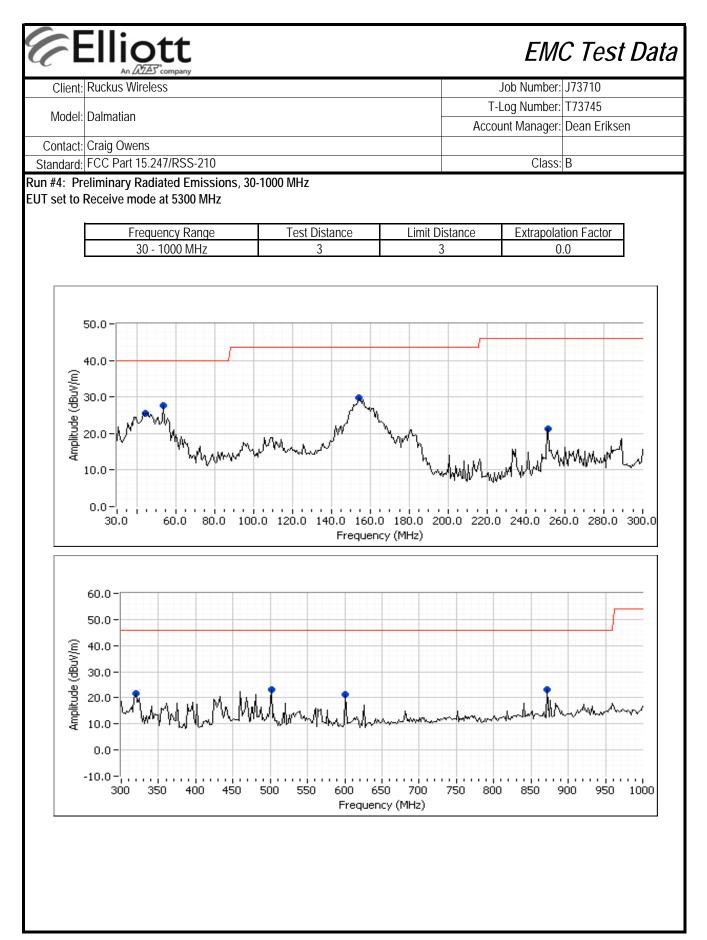
Modifications Made During Testing

No modifications were made to the EUT during testing

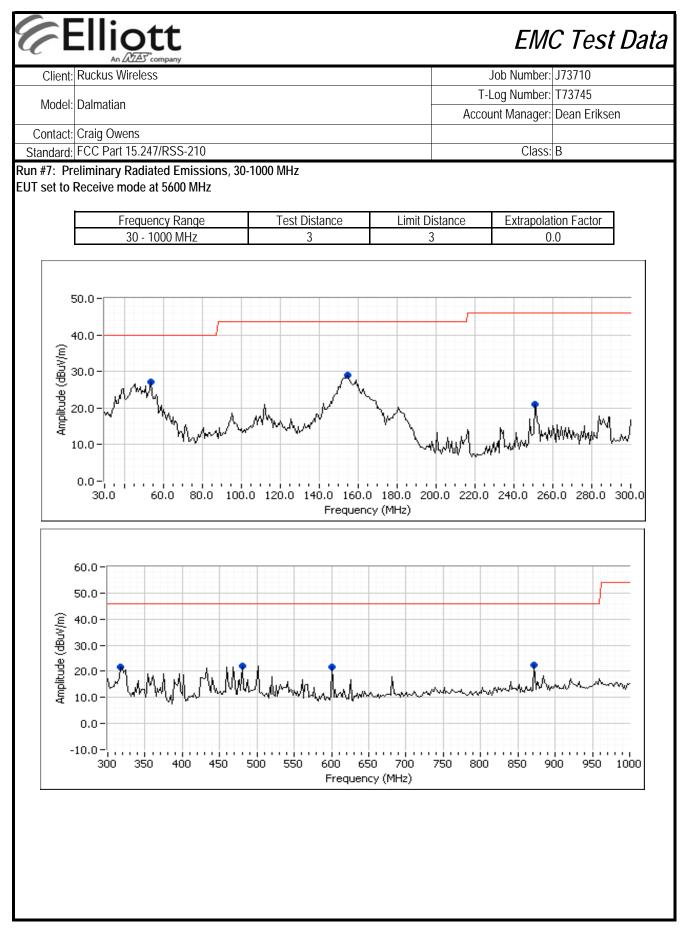

Deviations From The Standard

Elliott

No deviations were made from the requirements of the standard.


Run #1: Preliminary Radiated Emissions, 30-1000 MHz

EUT set to Receive mode at 5200 MHz


Model: Dalmatian T-Log Number: T73745 Contact: Craig Owens Image: Dean Erikse Standard: FCC Part 15.247/RSS-210 Class: B Mr 11: Preliminary Radiated Emissions, 30-1000 MHz Class: B Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBuV/m vh Limit Margin Pk/OP/Avg degrees meters 53.938 27.1 1.7 53.938 27.3 V 40.0 -22.8 Peak 61 1.7 53.938 23.2 H 46.0 -22.8 Peak 298 1.7 500.006 23.1 H 46.0 -22.2 Peak 269 1.7 250.013 20.8 H 46.0 -25.2 Peak 269 1.7 53.938 24.5 V 40.0 -15.5		Ruckus Wire	eless						Job Number:	J73710
Account Manager: Dean Erikse Standard: FCC Part 15.247/RSS-210 Class: B Run #1: Preliminary Radiated Emissions, 30-1000 MHz Erequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dB _µ V/m v/h Limit Margin Pk/QP/Avq degrees meters 53.938 27.3 V 40.0 -22.8 Peak 211 1.7 153.215 29.1 H 46.0 -22.8 Peak 61 1.7 500.006 23.1 H 46.0 -22.8 Peak 298 1.7 319.041 21.8 V 46.0 -24.2 Peak 269 1.7 250.013 20.8 H 46.0 -25.2 Peak 269 1.7 S13.938 24.5 V 40.0 -15.5 OP 271 1.7 S3.938 24.5 V 40.0 -15.5 OP 271	Model	Dalmatian						Ţ.	Log Number:	T73745
Standard: FCC Part 15 247/RSS-210 Class: B Class: B Standard: FCC Part 15 247/RSS-210 Class: B Standard: FCC Part 15 247/RSS-210 Class: B Frequency Level Pol RSS Gen Detector Azimuth Height Comments 53.938 27.3 V 40.0 -12.7 Peak 271 1.7 153.215 29.1 H 43.0 -22.9 Peak 231 1 46.0 -22.9 Peak 280 1.7 50.006 23.1 H 46.0 -26.9 1.7 Standard Readings From Run #1 Frequency Level Pol RSS Gen Detector Azimuth Height Comments Frequency Level	Model	Daimatian						Ассо	unt Manager:	Dean Erikser
Run #1: Preliminary Radiated Emissions, 30-1000 MHz Detector Azimuth Height Comments MHz dBuV/m V/h Limit Margin Pk/QP/Avg degrees meters 53.938 27.3 V 40.0 -12.7 Peak 231 1.7 153.215 29.1 H 43.5 -14.4 Peak 238 1.7 500.006 23.1 H 46.0 -22.8 Peak 61 1.7 500.006 23.1 H 46.0 -22.9 Peak 298 1.7 600.005 21.1 V 46.0 -24.2 Peak 269 1.7 250.013 20.8 H 46.0 -25.2 Peak 299 1.7 Rum#2: Maximized Readings From Rum #1 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBuV/m v/h Limit Margin Pk/QP/Avg degrees <										
Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dB _L V/m v/h Limit Marqin PkQP/Avq degrees metrs 53.938 27.3 V 40.0 -12.7 Peak 271 1.7 153.215 29.1 H 43.5 -11.4 Peak 611 1.7 873.468 23.2 H 46.0 -22.8 Peak 611 1.7 500.006 23.1 H 46.0 -24.2 Peak 269 1.7 600.005 21.1 V 46.0 -25.2 Peak 269 1.7 Stor005 21.1 V 46.0 -25.2 Peak 299 1.7 Run#2: Maximized Readings From Run#1 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MH2 dB _µ V/m Vh Limit Margin Pk/QP/Avq degrees<									Class:	В
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 53.938 27.3 V 40.0 -12.7 Peak 271 1.7 153.215 29.1 H 43.5 -14.4 Peak 238 1.7 153.215 29.1 H 46.0 -22.8 Peak 61 1.7 500.006 23.1 H 46.0 -22.9 Peak 331 1.7 319.041 21.8 V 46.0 -22.2 Peak 298 1.7 600.005 21.1 V 46.0 -25.2 Peak 299 1.7 S20.013 20.8 H 46.0 -25.2 Peak 299 1.7 S3.938 24.5 V 40.0 -15.5 QP 238 1.7 53.215 28.9 H 43.5 -14.6 QP 238 1.7 53.235 28.9 H 43.5	Run #1: Pi	eliminary Ra	idiated Em							
53.938 27.3 V 40.0 -12.7 Peak 271 1.7 153.215 29.1 H 43.5 -14.4 Peak 238 1.7 873.468 23.2 H 46.0 -22.8 Peak 61 1.7 300.006 23.1 H 46.0 -22.9 Peak 331 1.7 319.041 21.8 V 46.0 -24.2 Peak 298 1.7 600.005 21.1 V 46.0 -25.2 Peak 269 1.7 250.013 20.8 H 46.0 -25.2 Peak 299 1.7 Rum#2: Maximized Readings From Run #1 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHZ dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 153.215 28.9 H 43.5 -14.6 QP 238 1.7	Frequency	Level	Pol	RSS	Gen	Detector	Azimuth	Height	Comments	
153.215 29.1 H 43.5 -14.4 Peak 238 1.7 873.468 23.2 H 46.0 -22.8 Peak 61 1.7 500.006 23.1 H 46.0 -22.9 Peak 331 1.7 500.005 21.1 V 46.0 -22.9 Peak 269 1.7 600.005 21.1 V 46.0 -24.2 Peak 299 1.7 250.013 20.8 H 46.0 -25.2 Peak 299 1.7 Rum#2: Maximized Readings From Run #1 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 153.215 28.9 H 43.5 -14.6 QP 238 1.7 Stage requency Range Test Distance Limit Distance Extrapolation Factor										
873.468 23.2 H 46.0 -22.8 Peak 61 1.7 500.006 23.1 H 46.0 -22.9 Peak 331 1.7 319.041 21.8 V 46.0 -24.2 Peak 298 1.7 600.005 21.1 V 46.0 -24.2 Peak 299 1.7 250.013 20.8 H 46.0 -25.2 Peak 299 1.7 Run #2: Maximized Readings From Run #1 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 153.215 28.9 H 43.5 -14.6 OP 238 1.7 Saya8 24.5 V 40.0 -15.5 OP 271 1.7 Saya8 24.5 V 40.0 -15.5 OP 271 1.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>						-				
500.006 23.1 H 46.0 -22.9 Peak 331 1.7 319.041 21.8 V 46.0 -24.2 Peak 298 1.7 600.005 21.1 V 46.0 -24.2 Peak 269 1.7 250.013 20.8 H 46.0 -25.2 Peak 269 1.7 Run#2: Maximized Readings From Run#1 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 153.215 28.9 H 43.5 -14.6 QP 238 1.7 Sayas 24.5 V 40.0 -15.5 QP 271 1.7 Run #3a: Maximized readings, 1000 - 18000 MHz 3 3 0.0 Frequency Range Test Distance Limit Distance Extrapolation Factor 10000 - 18000 MHz 3 3 <td></td>										
319.041 21.8 V 46.0 -24.2 Peak 298 1.7 600.005 21.1 V 46.0 -24.9 Peak 269 1.7 250.013 20.8 H 46.0 -25.2 Peak 299 1.7 Rum#2: Maximized Readings From Run #1 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 153.215 28.9 H 43.5 -14.6 QP 238 1.7 Statistical readings, 1000 - 18000 MHz EUT set to Receive mode at 5200 MHz, Lagacy Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 0 0.0 Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 0 0 0.0										
600.005 21.1 V 46.0 -24.9 Peak 269 1.7 250.013 20.8 H 46.0 -25.2 Peak 299 1.7 Rum#2: Maximized Readings From Run #1 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBjuV/m v/h Limit Margin Pk/OP/Avg degrees meters 153.215 28.9 H 43.5 -14.6 QP 238 1.7 53.938 24.5 V 40.0 -15.5 QP 271 1.7 Requency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 0.0 Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 0 0 MHz dBµV/m v/h Limit Margin Pk/									ļ	
250.013 20.8 H 46.0 -25.2 Peak 299 1.7 Run #2: Maximized Readings From Run #1 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 153.215 28.9 H 43.5 -14.6 OP 238 1.7 53.938 24.5 V 40.0 -15.5 OP 271 1.7 Run #3a: Maximized readings, 1000 - 18000 MHz LUT set to Receive mode at 5200 MHz, Lagacy Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 0 0 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.0 <										
Run #2: Maximized Readings From Run #1 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 153.215 28.9 H 43.5 -14.6 QP 238 1.7 53.938 24.5 V 40.0 -15.5 QP 271 1.7 Run #3a: Maximized readings, 1000 - 18000 MHz EUT set to Receive mode at 5200 MHz, Lagacy Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 0 Frequency Range Test Distance Limit Distance Extrapolation Factor MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 6933.390 44.1 V 54.0 -9.9 AVG 356 1.3 RB 1 MHz; VB: 10 Hz 10400.920 37.8									<u> </u>	
requency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 153.215 28.9 H 43.5 -14.6 QP 238 1.7 53.938 24.5 V 40.0 -15.5 QP 271 1.7 un #3a: Maximized readings, 1000 - 18000 MHz UT set to Receive mode at 5200 MHz, Lagacy Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 0.0 0 0 requency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 933.390 44.1 V 54.0 -9.9 AVG 356 1.3 RB 1 MHz; VB: 10 Hz 933.390 36.7 H 54.0 -16	250.013	20.8	H	46.0	-25.2	Реак	299	1.7		
Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 153.215 28.9 H 43.5 -14.6 QP 238 1.7 53.938 24.5 V 40.0 -15.5 QP 271 1.7 Run#3a: Maximized readings, 1000 - 18000 MHz Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0	0up #2, M	avimized De	adinac Err	m Dun #1						
MHz dB _μ V/m v/h Limit Margin Pk/OP/Avg degrees meters 153.215 28.9 H 43.5 -14.6 QP 238 1.7 53.938 24.5 V 40.0 -15.5 QP 271 1.7 Run #3a: Maximized readings, 1000 - 18000 MHz EUT set to Receive mode at 5200 MHz, Lagacy Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dB _µ V/m v/h Limit Margin Pk/QP/Avg degrees meters 6933.390 44.1 V 54.0 -16.2 AVG 316 1.0 RB 1 MHz; VB: 10 Hz 10401.090					Gon	Detector	Λzimuth	Hoight	Commonts	
153.215 28.9 H 43.5 -14.6 QP 238 1.7 53.938 24.5 V 40.0 -15.5 QP 271 1.7 Run #3a: Maximized readings, 1000 - 18000 MHz EUT set to Receive mode at 5200 MHz, Lagacy Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 6933.390 44.1 V 54.0 -9.9 AVG 356 1.3 RB 1 MHz; VB: 10 Hz 10401.090 37.8 H 54.0 -16.2 AVG 316 1.0 RB 1 MHz; VB: 10 Hz 10401.090 37.8 V 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 10401.090 37.8 V 54.0 -17.3 AVG 100 1.0 RB 1 MHz; VB: 10 Hz 3465.660 29.8 H 54.0 -24.2 AVG 314 1.8	. ,								Comments	
53.938 24.5 V 40.0 -15.5 QP 271 1.7 Run #3a: Maximized readings, 1000 - 18000 MHz EUT set to Receive mode at 5200 MHz, Lagacy Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 6933.390 44.1 V 54.0 -9.9 AVG 356 1.3 RB 1 MHz; VB: 10 Hz 10400.920 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 10401.090 37.8 V 54.0 -17.3 AVG 100 1.0 RB 1 MHz; VB: 10 Hz 465560 29.8 H 54.0 -24.2 AVG 360										
Run #3a: Maximized readings, 1000 - 18000 MHz EUT set to Receive mode at 5200 MHz, Lagacy Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 6933.390 44.1 V 54.0 -9.9 AVG 336 1.3 RB 1 MHz; VB: 10 Hz 10400.920 37.8 H 54.0 -16.2 AVG 316 1.0 RB 1 MHz; VB: 10 Hz 10401.090 37.8 V 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 3466.560 29.8 H 54.0 -17.3 AVG 100 1.0 RB 1 MHz; VB: 10 Hz 3465.680 29.7 V 54.0 -24.2 AVG 360 1.7 RB 1 MHz; VB: 10 Hz										
Indext Index <thindex< th=""> <thindex< th=""></thindex<></thindex<>	153.215 53.938 Run #3a: 1	28.9 24.5 Aaximized re	H V adings, 10	43.5 40.0 000 - 18000	-14.6 -15.5 MHz	QP	238	1.7		
Frequency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 6933.390 44.1 V 54.0 -9.9 AVG 356 1.3 RB 1 MHz; VB: 10 Hz 10400.920 37.8 H 54.0 -16.2 AVG 316 1.0 RB 1 MHz; VB: 10 Hz 10401.090 37.8 V 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 6933.390 36.7 H 54.0 -17.3 AVG 100 1.0 RB 1 MHz; VB: 10 Hz 3466.560 29.8 H 54.0 -24.2 AVG 314 1.8 RB 1 MHz; VB: 10 Hz 3465.680 29.7 V 54.0 -24.3 AVG 360 1.7 RB 1 MHz; VB: 1 MHz 6933.440 49.7 V 74.0 -24.3 PK 356 1.3 RB 1 MHz; VB: 1 MHz 104	153.215 53.938 Run #3a: 1	28.9 24.5 Aaximized re Receive mod	H V eadings, 10 de at 5200	43.5 40.0 000 - 18000 I MHz, Lagad	-14.6 -15.5 MHz cy Mode	QP QP	238 271	1.7 1.7	Extrapola	ion Factor
MHzdBµV/mv/hLimitMarginPk/QP/Avgdegreesmeters6933.39044.1V54.0-9.9AVG3561.3RB 1 MHz; VB: 10 Hz10400.92037.8H54.0-16.2AVG3161.0RB 1 MHz; VB: 10 Hz10401.09037.8V54.0-16.2AVG01.0RB 1 MHz; VB: 10 Hz10401.09037.8V54.0-16.2AVG01.0RB 1 MHz; VB: 10 Hz6933.39036.7H54.0-17.3AVG1001.0RB 1 MHz; VB: 10 Hz3466.56029.8H54.0-24.2AVG3141.8RB 1 MHz; VB: 10 Hz3465.68029.7V54.0-24.3AVG3601.7RB 1 MHz; VB: 10 Hz6933.44049.7V74.0-24.3PK3561.3RB 1 MHz; VB: 1 MHz10400.64049.1H74.0-24.9PK3161.0RB 1 MHz; VB: 1 MHz10398.70048.6V74.0-25.4PK01.0RB 1 MHz; VB: 1 MHz6933.37046.9H74.0-27.1PK1001.0RB 1 MHz; VB: 1 MHz3466.08040.9H74.0-33.1PK3141.8RB 1 MHz; VB: 1 MHz	153.215 53.938 Run #3a: 1	28.9 24.5 Maximized re Receive mod	H V eadings, 10 de at 5200 quency Ra	43.5 40.0 000 - 18000 I MHz, Lagac	-14.6 -15.5 MHz cy Mode Test D	QP QP Distance	238 271 Limit D	1.7 1.7 istance		
6933.390 44.1 V 54.0 -9.9 AVG 356 1.3 RB 1 MHz; VB: 10 Hz 10400.920 37.8 H 54.0 -16.2 AVG 316 1.0 RB 1 MHz; VB: 10 Hz 10401.090 37.8 V 54.0 -16.2 AVG 316 1.0 RB 1 MHz; VB: 10 Hz 10401.090 37.8 V 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 6933.390 36.7 H 54.0 -17.3 AVG 100 1.0 RB 1 MHz; VB: 10 Hz 3466.560 29.8 H 54.0 -24.2 AVG 314 1.8 RB 1 MHz; VB: 10 Hz 3465.680 29.7 V 54.0 -24.3 AVG 360 1.7 RB 1 MHz; VB: 10 Hz 6933.440 49.7 V 74.0 -24.3 PK 356 1.3 RB 1 MHz; VB: 1 MHz 10400.640 49.1 H 74.0 -24.9 PK 316 1.0 R	153.215 53.938 cun #3a: 1	28.9 24.5 Maximized re Receive mod	H V eadings, 10 de at 5200 quency Ra	43.5 40.0 000 - 18000 I MHz, Lagac	-14.6 -15.5 MHz cy Mode Test D	QP QP Distance	238 271 Limit D	1.7 1.7 istance		
0400.92037.8H54.0-16.2AVG3161.0RB 1 MHz; VB: 10 Hz0401.09037.8V54.0-16.2AVG01.0RB 1 MHz; VB: 10 Hz6933.39036.7H54.0-17.3AVG1001.0RB 1 MHz; VB: 10 Hz3466.56029.8H54.0-24.2AVG3141.8RB 1 MHz; VB: 10 Hz3465.68029.7V54.0-24.3AVG3601.7RB 1 MHz; VB: 10 Hz3465.68029.7V54.0-24.3AVG3601.7RB 1 MHz; VB: 10 Hz6933.44049.7V74.0-24.3PK3561.3RB 1 MHz; VB: 1 MHz0400.64049.1H74.0-24.9PK3161.0RB 1 MHz; VB: 1 MHz0398.70048.6V74.0-25.4PK01.0RB 1 MHz; VB: 1 MHz6933.37046.9H74.0-27.1PK1001.0RB 1 MHz; VB: 1 MHz3466.08040.9H74.0-33.1PK3141.8RB 1 MHz; VB: 1 MHz	153.215 53.938 un #3a: 1 UT set to	28.9 24.5 Aaximized re Receive mod Fre 100	H V eadings, 10 de at 5200 quency Ra 0 - 18000 N	43.5 40.0 000 - 18000 I MHz, Lagad nge MHz	-14.6 -15.5 MHz cy Mode Test D	QP QP Distance 3	238 271 Limit D	1.7 1.7 istance	0	
10401.09037.8V54.0-16.2AVG01.0RB 1 MHz; VB: 10 Hz6933.39036.7H54.0-17.3AVG1001.0RB 1 MHz; VB: 10 Hz3466.56029.8H54.0-24.2AVG3141.8RB 1 MHz; VB: 10 Hz3465.68029.7V54.0-24.3AVG3601.7RB 1 MHz; VB: 10 Hz6933.44049.7V74.0-24.3PK3561.3RB 1 MHz; VB: 1 MHz10400.64049.1H74.0-24.9PK3161.0RB 1 MHz; VB: 1 MHz10398.70048.6V74.0-25.4PK01.0RB 1 MHz; VB: 1 MHz6933.37046.9H74.0-27.1PK1001.0RB 1 MHz; VB: 1 MHz3466.08040.9H74.0-33.1PK3141.8RB 1 MHz; VB: 1 MHz	153.215 53.938 2un #3a: 1 2UT set to Frequency MHz	28.9 24.5 Aaximized re Receive mod Fre 100 Level dBµV/m	H V eadings, 10 de at 5200 quency Ra 0 - 18000 M Pol V/h	43.5 40.0 000 - 18000 I MHz, Lagac nge MHz RSS Limit	-14.6 -15.5 MHz cy Mode Test D Gen Margin	QP QP Distance 3 Detector Pk/QP/Avg	238 271 Limit D	1.7 1.7 istance 3 Height meters	0 Comments	.0
6933.39036.7H54.0-17.3AVG1001.0RB 1 MHz; VB: 10 Hz3466.56029.8H54.0-24.2AVG3141.8RB 1 MHz; VB: 10 Hz3465.68029.7V54.0-24.3AVG3601.7RB 1 MHz; VB: 10 Hz3465.68029.7V54.0-24.3AVG3601.7RB 1 MHz; VB: 10 Hz6933.44049.7V74.0-24.3PK3561.3RB 1 MHz; VB: 1 MHz0400.64049.1H74.0-24.9PK3161.0RB 1 MHz; VB: 1 MHz0398.70048.6V74.0-25.4PK01.0RB 1 MHz; VB: 1 MHz6933.37046.9H74.0-27.1PK1001.0RB 1 MHz; VB: 1 MHz3466.08040.9H74.0-33.1PK3141.8RB 1 MHz; VB: 1 MHz	153.215 53.938 un #3a: I UT set to requency MHz 5933.390	28.9 24.5 Maximized re Receive mod Fre- 100 Level dBµV/m 44.1	H V eadings, 10 de at 5200 quency Ra 0 - 18000 M Pol V/h V	43.5 40.0 000 - 18000 I MHz, Lagac nge MHz RSS Limit 54.0	-14.6 -15.5 MHz cy Mode Test D Gen Margin -9.9	QP QP Distance 3 Detector Pk/QP/Avg AVG	238 271 Limit D Azimuth degrees 356	1.7 1.7 istance 3 Height meters 1.3	Comments RB 1 MHz; ¹	.0 VB: 10 Hz
3466.56029.8H54.0-24.2AVG3141.8RB 1 MHz; VB: 10 Hz3465.68029.7V54.0-24.3AVG3601.7RB 1 MHz; VB: 10 Hz6933.44049.7V74.0-24.3PK3561.3RB 1 MHz; VB: 1 MHz10400.64049.1H74.0-24.9PK3161.0RB 1 MHz; VB: 1 MHz10398.70048.6V74.0-25.4PK01.0RB 1 MHz; VB: 1 MHz6933.37046.9H74.0-27.1PK1001.0RB 1 MHz; VB: 1 MHz3466.08040.9H74.0-33.1PK3141.8RB 1 MHz; VB: 1 MHz	153.215 53.938 2un #3a: 1 UT set to Frequency MHz 6933.390 10400.920	28.9 24.5 Aaximized re Receive mod Fre 100 Level dBµV/m 44.1 37.8	H V eadings, 10 de at 5200 quency Ra 0 - 18000 N Pol V/h V H	43.5 40.0 000 - 18000 I MHz, Lagac MHz MHz Limit 54.0 54.0	-14.6 -15.5 MHz cy Mode Test D Gen Margin -9.9 -16.2	QP QP Distance 3 Detector Pk/QP/Avg AVG AVG	238 271 Limit D Azimuth degrees 356 316	1.7 1.7 istance 3 Height meters 1.3 1.0	Comments RB 1 MHz; ^v RB 1 MHz; ^v	.0 VB: 10 Hz VB: 10 Hz
3465.680 29.7 V 54.0 -24.3 AVG 360 1.7 RB 1 MHz; VB: 10 Hz 6933.440 49.7 V 74.0 -24.3 PK 356 1.3 RB 1 MHz; VB: 10 Hz 0400.640 49.1 H 74.0 -24.9 PK 316 1.0 RB 1 MHz; VB: 1 MHz 0398.700 48.6 V 74.0 -25.4 PK 0 1.0 RB 1 MHz; VB: 1 MHz 6933.370 46.9 H 74.0 -27.1 PK 100 1.0 RB 1 MHz; VB: 1 MHz 3466.080 40.9 H 74.0 -33.1 PK 314 1.8 RB 1 MHz; VB: 1 MHz	153.215 53.938 un #3a: I UT set to Trequency MHz 6933.390 0400.920 0401.090	28.9 24.5 Aaximized re Receive mod Fre 100 Level dBµV/m 44.1 37.8 37.8	H V eadings, 10 de at 5200 quency Ra 0 - 18000 N Pol V/h V H V	43.5 40.0 000 - 18000 I MHz, Lagad MHz Limit 54.0 54.0 54.0 54.0	-14.6 -15.5 MHz cy Mode Test D Gen Margin -9.9 -16.2 -16.2	QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG	238 271 Limit D Azimuth degrees 356 316 0	1.7 1.7 istance 3 Height meters 1.3 1.0 1.0	Comments RB 1 MHz; Y RB 1 MHz; Y RB 1 MHz; Y	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz
6933.440 49.7 V 74.0 -24.3 PK 356 1.3 RB 1 MHz; VB: 1 MHz 10400.640 49.1 H 74.0 -24.9 PK 316 1.0 RB 1 MHz; VB: 1 MHz 10398.700 48.6 V 74.0 -25.4 PK 0 1.0 RB 1 MHz; VB: 1 MHz 6933.370 46.9 H 74.0 -27.1 PK 100 1.0 RB 1 MHz; VB: 1 MHz 3466.080 40.9 H 74.0 -33.1 PK 314 1.8 RB 1 MHz; VB: 1 MHz	153.215 53.938 200 #3a: 1 20T set to Erequency MHz 6933.390 10400.920 10401.090 6933.390	28.9 24.5 /aximized re Receive mod Fre 100 Level dBµV/m 44.1 37.8 37.8 36.7	H V adings, 10 de at 5200 0 - 18000 M Pol V/h V H V H	43.5 40.0 000 - 18000 I MHz, Lagac MHz KSS Limit 54.0 54.0 54.0 54.0 54.0	-14.6 -15.5 MHz cy Mode Test D Gen Margin -9.9 -16.2 -16.2 -17.3	QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG	238 271 Limit D Azimuth degrees 356 316 0 100	1.7 1.7 istance 3 Height meters 1.3 1.0 1.0 1.0 1.0	Comments RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz;	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz
I0400.640 49.1 H 74.0 -24.9 PK 316 1.0 RB 1 MHz; VB: 1 MHz I0398.700 48.6 V 74.0 -25.4 PK 0 1.0 RB 1 MHz; VB: 1 MHz 6933.370 46.9 H 74.0 -27.1 PK 100 1.0 RB 1 MHz; VB: 1 MHz 3466.080 40.9 H 74.0 -33.1 PK 314 1.8 RB 1 MHz; VB: 1 MHz	153.215 53.938 2un #3a: I UT set to Frequency MHz 6933.390 10400.920 10401.090 6933.390 3466.560	28.9 24.5 Λaximized re Receive mod Eree 100 Level dBμV/m 44.1 37.8 37.8 37.8 36.7 29.8	H V eadings, 10 de at 5200 quency Ra 0 - 18000 M Pol V/h V H V H H H	43.5 40.0 000 - 18000 I MHz, Lagac MHz KSS Limit 54.0 54.0 54.0 54.0 54.0 54.0	-14.6 -15.5 MHz cy Mode Test D Gen Margin -9.9 -16.2 -16.2 -16.2 -17.3 -24.2	QP QP OP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG	238 271 Limit D Azimuth degrees 356 316 0 100 314	1.7 1.7 1.7 istance 3 Height meters 1.3 1.0 1.0 1.0 1.8	Comments RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz;	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz
0398.700 48.6 V 74.0 -25.4 PK 0 1.0 RB 1 MHz; VB: 1 MHz 6933.370 46.9 H 74.0 -27.1 PK 100 1.0 RB 1 MHz; VB: 1 MHz 3466.080 40.9 H 74.0 -33.1 PK 314 1.8 RB 1 MHz; VB: 1 MHz	153.215 53.938 2000 #338 Pun #	28.9 24.5 Aaximized re Receive mod Ere 100 Level dBµV/m 44.1 37.8 37.8 37.8 36.7 29.8 29.7	H V eadings, 10 de at 5200 quency Ra 0 - 18000 N Pol V/h V H V H H V H	43.5 40.0 000 - 18000 I MHz, Lagac MHz Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-14.6 -15.5 MHz cy Mode Test D Gen Margin -9.9 -16.2 -16.2 -16.2 -17.3 -24.2 -24.3	QP QP OP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG	238 271 Limit D Azimuth degrees 356 316 0 100 314 360	1.7 1.7 1.7 istance 3 Height meters 1.3 1.0 1.0 1.0 1.0 1.8 1.7	Comments RB 1 MHz; ¹ RB 1 MHz; ¹	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz
6933.370 46.9 H 74.0 -27.1 PK 100 1.0 RB 1 MHz; VB: 1 MHz 3466.080 40.9 H 74.0 -33.1 PK 314 1.8 RB 1 MHz; VB: 1 MHz	153.215 53.938 un #3a: I UT set to UT set to Trequency MHz 5933.390 0400.920 0401.090 0401.090 0401.090 0401.090 3466.560 3465.680 5933.440	28.9 24.5 Λaximized re Receive mod Fre 100 Level dBμV/m 44.1 37.8 37.8 37.8 36.7 29.8 29.7 49.7	H V eadings, 10 de at 5200 quency Ra 0 - 18000 N Pol V/h V H V H V H V H V V H V V V V V V	43.5 40.0 000 - 18000 I MHz, Lagac MHz Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-14.6 -15.5 MHz cy Mode Test D 	QP QP OP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG PK	238 271 Limit D Azimuth degrees 356 316 0 100 314 360 356	1.7 1.7 1.7 istance 3 Height meters 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.7 1.3	Comments RB 1 MHz; RB 1 MHz;	.0 VB: 10 Hz VB: 1 MHz
3466.080 40.9 H 74.0 -33.1 PK 314 1.8 RB 1 MHz; VB: 1 MHz	153.215 53.938 2000 #338 2000 #358 2000 #358 2	28.9 24.5 Aaximized re Receive mod Ere 100 Level dBµV/m 44.1 37.8 37.8 37.8 37.8 36.7 29.8 29.7 49.7 49.1	H V eadings, 10 de at 5200 quency Ra 0 - 18000 N V/h V N H V H H V H V H H V H H V H	43.5 40.0 000 - 18000 I MHz, Lagad MHz Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-14.6 -15.5 MHz cy Mode Test D 	QP QP OP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	238 271 Limit D Azimuth degrees 356 316 0 100 314 360 356 316	1.7 1.7 1.7 istance 3 Height meters 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments RB 1 MHz; ¹ RB 1 MHz; ¹	.0 VB: 10 Hz VB: 1 MHz VB: 1 MHz
	153.215 53.938 un #3a: I UT set to UT set to UT set to 0400.920 0401.090 6933.390 0400.920 0401.090 6933.390 3466.560 3465.680 6933.440 0400.640 0398.700	28.9 24.5 Aaximized re Receive mod Ereceive mod 100 Level dBµV/m 44.1 37.8 37.8 37.8 36.7 29.8 29.7 49.7 49.7 49.1 48.6	H V eadings, 10 de at 5200 quency Ra 0 - 18000 N V/h V V H V H H V V H V V H V V V V V V V	43.5 40.0 000 - 18000 I MHz, Lagac MHz Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-14.6 -15.5 MHz cy Mode Test D Gen Margin -9.9 -16.2 -16.2 -16.2 -16.2 -16.2 -17.3 -24.2 -24.3 -24.3 -24.3 -24.9 -25.4	QP QP OP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK PK PK	238 271 Limit D 356 316 0 100 314 360 356 316 0	1.7 1.7 1.7 istance 3 Height meters 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.3 1.0 1.3 1.0 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments RB 1 MHz; Y RB 1 MHz; Y	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 1 MHz
	153.215 53.938 2 un #3a: I UT set to UT set to UT set to 0400.920 0401.090 0401.090 0401.090 0401.090 0401.090 0401.090 0401.090 0401.090 0403.390 0405.6800	28.9 24.5 Aaximized re Receive mod Ere 100 Level dBµV/m 44.1 37.8 36.7 29.8 36.7 29.8 29.7 49.7 49.1 48.6 46.9	H V eadings, 10 de at 5200 quency Ra 0 - 18000 N V/h V H V H V H V H V V H V H V V H H V V H H	43.5 40.0 000 - 18000 I MHz, Lagac MHz Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-14.6 -15.5 MHz cy Mode Test D Gen Margin -9.9 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -24.3 -24.3 -24.3 -24.3 -24.9 -25.4 -27.1	QP QP OP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK PK PK PK	238 271 Limit D Azimuth degrees 356 316 0 100 314 360 356 316 0 100 314	1.7 1.7 1.7 1.7 1.7 Height meters 1.3 1.0 1.0 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments RB 1 MHz; ' RB 1 MHz; '	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz
3467.050 40.8 V 74.0 -33.2 PK 360 1.7 RB 1 MHz; VB: 1 MHz	153.215 53.938 2 un #3a: I UT set to UT set to UT set to 6933.390 10400.920 10401.090 6933.390 3466.560 3465.680 6933.440 10400.640 10398.700 6933.370 3466.080	28.9 24.5 Aaximized re Receive mod Ere 100 Level dBµV/m 44.1 37.8 37.8 37.8 36.7 29.8 29.7 49.7 49.7 49.1 48.6 46.9 40.9	H V eadings, 10 de at 5200 quency Ra 0 - 18000 N Pol V/h V H V H V H V V H V V H H V V H H V V H H H	43.5 40.0 000 - 18000 I MHz, Lagac MHz Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-14.6 -15.5 MHz cy Mode Test D 	QP QP OP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG PK PK PK PK PK PK	238 271 Limit D Azimuth degrees 356 316 0 100 314 360 356 316 0 100 314	1.7 1.7 1.7 istance 3 Height meters 1.3 1.0 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.8 1.3 1.0 1.0 1.8 1.3 1.0 1.3 1.0 1.0 1.8 1.3 1.0 1.0 1.8 1.3 1.0 1.3 1.0 1.0 1.8 1.3 1.0 1.3 1.0 1.8 1.3 1.0 1.0 1.8 1.3 1.0 1.0 1.8 1.3 1.0 1.0 1.8 1.3 1.0 1.0 1.8 1.3 1.0 1.8 1.3 1.0 1.0 1.8 1.3 1.0 1.0 1.8 1.0 1.0 1.8 1.0 1.0 1.0 1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0 Comments RB 1 MHz; ' RB 1 MHz; '	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz
	153.215 53.938 2 un #3a: I UT set to UT set to UT set to 0400.920 0401.090 0401.090 0401.090 0401.090 0401.090 0401.090 0401.090 0401.090 0403.390 0405.6800	28.9 24.5 Aaximized re Receive mod Ere 100 Level dBµV/m 44.1 37.8 36.7 29.8 36.7 29.8 29.7 49.7 49.1 48.6 46.9	H V eadings, 10 de at 5200 quency Ra 0 - 18000 N V/h V H V H V H V H V V H V H V V H H V V H H	43.5 40.0 000 - 18000 I MHz, Lagac MHz Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-14.6 -15.5 MHz cy Mode Test D Gen Margin -9.9 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -24.3 -24.3 -24.3 -24.3 -24.9 -25.4 -27.1	QP QP OP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK PK PK PK	238 271 Limit D Azimuth degrees 356 316 0 100 314 360 356 316 0 100 314	1.7 1.7 1.7 1.7 1.7 Height meters 1.3 1.0 1.0 1.0 1.0 1.8 1.7 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0 Comments RB 1 MHz; ' RB 1 MHz; '	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 0 Hz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz

andard: FCC Part 15.247/RSS-210 Class: B #3b: Maximized readings, 1000 - 18000 MHz -	Model: Dalmatian Account Manager: Dean Erik Contact: Craig Owens Class: B Standard: FCC Part 15.247/RSS-210 Class: B un #3b: Maximized readings, 1000 - 18000 MHz Class: B JT set to Receive mode at 5200 MHz, HT-40 Mode Extrapolation Factor 1000 - 18000 MHz 3 0.0 requency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 requency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 requency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 933.410 46.0 V 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 9401.180 37.8 </th
Account Manager: Dean Erikse Contact: Craig Owens Class: B andard: FCC Part 15.247/RSS-210 Class: B #3b: Maximized readings, 1000 - 18000 MHz Class: B *set to Receive mode at 5200 MHz, HT-40 Mode Extrapolation Factor 1000 - 18000 MHz 3 0.0 quency Level Pol RSS Gen Detector Azimuth Height Comments quency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 33.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 33.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 00.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 33.400 51.1 V	Account Manager: Dean Erik Contact: Craig Owens Class: B Standard: FCC Part 15.247/RSS-210 Class: B n #3b: Maximized readings, 1000 - 18000 MHz T T Standard: Fcc Part 15.247/RSS-210 Class: B n #3b: Maximized readings, 1000 - 18000 MHz T T Standard: Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 0.0 equency Level Pol RSS Gen Detector Azimuth Height Comments MHz dB _µ V/m v/h Limit Margin Pk/QP/Avg degrees meters 933.410 46.0 V 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 933.350 37.9 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 400.440 37.7 V 54.0 -16.3 AVG 0
andard: FCC Part 15.247/RSS-210 Class: B #3b: Maximized readings, 1000 - 18000 MHz -	Bitandard: FCC Part 15.247/RSS-210 Class: B n #3b: Maximized readings, 1000 - 18000 MHz T T T set to Receive mode at 5200 MHz, HT-40 Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 equency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµLV/m v/h Limit Margin Pk/QP/Avg degrees meters V33.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz V33.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz V01.180 37.8 H 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz V33.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz V33.480 51.1 V 54.0 -23
#3b: Maximized readings, 1000 - 18000 MHz Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 0.0 quency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 0.0 quency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 33.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 01.180 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 00.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 33.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz	#3b: Maximized readings, 1000 - 18000 MHz set to Receive mode at 5200 MHz, HT-40 Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 quency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 33.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 00.440 37.7 V 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 33.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 66.730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 68.040 29.6 H 54.0 -24.4 AVG 221 1.0
set to Receive mode at 5200 MHz, HT-40 Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 uency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 3.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 3.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 01.180 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 3.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 6.730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 0.0430 49.2 H 74.0 -24.4	set to Receive mode at 5200 MHz, HT-40 Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 0.0 uency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 3.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 0.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 3.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 3.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 6.730 30.2 V 54.0 -23.8 AVG
Frequency RangeTest DistanceLimit DistanceExtrapolation Factor1000 - 18000 MHz330.0uencyLevelPolRSS GenDetectorAzimuthHeightCommentsHzdBµV/mv/hLimitMarginPk/QP/Avgdegreesmeters3.41046.0V54.0-8.0AVG3541.3RB 1 MHz; VB: 10 Hz3.35037.9H54.0-16.1AVG931.6RB 1 MHz; VB: 10 Hz1.18037.8H54.0-16.2AVG01.0RB 1 MHz; VB: 10 Hz0.44037.7V54.0-16.3AVG01.0RB 1 MHz; VB: 10 Hz3.48051.1V74.0-22.9PK3541.3RB 1 MHz; VB: 10 Hz3.04029.6H54.0-24.4AVG2211.0RB 1 MHz; VB: 10 Hz0.38049.2H74.0-25.0PK01.0RB 1 MHz; VB: 1 MHz3.63047.4H74.0-26.6PK931.6RB 1 MHz; VB: 1 MHz5.84041.0H74.0-33.0PK2211.0RB 1 MHz; VB: 1 MHz	Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 uency Level Pol RSS Gen Detector Azimuth Height Comments Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 3.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 1.180 37.8 H 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 0.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 3.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 5.730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz
1000 - 18000 MHz 3 3 0.0 uency Level Pol RSS Gen Detector Azimuth Height Comments 1Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 3.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 3.350 37.9 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 11.180 37.8 H 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 00.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 3.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 6.730 30.2 V 54.0 -23.8 AVG	1000 - 18000 MHz 3 3 0.0 uency Level Pol RSS Gen Detector Azimuth Height Comments IHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 3.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 3.350 37.9 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 0.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 3.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 6.730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 0.430 49.0 V 74.0 -24.4 AVG
1000 - 18000 MHz 3 3 0.0 uency Level Pol RSS Gen Detector Azimuth Height Comments 3.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 3.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 3.350 37.9 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 0.1.80 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 0.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 3.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 6.730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 0.0.380 49.2 H 74.0 -24.4	1000 - 18000 MHz 3 3 0.0 μency Level Pol RSS Gen Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 3.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 01.180 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 00.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 3.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 6.730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 8.040 29.6 H 54.0 -24.4 AVG <
HzdBµV/mv/hLimitMarginPk/QP/Avgdegreesmeters3.41046.0V54.0-8.0AVG3541.3RB 1 MHz; VB: 10 Hz3.35037.9H54.0-16.1AVG931.6RB 1 MHz; VB: 10 Hz1.18037.8H54.0-16.2AVG01.0RB 1 MHz; VB: 10 Hz0.44037.7V54.0-16.3AVG01.0RB 1 MHz; VB: 10 Hz0.44037.7V54.0-16.3AVG01.0RB 1 MHz; VB: 10 Hz3.48051.1V74.0-22.9PK3541.3RB 1 MHz; VB: 1 MHz6.73030.2V54.0-23.8AVG1121.6RB 1 MHz; VB: 1 0 Hz3.04029.6H54.0-24.4AVG2211.0RB 1 MHz; VB: 10 Hz0.43049.2H74.0-24.8PK01.0RB 1 MHz; VB: 1 MHz0.43049.0V74.0-25.0PK01.0RB 1 MHz; VB: 1 MHz3.63047.4H74.0-26.6PK931.6RB 1 MHz; VB: 1 MHz5.84041.0H74.0-33.0PK2211.0RB 1 MHz; VB: 1 MHz5.84041.0H74.0-33.0PK2211.0RB 1 MHz; VB: 1 MHz	Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 3.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 1.180 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 0.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 3.480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 6.730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 3.040 29.6 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz 0.380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz 0.
Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 8.410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 8.350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 1.180 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 0.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 0.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 0.440 37.7 V 54.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 1 MHz 0.430 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 1 MHz 0.430 49.2 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 1 MHz 0.	HzdBμV/mv/hLimitMarginPk/QP/Avgdegreesmeters8.41046.0V54.0-8.0AVG3541.3RB 1 MHz; VB: 10 Hz8.35037.9H54.0-16.1AVG931.6RB 1 MHz; VB: 10 Hz1.18037.8H54.0-16.2AVG01.0RB 1 MHz; VB: 10 Hz0.44037.7V54.0-16.3AVG01.0RB 1 MHz; VB: 10 Hz0.48051.1V74.0-22.9PK3541.3RB 1 MHz; VB: 10 Hz0.73030.2V54.0-23.8AVG1121.6RB 1 MHz; VB: 10 Hz0.38049.2H74.0-24.4AVG2211.0RB 1 MHz; VB: 10 Hz0.43049.0V74.0-25.0PK01.0RB 1 MHz; VB: 1 MHz
410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 180 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz .440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz .440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz .440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz .480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz .480 51.1 V 74.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz .380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz <	410 46.0 V 54.0 -8.0 AVG 354 1.3 RB 1 MHz; VB: 10 Hz 350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 180 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz .440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz .440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz .440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz .480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 1 MHz 730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz .380 49.2 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz .430
350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 180 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 730 30.2 V 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz 730 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 10 Hz 380 49.2 H 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz 530	350 37.9 H 54.0 -16.1 AVG 93 1.6 RB 1 MHz; VB: 10 Hz 180 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz 730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 730 30.2 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz 730 30.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 10 Hz 380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz 4
.180 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 0.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz .480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 10 Hz .730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz .040 29.6 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz .040 29.6 H 74.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz .0380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz .0430 49.0 V 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz .630 47.4 H 74.0 -26.6 PK 93 1.6 RB 1 MHz; VB: 1 MHz .140 41.1 V 74.0 -32.9 PK 112 1.6	.180 37.8 H 54.0 -16.2 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 0.440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz .480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 1 MHz .730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz .040 29.6 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz .0380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz .0430 49.0 V 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz
440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 1 MHz 730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 040 29.6 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz 380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz 430 49.0 V 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz 430 49.0 V 74.0 -26.6 PK 93 1.6 RB 1 MHz; VB: 1 MHz 430 47.4 H 74.0 -26.6 PK 93 1.6 RB 1 MHz; VB: 1 MHz 140 41.1 V 74.0 -32.9 PK 112 1.6 RB 1 MHz; VB: 1 MHz 340 41.0 H 74.0 -33.0 PK 221 1.0 RB 1	440 37.7 V 54.0 -16.3 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 1 MHz 730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 740 29.6 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz 780 29.6 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 10 Hz 780 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz 780 49.0 V 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz
480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 1 MHz 730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 040 29.6 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz 380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz 430 49.0 V 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz 430 49.0 V 74.0 -26.6 PK 93 1.6 RB 1 MHz; VB: 1 MHz 630 47.4 H 74.0 -26.6 PK 93 1.6 RB 1 MHz; VB: 1 MHz 140 41.1 V 74.0 -32.9 PK 112 1.6 RB 1 MHz; VB: 1 MHz 840 41.0 H 74.0 -33.0 PK 221 1.0 RB 1 MHz; VB: 1 MHz	480 51.1 V 74.0 -22.9 PK 354 1.3 RB 1 MHz; VB: 1 MHz 730 30.2 V 54.0 -23.8 AVG 112 1.6 RB 1 MHz; VB: 10 Hz 040 29.6 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz 380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz 430 49.0 V 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz
.040 29.6 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz 0.380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz 0.430 49.0 V 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz 630 47.4 H 74.0 -26.6 PK 93 1.6 RB 1 MHz; VB: 1 MHz .140 41.1 V 74.0 -32.9 PK 112 1.6 RB 1 MHz; VB: 1 MHz .840 41.0 H 74.0 -33.0 PK 221 1.0 RB 1 MHz; VB: 1 MHz	.040 29.6 H 54.0 -24.4 AVG 221 1.0 RB 1 MHz; VB: 10 Hz 0.380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz 0.430 49.0 V 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz
D.380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz 0.430 49.0 V 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz .630 47.4 H 74.0 -26.6 PK 93 1.6 RB 1 MHz; VB: 1 MHz .140 41.1 V 74.0 -32.9 PK 112 1.6 RB 1 MHz; VB: 1 MHz .840 41.0 H 74.0 -33.0 PK 221 1.0 RB 1 MHz; VB: 1 MHz	D.380 49.2 H 74.0 -24.8 PK 0 1.0 RB 1 MHz; VB: 1 MHz D.430 49.0 V 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz
0.430 49.0 V 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz .630 47.4 H 74.0 -26.6 PK 93 1.6 RB 1 MHz; VB: 1 MHz .140 41.1 V 74.0 -32.9 PK 112 1.6 RB 1 MHz; VB: 1 MHz .840 41.0 H 74.0 -33.0 PK 221 1.0 RB 1 MHz; VB: 1 MHz	D.430 49.0 V 74.0 -25.0 PK 0 1.0 RB 1 MHz; VB: 1 MHz
630 47.4 H 74.0 -26.6 PK 93 1.6 RB 1 MHz; VB: 1 MHz 140 41.1 V 74.0 -32.9 PK 112 1.6 RB 1 MHz; VB: 1 MHz 840 41.0 H 74.0 -33.0 PK 221 1.0 RB 1 MHz; VB: 1 MHz	
140 41.1 V 74.0 -32.9 PK 112 1.6 RB 1 MHz; VB: 1 MHz 840 41.0 H 74.0 -33.0 PK 221 1.0 RB 1 MHz; VB: 1 MHz	
840 41.0 H 74.0 -33.0 PK 221 1.0 RB 1 MHz; VB: 1 MHz	
any emission above 1 GHz, can not exceed the average limit by more than 20 dB.	Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the p any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Client:	Ruckus Wire	eless						Job Number:	J73710
Model:	Dalmatian							Log Number:	
							Ассо	unt Manager:	Dean Erikser
	Craig Owen:		210					Class	<u> </u>
	FCC Part 15							Class:	В
	eliminary Ra				Datastas	A _'	11.2.61	0	
requency	Level	Pol		Gen	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters		
53.771	27.6	-	40.0	-12.4	Peak	0	1.7		
153.251	29.8	H H	43.5	-13.7	Peak	239 299	1.7 1.7		
<u>251.016</u> 45.779	21.3 25.5	H V	46.0 40.0	-24.7 -14.5	Peak Peak	299 301	1.7		
45.779 500.006	25.5	V H	40.0	-14.5 -22.9	Peak	301	1.7		
600.006	23.1	н V	46.0	-22.9 -24.9	Peak	269	1.7		
873.468	23.2	H	46.0	-24.9	Peak	61	1.7		
319.041	21.8	V	46.0	-22.0	Peak	298	1.7		
517.011	2110		10.0	2112	1 out	270	,		
	wimized De	adings Fro	om Run #4						
un #5: Ma	ixiiiiizeu Red			~	Datastas	۸_!		Commonto	
	Level	Pol	RSS	Gen	Detector	Azimuth	Height	Comments	
requency	Level						Height meters	Comments	
equency MHz	Level dBµV/m	Pol v/h V	Limit	Margin	Pk/QP/Avg	degrees 0	meters	Comments	
requency MHz 53.771 153.251 un #6a: M	Level dBµV/m 26.9 28.9 laximized re	v/h V H adings, 1(Limit 40.0 43.5 000 - 18000 I	Margin -13.1 -14.6 MHz		degrees			
53.771 153.251 un #6a: M	Level dBµV/m 26.9 28.9 laximized re Receive mod	v/h V H adings, 10 de at 5300	Limit 40.0 43.5 000 - 18000 I MHz, Lagac	Margin -13.1 -14.6 MHz cy Mode	Pk/QP/Avg QP QP	degrees 0 239	meters 1.7 1.7		
requency MHz 53.771 153.251 un #6a: M	Level dBµV/m 26.9 28.9 laximized re Receive mod	v/h V H adings, 10 de at 5300 quency Ra	Limit 40.0 43.5 000 - 18000 I MHz, Lagao	Margin -13.1 -14.6 WHz cy Mode Test D	Pk/QP/Avg QP QP	degrees 0 239 Limit D	meters 1.7 1.7 istance	Extrapolati	
equency MHz 53.771 53.251	Level dBµV/m 26.9 28.9 laximized re Receive mod	v/h V H adings, 10 de at 5300	Limit 40.0 43.5 000 - 18000 I MHz, Lagao	Margin -13.1 -14.6 WHz cy Mode Test D	Pk/QP/Avg QP QP	degrees 0 239 Limit D	meters 1.7 1.7		
equency MHz 53.771 153.251 In #6a: M JT set to	Level dBµV/m 26.9 28.9 Iaximized re Receive mod Fre 100	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 l	Limit 40.0 43.5 000 - 18000 I MHz, Lagac nge MHz	Margin -13.1 -14.6 WHz cy Mode Test D	Pk/QP/Avg QP QP Distance 3	degrees 0 239 Limit D	meters 1.7 1.7 istance 3	Extrapolati	
requency MHz 53.771 153.251 un #6a: M JT set to Trequency	Level dBµV/m 26.9 28.9 Maximized re Receive mod Fre 100 Level	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 l	Limit 40.0 43.5 000 - 18000 I MHz, Lagad MHz MHz	Margin -13.1 -14.6 WHz cy Mode Test D	Pk/QP/Avg QP QP Distance 3 Detector	degrees 0 239 Limit D	meters 1.7 1.7 istance 3 Height	Extrapolati	
equency MHz 53.771 53.251 In #6a: M JT set to T set to MHz	Level dBµV/m 26.9 28.9 Iaximized re Receive mod Fre 100 Level dBµV/m	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 f Pol v/h	Limit 40.0 43.5 000 - 18000 I MHz, Lagac nge MHz RSS Limit	Margin -13.1 -14.6 MHz cy Mode Test D Gen Margin	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg	degrees 0 239 Limit D Azimuth degrees	meters 1.7 1.7 istance 3 Height meters	Extrapolati 0. Comments	0
requency MHz 53.771 153.251 Jn #6a: M JT set to JT set to requency MHz 066.740	Level dBµV/m 26.9 28.9 laximized re Receive mod Fre 100 Level dBµV/m 50.9	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 f Pol v/h V	Limit 40.0 43.5 000 - 18000 I MHz, Lagac nge MHz RSS Limit 54.0	Margin -13.1 -14.6 WHz cy Mode Test D Gen Margin -3.1	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG	degrees 0 239 Limit D Azimuth degrees 274	meters 1.7 1.7 istance 3 Height meters 1.7	Extrapolati 0. Comments RB 1 MHz; V	0 /B: 10 Hz
requency MHz 53.771 153.251 Jn #6a: M JT set to JT set to MHz 066.740 066.740	Level dBµV/m 26.9 28.9 laximized re Receive mod Fre 100 Level dBµV/m 50.9 39.1	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 f Pol V/h V H	Limit 40.0 43.5 000 - 18000 I MHz, Lagac nge MHz RSS Limit 54.0 54.0	Margin -13.1 -14.6 WHz cy Mode Test D Gen -3.1 -3.1 -14.9	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG	degrees 0 239 Limit D Azimuth degrees 274 269	meters 1.7 1.7 istance Height meters 1.7 2.0	Extrapolati 0. Comments RB 1 MHz; V RB 1 MHz; V	0 /B: 10 Hz /B: 10 Hz
requency MHz 53.771 153.251 un #6a: M JT set to T set to MHz 7066.740 7066.740 0600.930	Level dBµV/m 26.9 28.9 laximized re Receive mod Fre- 100 Level dBµV/m 50.9 39.1 38.3	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 f Pol V/h V H H H	Limit 40.0 43.5 000 - 18000 I MHz, Lagac NHz KIZ Limit 54.0 54.0 54.0	Margin -13.1 -14.6 WHz cy Mode Test D Gen Margin -3.1 -14.9 -15.7	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG	degrees 0 239 Limit D Azimuth degrees 274 269 300	meters 1.7 1.7 istance B Height meters 1.7 2.0 1.0	Extrapolati 0. Comments RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V	0 /B: 10 Hz /B: 10 Hz /B: 10 Hz
requency MHz 53.771 153.251 un #6a: M JT set to JT set to 066.740 066.740 066.740 0660.930 0601.110	Level dBµV/m 26.9 28.9 laximized re Receive mod Fre 100 Level dBµV/m 50.9 39.1 38.3 38.2	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 f Pol V/h V H H H V	Limit 40.0 43.5 000 - 18000 l MHz, Lagad MHz MHz RSS Limit 54.0 54.0 54.0 54.0	Margin -13.1 -14.6 WHz cy Mode Test D - - - - - - - - - - - - -	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG	degrees 0 239 Limit D Azimuth degrees 274 269 300 317	meters 1.7 1.7 istance 3 Height meters 1.7 2.0 1.0 1.0	Extrapolati 0. Comments RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V	0 /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz
equency MHz 53.771 153.251 In #6a: M JT set to T set to Cequency MHz 066.740 066.740 060.930 0601.110 066.660	Level dBµV/m 26.9 28.9 laximized re Receive mod Fre 100 Level dBµV/m 50.9 39.1 38.3 38.2 54.0	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 f Pol v/h V H H V V V	Limit 40.0 43.5 000 - 18000 l MHz, Lagac MHz MHz RSS Limit 54.0 54.0 54.0 54.0 54.0 74.0	Margin -13.1 -14.6 MHz cy Mode Test D 	Pk/QP/Avg QP QP istance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG PK	degrees 0 239 Limit D 2 Azimuth degrees 274 269 300 317 274	meters 1.7 1.7 1.7 istance 3 Height meters 1.7 2.0 1.0 1.7	Extrapolati 0. Comments RB 1 MHz; V RB 1 MHz; V	0 /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 1 MHz
equency MHz 53.771 53.251 In #6a: N IT set to T set to equency MHz 066.740 066.740 060.930 0601.110 066.660 534.630	Level dBµV/m 26.9 28.9 laximized re Receive mod Fre 100 Level dBµV/m 50.9 39.1 38.3 38.2 54.0 30.3	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 f Pol V/h V H H H V	Limit 40.0 43.5 000 - 18000 l MHz, Lagac MHz KSS Limit 54.0 54.0 54.0 54.0 54.0 74.0 54.0	Margin -13.1 -14.6 MHz cy Mode Test D 	Pk/QP/Avg QP QP istance 3 Detector Pk/QP/Avg AVG AVG AVG AVG PK AVG	degrees 0 239 Limit D 2 2 Xzimuth degrees 274 269 300 317 274 198	meters 1.7 1.7 1.7 istance 3 Height meters 1.7 2.0 1.0 1.0 1.7 1.0	Extrapolati 0. Comments RB 1 MHz; V RB 1 MHz; V	0 /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 1 MHz /B: 10 Hz
equency MHz 53.771 53.251 in #6a: M IT set to Equency MHz 066.740 066.740 066.740 066.740 066.660 533.300	Level dBµV/m 26.9 28.9 laximized re Receive mod Fre- 100 Level dBµV/m 50.9 39.1 38.3 38.2 54.0 30.3 30.3	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 f Pol V/h V H H V V H H V H	Limit 40.0 43.5 000 - 18000 I MHz, Lagac MHz Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin -13.1 -14.6 WHz cy Mode Test D 	Pk/QP/Avg QP QP Detector Pk/QP/Avg AVG AVG AVG AVG PK AVG AVG AVG AVG AVG	degrees 0 239 Limit D 2 2 Xzimuth degrees 274 269 300 317 274 198 322	meters 1.7 1.7 1.7 istance 3 Height meters 1.7 2.0 1.0 1.7	Extrapolati 0. Comments RB 1 MHz; V RB 1 MHz; V	0 /B: 10 Hz /B: 10 Hz
equency MHz 53.771 53.251 n #6a: M T set to T set to 266.740 266.740 266.740 266.740 266.740 266.740 266.600 534.630 533.300 2600.070	Level dBµV/m 26.9 28.9 laximized re Receive mod Fre 100 Level dBµV/m 50.9 39.1 38.3 38.2 54.0 30.3	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 f V/h V Pol v/h V H H V V V H V V V V V V	Limit 40.0 43.5 000 - 18000 l MHz, Lagac MHz KSS Limit 54.0 54.0 54.0 54.0 54.0 74.0 54.0	Margin -13.1 -14.6 MHz cy Mode Test D 	Pk/QP/Avg QP QP istance 3 Detector Pk/QP/Avg AVG AVG AVG AVG PK AVG	degrees 0 239 Limit D 2 2 Xzimuth degrees 274 269 300 317 274 198	meters 1.7 1.7 1.7 istance Height meters 1.7 2.0 1.0 1.0 1.7 1.0 1.0 1.0 1.0	Extrapolati 0. Comments RB 1 MHz; V RB 1 MHz; V	0 /B: 10 Hz /B: 1 MHz
equency MHz 53.771 53.251 m #6a: M JT set to equency MHz 066.740 066.740 066.740 066.740 066.740 066.660 534.630 533.300 0600.070 0599.660	Level dBµV/m 26.9 28.9 laximized re Receive mod Fre- 100 Level dBµV/m 50.9 39.1 38.3 38.2 54.0 30.3 30.3 50.1	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 f V Pol V/h V H H V V V H V V V H V V V V V	Limit 40.0 43.5 000 - 18000 l MHz, Lagac NHz KSS Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin -13.1 -14.6 WHz y Mode Test D - Gen Margin -3.1 -14.9 -15.7 -15.8 -20.0 -23.7 -23.7 -23.9	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	degrees 0 239 Limit D 2 4 2 4 2 69 300 317 274 198 322 317	meters 1.7 1.7 1.7 istance 3 Height meters 1.7 2.0 1.0 1.0 1.7 1.0 1.0 1.0 1.0 1.0	Extrapolati 0. Comments RB 1 MHz; V RB 1 MHz; V	0 /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 1 MHz /B: 10 Hz /B: 10 Hz /B: 1 MHz /B: 1 MHz
requency MHz 53.771 153.251 un #6a: M UT set to	Level dBµV/m 26.9 28.9 laximized re Receive mod Fre 100 Level dBµV/m 50.9 39.1 38.3 38.2 54.0 30.3 30.3 50.1 49.3	v/h V H adings, 10 de at 5300 quency Ra 0 - 18000 f V/h V H H V V H V V H V V H V V H V V H	Limit 40.0 43.5 000 - 18000 l MHz, Lagac MHz MHz KSS Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 54.0 74.0 74.0 74.0	Margin -13.1 -14.6 WHz cy Mode Test D 	Pk/QP/Avg QP QP istance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG PK AVG PK PK PK	degrees 0 239 Limit D Azimuth degrees 274 269 300 317 274 198 322 317 300	meters 1.7 1.7 1.7 istance 3 Height meters 1.7 2.0 1.0 1.0 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Extrapolati 0. Comments RB 1 MHz; V RB 1 MHz; V	0 /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 1 MHz /B: 10 Hz /B: 10 Hz /B: 1 MHz /B: 1 MHz /B: 1 MHz

Client: Ruckus \	Nireless					Job Number: J73710		
lodel: Dalmatia	n						Log Number:	
						Acco	unt Manager:	Dean Eriksen
ntact: Craig Ov								
ndard: FCC Par							Class:	В
6b: Maximized et to Receive i								
	Frequency Range Test Distance			Distance	Limit D	istance	Extranolat	tion Factor
	1000 - 18000		163(L	3		8		.0
	1000 10000			0		,	0	.0
ency Level	Pol	RSS	Gen	Detector	Azimuth	Height	Comments	
dBµV/r		Limit	Margin	Pk/QP/Avg	degrees	meters		
10 50.7	V	54.0	-3.3	AVG	269	1.9	RB 1 MHz;	
60 38.4	H	54.0	-15.6	AVG	245	1.0	RB 1 MHz;	
20 38.3	V	54.0	-15.7	AVG	280	1.0	RB 1 MHz;	
2038.29054.2	H	54.0 74.0	-15.8 -19.8	AVG PK	277 269	<u>1.6</u> 1.9	RB 1 MHz; RB 1 MHz;	
79054.291050.6	V	74.0	-19.8 -23.4	PK PK	269 280	1.9	RB 1 MHZ;	
70 30.3	V	54.0	-23.4	AVG	284	1.0	RB 1 MHz;	
)70 30.1	H	54.0	-23.9	AVG	248	1.0	RB 1 MHz;	
560 49.6	H	74.0	-24.4	PK	245	1.0	RB 1 MHz;	
40 48.3	H	74.0	-25.7	PK	277	1.6	RB 1 MHz;	
550 41.6	V	74.0	-32.4	PK	284	1.0	RB 1 MHz;	
100 41.4	Н	74.0	-32.6	PK	248	1.0	RB 1 MHz; Y	VB: 1 MHz
any emis	<u>sion above 1</u>	<u>GHz, can no</u>	<u>t exceed the</u>	<u>averaqe limit</u>	by more that	<u>n 20 dB.</u>		

Client	Ruckus Wire	eless					Job Number: J73710			
Madal	Dalmatian						T-Log Number: T73745			
woden	Daimalian						Account Manager: Dean Erikse			
	Craig Owens									
Standard:	FCC Part 15	.247/RSS-	210					Class:	В	
un #7: Pr	eliminary Ra	diated En						-		
requency	Level	Pol		Gen	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
53.847	27.0	V	40.0	-13.0	Peak	89	1.7			
154.395	29.1	H	43.5	-14.4	Peak	241	1.7			
871.674 480.001	22.4 22.0	V H	46.0 46.0	-23.6 -24.0	Peak Peak	360 31	<u>1.7</u> 1.7			
480.001 600.018	22.0	H V	46.0	-24.0	Peak	58	1.7			
319.032	21.7	V	46.0	-24.5	Peak	298	1.7			
250.008	21.3	H	46.0	-24.9	Peak	301	1.7			
equency MHz 3.847	Level dBµV/m 26.0 28.9	Pol V/h V H		Gen <u>Margin</u> -14.0 -14.6	Detector Pk/QP/Avg QP QP	Azimuth degrees 89 241	Height meters 1.7 1.7	Comments		
requency MHz 53.847 154.395 un #9a: N	Level dBµV/m 26.0	Pol v/h V H adings, 18	RSS Limit 40.0 43.5 8000 - 18000	Margin -14.0 -14.6 MHz	Pk/QP/Avg QP	degrees 89	meters 1.7	Comments		
requency MHz 53.847 154.395 un #9a: N	Level dBµV/m 26.0 28.9 Maximized re Receive mod	Pol v/h H adings, 18 de at 5600	RSS Limit 40.0 43.5 8000 - 18000 MHz, Legad	Margin -14.0 -14.6 MHz cy Mode	Pk/QP/Avg QP QP	degrees 89 241	meters 1.7 1.7		tion Factor	
requency MHz 53.847 154.395 un #9a: N	Level dBµV/m 26.0 28.9 Maximized re Receive mod	Pol v/h V H adings, 18	RSS Limit 40.0 43.5 8000 - 18000 MHz, Legao	Margin -14.0 -14.6 MHz cy Mode	Pk/QP/Avg QP	degrees 89 241 Limit D	meters 1.7 1.7	Extrapola	tion Factor	
53.847 154.395 un #9a: M	Level dBµV/m 26.0 28.9 Maximized re Receive mod	Pol v/h V H adings, 18 de at 5600 quency Ra	RSS Limit 40.0 43.5 8000 - 18000 MHz, Legao MHz, Legao MHz	Margin -14.0 -14.6 MHz cy Mode	Pk/QP/Avg QP QP	degrees 89 241 Limit D	meters 1.7 1.7 istance	Extrapola		
equency MHz 53.847 54.395 54.395 n #9a: M IT set to	Level dBµV/m 26.0 28.9 Maximized re Receive mod Fred 1000	Pol v/h V H adings, 18 de at 5600 quency Ra 0 - 18000 N	RSS Limit 40.0 43.5 8000 - 18000 MHz, Legao MHz, Legao MHz	Margin -14.0 -14.6 MHz cy Mode Test D	Pk/QP/Avg QP QP Distance 3	degrees 89 241 Limit D	meters 1.7 1.7 istance	Extrapola 0		
requency MHz 53.847 154.395 JT 54.395 JT set to T set to requency MHz 466.720	Level dBµV/m 26.0 28.9 Maximized re Receive mod Free 1000 Level dBµV/m 49.7	Pol v/h V H adings, 18 de at 5600 quency Ra 0 - 18000 N Pol v/h V	RSS Limit 40.0 43.5 8000 - 18000 MHz, Legad MHz MHz RSS Limit 54.0	Margin -14.0 -14.6 MHz cy Mode Test D Gen Margin -4.3	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG	degrees 89 241 Limit D 2 Azimuth degrees 332	meters 1.7 1.7 istance 3 Height meters 1.8	Extrapola 0 Comments RB 1 MHz; ¹	.0 VB: 10 Hz	
equency MHz 53.847 54.395 54.395 In #9a: M IT set to equency MHz 466.720 466.730	Level dBµV/m 26.0 28.9 Maximized re Receive mod Free 1000 Level dBµV/m 49.7 44.5	Pol v/h V H adings, 18 de at 5600 quency Ra 0 - 18000 N Pol v/h V H	RSS Limit 40.0 43.5 8000 - 18000 MHz, Legad MHz Limit 54.0 54.0 54.0	Margin -14.0 -14.6 MHz cy Mode Test D Gen -4.3 -9.5	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG	degrees 89 241 Limit D 2 Azimuth degrees 332 234	meters 1.7 1.7 istance Height meters 1.8 1.5	Extrapola 0 Comments RB 1 MHz; ¹ RB 1 MHz; ¹	.0 VB: 10 Hz VB: 10 Hz	
requency MHz 53.847 154.395 un #9a: M JT set to requency MHz 466.720 466.730 1200.920	Level dBµV/m 26.0 28.9 Maximized re Receive mod Fred 1000 Level dBµV/m 49.7 44.5 38.6	Pol v/h V H adings, 18 de at 5600 quency Ra 0 - 18000 N Pol V/h V H H H	RSS Limit 40.0 43.5 3000 - 18000 MHz, Legad MHz MHz RSS Limit 54.0 54.0 54.0	Margin -14.0 -14.6 MHz cy Mode Test E Gen Margin -4.3 -9.5 -15.4	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG	degrees 89 241 Limit D 2 Azimuth degrees 332 234 224	meters 1.7 1.7 istance Height meters 1.8 1.5 1.0	Extrapola 0 Comments RB 1 MHz; ¹ RB 1 MHz; ¹ RB 1 MHz; ¹	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz	
equency MHz 53.847 54.395 154.395 154.395 154.395 10 154.395 10 154.395 10 10 10 10 10 10 10 10 10 10 10 10 10	Level dBµV/m 26.0 28.9 Maximized re Receive mod 1000 Level dBµV/m 49.7 44.5 38.6 38.6	Pol v/h V H adings, 18 de at 5600 quency Ra 0 - 18000 N Pol V/h V H H V V	RSS Limit 40.0 43.5 8000 - 18000 MHz, Legad MHz RSS Limit 54.0 54.0 54.0 54.0 54.0	Margin -14.0 -14.6 MHz cy Mode Test E Gen Margin -4.3 -9.5 -15.4 -15.4	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG	degrees 89 241 Limit D C Azimuth degrees 332 234 224 314	meters 1.7 1.7 istance 3 Height meters 1.8 1.5 1.0 1.0	Extrapola Comments RB 1 MHz; ¹ RB 1 MHz; ¹ RB 1 MHz; ¹ RB 1 MHz; ¹	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz	
equency MHz 53.847 54.395 54.395 In #9a: M IT set to equency MHz 466.720 466.730 200.920 201.100 733.390	Level dBμV/m 26.0 28.9 Maximized re Receive mod Free 1000 Level dBμV/m 49.7 44.5 38.6 38.6 38.4	Pol v/h V H adings, 18 de at 5600 guency Ra 0 - 18000 N Pol v/h V H H V V V V V V	RSS Limit 40.0 43.5 3000 - 18000 MHz, Legad MHz MHz RSS Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin -14.0 -14.6 MHz cy Mode Test E Gen Margin -4.3 -9.5 -15.4 -15.4 -15.6	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG	degrees 89 241 Limit D 32 Azimuth degrees 332 234 224 314 256	meters 1.7 1.7 1.7 istance 3 Height meters 1.8 1.5 1.0 1.5	Extrapola 0 Comments RB 1 MHz; ' RB 1 MHz; '	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz	
equency MHz 53.847 54.395 n #9a: N T set to equency MHz 466.720 466.730 200.920 201.100 733.390 733.370	Level dBµV/m 26.0 28.9 Maximized re Receive mod Free 1000 Level dBµV/m 49.7 44.5 38.6 38.6 38.6 38.4 34.4	Pol v/h V H adings, 18 de at 5600 quency Ra 0 - 18000 N Pol v/h V H H V V H H V V H	RSS Limit 40.0 43.5 8000 - 18000 MHz, Legad MHz RSS Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin -14.0 -14.6 MHz cy Mode Test E Gen Margin -4.3 -9.5 -15.4 -15.4 -15.6 -19.6	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG	degrees 89 241 Limit D 2 Azimuth degrees 332 234 224 314 256 69	meters 1.7 1.7 1.7 istance 3 Height meters 1.8 1.5 1.0 1.5 1.8	Extrapola 0 Comments RB 1 MHz; RB 1 MHz;	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz	
equency MHz 53.847 54.395 n #9a: N T set to equency MHz 466.720 466.720 200.920 201.100 733.370 466.660	Level dBµV/m 26.0 28.9 Maximized re Receive mod Fred 1000 Level dBµV/m 49.7 44.5 38.6 38.6 38.6 38.4 34.4 53.6	Pol v/h V H adings, 18 de at 5600 quency Ra 0 - 18000 N Pol v/h V H H V V H V V H V V V	RSS Limit 40.0 43.5 3000 - 18000 MHz, Legac MHz RSS Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin -14.0 -14.6 MHz cy Mode Test D Gen Margin -4.3 -9.5 -15.4 -15.4 -15.4 -15.6 -19.6 -20.4	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	degrees 89 241 Limit D 2 Azimuth degrees 332 234 224 314 256 69 332	meters 1.7 1.7 1.7 istance 3 Height meters 1.8 1.5 1.0 1.5 1.8 1.5 1.0 1.5 1.8 1.5 1.8 1.8 1.8 1.8 1.8	Extrapola O Comments RB 1 MHz; ^V RB 1 MHz; ^V	.0 VB: 10 Hz VB: 10 Hz	
equency MHz 53.847 54.395 n #9a: N T set to equency MHz 466.720 200.920 201.100 733.370 466.660 200.950	Level dBµV/m 26.0 28.9 Maximized re Receive mod Free 1000 Level dBµV/m 49.7 44.5 38.6 38.6 38.6 38.4 34.4 53.6 52.5	Pol v/h V H adings, 18 de at 5600 quency Ra 0 - 18000 N Pol v/h V H H V V H V H V H V H	RSS Limit 40.0 43.5 3000 - 18000 MHz, Legad MHz RSS Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin -14.0 -14.6 MHz y Mode Test D Gen Margin -4.3 -9.5 -15.4 -15.4 -15.4 -15.6 -19.6 -20.4 -21.5	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	degrees 89 241 Limit D 2 Azimuth degrees 332 234 224 314 256 69 332 224	meters 1.7 1.7 1.7 istance 3 Height meters 1.8 1.5 1.0 1.5 1.8 1.5 1.0 1.5 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Extrapola Comments RB 1 MHz; ¹ RB 1 MHz; ¹	.0 VB: 10 Hz VB: 1 MHz VB: 1 MHz	
equency MHz 53.847 54.395 n #9a: M T set to equency MHz 466.720 466.730 200.920 201.100 733.370 466.660 200.950 466.950	Level dBµV/m 26.0 28.9 Maximized re Receive moo Free 1000 Level dBµV/m 49.7 44.5 38.6 38.6 38.6 38.6 38.4 34.4 53.6 52.5 50.1	Pol v/h V H adings, 18 de at 5600 quency Ra 0 - 18000 N Pol v/h V H H V V H V V H V V V	RSS Limit 40.0 43.5 8000 - 18000 MHz, Legac MHz RSS Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin -14.0 -14.6 MHz cy Mode Test D -15.4 -15.4 -15.4 -15.4 -15.4 -15.6 -19.6 -20.4 -21.5 -23.9	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	degrees 89 241 Limit D Azimuth degrees 332 234 224 314 256 69 332 224 234	meters 1.7 1.7 1.7 istance 3 Height meters 1.8 1.5 1.0 1.5 1.8 1.5 1.0 1.5 1.8 1.0 1.5	Extrapola Comments RB 1 MHz; ' RB 1 MHz; '	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz	
requency MHz 53.847 154.395 un #9a: M JT set to	Level dBµV/m 26.0 28.9 Maximized re Receive mod Free 1000 Level dBµV/m 49.7 44.5 38.6 38.6 38.6 38.4 34.4 53.6 52.5	Pol v/h V H adings, 18 de at 5600 quency Ra 0 - 18000 N Pol v/h V H H V V H H V V H H V H	RSS Limit 40.0 43.5 3000 - 18000 MHz, Legad MHz RSS Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin -14.0 -14.6 MHz y Mode Test D Gen Margin -4.3 -9.5 -15.4 -15.4 -15.4 -15.6 -19.6 -20.4 -21.5	Pk/QP/Avg QP QP Distance 3 Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	degrees 89 241 Limit D 2 Azimuth degrees 332 234 224 314 256 69 332 224	meters 1.7 1.7 1.7 istance 3 Height meters 1.8 1.5 1.0 1.5 1.8 1.5 1.0 1.5 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Extrapola Comments RB 1 MHz; ¹ RB 1 MHz; ¹	.0 VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz	

Account Manager: Dean Eriksen act: Craig Owens Class: B ard: FCC Part 15.247/RSS-210 Class: B :: Maximized readings, 1000 - 18000 MHz Class: B to Receive mode at 5600 MHz, HT-40 Mode Extrapolation Factor 0.0 icy Level Pol RSS Gen Detector Azimuth Height Comments dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.0 00 49.9 V 54.0 -4.1 AVG 328 1.9 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -10.0 AVG 219 1.6 RB 1 MHz; VB: 10 Hz 20 39.0 V 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 10 38.5 V 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK	Model: Dalmatian Account Contact: Craig Owens Account tandard: FCC Part 15.247/RSS-210 Account n #9b: Maximized readings, 1000 - 18000 MHz Tset to Receive mode at 5600 MHz, HT-40 Mode Enderstand Frequency Range Test Distance Limit Distance I 1000 - 18000 MHz 3 3 3 Account equency Level Pol RSS Gen Detector Azimuth Height Co MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 66.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 66.720 44.0 H 54.0 -15.0 AVG 219 1.6 RE 200.840 38.8 H 54.0 -15.2 AVG 214 1.0 RE 66.620 53.9 V 74.0 -20.1 PK 328 1.9 RE <td< th=""><th>Manager: Dean Eriks Class: B Extrapolation Factor 0.0 Domments 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz</th></td<>	Manager: Dean Eriks Class: B Extrapolation Factor 0.0 Domments 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
Account Manager: Dean Eriksen act: Craig Owens Class: B ard: FCC Part 15.247/RSS-210 Class: B :: Maximized readings, 1000 - 18000 MHz to Receive mode at 5600 MHz, HT-40 Mode Extrapolation Factor :: Maximized readings, 1000 - 18000 MHz Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 accy Level Pol RSS Gen Detector Azimuth Height Comments dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 00 49.9 V 54.0 -4.1 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -15.0 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 20 39.0 V 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 20 33.3 H 54.0 -15.5 AVG 263	Account I Contact: Craig Owens andard: FCC Part 15.247/RSS-210 #9b: Maximized readings, 1000 - 18000 MHz "set to Receive mode at 5600 MHz, HT-40 Mode Image: Test Distance Limit Distance 1000 - 18000 MHz 3 quency Level Pol RSS Gen Detector Azimuth Height Co MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees 66.700 49.9 V 54.0 -4.1 66.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 66.720 44.0 H 54.0 -15.0 AVG 325 1.3 RE 60.750 44.0 H 54.0 -15.2 AVG 214 1.0 RE 66.620 53.9 V 54.0 -15.5 AVG 263 1.0 RE 66.480 50.2 H	Class: B Extrapolation Factor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Int: FCC Part 15.247/RSS-210 Class: B Class: B Class: B Construction Class: B Class: B Class: Class: B Class: B Class: Class: Class: B Class: B Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 O O Comments dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters O 49.9 V 54.0 -4.1 AVG 328 1.9 RB 1 MHz; VB: 10 Hz O 49.9 V 54.0 -15.0 AVG 219 1.6 RB 1 MHz; VB: 10 Hz O 39.0 V 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz O 38.8 H 54.0 -15.5 AVG 263 <t< td=""><td>ndard: FCC Part 15.247/RSS-210 #9b: Maximized readings, 1000 - 18000 MHz set to Receive mode at 5600 MHz, HT-40 Mode Frequency Range Test Distance Limit Distance I 1000 - 18000 MHz 3 3 3 uency Level Pol RSS Gen Detector Azimuth Height Cc Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5 5.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 5.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 3.400 39.0 V 54.0 -15.2 AVG 214 1.0 RE 6.620 53.9 V 74.0 -20.1 PK 328 1.9 RE 3.320 31.3 H 54.0 -15.5 AVG 263 1.0 RE 5.4800 50.2</td><td>Extrapolation Factor 0.0 omments 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz</td></t<>	ndard: FCC Part 15.247/RSS-210 #9b: Maximized readings, 1000 - 18000 MHz set to Receive mode at 5600 MHz, HT-40 Mode Frequency Range Test Distance Limit Distance I 1000 - 18000 MHz 3 3 3 uency Level Pol RSS Gen Detector Azimuth Height Cc Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5 5.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 5.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 3.400 39.0 V 54.0 -15.2 AVG 214 1.0 RE 6.620 53.9 V 74.0 -20.1 PK 328 1.9 RE 3.320 31.3 H 54.0 -15.5 AVG 263 1.0 RE 5.4800 50.2	Extrapolation Factor 0.0 omments 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
Maximized readings, 1000 - 18000 MHz to Receive mode at 5600 MHz, HT-40 Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 acy Level Pol RSS Gen Detector Azimuth Height Comments dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0 49.9 V 54.0 -4.1 AVG 328 1.9 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -10.0 AVG 219 1.6 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -15.0 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 20 38.8 H 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 10 Hz 20 53.1 H 74.0 -20.9 PK <td< td=""><td>#9b: Maximized readings, 1000 - 18000 MHz set to Receive mode at 5600 MHz, HT-40 Mode Frequency Range Test Distance Limit Distance I 1000 - 18000 MHz 3 3 3 quency Level Pol RSS Gen Detector Azimuth Height Co 1Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 6.700 6.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 6.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 3.400 39.0 V 54.0 -15.0 AVG 325 1.3 RE 0.840 38.8 H 54.0 -15.2 AVG 263 1.0 RE 0.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 3.20 31.3 H 54.0 -20.1 PK 328 1.9 RE 6.420 53.9 V 74.0 -22.7 AVG</td><td>Extrapolation Factor 0.0 omments 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz</td></td<>	#9b: Maximized readings, 1000 - 18000 MHz set to Receive mode at 5600 MHz, HT-40 Mode Frequency Range Test Distance Limit Distance I 1000 - 18000 MHz 3 3 3 quency Level Pol RSS Gen Detector Azimuth Height Co 1Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 6.700 6.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 6.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 3.400 39.0 V 54.0 -15.0 AVG 325 1.3 RE 0.840 38.8 H 54.0 -15.2 AVG 263 1.0 RE 0.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 3.20 31.3 H 54.0 -20.1 PK 328 1.9 RE 6.420 53.9 V 74.0 -22.7 AVG	Extrapolation Factor 0.0 omments 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
to Receive mode at 5600 MHz, HT-40 Mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0	set to Receive mode at 5600 MHz, HT-40 Mode Frequency Range Test Distance Limit Distance I 1000 - 18000 MHz 3 3 3 uency Level Pol RSS Gen Detector Azimuth Height Cc Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 6.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 6.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 3.400 39.0 V 54.0 -15.0 AVG 325 1.3 RE 0.840 38.8 H 54.0 -15.2 AVG 214 1.0 RE 0.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 3.320 31.3 H 74.0 -20.9 PK 214 1.0 RE 3.320	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 acy Level Pol RSS Gen Detector Azimuth Height Comments dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 00 49.9 V 54.0 -4.1 AVG 328 1.9 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -10.0 AVG 219 1.6 RB 1 MHz; VB: 10 Hz 20 39.0 V 54.0 -15.0 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 40 38.8 H 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 1 MHz 20 53.1 H 74.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 1 MHz 20	Frequency Range Test Distance Limit Distance I 1000 - 18000 MHz 3 3 uency Level Pol RSS Gen Detector Azimuth Height Co Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 5.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 3.400 39.0 V 54.0 -15.0 AVG 325 1.3 RE 0.840 38.8 H 54.0 -15.2 AVG 214 1.0 RE 0.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 3.20 31.3 H 74.0 -20.1 PK 328 1.9 RE 5.480 50.2 H 74.0 -22.7 AVG	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1000 - 18000 MHz 3 3 0.0 icy Level Pol RSS Gen Detector Azimuth Height Comments dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 00 49.9 V 54.0 -4.1 AVG 328 1.9 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -10.0 AVG 219 1.6 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -15.0 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 20 38.8 H 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 20 38.5 V 54.0 -15.5 AVG 263 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 1 MHz 20 53.1 H 74.0 -20.9 PK 214 1.0 <	1000 - 18000 MHz 3 3 uency Level Pol RSS Gen Detector Azimuth Height Co Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 5.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 3.400 39.0 V 54.0 -15.0 AVG 325 1.3 RE 0.840 38.8 H 54.0 -15.2 AVG 214 1.0 RE 0.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 3.20 53.1 H 74.0 -20.1 PK 328 1.9 RE 3.320 31.3 H 54.0 -22.7 AVG 360 1.0 RE 3.320 31.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1000 - 18000 MHz 3 3 0.0 icy Level Pol RSS Gen Detector Azimuth Height Comments dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 00 49.9 V 54.0 -4.1 AVG 328 1.9 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -10.0 AVG 219 1.6 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -15.0 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 20 38.8 H 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 20 38.5 V 54.0 -15.5 AVG 263 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 1 MHz 20 53.1 H 74.0 -20.9 PK 214 1.0 <	1000 - 18000 MHz 3 3 uency Level Pol RSS Gen Detector Azimuth Height Co Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 6.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 6.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 3.400 39.0 V 54.0 -15.0 AVG 325 1.3 RE 00.840 38.8 H 54.0 -15.2 AVG 214 1.0 RE 00.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 00.750 53.1 H 74.0 -20.1 PK 328 1.9 RE 0.750 53.1 H 74.0 -22.7 AVG 360 1.0 RE 0.560 49.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 00 49.9 V 54.0 -4.1 AVG 328 1.9 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -10.0 AVG 219 1.6 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -15.0 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 20 39.0 V 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 40 38.8 H 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 10 38.5 V 54.0 -15.5 AVG 263 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 1 MHz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 1 MHz 20 31.3	Hz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 66.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 66.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 33.400 39.0 V 54.0 -15.0 AVG 325 1.3 RE 00.840 38.8 H 54.0 -15.2 AVG 214 1.0 RE 00.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 06.620 53.9 V 74.0 -20.1 PK 328 1.9 RE 00.750 53.1 H 74.0 -22.7 AVG 360 1.0 RE 33.320 31.3 H 54.0 -22.7 AVG 360 1.0 RE 36.480 50.2 H 74.0 -23.8 PK	3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 00 49.9 V 54.0 -4.1 AVG 328 1.9 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -10.0 AVG 219 1.6 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -15.0 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 20 39.0 V 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 40 38.8 H 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 10 38.5 V 54.0 -15.5 AVG 263 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 1 MHz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 1 MHz 20 31.3	Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 5.700 49.9 V 54.0 -10.0 AVG 328 1.9 RE 5.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 3.400 39.0 V 54.0 -15.0 AVG 325 1.3 RE 0.840 38.8 H 54.0 -15.2 AVG 214 1.0 RE 0.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 6.620 53.9 V 74.0 -20.1 PK 328 1.9 RE 3.320 31.3 H 74.0 -22.7 AVG 360 1.0 RE 6.480 50.2 H 74.0 -23.8 PK 2	3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
D0 49.9 V 54.0 -4.1 AVG 328 1.9 RB 1 MHz; VB: 10 Hz 20 44.0 H 54.0 -10.0 AVG 219 1.6 RB 1 MHz; VB: 10 Hz 20 39.0 V 54.0 -15.0 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 20 39.0 V 54.0 -15.0 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 20 38.8 H 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 10 38.5 V 54.0 -15.5 AVG 263 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 1 MHz 20 53.1 H 74.0 -20.9 PK 214 1.0 RB 1 MHz; VB: 1 MHz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 1 MHz 2	b.700 49.9 V 54.0 -4.1 AVG 328 1.9 RE 5.720 44.0 H 54.0 -10.0 AVG 219 1.6 RE 8.400 39.0 V 54.0 -15.0 AVG 325 1.3 RE 0.840 38.8 H 54.0 -15.2 AVG 214 1.0 RE 0.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 0.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 0.620 53.9 V 74.0 -20.1 PK 328 1.9 RE 0.750 53.1 H 74.0 -22.7 AVG 360 1.0 RE 3.320 31.3 H 54.0 -22.7 AVG 360 1.0 RE 0.560 49.8 V 74.0 -23.8 PK <	3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
20 44.0 H 54.0 -10.0 AVG 219 1.6 RB 1 MHz; VB: 10 Hz 20 39.0 V 54.0 -15.0 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 40 38.8 H 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 10 38.5 V 54.0 -15.5 AVG 263 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 1 MHz 20 53.1 H 74.0 -20.9 PK 214 1.0 RB 1 MHz; VB: 1 MHz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 1 MHz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 1 MHz 20 31.3 H 74.0 -23.8 PK 219 1.6 RB 1 MHz; VB: 1 MHz 6	720 44.0 H 54.0 -10.0 AVG 219 1.6 RE .400 39.0 V 54.0 -15.0 AVG 325 1.3 RE 0.840 38.8 H 54.0 -15.2 AVG 214 1.0 RE 0.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 0.910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 6.20 53.9 V 74.0 -20.1 PK 328 1.9 RE 0.750 53.1 H 74.0 -20.9 PK 214 1.0 RE 320 31.3 H 54.0 -22.7 AVG 360 1.0 RE .320 31.3 H 54.0 -22.7 AVG 360 1.0 RE .330 50.2 H 74.0 -23.8 PK 219 1.6 RE .340 45.7 V 74.0 -28.3 <t< td=""><td>3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz</td></t<>	3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
00 39.0 V 54.0 -15.0 AVG 325 1.3 RB 1 MHz; VB: 10 Hz 40 38.8 H 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 10 38.5 V 54.0 -15.5 AVG 263 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 1 MHz 20 53.1 H 74.0 -20.9 PK 214 1.0 RB 1 MHz; VB: 1 MHz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 1 MHz 20 31.3 H 74.0 -23.8 PK 219 1.6 RB 1 MHz; VB: 1 MHz 60 49.8 V 74.0 -24.2 PK 263 1.0 RB 1 MHz; VB: 1 MHz 40	400 39.0 V 54.0 -15.0 AVG 325 1.3 RE .840 38.8 H 54.0 -15.2 AVG 214 1.0 RE .910 38.5 V 54.0 -15.5 AVG 263 1.0 RE .620 53.9 V 74.0 -20.1 PK 328 1.9 RE .750 53.1 H 74.0 -20.9 PK 214 1.0 RE .320 31.3 H 54.0 -22.7 AVG 360 1.0 RE .320 31.3 H 54.0 -22.7 AVG 360 1.0 RE .560 49.8 V 74.0 -23.8 PK 219 1.6 RE .560 49.8 V 74.0 -28.3 PK 325 1.3 RE .190 42.1 H 74.0 -31.9 PK 360	3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
40 38.8 H 54.0 -15.2 AVG 214 1.0 RB 1 MHz; VB: 10 Hz 10 38.5 V 54.0 -15.5 AVG 263 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 1 MHz 50 53.1 H 74.0 -20.9 PK 214 1.0 RB 1 MHz; VB: 1 MHz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 20 31.3 H 74.0 -23.8 PK 219 1.6 RB 1 MHz; VB: 1 MHz 60 49.8 V 74.0 -24.2 PK 263 1.0 RB 1 MHz; VB: 1 MHz 40 45.7 V 74.0 -28.3 PK 325 1.3 RB 1	840 38.8 H 54.0 -15.2 AVG 214 1.0 RE 910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 620 53.9 V 74.0 -20.1 PK 328 1.9 RE 750 53.1 H 74.0 -20.9 PK 214 1.0 RE 320 31.3 H 54.0 -22.7 AVG 360 1.0 RE 480 50.2 H 74.0 -23.8 PK 219 1.6 RE 560 49.8 V 74.0 -24.2 PK 263 1.0 RE 340 45.7 V 74.0 -28.3 PK 325 1.3 RE 190 42.1 H 74.0 -31.9 PK 360 1.0 RE	3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
10 38.5 V 54.0 -15.5 AVG 263 1.0 RB 1 MHz; VB: 10 Hz 20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 1 MHz 50 53.1 H 74.0 -20.9 PK 214 1.0 RB 1 MHz; VB: 1 MHz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 20 31.3 H 74.0 -23.8 PK 219 1.6 RB 1 MHz; VB: 1 MHz 60 49.8 V 74.0 -24.2 PK 263 1.0 RB 1 MHz; VB: 1 MHz 40 45.7 V 74.0 -28.3 PK 325 1.3 RB 1 MHz; VB: 1 MHz 20 42.1 H 74.0 -31.9 PK 360 1.0 RB 1 MHz; VB: 1 MHz 20 42.1 H 74.0 -31.9 PK 360 1.0 RB 1 M	910 38.5 V 54.0 -15.5 AVG 263 1.0 RE 520 53.9 V 74.0 -20.1 PK 328 1.9 RE 750 53.1 H 74.0 -20.9 PK 214 1.0 RE 320 31.3 H 54.0 -22.7 AVG 360 1.0 RE 480 50.2 H 74.0 -23.8 PK 219 1.6 RE 560 49.8 V 74.0 -28.3 PK 219 1.6 RE 340 45.7 V 74.0 -28.3 PK 325 1.3 RE 190 42.1 H 74.0 -31.9 PK 360 1.0 RE	3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
20 53.9 V 74.0 -20.1 PK 328 1.9 RB 1 MHz; VB: 1 MHz 50 53.1 H 74.0 -20.9 PK 214 1.0 RB 1 MHz; VB: 1 MHz 20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 30 50.2 H 74.0 -23.8 PK 219 1.6 RB 1 MHz; VB: 1 MHz 60 49.8 V 74.0 -24.2 PK 263 1.0 RB 1 MHz; VB: 1 MHz 40 45.7 V 74.0 -28.3 PK 325 1.3 RB 1 MHz; VB: 1 MHz 90 42.1 H 74.0 -31.9 PK 360 1.0 RB 1 MHz; VB: 1 MHz Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak The peak	620 53.9 V 74.0 -20.1 PK 328 1.9 RE 750 53.1 H 74.0 -20.9 PK 214 1.0 RE 320 31.3 H 54.0 -22.7 AVG 360 1.0 RE 480 50.2 H 74.0 -23.8 PK 219 1.6 RE 560 49.8 V 74.0 -24.2 PK 263 1.0 RE 340 45.7 V 74.0 -28.3 PK 325 1.3 RE 190 42.1 H 74.0 -31.9 PK 360 1.0 RE	3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
20 31.3 H 54.0 -22.7 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 30 50.2 H 74.0 -23.8 PK 219 1.6 RB 1 MHz; VB: 1 MHz 60 49.8 V 74.0 -24.2 PK 263 1.0 RB 1 MHz; VB: 1 MHz 40 45.7 V 74.0 -28.3 PK 325 1.3 RB 1 MHz; VB: 1 MHz 90 42.1 H 74.0 -31.9 PK 360 1.0 RB 1 MHz; VB: 1 MHz Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak	320 31.3 H 54.0 -22.7 AVG 360 1.0 RE 480 50.2 H 74.0 -23.8 PK 219 1.6 RE 560 49.8 V 74.0 -24.2 PK 263 1.0 RE 340 45.7 V 74.0 -28.3 PK 325 1.3 RE 190 42.1 H 74.0 -31.9 PK 360 1.0 RE	3 1 MHz; VB: 10 Hz 3 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
30 50.2 H 74.0 -23.8 PK 219 1.6 RB 1 MHz; VB: 1 MHz 60 49.8 V 74.0 -24.2 PK 263 1.0 RB 1 MHz; VB: 1 MHz 40 45.7 V 74.0 -28.3 PK 325 1.3 RB 1 MHz; VB: 1 MHz 20 42.1 H 74.0 -31.9 PK 360 1.0 RB 1 MHz; VB: 1 MHz Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak	180 50.2 H 74.0 -23.8 PK 219 1.6 RE 560 49.8 V 74.0 -24.2 PK 263 1.0 RE 340 45.7 V 74.0 -28.3 PK 325 1.3 RE 90 42.1 H 74.0 -31.9 PK 360 1.0 RE	8 1 MHz; VB: 1 MHz 3 1 MHz; VB: 1 MHz
60 49.8 V 74.0 -24.2 PK 263 1.0 RB 1 MHz; VB: 1 MHz 40 45.7 V 74.0 -28.3 PK 325 1.3 RB 1 MHz; VB: 1 MHz 20 42.1 H 74.0 -31.9 PK 360 1.0 RB 1 MHz; VB: 1 MHz Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak	560 49.8 V 74.0 -24.2 PK 263 1.0 RE 40 45.7 V 74.0 -28.3 PK 325 1.3 RE 90 42.1 H 74.0 -31.9 PK 360 1.0 RE Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the F	3 1 MHz; VB: 1 MHz
40 45.7 V 74.0 -28.3 PK 325 1.3 RB 1 MHz; VB: 1 MHz 20 42.1 H 74.0 -31.9 PK 360 1.0 RB 1 MHz; VB: 1 MHz Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak	Ado 45.7 V 74.0 -28.3 PK 325 1.3 RE 90 42.1 H 74.0 -31.9 PK 360 1.0 RE	
P0 42.1 H 74.0 -31.9 PK 360 1.0 RB 1 MHz; VB: 1 MHz Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak	90 42.1 H 74.0 -31.9 PK 360 1.0 RE Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the F	
Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak	Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the F	
	· · · · · · · · · · · · · · · · · · ·	3 I MHZ; VB: I MHZ
any emission above 1 GHz, can not exceed the average limit by more than 20 dB.		CC states that the pe
	any emission above 1 GHz, can not exceed the average limit by more than 20 dB.	

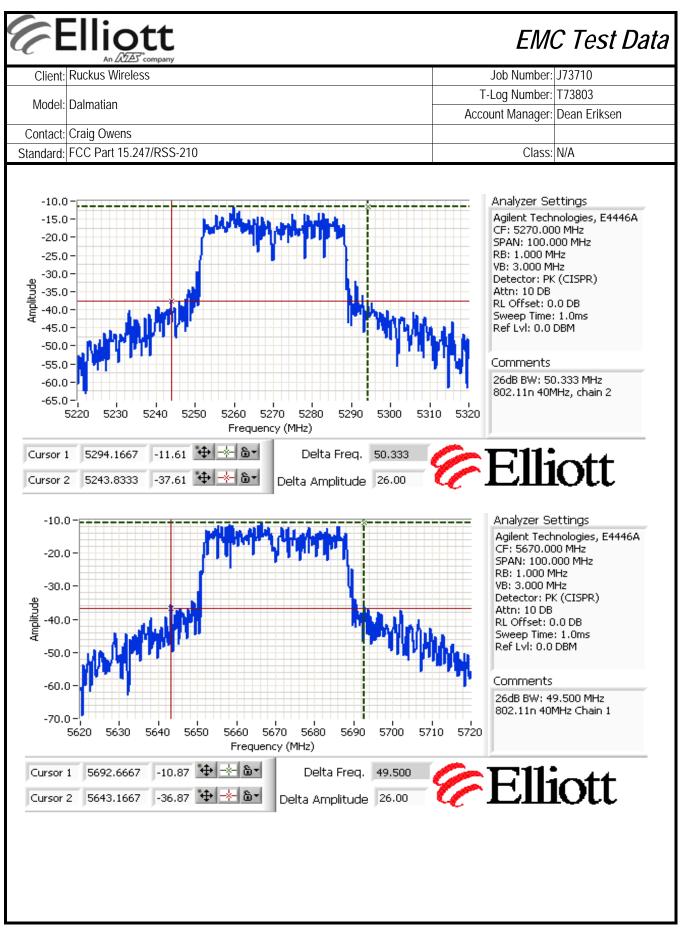
	IIOTT
	ΠΟΓΓ
4	
	A division of 17AS

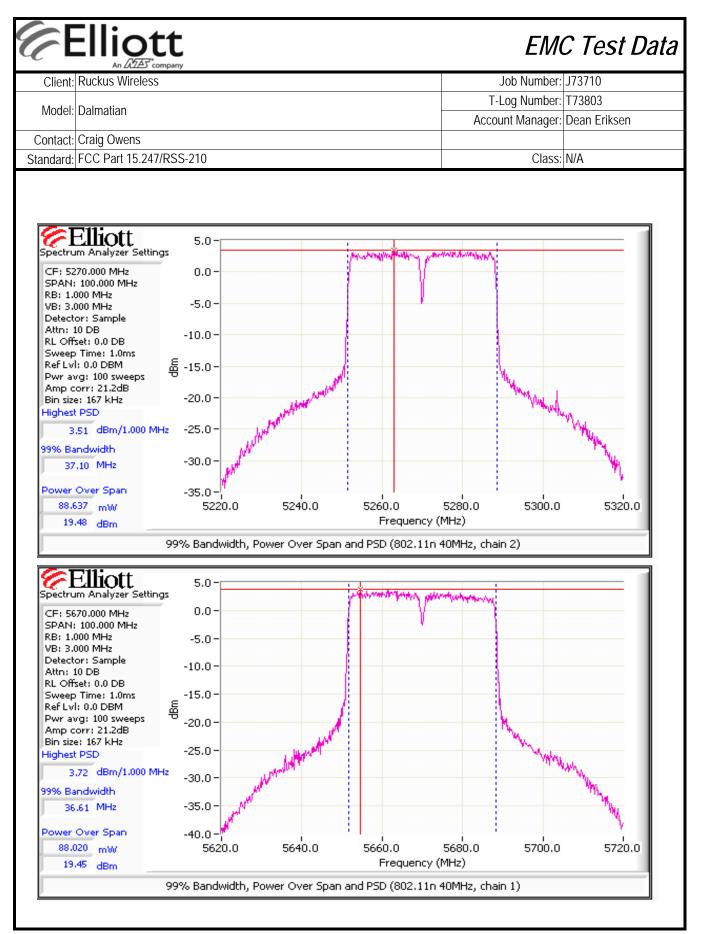
Advision of			
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number:	T73803
		Account Manager:	Dean Eriksen
Contact:	Craig Owens		-
Emissions Standard(s):	FCC Part 15.247/RSS-210	Class:	В
Immunity Standard(s):	-	Environment:	-
			-

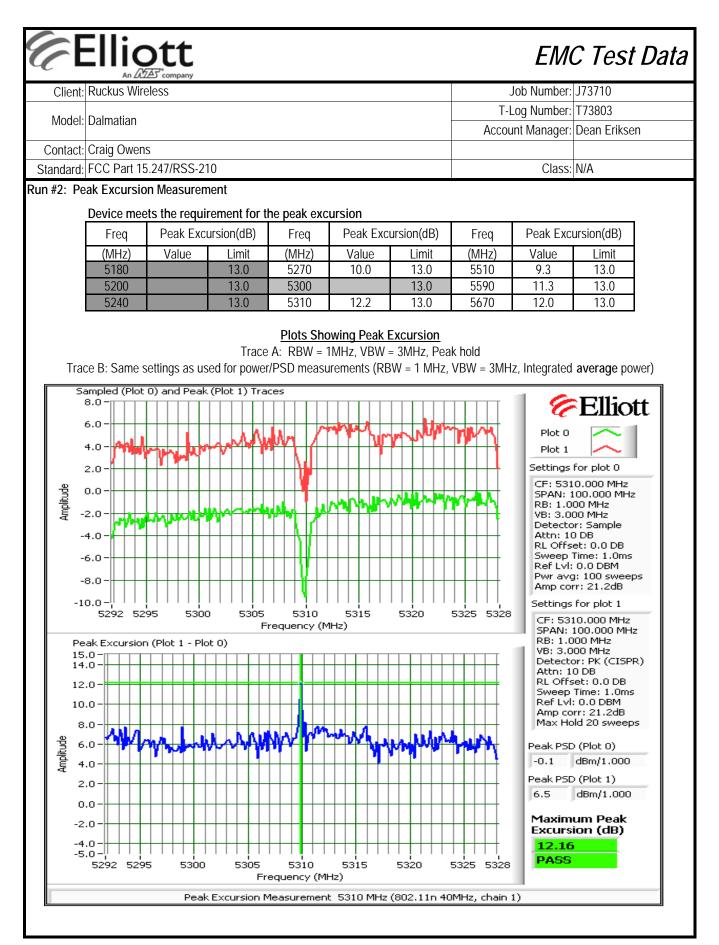
EMC Test Data

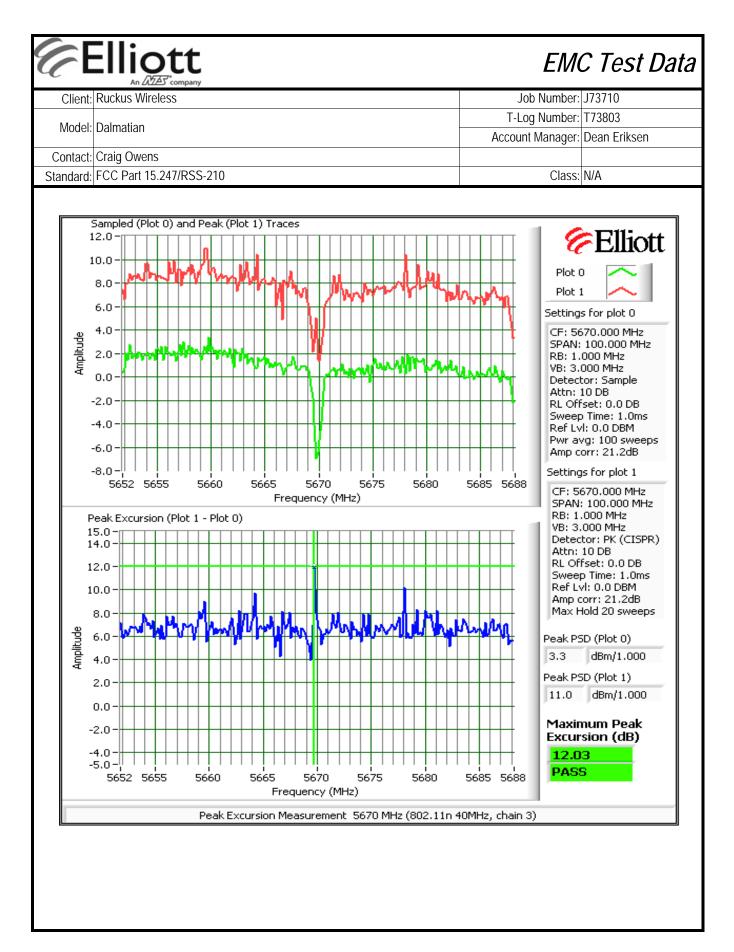
For The

Ruckus Wireless

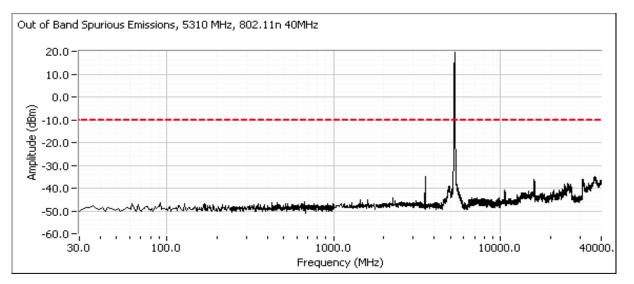

Model


Dalmatian


Date of Last Test: 3/20/2009

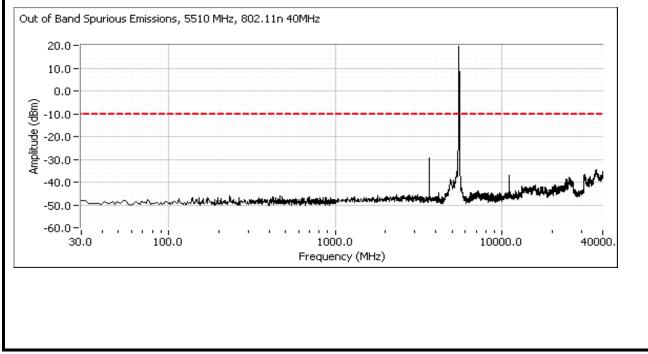

C E		tt			EM	C Test Data
Client:	Ruckus Wireless	S		Jo	b Number:	J73710
				T-Lo	g Number:	T73803
Model:	Dalmatian				•	Dean Eriksen
	Craig Owens					
Standard:	FCC Part 15.24	7/RSS-210			Class:	N/A
Test Spe [,]	cific Details	PSD, Peak Excursion,	ort Measurem , Bandwidth and	nents d Spurious	s Emiss	
	Objective: The spe	e objective of this test session is to ecification listed above.	perform final qualificatio	on testing of the	EUT with r	espect to the
Те	Date of Test: 3/2 est Engineer: Raf est Location: SV	fael Varelas	Config. Used: Config Change: EUT Voltage:	: None		
When me analyzer o allow for t	or power meter vi	ration ducted emissions from the EUT's ar ria a suitable attenuator to prevent of nuators and cables used. Temperature: Rel. Humidity:	overloading the measure 18.5 °C	•		
Summary	y of Results					
Ru	ın #	Test Performed	Limit	Pass / Fail		Result / Margin
	1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass		8 dBm (0.241W)
	1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass		5 dBm (0.224W)
	1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass		7.97 dBm/MHz
	1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	6	3.01 dBm/MHz
	1	26dB Bandwidth 99% Bandwidth	15.407 PSS 210	-		50.3 MHz 37.1 MHz
	1 2	99% Bandwidth Peak Excursion Envelope	RSS 210 15.407(a) (6)	- Dass		37.1 MHZ 12.2 dB
		Antenna Conducted		Pass	Aller	missions below the
	3	Out of Band Spurious	15.407(b)	Pass		7dBm/MHz limit
No modifi		uring Testing de to the EUT during testing Standard				

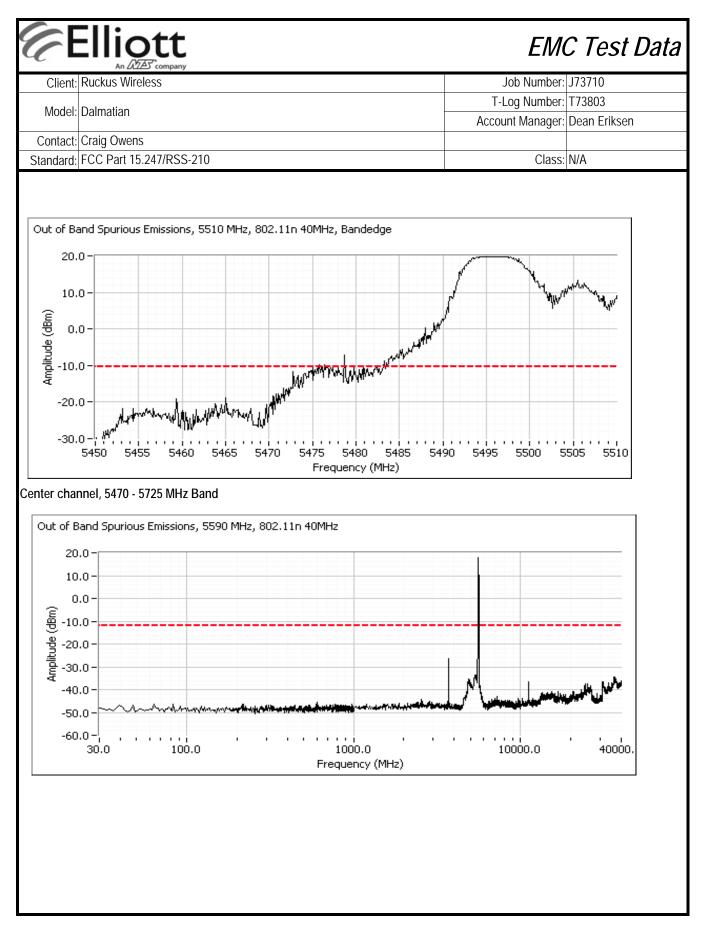
Client:	Ruckus Wire	eless						Job Number:		
Model:	I: Dalmatian T-Log Number: T73803 Account Manager: Dean Eriks						n			
Contact	Craig Owen:	<u>.</u>					ALLUI	unt manager:	Deall Ellkse	
	0	5.247/RSS-21	0					Class:	N/A	
Stanuaru.		.24//(00 21	0					01035.	14/74	
Run #1: Ba	ndwidth, Ou	tput Power a	ind Power s	spectral Den	sity					
							5	1		
	Antonn	a Gain (dBi):	Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵			
	Antenna	a Gain (OBI):	3.0	3.0	3.0	No	3.0			
Frequency	Software	26dB BW	Measure	d Output Po	ver ¹ dBm	To	otal		Max Power	
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Limit (dBm)	(W)	Pass or F
5270	20.0	50.3	18.8	19.5	18.8	240.8	23.8	24.0	. ,	PASS
5310	17.5	47.7	15.3	16.2	16.1	116.5	20.7	24.0	0.241	PASS
5510	20.0	47.2	18.7	18.3	18.2	208.3	23.2	24.0		PASS
5590	20.0	45.5	19.0	18.3	18.5	218.7	23.4	24.0	0.224	PASS
5670	19.5	49.5	19.5	18.4	18.2	224.0	23.5	24.0		PASS
				2 2 4						
requency	99% ⁴	Total	Р	SD ² dBm/MH	-		I PSD	Li	mit	Pass or
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	
5270	37.1	23.8	3.3	3.5	2.8	6.3	7.97	11.0	11.0	PASS
5310	36.8	20.7	-0.1	0.8	0.5	3.3	5.20	11.0	11.0	PASS
5510	36.8	23.2	3.3	2.5	2.3	5.6	7.49	11.0	11.0	PASS
5590 5670	36.8	23.4 23.5	3.2 3.7	2.9 2.8	2.8 3.2	6.0 6.3	7.75	11.0	11.0	PASS
3070	36.8	23.0	3.7	2.0	3.Z	0.3	8.01	11.0	11.0	PASS
	Output powe	er measured i	using a spec	trum analyze	er (see plots	below):				
Note 1:	RBW=1MHz	, VB=3 MHz,	sample dete	ector, power	averaging or	n (transmitted	d signal was	continuous) a	ind power int	egration
	over 50 MHz		•	·	0 0		0		·	0
Note 2:		sing the same								
		0 the limit for								
Note 3:		. The limits a				-				-
		ated from the			5	sured 99% b	andwidth) by	more than 3	dB by the an	nount that
		ed value exce								
Note 4:		idth measure							£ 4 a - ! a al !! al	
		ystems the to								
		. The antenr	•					•	•	•
Note 5:		MIMO device	-						-	
		he highest ga						-		
		signals are c the product of			-	ain is the sun	n (in inear te	rms) or the g	ains ior each	chain an
		<u></u>	⊢ше енесн∨	e uaiti aftu 10	лагиоwer.					

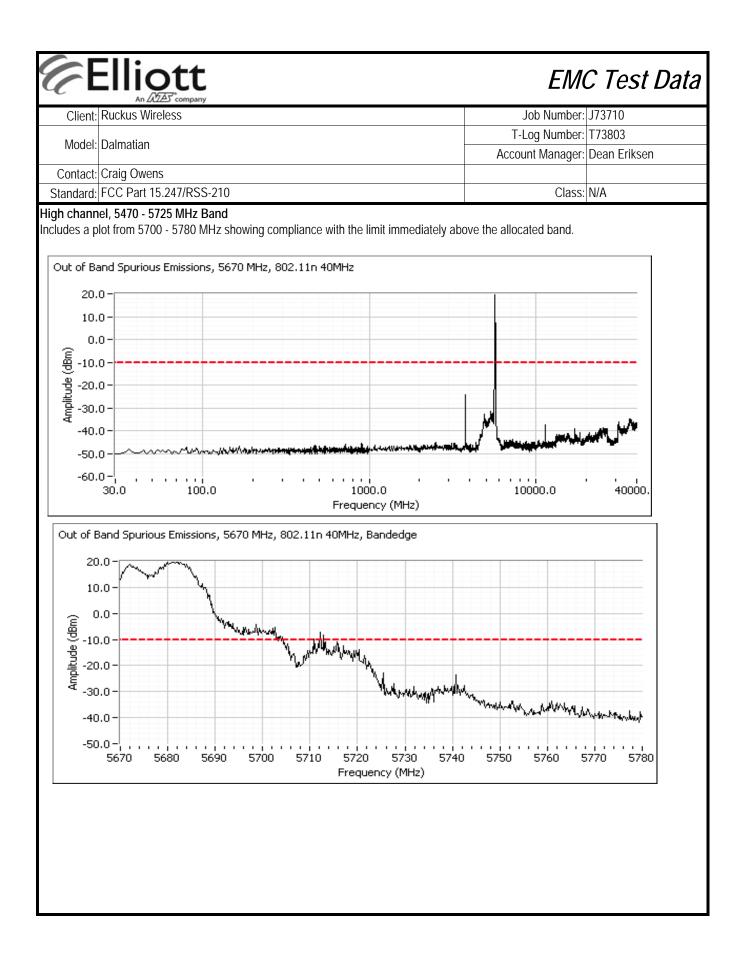


	Elliott An DZAT company			C Test I
Client:	: Ruckus Wireless		Job Number:	
Model:	Dalmatian		T-Log Number:	
Contract			Account Manager:	Dean Eriksen
	: Craig Owens : FCC Part 15.247/RSS-210		Class:	Ν/Λ
un #3: Oi	ut Of Band Spurious Emissions - Antenna	Conducted		
all chains tra	ices: Antenna gain used is the effective gain ransmitting simultaneously and connected to t riate load (50 ohms).			
	Number of transmit chains: Maximum Antenna Gain: Spurious Limit: Limit Used On Plots ^{Note 1} :	3.0 dBi -27.0 dBm/MHz eirp -30.0 dBm/MHz Average -10.0 dBm/MHz Peak Lim	Limit (RB=1MHz, VB=10Hz) it (RB=VB=1MHz)	
Note 1:	The -27dBm/MHz limit is an eirp limit. The l consideration the maximum antenna gain (li more than 50MHz from the bands and that a known at these frequencies. All spurious signals below 1GHz are measu	imit = -27dBm - antenna gain are close to the limit are mad). Radiated field strength me e to determine compliance a	easurements fo
Note 2: Note 3: Note 4:	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -270	Band edge are subject to a li dBm eirp limit also applies in	mit of -17dBm EIRP the 5150 - 5250 MHz band.	
Note 3: Note 4: Note 5:	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -27c Signals that fall in the restricted bands of 15	Band edge are subject to a li dBm eirp limit also applies in	mit of -17dBm EIRP the 5150 - 5250 MHz band. if 15.209.	
Note 3: Note 4: Note 5: Low chann	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -27c Signals that fall in the restricted bands of 15 Plots Showing Ou	Band edge are subject to a li dBm eirp limit also applies in 5.205 are subject to the limit o ut-Of-Band Emissions (RBV	mit of -17dBm EIRP the 5150 - 5250 MHz band. if 15.209.	
Vote 3: Vote 4: Vote 5: Low chann	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -27c Signals that fall in the restricted bands of 15 <u>Plots Showing Ou</u> nel, 5250 - 5350 MHz Band Band Spurious Emissions, 5270 MHz, 802.1	Band edge are subject to a li dBm eirp limit also applies in 5.205 are subject to the limit o ut-Of-Band Emissions (RBV	mit of -17dBm EIRP the 5150 - 5250 MHz band. if 15.209.	
Note 3: Note 4: Note 5: Low chann Out of 21	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -27c Signals that fall in the restricted bands of 15 <u>Plots Showing Ou</u> nel, 5250 - 5350 MHz Band Band Spurious Emissions, 5270 MHz, 802.1	Band edge are subject to a li dBm eirp limit also applies in 5.205 are subject to the limit o ut-Of-Band Emissions (RBV	mit of -17dBm EIRP the 5150 - 5250 MHz band. if 15.209.	
lote 3: lote 4: lote 5: .ow chann Out of 21	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -27c Signals that fall in the restricted bands of 15 <u>Plots Showing Ou</u> nel, 5250 - 5350 MHz Band Band Spurious Emissions, 5270 MHz, 802.1 0.0 -	Band edge are subject to a li dBm eirp limit also applies in 5.205 are subject to the limit o ut-Of-Band Emissions (RBV	mit of -17dBm EIRP the 5150 - 5250 MHz band. if 15.209.	
Note 3: Note 4: Note 5: Low chann Out of 21	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -27c Signals that fall in the restricted bands of 15 <u>Plots Showing Ou</u> nel, 5250 - 5350 MHz Band Band Spurious Emissions, 5270 MHz, 802.1 0.0 - 0.0 -	Band edge are subject to a li dBm eirp limit also applies in 5.205 are subject to the limit o ut-Of-Band Emissions (RBV	mit of -17dBm EIRP the 5150 - 5250 MHz band. if 15.209.	
Note 3: Note 4: Note 5: Low chann Out of 11	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -27c Signals that fall in the restricted bands of 15 <u>Plots Showing Ou</u> nel, 5250 - 5350 MHz Band Band Spurious Emissions, 5270 MHz, 802.1 0.0 - 0.0 - 0.0 -	Band edge are subject to a li dBm eirp limit also applies in 5.205 are subject to the limit o ut-Of-Band Emissions (RBV	mit of -17dBm EIRP the 5150 - 5250 MHz band. if 15.209.	
Vote 3: Vote 4: Vote 5: Low chann Out of 11	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -27c Signals that fall in the restricted bands of 15 <u>Plots Showing Ou</u> nel, 5250 - 5350 MHz Band Band Spurious Emissions, 5270 MHz, 802.1 0.0 - 0.0 - 0.0 -	Band edge are subject to a li dBm eirp limit also applies in 5.205 are subject to the limit o ut-Of-Band Emissions (RBV	mit of -17dBm EIRP the 5150 - 5250 MHz band. if 15.209.	
Vote 3: Vote 4: Vote 5: Low chann Out of 11 (Map) -11 (Map) -21 (Map) -21 (Map) -21 (Map) -21 (Map) -21 (Map) -21 (Map) -21 (Map) -21 (Map) -21	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -27c Signals that fall in the restricted bands of 15 <u>Plots Showing Ou</u> nel, 5250 - 5350 MHz Band Band Spurious Emissions, 5270 MHz, 802.1 0.0 - 0.0 - 0.0 - 0.0 -	Band edge are subject to a li dBm eirp limit also applies in 5.205 are subject to the limit o ut-Of-Band Emissions (RBV	mit of -17dBm EIRP the 5150 - 5250 MHz band. if 15.209.	
Vote 3: Vote 4: Vote 5: Low chann Out of 11 (Map) -11 (Map) -21 (Map) -21 (Map) -21 (Map) -21 (Map) -21 (Map) -21 (Map) -21 (Map) -21 (Map) -21	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -27c Signals that fall in the restricted bands of 15 <u>Plots Showing Ou</u> nel, 5250 - 5350 MHz Band Band Spurious Emissions, 5270 MHz, 802.1 0.0 - 0.0 - 0.0 -	Band edge are subject to a li dBm eirp limit also applies in 5.205 are subject to the limit o ut-Of-Band Emissions (RBV	mit of -17dBm EIRP the 5150 - 5250 MHz band. if 15.209.	
Note 3: Note 4: Note 5: Low chann Out of 21 11 21 11 11 11 21 21 24 31 -21 -21 -21 -21 -21 -21 -21 -2	Signals within 10MHz of the 5.725 or 5.825 If the device is for outdoor use then the -27c Signals that fall in the restricted bands of 15 <u>Plots Showing Ou</u> nel, 5250 - 5350 MHz Band Band Spurious Emissions, 5270 MHz, 802.1 0.0 - 0.0 - 0.0 - 0.0 -	Band edge are subject to a li dBm eirp limit also applies in 5.205 are subject to the limit o ut-Of-Band Emissions (RBV	mit of -17dBm EIRP the 5150 - 5250 MHz band. if 15.209.	

Æ	Elliott An AZAS [*] company	EMC Test Data
Client:	Ruckus Wireless	Job Number: J73710
Madalı	Dalmatian	T-Log Number: T73803
wouer.	Daimatian	Account Manager: Dean Eriksen
Contact:	Craig Owens	
Standard:	FCC Part 15.247/RSS-210	Class: N/A
High chann	el 5250 - 5350 MHz Band	

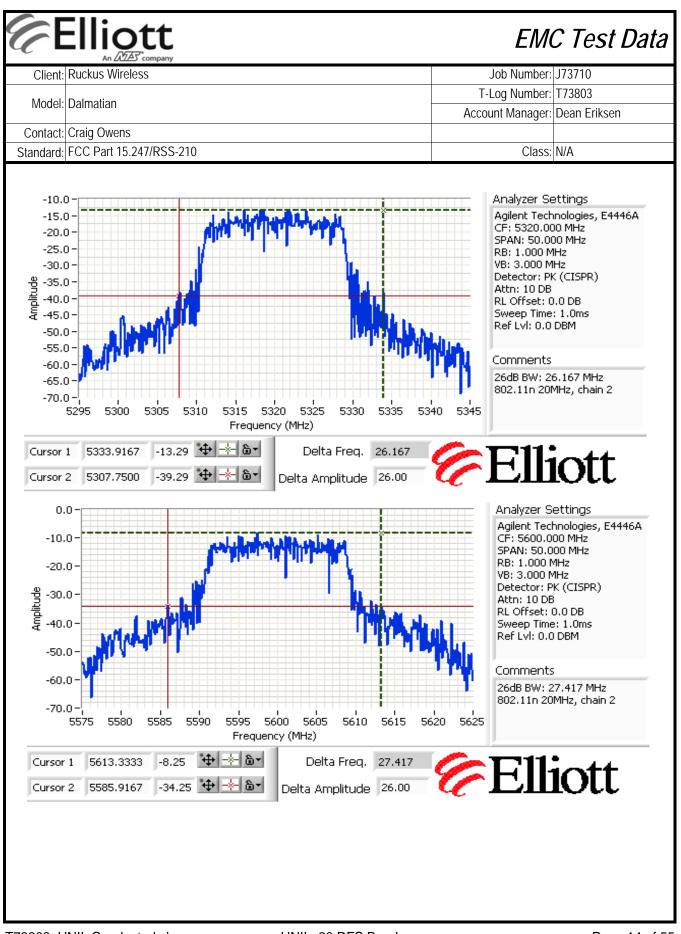

High channel, 5250 - 5350 MHz Band

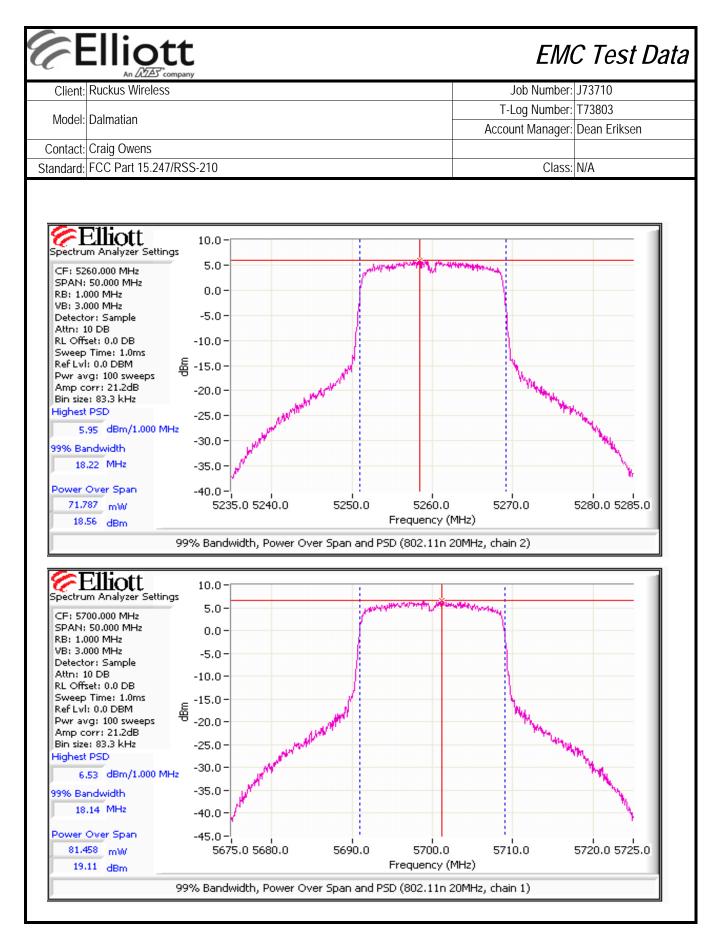

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

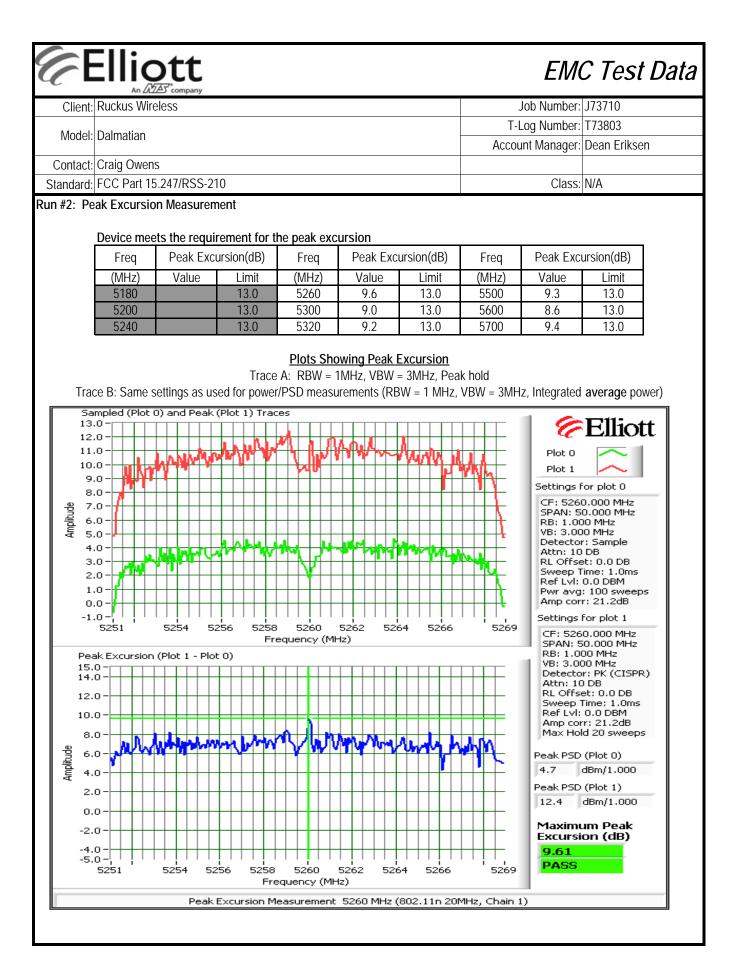


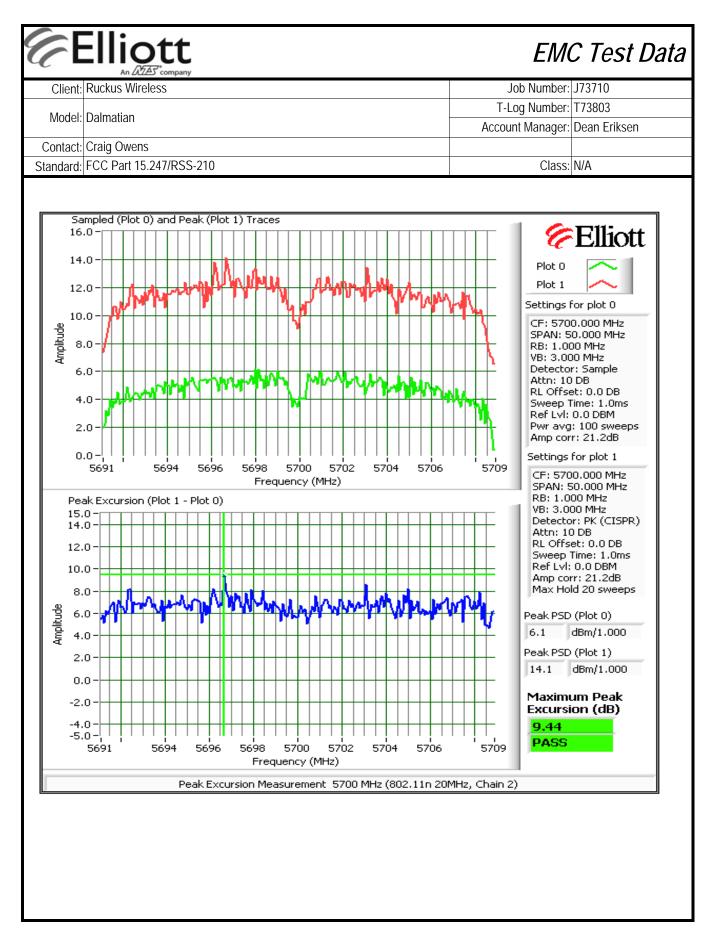
Low channel, 5470 - 5725 MHz Band

Includes a plot from 5460 - 5500 MHz showing compliance with the limit immediately below the allocated band from 5460-5470 MHz. Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions test

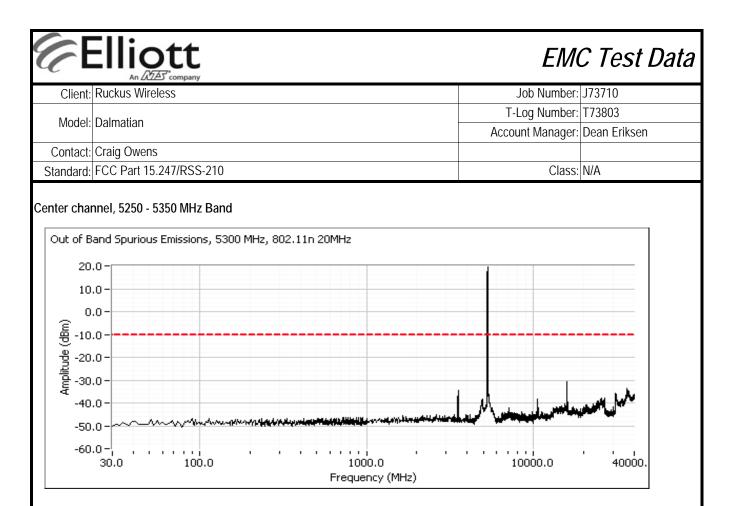


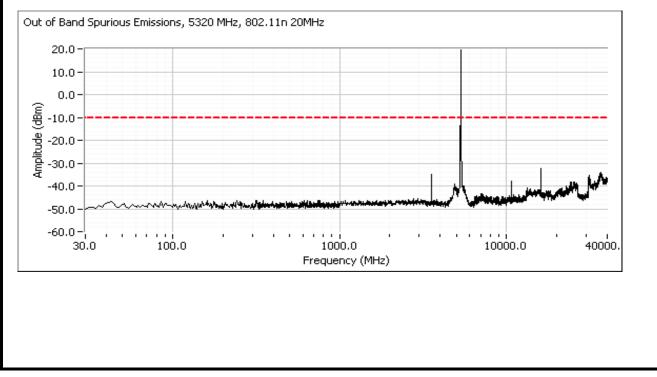


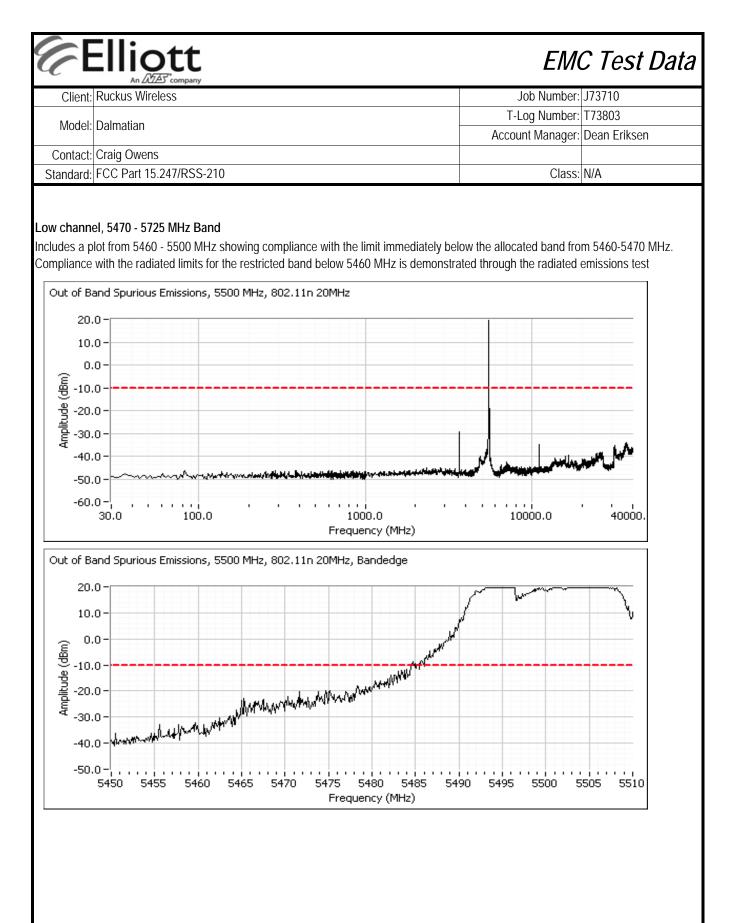


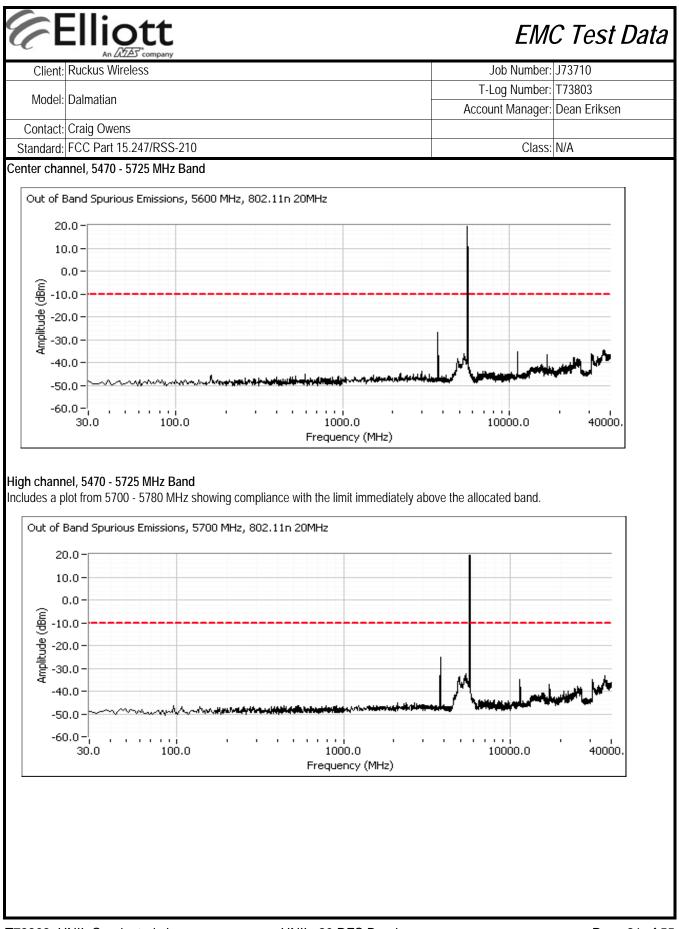

C E		tt		EMC Test Data			
Client:	Ruckus Wirele	2SS	Job Number: J73710				
				T-L	og Number:	T73803	
Model:	Dalmatian			0	Dean Eriksen		
	Craig Owens						
Standard:	FCC Part 15.2	47/RSS-210			Class:	N/A	
	cific Details	r, PSD, Peak Excursion, he objective of this test session is to pecification listed above.	ort Measurem , Bandwidth and	ents d Spuriou	s Emiss		
Те	est Engineer: Riest Location: S	: None : 120V/60Hz					
When meanalyzer of allow for the Ambient (or power meter he external atte Conditions:	nducted emissions from the EUT's an via a suitable attenuator to prevent c enuators and cables used.		•			
Summary	of Results						
Ru	n #	Test Performed	Limit	Pass / Fail		Result / Margin	
	1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass		0 dBm (0.198W)	
	1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass		5 dBm (0.224W)	
	1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass		0.6 dBm/MHz	
	1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	1	0.97 dBm/MHz	
	1	26dB Bandwidth	15.407	-		27.4 MHz	
	1	99% Bandwidth	RSS 210	-		18.2 MHz	
	2	Peak Excursion Envelope	15.407(a) (6)	Pass	All or	9.6 dBm	
	3	Antenna Conducted Out of Band Spurious	15.407(b)	Pass		nissions below the 7dBm/MHz limit	
No modifice Deviation	cations were m Is From The	During Testing ade to the EUT during testing Standard e from the requirements of the standa	ard.				

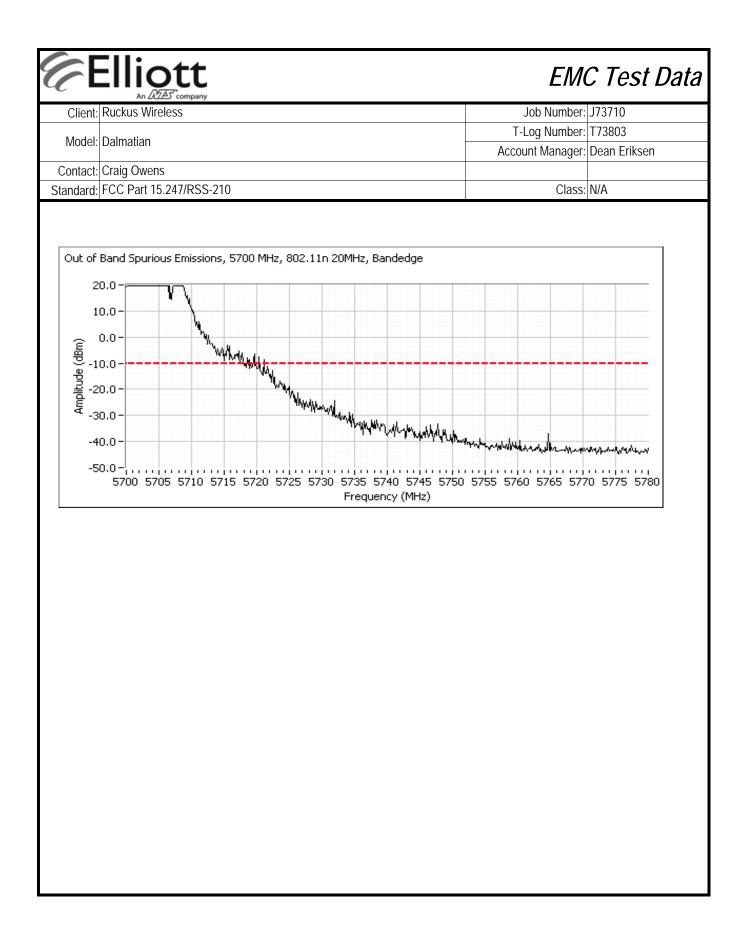
Client:	Ruckus Wireless							Job Number:	J73710			
Model	: Dalmatian							T-Log Number:		T73803		
MOUCI.	Daimatian			Αссоι	unt Manager:	Dean Eriksen						
	Craig Owen:											
Standard:	FCC Part 15	5.247/RSS-21	0					Class:	N/A			
Run #1: Bai	ndwidth, Ou	tput Power a	and Power s	spectral Den	sity							
			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵]				
	Antenna	a Gain (dBi):	3.0	3.0	3.0	No	3.0					
		· · · ·						4				
Frequency	Software	26dB BW	Measured Output Power ¹ dBm			Total		Limit (dBm)	Max Power	Pass or Fa		
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Linii (ubiii)	(W)	F 455 UI F		
5260	19.0	25.3	17.4	18.6	18.2	193.7	22.9	24.0		PASS		
5300	19.5	25.3	17.6	18.4	18.5	197.5	23.0	24.0	0.198	PASS		
5320	16.0	26.2	14.4	14.8	14.9	88.6	19.5	24.0		PASS		
5500	19.5	26.8	18.0	17.5	17.3	173.0	22.4	24.0		PASS		
5600	20.0	27.4	18.8	19.0	18.4	224.5	23.5	24.0	0.224	PASS		
5700	19.5	27.1	19.1	18.7	18.3	223.0	23.5	24.0		PASS		
								1		•		
Frequency	99 % ⁴	Total	Р	SD ² dBm/MF	Ηz	Total	l PSD Lir		nit Dass o	Pass or F		
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Pass of F		
5260	18.2	22.9	4.7	6.0	5.6	10.5	10.21	11.0	11.0	PASS		
5300	18.1	23.0	5.5	6.0	6.1	11.6	10.63	11.0	11.0	PASS		
5320	18.1	19.5	2.0	2.3	2.4	5.0	7.01	11.0	11.0	PASS		
5500	18.1	22.4	5.6	5.2	4.8	9.9	9.97	11.0	11.0	PASS		
5600	18.1	23.5	6.2	6.3	6.1	12.5	10.97	11.0	11.0	PASS		
5700	18.1	23.5	6.5	6.1	5.9	12.4	10.95	11.0	11.0	PASS		
		er measured	• •	5	· ·							
Note 1:		z, VB=3 MHz,	sample det	ector, power	averaging or	n (transmitted	l signal was (continuous) a	and power in	tegration		
	over 50 MHz											
Note 2:		sing the same										
		0 the limit for					0					
Note 3:		. The limits a										
		ated from the				sured 99% ba	andwidth) by	more than 3	dB by the an	nount that		
Nulla A		d value exce				10/		חח				
Note 4:		idth measure							f the individu	al abaina (
Note 5:		ystems the to										
	linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating											
	mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine											
	the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and											
						ain is the sum	n (in linear te	rms) of the g	ains for each	chain and		
		IND DRODUCT O	i ine ettectiv	e gain and to	nal nower							



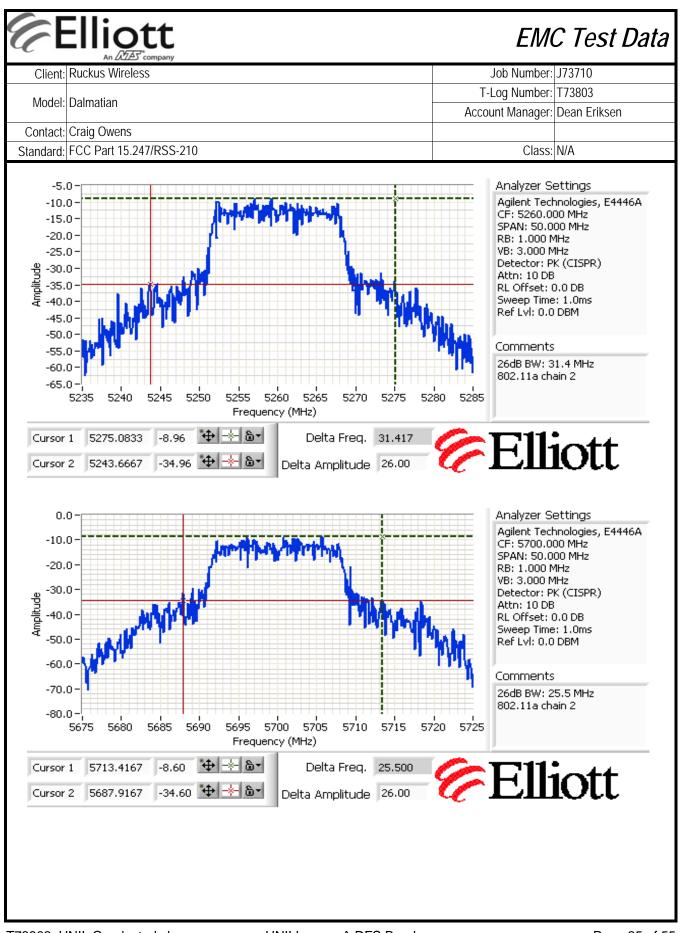


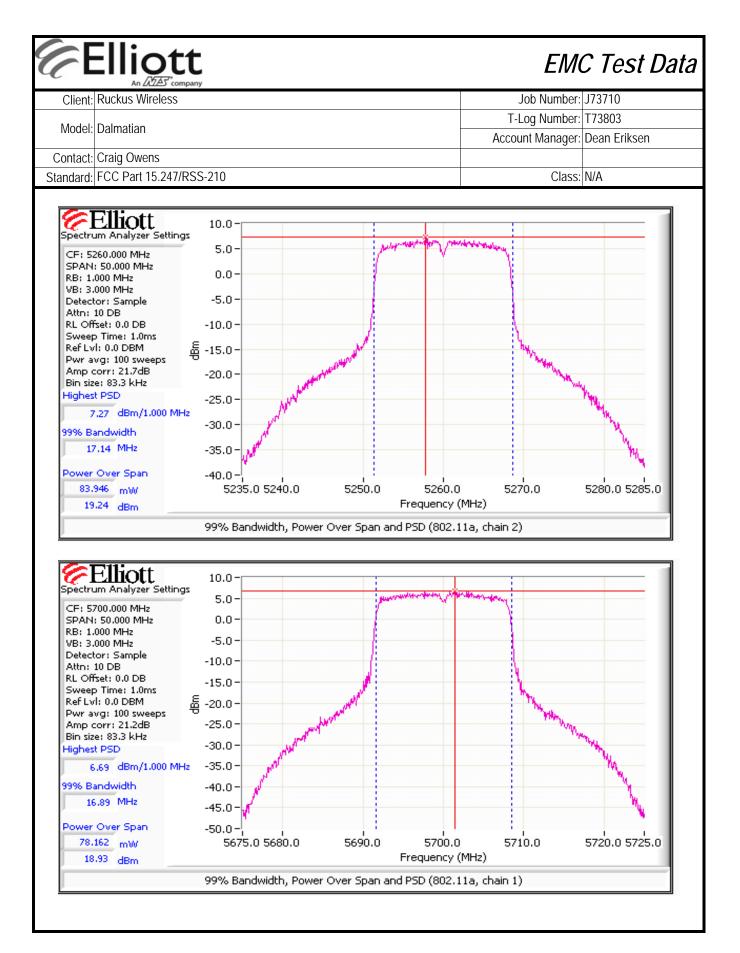

	An	ZAZAS company				ا من ا ما م	r. 170710
Client:	Ruckus V	Vireless				Job Numbe	
Model:	Dalmatiar	ı				T-Log Number	
					A	ccount Manage	r: Dean Eriksen
	Craig Ow					01	- 11/4
		15.247/RSS-210 d Spurious Emissions - Anten				Class	s: N/A
e approrpi	considera more thar	Number of transmit chains: Maximum Antenna Gain: Spurious Limit: Limit Used On Plots ^{Note 1} : Bm/MHz limit is an eirp limit. Th tion the maximum antenna gain n 50MHz from the bands and tha	(limit = -27dBm - an	Average L Peak Limi ort conducte	t (RB=VB= ed measure . Radiated	=1MHz) ements is adjust I field strength n	ted to take into neasurements for
lote 2: lote 3: lote 4: lote 5:	All spurio Signals w If the dev	these frequencies. us signals below 1GHz are mea ithin 10MHz of the 5.725 or 5.82 ice is for outdoor use then the -2 nat fall in the restricted bands of Plots Showing	25 Band edge are su 27dBm eirp limit also 15.205 are subject to	bject to a lir applies in the limit of	nit of -17d ne 5150 - 15.209.	Bm EIRP 5250 MHz band	
lote 3: lote 4: lote 5: ow chann	All spurio Signals w If the dev Signals th el, 5250 -	us signals below 1GHz are mea ithin 10MHz of the 5.725 or 5.82 ice is for outdoor use then the -2 nat fall in the restricted bands of	25 Band edge are su 27dBm eirp limit also 15.205 are subject to Out-Of-Band Emiss	bject to a lir applies in the limit of	nit of -17d ne 5150 - 15.209.	Bm EIRP 5250 MHz band	
lote 3: lote 4: lote 5: ow chann Out of	All spurio Signals w If the dev Signals th el, 5250 -	us signals below 1GHz are mea vithin 10MHz of the 5.725 or 5.82 ice is for outdoor use then the -2 hat fall in the restricted bands of <u>Plots Showing</u> 5350 MHz Band	25 Band edge are su 27dBm eirp limit also 15.205 are subject to Out-Of-Band Emiss	bject to a lir applies in the limit of	nit of -17d ne 5150 - 15.209.	Bm EIRP 5250 MHz band	·
lote 3: lote 4: lote 5: ow chann Out of 21	All spurio Signals w If the dev Signals th el, 5250 - Band Spur	us signals below 1GHz are mea vithin 10MHz of the 5.725 or 5.82 ice is for outdoor use then the -2 hat fall in the restricted bands of <u>Plots Showing</u> 5350 MHz Band	25 Band edge are su 27dBm eirp limit also 15.205 are subject to Out-Of-Band Emiss	bject to a lir applies in the limit of	nit of -17d ne 5150 - 15.209.	Bm EIRP 5250 MHz band	
ote 3: lote 4: lote 5: ow chann Out of 21	All spurio Signals w If the dev Signals th el, 5250 - Band Spur 0.0 -	us signals below 1GHz are mea vithin 10MHz of the 5.725 or 5.82 ice is for outdoor use then the -2 hat fall in the restricted bands of <u>Plots Showing</u> 5350 MHz Band	25 Band edge are su 27dBm eirp limit also 15.205 are subject to Out-Of-Band Emiss	bject to a lir applies in the limit of	nit of -17d ne 5150 - 15.209.	Bm EIRP 5250 MHz band	
ote 3: ote 4: ote 5: ow chann Out of 21	All spurio Signals w If the dev Signals th el, 5250 - Band Spur 0.0 -	us signals below 1GHz are mea vithin 10MHz of the 5.725 or 5.82 ice is for outdoor use then the -2 hat fall in the restricted bands of <u>Plots Showing</u> 5350 MHz Band	25 Band edge are su 27dBm eirp limit also 15.205 are subject to Out-Of-Band Emiss	bject to a lir applies in the limit of	nit of -17d ne 5150 - 15.209.	Bm EIRP 5250 MHz band	
ote 3: ote 4: ote 5: ow chann Out of 21 11	All spurio Signals w If the dev Signals th el, 5250 - Band Spur 0.0 - 0.0 -	us signals below 1GHz are mea vithin 10MHz of the 5.725 or 5.82 ice is for outdoor use then the -2 hat fall in the restricted bands of <u>Plots Showing</u> 5350 MHz Band	25 Band edge are su 27dBm eirp limit also 15.205 are subject to Out-Of-Band Emiss	bject to a lir applies in the limit of	nit of -17d ne 5150 - 15.209.	Bm EIRP 5250 MHz band	
ote 3: ote 4: ote 5: ow chann Out of 21	All spurio Signals w If the dev Signals th el, 5250 - Band Spur 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -	us signals below 1GHz are mea vithin 10MHz of the 5.725 or 5.82 ice is for outdoor use then the -2 hat fall in the restricted bands of <u>Plots Showing</u> 5350 MHz Band	25 Band edge are su 27dBm eirp limit also 15.205 are subject to Out-Of-Band Emiss	bject to a lir applies in the limit of	nit of -17d ne 5150 - 15.209.	Bm EIRP 5250 MHz band	
ote 3: ote 4: ote 5: w chann Out of 20 10 (mgp) aprilidue -10 -20 -20 -30 -30 -30 -30 -30 -30 -30 -3	All spurio Signals w If the dev Signals th el, 5250 - Band Spur 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -	us signals below 1GHz are mea vithin 10MHz of the 5.725 or 5.82 ice is for outdoor use then the -2 hat fall in the restricted bands of <u>Plots Showing</u> 5350 MHz Band	25 Band edge are su 27dBm eirp limit also 15.205 are subject to Out-Of-Band Emiss	bject to a lir applies in the limit of	nit of -17d ne 5150 - 15.209.	Bm EIRP 5250 MHz band	
Dite 3: Dite 4: Dite 5: Dite 5: Dite 5: Dite 5: Dite 5: Dite 6: Dite 6: Dit	All spurio Signals w If the dev Signals th el, 5250 - Band Spur 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -	us signals below 1GHz are mea vithin 10MHz of the 5.725 or 5.82 ice is for outdoor use then the -2 hat fall in the restricted bands of <u>Plots Showing</u> 5350 MHz Band	25 Band edge are su 27dBm eirp limit also 15.205 are subject to Out-Of-Band Emiss	bject to a lir applies in the limit of	nit of -17d ne 5150 - 15.209.	Bm EIRP 5250 MHz band	
ote 3: ote 4: ote 5: ow chann Out of 20 10 10 10 10 21 10 21 10 21 10 21 21 21 24 24 24 24 24 24 24 24 24 24	All spurio Signals w If the dev Signals th el, 5250 - Band Spur 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -	us signals below 1GHz are mea vithin 10MHz of the 5.725 or 5.82 ice is for outdoor use then the -2 hat fall in the restricted bands of <u>Plots Showing</u> 5350 MHz Band	25 Band edge are su 27dBm eirp limit also 15.205 are subject to Out-Of-Band Emiss	bject to a lir applies in the limit of	nit of -17d ne 5150 - 15.209.	Bm EIRP 5250 MHz band	




High channel, 5250 - 5350 MHz Band

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.



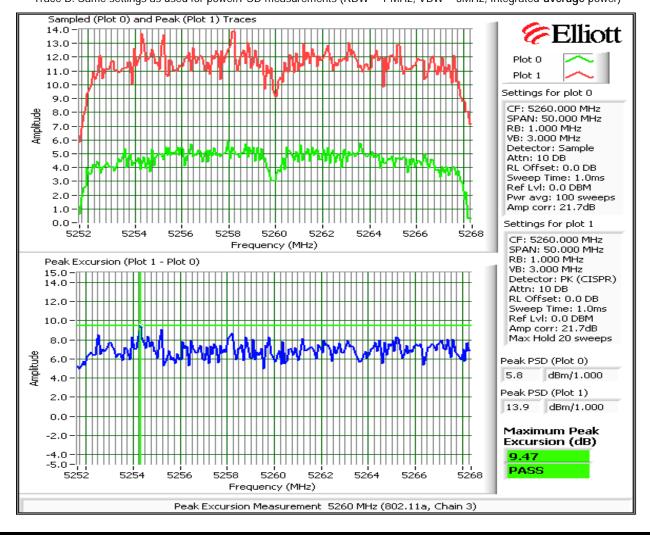


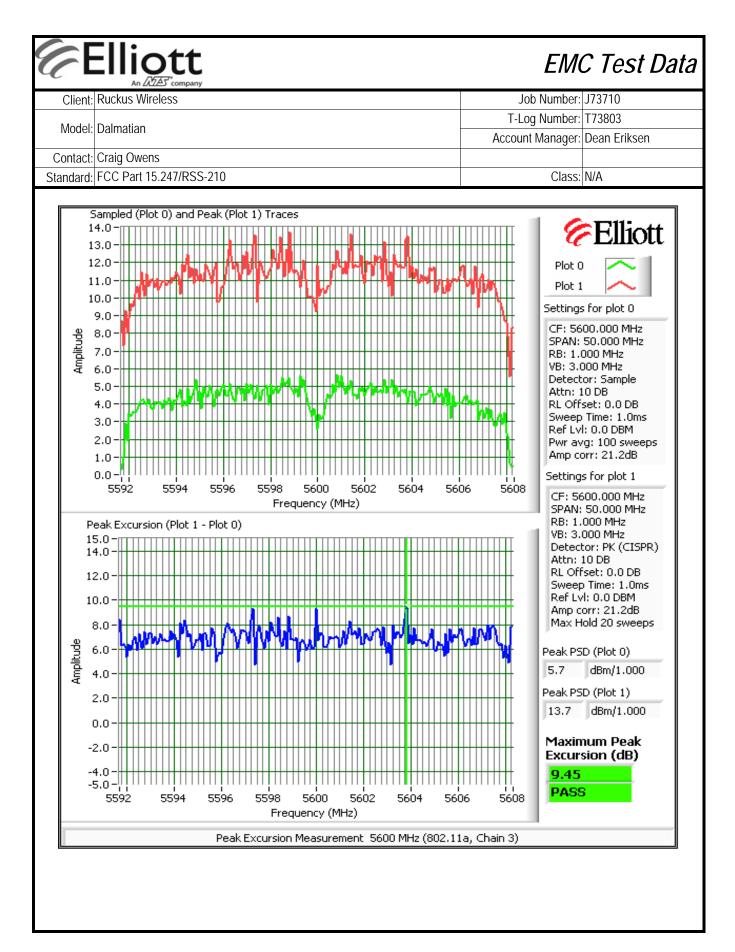
E		tt			EM	C Test Data
	An UZAS o	company		1		
Client:	Ruckus Wireless	<u>š</u>			ob Number:	
Model:	Dalmatian				og Number:	
				Accour	nt Manager:	Dean Eriksen
	Craig Owens					
Standard:	FCC Part 15.247	7/RSS-210			Class:	N/A
L Te Te	cific Details	PSD, Peak Excursion, e objective of this test session is to ecification listed above. 9/2009 hran Birgani OATS #2	ort Measurem , Bandwidth and	ents I Spuriou n testing of the 1 None	s Emiss	
When mea analyzer o allow for th Ambient (asuring the condu or power meter vi	ucted emissions from the EUT's an ia a suitable attenuator to prevent o nuators and cables used. Temperature: Rel. Humidity:				
Ru	n #	Test Performed	Limit	Pass / Fail	F	Result / Margin
		Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass		1 dBm (0.205W)
1	1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass		1 dBm (0.205W)
1	l	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	1	0.95 dBm/MHz
		PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	1	0.99 dBm/MHz
1		26dB Bandwidth	15.407	-		31.4 MHz
1		99% Bandwidth	RSS 210	-		17.1 MHz
2	2	Peak Excursion Envelope	15.407(a) (6)	Pass		9.5 dB
	3	Antenna Conducted Out of Band Spurious	15.407(b)	Pass		nissions below the 7dBm/MHz limit
No modifice Deviation	cations were mad s From The S	uring Testing de to the EUT during testing Standard from the requirements of the standa	ard.			

Client:	Ruckus Wire	eless						Job Number:	J73710	
Model	Dalmatian						T-I	Log Number:	T73803	
would.	Daimatian						Αссоι	unt Manager:	Dean Erikse	en
	Craig Owen:									
Standard:	FCC Part 15	5.247/RSS-21	0					Class:	N/A	
Run #1: Ba	ndwidth, Ou	tput Power a	and Power s	spectral Den	sity					
			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵]		
	Antenna	a Gain (dBi):	3.0	3.0	3.0	No	3.0			
		· · · ·						4		
Frequency	Software	26dB BW	Measure	d Output Pov	wer ¹ dBm	To	otal	Limit (dBm)	Max Power	Pass or Fa
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Liinii (udin)	(W)	Pass UI F
5260	19.5	31.4	17.9	18.9	18.2	205.4	23.1	24.0		PASS
5300	19.5	30.0	17.7	18.5	17.8	189.9	22.8	24.0	0.205	PASS
5320	16.5	23.3	15.1	14.9	15.0	94.9	19.8	24.0		PASS
5500	19.5	22.8	18.2	17.4	17.2	173.5	22.4	24.0		PASS
5600	19.5	24.5	18.4	18.5	18.0	203.1	23.1	24.0	0.205	PASS
5700	19.0	25.5	18.9	18.3	17.8	205.5	23.1	24.0		PASS
						-		1		1
Frequency	99% ⁴	Total	Р	'SD ² dBm/MF	Ηz	Tota	IPSD	Li	mit	Pass or F
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	1 433 011
5260	17.1	23.1	5.9	6.7	5.9	12.5	10.95	11.0	11.0	PASS
5300	17.1	22.8	5.4	6.3	5.5	11.3	10.52	11.0	11.0	PASS
5320	16.9	19.8	3.0	2.5	2.8	5.7	7.54	11.0	11.0	PASS
5500	16.9	22.4	6.1	5.0	5.0	10.4	10.17	11.0	11.0	PASS
5600	17.0	23.1	6.0	6.3	5.7	12.0	10.78	11.0	11.0	PASS
5700	17.0	23.1	6.7	6.2	5.7	12.6	10.99	11.0	11.0	PASS
Nul. 1		er measured	• •	5	· ·					
Note 1:		, VB=3 MHz,	sample det	ector, power	averaging or	i (transmitted	i signal was (continuous) a	and power in	tegration
Nete 2	over 50 MHz			attinga upod i	for output no					
Note 2:		sing the same 0 the limit for					na gain as th		oirn allowod	ic
							0			
Note 3:		. The limits a								
		ated from the ed value exce					anuwiuin) by	more than 3	ub by the an	iouni inal
Note 4:		idth measure				1% of spar	rand VB > -3	VDR		
NULC 4.		ystems the to							f the individu	ial chains (
		. The antenr								
		MIMO device	•					•		•
Note 5:		he highest ga	•						0	
		signals are o								
				e gain and to				inits) of the g		

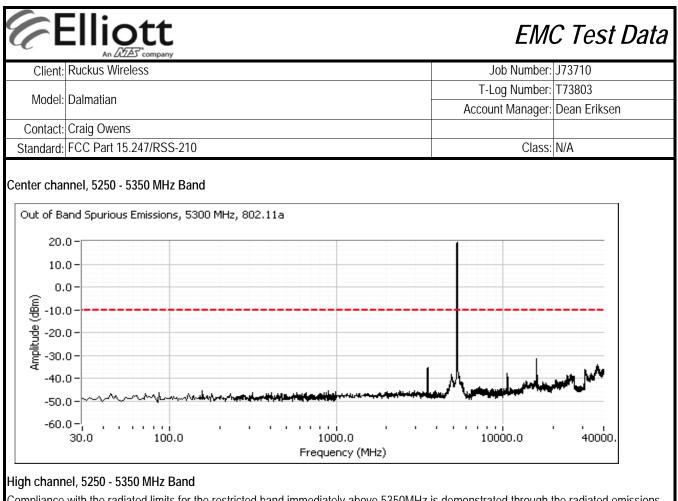
	An ATA company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Model: Dalmatian	T-Log Number:	T73803
wouer.	Daimatian	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2: Peak Excursion Measurement

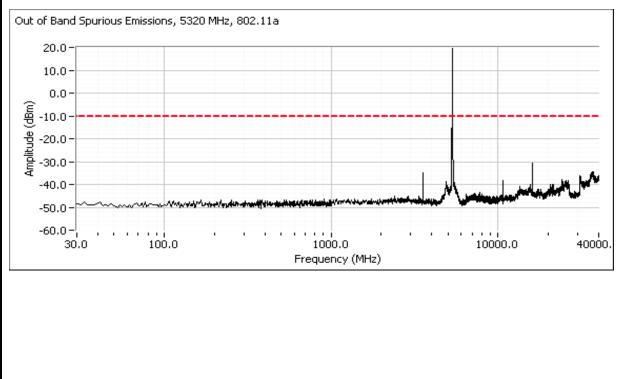

Elliott

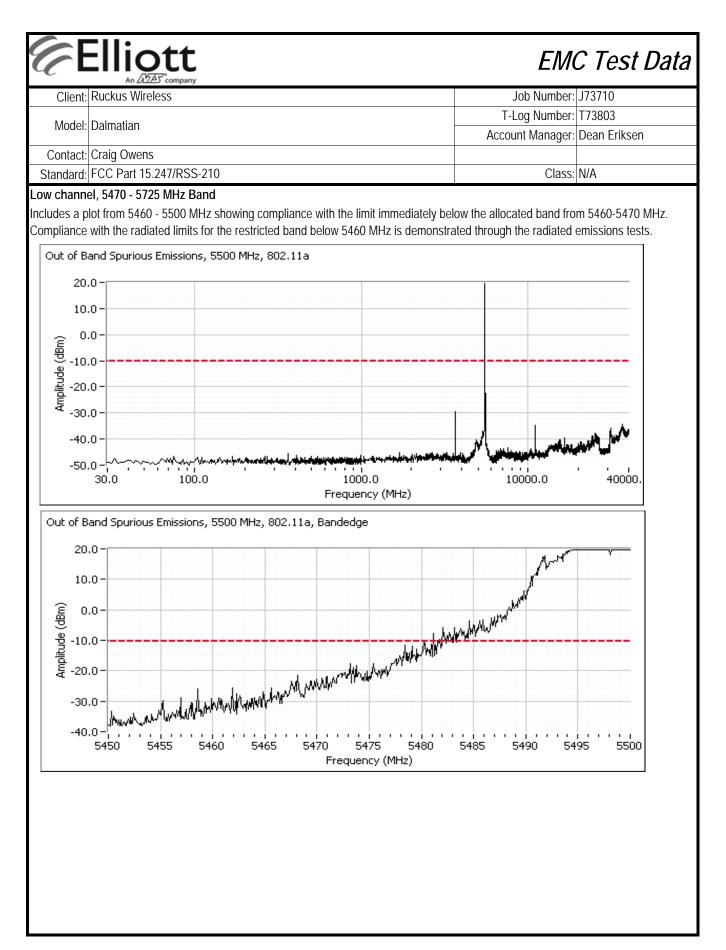

Device meets the requirement for the peak excursion

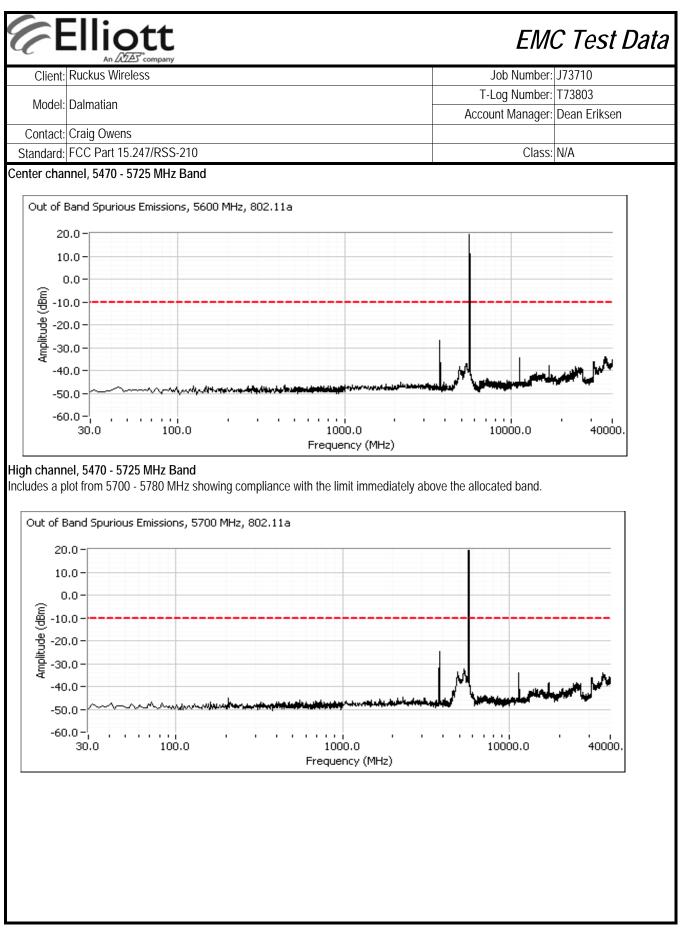
Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180		13.0	5260	9.4	13.0	5500	9.1	13.0
5200		13.0	5300	9.0	13.0	5600	9.5	13.0
5240		13.0	5320	9.4	13.0	5700	9.4	13.0

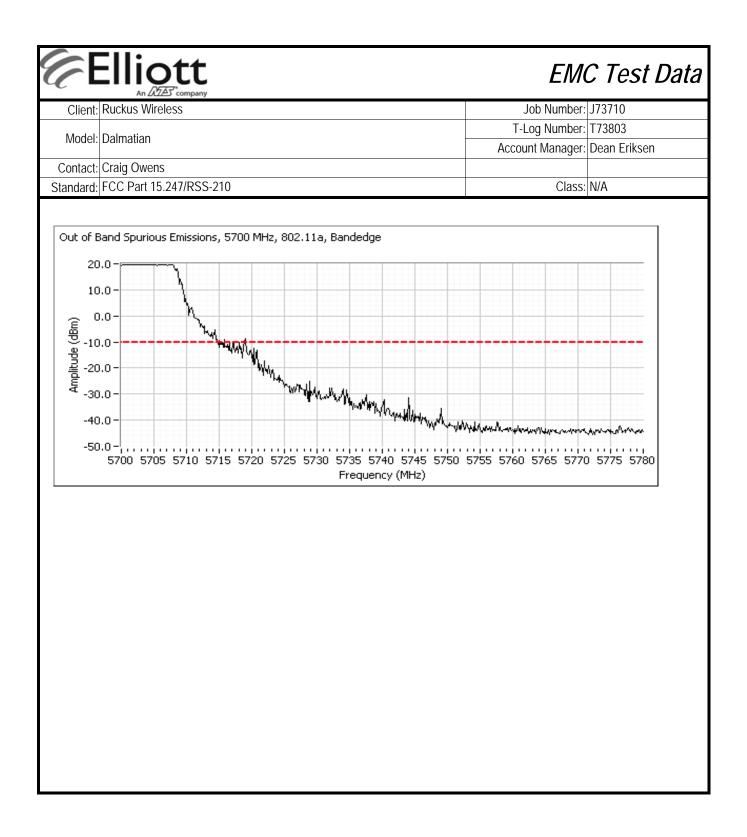

Plots Showing Peak Excursion

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated **average** power)



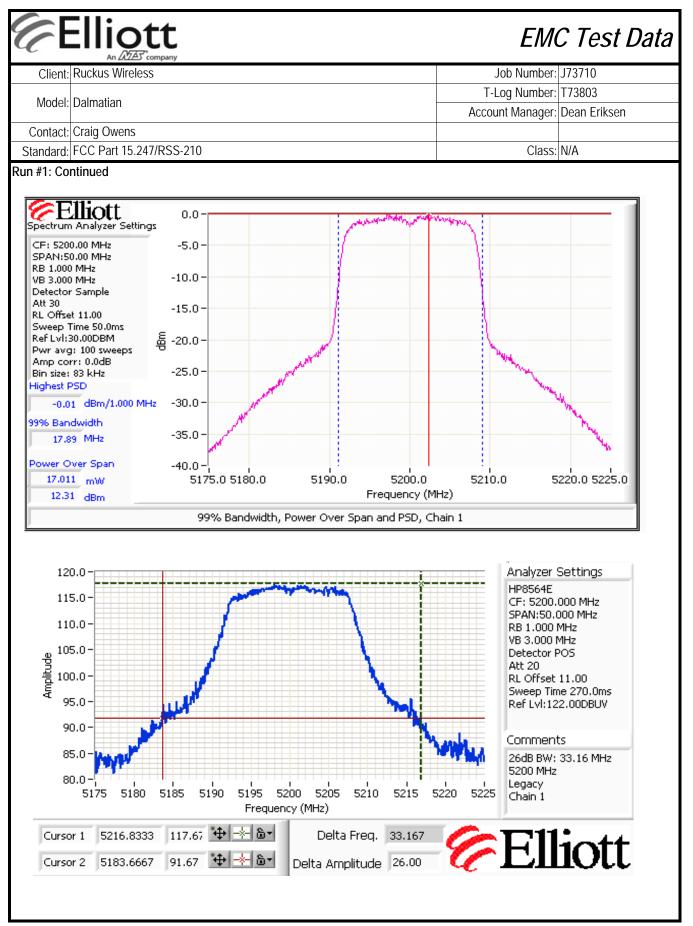



Model Dalmatian T-Log	EM	C Test Da
Model: Dalmatian Account Contact: Craig Owens Standard: FCC Part 15.247/RSS-210 Run #3: Out Of Band Spurious Emissions - Antenna Conducted AllMO Devices: Antenna gain used is the effective gain calculated in the power section of this data she all chains transmitting simultaneously and connected to the analyzer via a combiner. Unused ports of the appropriate load (50 ohms). Number of transmit chains: 3 Maximum Antenna Gain: 3.0 dBi Spurious Limit: -27.0 dBm/MHz eirp Limit Used On Plots -30.0 dBm/MHz Average Limit (RB=1MHz, V-10.0 dBm/MHz eirp Limit Used On Plots -30.0 dBm/MHz Peak Limit (RB=1MHz, V-10.0 dBm/MHz eirp Limit Used On Plots -30.0 dBm/MHz Peak Limit (RB=1MHz) vote 1: -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field st more than 50MHz from the bands and that are close to the limit are made to determine con known at these frequencies. Atte 2: All spurious signals below 1GHz are measured during digital device radiated emissions test lote 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR View 2.520.0 Signals within the restricted bands of 15.205 are subject to a limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) -20.0 - 10.0 -	Job Number:	: J73710
Contact: Craig Owens Standard: FCC Part 15.247/RSS-210 tun #3: Out Of Band Spurious Emissions - Antenna Conducted IIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data she II chains transmitting simultaneously and connected to the analyzer via a combiner. Unused ports of the approrpiate load (50 ohms). 3 Number of transmit chains: 3 Maximum Antenna Gain: 3.0 dBi Spurious Limit: -27.0 dBm/MHz erip Limit Used On Plots -30.0 dBm/MHz Limit Used On Plots Note 1: Limit Used On Plots -30.0 dBm/MHz Nore than 50MHz from the bands and that are close to the limit are made to determine con known at these frequencies. Iote 2: All spurious signals below TGHz are measured during digital device radiated missions test lote 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR lote 4: If the device is for outdoor use then the -27dBm erip limit also applies in the 5150 - 5250 M lote 5: Signals that fall in the restricted bands of 15.205 are subject to a limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) Out of Band Spurious Emissions, 5260 MHz, 802.11a Quo -10.0 Quo	Log Number: unt Manager:	: T73803 : Dean Eriksen
Standard: FCC Part 15.247/RSS-210 tun #3: Out Of Band Spurious Emissions - Antenna Conducted IIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data she II chains transmitting simultaneously and connected to the analyzer via a combiner. Unused ports of the appropriate load (50 ohms). Number of transmit chains: Number of transmit chains: 3 Maximum Antenna Gain: 3.0 dBi Spurious Limit: -27.0 dBm/MHz eirp Limit Used On Plots -30.0 dBm/MHz Average Limit (RB=1MHz, V -10.0 dBm/MHz Limit Used On Plots Note 1: -30.0 dBm/MHz Peak Limit (RB=1MHz, V -10.0 dBm/MHz Fequencies. Iote 1: The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field st more than 50MHz from the bands and that are close to the limit are made to determine con known at these frequencies. Iote 2: All spurious signals below 1GHz are measured during digital device radiated emissions test liote 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR liote 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 M liote 5: Signals that fall in the restrict		
IIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data shell chains transmitting simultaneously and connected to the analyzer via a combiner. Unused ports of the appropriate load (50 ohms). Number of transmit chains: 3 Maximum Antenna Gain: 3.0 dBi Spurious Limit: -27.0 dBm/MHz eirp Limit Used On Plots Note 1: -30.0 dBm/MHz Average Limit (RB=1MHz) -10.0 dBm/MHz Nown at these frequencies. -10.0 dBm/MHz Iote 1: Consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field si more than 50MHz from the bands and that are close to the limit are made to determine con known at these frequencies. Iote 2: All spurious signals below 1GHz are measured during digital device radiated emissions test lote 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR lote 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 M lote 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. Vetos Showing Out-Of-Band Emissions (RBW=VBW=1MHz) ow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a Quo_ Quo_ Quo_ Quo_ Quo_	Class	: N/A
II chains transmitting simultaneously and connected to the analyzer via a combiner. Unused ports of the appropriate load (50 ohms). Number of transmit chains: 3 Maximum Antenna Gain: 3.0 dBi Spurious Limit: -27.0 dBm/MHz eirp Limit Used On Plots -30.0 dBm/MHz Note 1: -30.0 dBm/MHz Iote 1: The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field st more than 50MHz from the bands and that are close to the limit are made to determine con known at these frequencies. Iote 2: All spurious signals below 1GHz are measured during digital device radiated emissions test for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 M lote 5: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR lote 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 M lote 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) ow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 20.0 9 9 9 9 9 9 </td <td>sheet. The r</td> <td>plots were obtained</td>	sheet. The r	plots were obtained
Maximum Antenna Gain: 3.0 dBi Spurious Limit: -27.0 dBm/MHz eirp Limit Used On Plots -30.0 dBm/MHz Average Limit (RB=1MHz, V -10.0 dBm/MHz Point 1: -30.0 dBm/MHz Average Limit (RB=1MHz, V -10.0 dBm/MHz Point 1: -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field st more than 50MHz from the bands and that are close to the limit are made to determine com known at these frequencies. Note 1: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR lote 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MI lote 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) ow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a Que - -0.0 - Que - -0.0 - <td< td=""><td></td><td></td></td<>		
Spurious Limit: -27.0 dBm/MHz eirp Limit Used On Plots -30.0 dBm/MHz Average Limit (RB=1MHz, V10.0 dBm/MHz Note 1: The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field st more than 50MHz from the bands and that are close to the limit are made to determine com known at these frequencies. Note 1: The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field st more than 50MHz from the bands and that are close to the limit are made to determine com known at these frequencies. Note 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR livet 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MI tote 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) ow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 0:00 - 0:00		
Limit Used On Plots ^{Note 1} : -30.0 dBm/MHz Average Limit (RB=1MHz, V -10.0 dBm/MHz Peak Limit (RB=VB=1MHz) The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field sl more than 50MHz from the bands and that are close to the limit are made to determine com known at these frequencies. Note 2: All spurious signals below 1GHz are measured during digital device radiated emissions test Note 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR Note 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 M Note 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) cow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 0.0 - 0.0 - 0		
Limit Used On Piots -10.0 dBm/MHz Peak Limit (RB=VB=1MHz) Intervention of the state of the s	- \/D 101-\	,
Iote 1: consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field st more than 50MHz from the bands and that are close to the limit are made to determine conknown at these frequencies. Iote 2: All spurious signals below 1GHz are measured during digital device radiated emissions test lote 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR lote 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 M lote 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) cow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -	-	I
Interference More than 50MHz from the bands and that are close to the limit are made to determine com known at these frequencies. Interference All spurious signals below 1GHz are measured during digital device radiated emissions test limit are subject to a limit of -17dBm EIR limit are subject to a limit of -17dBm EIR limit at a subject to a limit of -17dBm EIR limit at a subject to a limit of -17dBm EIR limit at a subject to a limit of -17dBm EIR limit at a subject to a limit of -17dBm EIR limit at a subject to a limit of -17dBm EIR limit at a subject to a limit of -17dBm EIR limit at a subject to a limit of -17dBm EIR limit at a subject to a limit of 15.205 M limit at a subject to a limit of 15.205 M limit at a subject to the limit of 15.209. Interference If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 M limit at a subject to the limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) Now channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 0.0 - 0.	nts is adjuste	ed to take into
more than SUMHZ from the bands and that are close to the limit are made to determine con known at these frequencies. <u>Jote 2:</u> All spurious signals below 1GHz are measured during digital device radiated emissions test <u>Jote 3:</u> Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR <u>Jote 4:</u> If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 M Jote 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. <u>Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)</u> Low channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 20.0 <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u>10.0</u> <u></u>	d strength m	easurements for sig
ote 2: All spurious signals below 1GHz are measured during digital device radiated emissions test ote 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR ote 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 M ote 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) ow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 20.0 - 0.0 - 99 - 20.0 - - 99 - 20.0 - - 99 - 20.0 - - 99 - 20.0 - - 99 - 20.0 - - 99 - 20.0 - - 99 - 20.0 - - 99 - 20.0 - - 90 - - 90 - - 91 - - 92 - - 92 - - 93 - - 94 - - 95 - - 96 - - 97 - - 97 - - 97 - - 97 - -	compliance a	is the antenna gain
ote 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIR ote 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 M ote 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) ow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 20.0 - 0.0 - 0.0 - 0.0 -		
ote 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MI ote 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) ow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 20.0 - 0.0 -		
Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) ow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 20.0 - 0.0 -		
Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) ow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 20.0 - 10.0 - 0.0 - 90 - - 91 - 92 - 92 - 93 - 91 - 92 - 91 - 92 - 92 - 93 - 90 - 91 - 92 - 93 - 91 - 92 - 92 - 93 - 91 - 92 - 93 - 94 - 95 - 97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 - <t< td=""><td></td><td></td></t<>		
ow channel, 5250 - 5350 MHz Band Out of Band Spurious Emissions, 5260 MHz, 802.11a 20.0 - 10.0 - 0.0 - (mg) -10.0 - 99 -20.0 - 99 -20.0 - 10.0		
Out of Band Spurious Emissions, 5260 MHz, 802.11a 20.0 - 10.0 - 0.0 - 0.0 - 99 -20.0 - 99 -20.0 - 99 -30.0 -	-	
Out of Band Spurious Emissions, 5260 MHz, 802.11a 20.0 - 10.0 - 0.0 - 0.0 - 99 -20.0 - 99 -30.0 -		
20.0- 10.0- 0.0-		
10.0- 0.0- (mg) -10.0- 		
10.0- 0.0- (mg) -10.0- 		
0.0- (mg) -10.0- 		
-40.0 -		1 4.
I	يعامد ال	
-50.0		• ··· · ···
-60.0		
		40000.



Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

nd FCC 15 Measurem ndwidth and	ents	-	
Measurem	ents	NII)	
Measurem	ents	-	ions
rm final qualification	n testing of th	e EUT with re	espect to the
Config Change:	None		
ling the measureme 18.7 °C			
30 %			
Limit	Pass / Fail	Result /	Margin
5.407(a) (1), (2)	Pass		
			· /
15.407	-	33.2	MHz
RSS 210	-	19.1	MHz
15.407(a) (6)	Pass	12.9	dB
15.407(b)	Pass		
	Config Change: EUT Voltage: ort, the antenna poing the measurement 18.7 °C 36 % Limit 5.407(a) (1), (2) 5.407(a) (1), (2) 15.407 RSS 210 15.407(a) (6)	Limit Pass / Fail 5.407(a) (1), (2) Pass 5.407(a) (1), (2) Pass 15.407 - RSS 210 - 15.407(a) (6) Pass	Config Change: None EUT Voltage: 120V/60Hz ort, the antenna port of the EUT was connect ing the measurement system. All measurement 18.7 °C 36 % 18.7 °C 36 % 19.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11.1 10.1 (2) 11

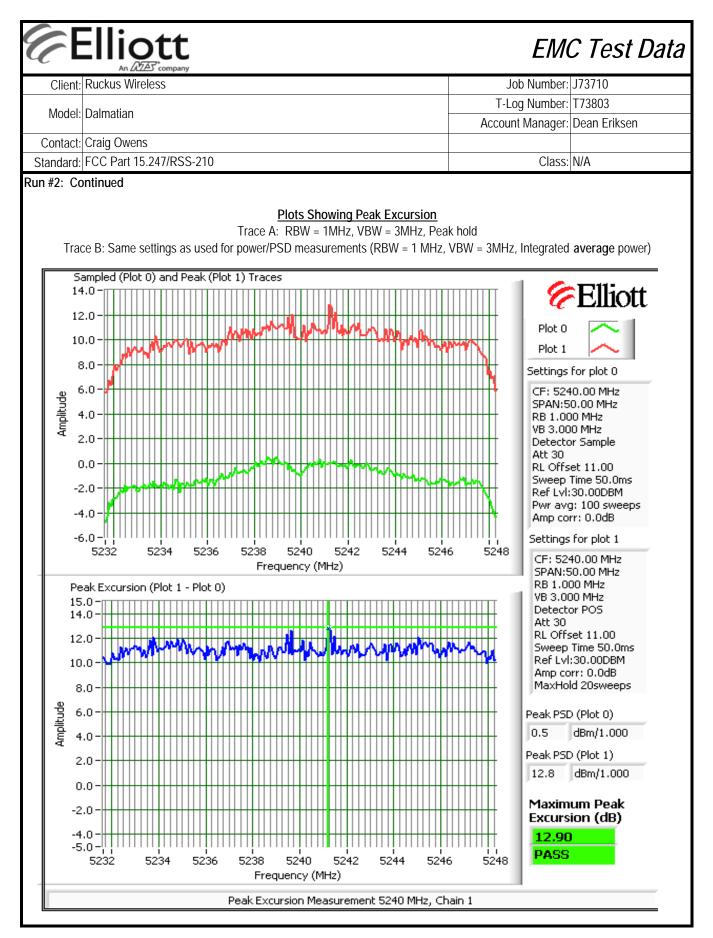

Job Number: J73710

T-Log Number: T73803

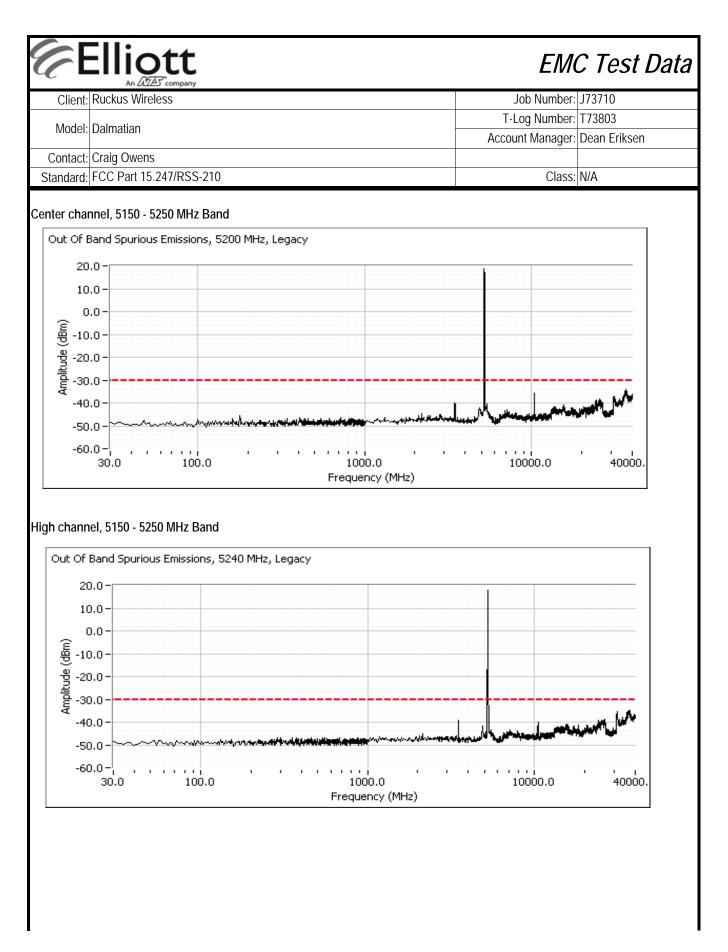
Client: Ruckus Wireless

Model: Dalmatian

Client:	Ruckus Wire	eless						Job Number:	J73710	
Madal	Delmetion						T-	Log Number:	T73803	
wodel:	Dalmatian						Accou	unt Manager:	Dean Erikse	en
	Craig Owen:									
Standard:	FCC Part 15	5.247/RSS-21	0					Class:	N/A	
Run #1: Ba	ndwidth, Ou	tput Power a	and Power s	spectral Den	isity					
			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	1		
	Antenna	a Gain (dBi):	3	3	3	No	3.0			
	7	a can (abiji	0	0	0	110	0.0	J		
requency	Software	26dB BW	Measure	ed Output Po	wer ¹ dBm	To	otal	Limit (dBm)	Max Power	Pass or F
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	сили (авти)	(W)	Pass of F
5180	14.0	40.0	12.0	10.8	11.9	43.4	16.4	17.0		PASS
5200	14.0	33.2	12.3	11.4	10.7	42.5	16.3	17.0	0.045	PASS
5240	14.0	34.0	12.1	11.0	12.1	44.9	16.5	17.0		PASS
Fraguanau	99 % ⁴	Total		PSD ² dBm/Mł	1-	Tota	I PSD		mit	
Frequency	99% BW	Power								Pass or F
(MHz) 5180	18.7	16.4	Chain 1 -1.0	Chain 2 -1.6	Chain 3 -0.5	mW/MHz 2.4	dBm/MHz 3.8	FCC 4.0	RSS 210 ³ 7.0	PASS
5200	18.6	16.3	0.0	-1.2	-1.9	2.4	3.8	4.0	7.0	PASS
5240	19.1	16.5	-0.3	-1.6	-0.6	2.5	4.0	4.0	7.0	PASS
Note 2: Note 3: Note 4:	For RSS-21 10dBm/MHz PSD (calcula the measure 99% Bandw	sing the same 0 the limit for 2. The limits a ated from the ed value exce idth measure ystems the to	the 5150 - 5 re also corre measured p eds the ave d in accorda	5250 MHz ba ected for insta power divideo rage by more ince with RS	nd accounts ances where I by the mea than 3dB. S GEN - RB	for the anten the highest r sured 99% b > 1% of spar	measured va andwidth) by n and VB >=3	lue of the PS more than 3 BxRB	D exceeds to dB by the an	ne average nount that
Note 5:	linear terms) mode of the the limits is t). The anteni MIMO device the highest g antennas are	na gain used e. If the sigr ain of the ind	I to determine hals on the ne dividual chair	e the EIRP a on-coherent l is and the EI	nd limits for F between the f RP is the sur	PSD/Output transmit chai n of the prod	oower dependens then the group of gain a	ds on the op gain used to	erating determine

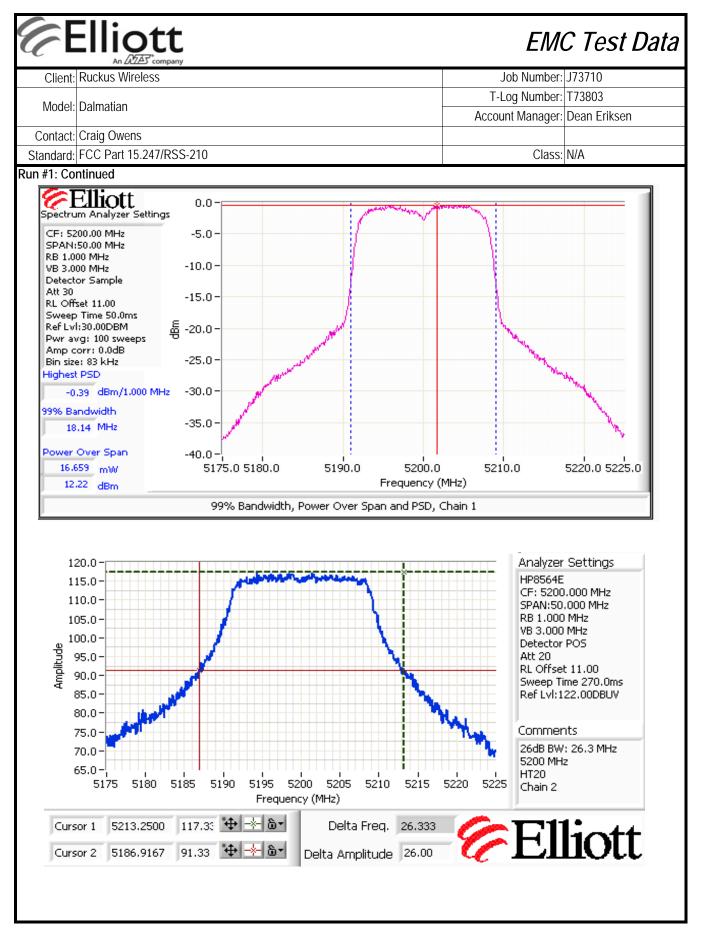


	An ZAZZA' company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Model: Dalmatian	T-Log Number:	T73803
MOUEI.	Daimatian	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A


Run #2: Peak Excursion Measurement

Device meets the requirement for the peak excursion

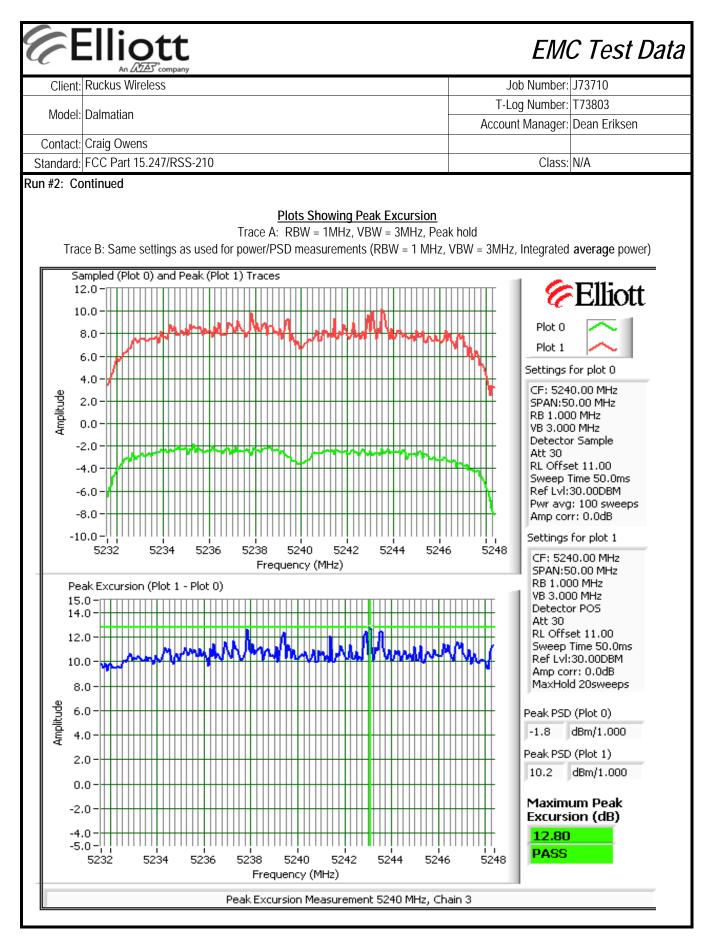
Freq	Peak Excursion(dB)		
(MHz)	Value	Limit	
5180	11.9	13.0	
5200	12.5	13.0	
5240	12.9	13.0	


	Elliott				EM	
Client	Ruckus Wireless				Job Number	r: J73710
				-	-Log Number	
Model:	Dalmatian				•	r: Dean Eriksen
Contact:	Craig Owens				<u></u> j	
	FCC Part 15.247/RSS-210				Class	s: N/A
	ut Of Band Spurious Emissions - Anter	nna Conducted				-
l chains tra	ces: Antenna gain used is the effective g ansmitting simultaneously and connected iate load (50 ohms). Number of transmit chains: Maximum Antenna Gain: Spurious Limit:	to the analyzer via a 3.0 dBi -27.0 dBm/MHz	combiner. U eirp	Inused ports	of the combi	ner were terminat
	Limit Used On Plots Note 1:	-30.0 dBm/MHz -10.0 dBm/MHz	0	•		<u>z</u>)
ote 1:	The -27dBm/MHz limit is an eirp limit. T consideration the maximum antenna gai more than 50MHz from the bands and th	n (limit = -27dBm - ar	ntenna gain).	Radiated fi	eld strength n	neasurements for
	known at these frequencies.					
ote 2:	All spurious signals below 1GHz are me					
ote 3:	All spurious signals below 1GHz are me Signals within 10MHz of the 5.725 or 5.8	325 Band edge are su	ubject to a lim	it of -17dBr	n EIRP	
	All spurious signals below 1GHz are me Signals within 10MHz of the 5.725 or 5.8 If the device is for outdoor use then the Signals that fall in the restricted bands o	325 Band edge are su 27dBm eirp limit also f 15.205 are subject t	ubject to a lim applies in th to the limit of	it of -17dBm e 5150 - 52 15.209.	n EIRP 50 MHz band.	
ote 3: ote 4: ote 5: ow chann	All spurious signals below 1GHz are me Signals within 10MHz of the 5.725 or 5.8 If the device is for outdoor use then the Signals that fall in the restricted bands o	325 Band edge are su -27dBm eirp limit also f 15.205 are subject t g Out-Of-Band Emis:	ubject to a lim applies in th to the limit of	it of -17dBm e 5150 - 52 15.209.	n EIRP 50 MHz band.	
ote 3: ote 4: ote 5: ow chann	All spurious signals below 1GHz are me Signals within 10MHz of the 5.725 or 5.8 If the device is for outdoor use then the Signals that fall in the restricted bands o Plots Showing el, 5150 - 5250 MHz Band Band Spurious Emissions, 5180 MHz, Leg	325 Band edge are su -27dBm eirp limit also f 15.205 are subject t g Out-Of-Band Emis:	ubject to a lim applies in th to the limit of	it of -17dBm e 5150 - 52 15.209.	n EIRP 50 MHz band.	
ote 3: ote 4: ote 5: ow chann Out Of E 20	All spurious signals below 1GHz are me Signals within 10MHz of the 5.725 or 5.8 If the device is for outdoor use then the Signals that fall in the restricted bands o Plots Showing el, 5150 - 5250 MHz Band Band Spurious Emissions, 5180 MHz, Leg	325 Band edge are su -27dBm eirp limit also f 15.205 are subject t g Out-Of-Band Emis:	ubject to a lim applies in th to the limit of	it of -17dBm e 5150 - 52 15.209.	n EIRP 50 MHz band.	
ote 3: ote 4: ote 5: ow chann Out Of E 20 10	All spurious signals below 1GHz are me Signals within 10MHz of the 5.725 or 5.8 If the device is for outdoor use then the Signals that fall in the restricted bands o Plots Showing el, 5150 - 5250 MHz Band Band Spurious Emissions, 5180 MHz, Leg	325 Band edge are su -27dBm eirp limit also f 15.205 are subject t g Out-Of-Band Emis:	ubject to a lim applies in th to the limit of	it of -17dBm e 5150 - 52 15.209.	n EIRP 50 MHz band.	
ote 3: ote 4: ote 5: ow chann Out Of E 20 10 0	All spurious signals below 1GHz are me Signals within 10MHz of the 5.725 or 5.8 If the device is for outdoor use then the Signals that fall in the restricted bands o Plots Showing el, 5150 - 5250 MHz Band Band Spurious Emissions, 5180 MHz, Leg .0 - .0 -	325 Band edge are su -27dBm eirp limit also f 15.205 are subject t g Out-Of-Band Emis:	ubject to a lim applies in th to the limit of	it of -17dBm e 5150 - 52 15.209.	n EIRP 50 MHz band.	
ote 3: ote 4: ote 5: ow chann Out Of E 20 10 0	All spurious signals below 1GHz are me Signals within 10MHz of the 5.725 or 5.8 If the device is for outdoor use then the - Signals that fall in the restricted bands o Plots Showing el, 5150 - 5250 MHz Band Band Spurious Emissions, 5180 MHz, Leg .0 - .0 - .0 -	325 Band edge are su -27dBm eirp limit also f 15.205 are subject t g Out-Of-Band Emis:	ubject to a lim applies in th to the limit of	it of -17dBm e 5150 - 52 15.209.	n EIRP 50 MHz band.	
ote 3: ote 4: ote 5: ow chann Out Of E 20 10 0	All spurious signals below 1GHz are me Signals within 10MHz of the 5.725 or 5.8 If the device is for outdoor use then the - Signals that fall in the restricted bands o Plots Showing el, 5150 - 5250 MHz Band Band Spurious Emissions, 5180 MHz, Leg .0 - .0 - .0 -	325 Band edge are su -27dBm eirp limit also f 15.205 are subject t g Out-Of-Band Emis:	ubject to a lim applies in th to the limit of	it of -17dBm e 5150 - 52 15.209.	n EIRP 50 MHz band.	
ote 3: ote 4: ote 5: ow chann Out Of E 20 10 0 0 0 0 0 0 0	All spurious signals below 1GHz are me Signals within 10MHz of the 5.725 or 5.8 If the device is for outdoor use then the - Signals that fall in the restricted bands o Plots Showing el, 5150 - 5250 MHz Band Band Spurious Emissions, 5180 MHz, Leg .0 - .0 - .0 - .0 -	325 Band edge are su -27dBm eirp limit also f 15.205 are subject t g Out-Of-Band Emis:	ubject to a lim applies in th to the limit of	it of -17dBm e 5150 - 52 15.209.	n EIRP 50 MHz band.	
ote 3: ote 4: ote 5: ow chann Out Of E 20 10 0	All spurious signals below 1GHz are me Signals within 10MHz of the 5.725 or 5.8 If the device is for outdoor use then the - Signals that fall in the restricted bands o Plots Showing el, 5150 - 5250 MHz Band Band Spurious Emissions, 5180 MHz, Leg .0 - .0 - .0 - .0 - .0 - .0 -	325 Band edge are su -27dBm eirp limit also f 15.205 are subject t g Out-Of-Band Emis:	ubject to a lim applies in th to the limit of	it of -17dBm e 5150 - 52 15.209.	n EIRP 50 MHz band.	
ote 3: ote 4: ote 5: ow chann Out Of E 20 10 0 (wgp) -10 -20 physical 20 10 -30	All spurious signals below 1GHz are me. Signals within 10MHz of the 5.725 or 5.8 If the device is for outdoor use then the - Signals that fall in the restricted bands o Plots Showing el, 5150 - 5250 MHz Band Band Spurious Emissions, 5180 MHz, Leg .0 - .0 - .0 - .0 - .0 - .0 -	325 Band edge are su -27dBm eirp limit also f 15.205 are subject t g Out-Of-Band Emis:	ubject to a lim applies in th to the limit of	it of -17dBm e 5150 - 52 15.209.	n EIRP 50 MHz band.	

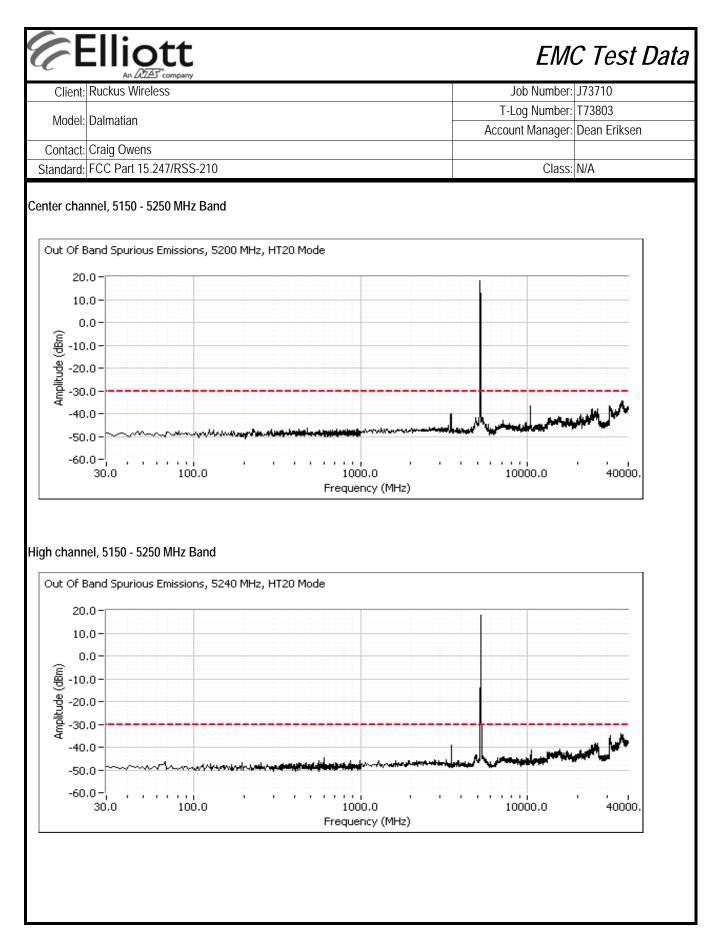
Œ	Elliott An DEAT company	EM	C Test Data
	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian	T-Log Number:	T73803
wouer.	Daimatian	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

	210		T-L	Job Number:	173710		
Contact: Craig Owens Standard: FCC Part 15.247/RSS-2	210			a a Ni wala a a	5/5/10		
Contact: Craig Owens Standard: FCC Part 15.247/RSS-2	210			-og ivumber:	T73803		
Standard: FCC Part 15.247/RSS-2	210		Account Manager: Dean Eri				
R	210						
				Class:	N/A		
Power, PSD,	SS-210 (LELAN Antenna Po , Peak Excursion,	ort Measurem	nents	-	sions		
	ive of this test session is to on listed above.	perform final qualification	on testing of th	e EUT with r	espect to the		
Date of Test: 2/19/2008 Test Engineer: Rafael Vare Test Location: SVOATS #	d: 1 e: None e: 120V/60Hz						
allow for the external attenuators and Ambient Conditions:							
	Temperature: Rel. Humidity:	18.7 °C 36 %					
Summary of Results							
Summary of Results			Pass / Fail	Result /	/ Margin		
Run #	Rel. Humidity:	36 % Limit 15.407(a) (1), (2)	Pass / Fail Pass	16.2 dBm	(0.042 W)		
ummary of Results Run # 1 Powe 1 PSE	Rel. Humidity: Test Performed er, 5150 - 5250MHz D, 5150 - 5250MHz	36 % Limit 15.407(a) (1), (2) 15.407(a) (1), (2)		16.2 dBm 3.9 dB	(0.042 W) m/MHz		
ummary of Results Run # Power 1 Power 1 PSE 1 2	Rel. Humidity: Test Performed er, 5150 - 5250MHz D, 5150 - 5250MHz 26dB Bandwidth	36 % Limit 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407	Pass	16.2 dBm 3.9 dB 26.3	(0.042 W) m/MHz MHz		
Run # Powe 1 Powe 1 PSE 1 2 1 2 1 2	Rel. Humidity: Test Performed er, 5150 - 5250MHz D, 5150 - 5250MHz	36 % Limit 15.407(a) (1), (2) 15.407(a) (1), (2)	Pass	16.2 dBm 3.9 dB 26.3 18.9	(0.042 W) m/MHz		

Client:	Ruckus Wire	eless						Job Number:	J73710	
Model	: Dalmatian					T-	Log Number:	T73803		
							Ассон	unt Manager:	Dean Erikse	en
	Craig Owen									
		5.247/RSS-21						Class:	N/A	
Run #1: Ba	ndwidth, Ou	tput Power a	and Power s	spectral Der	nsity					
			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	1		
	Antenna	a Gain (dBi):	3	3	3	no	3.0			
					1					1
requency	Software Setting	26dB BW		d Output Po	-		otal	Limit (dBm)	Max Power	Pass or F
<u>(MHz)</u> 5180	13.5	(MHz) 33.1	Chain 1 11.9	Chain 2 11.5	Chain 3 9.2	mW 38.0	dBm 15.8	17.0	(W)	PASS
5200	13.5	26.3	11.9	10.9	9.2	41.6	15.0	17.0	0.042	PASS
5240	13.5	27.5	11.3	10.8	10.7	37.0	15.7	17.0		PASS
Frequency	99 % ⁴	Total	P	SD ² dBm/MI	H7	Tota	I PSD	Li	mit	
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Pass or F
5180	18.1	15.8	-0.6	-0.9	-3.1	2.2	3.4	4.0	7.0	PASS
5200 5240	18.1	16.2 15.7	-0.4	-1.2	-1.2	2.4 2.1	3.9 3.2	4.0	7.0	PASS
0740	18.9	10.7	-1.2	-1.8	-1.8	Z. I	3.Z	4.0	7.0	PASS
		er measured z. VB=3 MHz.					t signal was i	continuous) a	and power in	egration
Note 1:	RBW=1MHz over 50 MHz Measured u For RSS-210 10dBm/MHz PSD (calcula	z, VB=3 MHz, <u>z</u> sing the same 0 the limit for z. The limits a ated from the	e analyzer so the 5150 - 5 re also corre measured p	ector, power ettings used 250 MHz ba ected for inst power divideo	averaging or for output po nd accounts ances where d by the mea	wer. for the anten the highest i	na gain as th measured va	ne maximum lue of the PS	eirp allowed D exceeds tl	is ne average
Note 1: Note 2: Note 3:	RBW=1MHz over 50 MHz Measured u For RSS-21 10dBm/MHz PSD (calcula the measure 99% Bandw	z, VB=3 MHz, <u>z</u> sing the same 0 the limit for z. The limits a	e analyzer so the 5150 - 5 re also corre measured p reds the aver d in accorda	ector, power ettings used 250 MHz ba ected for inst power divideo rage by more ince with RS	for output po nd accounts ances where d by the mea e than 3dB. S GEN - RB	wer. for the anten the highest i sured 99% b	na gain as th measured va andwidth) by	ne maximum lue of the PS more than 3 BxRB	eirp allowed D exceeds tl dB by the an	is ne average nount that



	An ZAZZO company		
Client:	Ruckus Wireless	Job Number:	J73710
Model: Dalmatian	T-Log Number:	T73803	
MOUEI.	Daimatian	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A


Run #2: Peak Excursion Measurement

Device meets the requirement for the peak excursion

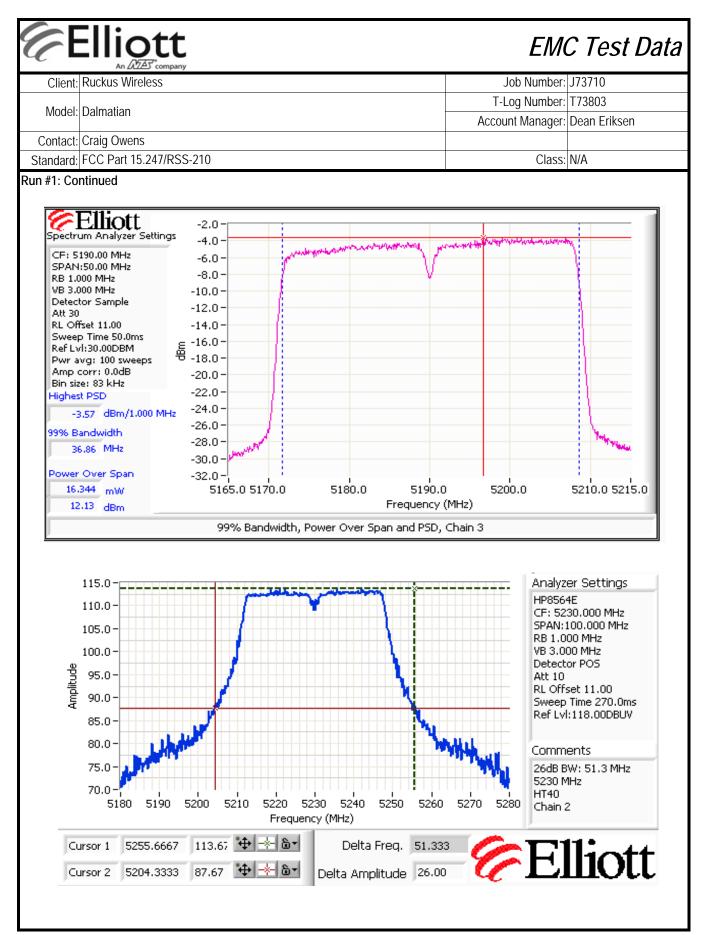
Freq	Peak Excursion(dB)		
(MHz)	Value	Limit	
5180	12.2	13.0	
5200	12.5	13.0	
5240	12.8	13.0	

Client	: Rucku	s Wireless				Job	Number	: J73710	
Model	: Dalma	tian						: T73803	
						Account N	lanager	: Dean Eri	ksen
Contact							01		
		Part 15.247/RSS-210					Class	: N/A	
IIMO Devi Il chains tr	ices: A ransmitti	and Spurious Emissions - Ante ntenna gain used is the effective ing simultaneously and connected d (50 ohms). Number of transmit chains:	gain calculated in the p						
		Maximum Antenna Gain:	3.0 dBi						
		Spurious Limit:	-27.0 dBm/MHz e	eirp					
		Limit Used On Plots Note 1:	-30.0 dBm/MHz -10.0 dBm/MHz	•	-		3=10Hz)	
ote 1:	consid more t	7dBm/MHz limit is an eirp limit. T leration the maximum antenna ga han 50MHz from the bands and th at these frequencies.	in (limit = -27dBm - an	tenna gain)	. Radiate	ed field str	ength m	easureme	nts for sig
ata Di			ocured during digital a	louioo rodio	tod omic	ione toet			
ote 2: ote 3:	All spu	irious signals below 1GHz are me							
ote 3: ote 4:	All spu Signals	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5. device is for outdoor use then the	825 Band edge are sul -27dBm eirp limit also	bject to a lii applies in t	mit of -17 he 5150 ·	dBm EIRP			
ote 3:	All spu Signals	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5.1 device is for outdoor use then the s that fall in the restricted bands o	825 Band edge are sul -27dBm eirp limit also	bject to a lii applies in t o the limit o	mit of -17 he 5150 - f 15.209.	dBm EIRP 5250 MH			
ote 3: ote 4: ote 5: ow chann	All spu Signal: If the c Signal: nel, 5150	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5.1 device is for outdoor use then the s that fall in the restricted bands o <u>Plots Showing</u> 0 - 5250 MHz Band	825 Band edge are su -27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss	bject to a lii applies in t o the limit o	mit of -17 he 5150 - f 15.209.	dBm EIRP 5250 MH			
ote 3: ote 4: ote 5: ow chanr	All spu Signal: If the c Signal: nel, 5150	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5.4 levice is for outdoor use then the s that fall in the restricted bands of <u>Plots Showing</u>	825 Band edge are su -27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss	bject to a lii applies in t o the limit o	mit of -17 he 5150 - f 15.209.	dBm EIRP 5250 MH			
ote 3: ote 4: ote 5: ow chanr Out Of 2	All spu Signal: If the c Signal: hel, 5150 Band S	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5.1 device is for outdoor use then the s that fall in the restricted bands o <u>Plots Showing</u> 0 - 5250 MHz Band	825 Band edge are su -27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss	bject to a lii applies in t o the limit o	mit of -17 he 5150 - f 15.209.	dBm EIRP 5250 MH			
ote 3: ote 4: ote 5: ow chann Out Of 2 1	All spu Signal: If the c Signal: nel, 515(Band S 0.0 –	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5.1 device is for outdoor use then the s that fall in the restricted bands o <u>Plots Showing</u> 0 - 5250 MHz Band	825 Band edge are su -27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss	bject to a lii applies in t o the limit o	mit of -17 he 5150 - f 15.209.	dBm EIRP 5250 MH			
ote 3: ote 4: ote 5: ow chann Out Of 2 1	All spu Signal: If the c Signal: hel, 5150 Band S	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5.1 device is for outdoor use then the s that fall in the restricted bands o <u>Plots Showing</u> 0 - 5250 MHz Band	825 Band edge are su -27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss	bject to a lii applies in t o the limit o	mit of -17 he 5150 - f 15.209.	dBm EIRP 5250 MH			
ote 3: ote 4: ote 5: ow chann Out Of 2 1	All spu Signal: If the c Signal: nel, 515(Band S 0.0 –	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5.1 device is for outdoor use then the s that fall in the restricted bands o <u>Plots Showing</u> 0 - 5250 MHz Band	825 Band edge are su -27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss	bject to a lii applies in t o the limit o	mit of -17 he 5150 - f 15.209.	dBm EIRP 5250 MH			
ote 3: ote 4: ote 5: ow chann Out Of 2 1	All spu Signal: If the c Signal: Del, 5150 Band 5 0.0 – 0.0 – 0.0 –	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5.1 device is for outdoor use then the s that fall in the restricted bands o <u>Plots Showing</u> 0 - 5250 MHz Band	825 Band edge are su -27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss	bject to a lii applies in t o the limit o	mit of -17 he 5150 - f 15.209.	dBm EIRP 5250 MH			
ote 3: ote 4: ote 5: ow chann Out Of 2 1	All spu Signal: If the c Signal: Del, 5150 Band S 0.0 - 0.0 - 0.0 - 0.0 -	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5.1 device is for outdoor use then the s that fall in the restricted bands o <u>Plots Showing</u> 0 - 5250 MHz Band	825 Band edge are su -27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss	bject to a lii applies in t o the limit o	mit of -17 he 5150 - f 15.209.	dBm EIRP 5250 MH			
ote 3: ote 4: ote 5: ow chann Out Of 2 1 (wgp -1) -2 -3	All spu Signal: If the c Signal: Del, 5150 Band S 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5.1 device is for outdoor use then the s that fall in the restricted bands o <u>Plots Showing</u> 0 - 5250 MHz Band	825 Band edge are su -27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss	bject to a lii applies in t o the limit o	mit of -17 he 5150 - f 15.209.	dBm EIRP 5250 MH			
ote 3: ote 4: ote 5: ow chann Out of 2 1 (mgp) -1 -2 -3 -4	All spu Signal: If the c Signal: Del, 5150 Band 5 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -	rious signals below 1GHz are me s within 10MHz of the 5.725 or 5.1 device is for outdoor use then the s that fall in the restricted bands o <u>Plots Showing</u> 0 - 5250 MHz Band	825 Band edge are su -27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss	bject to a lii applies in t o the limit o	mit of -17 he 5150 - f 15.209.	dBm EIRP 5250 MH			

Contact: Craig Owen	S					
Standard: FCC Part 15	5.247/RSS-210			Class:	N/A	
Powe	RSS-210 (LELAN Antenna Po er, PSD, Peak Excursion,	ort Measurem	ents		ions	
Test Specific Detai Objective:	Is The objective of this test session is to specification listed above.	perform final qualificatior	n testing of th	e EUT with re	espect to the	
Date of Test: Test Engineer: Test Location:	Rafael Varelas	Config. Used: Config Change: EUT Voltage:	None			
analyzer or power meter	guration nducted emissions from the EUT's anter via a suitable attenuator to prevent ove enuators and cables used.				•	
Ambient Condition	S: Temperature: Rel. Humidity:	18.7 °C 36 %				
Summary of Result	S					
Run #	Test Performed	Limit	Pass / Fail	Result /	Margin	
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	16.3 dBm	(0.043 W)	
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	0.4 dBr	n/MHz	
1	26dB Bandwidth	15.407	-	51.3	MHz	
1	99% Bandwidth	RSS 210	-	37.2	MHz	
2	Peak Excursion Envelope	15.407(a) (6)	Pass	12.97	/ dB	
3	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	All emission: -27dBm/N		
Modifications Made	e During Testing ade to the EUT during testing					
Deviations From The No deviations were made	ne Standard e from the requirements of the standard	j.				

Client: Ruckus Wireless

Model: Dalmatian

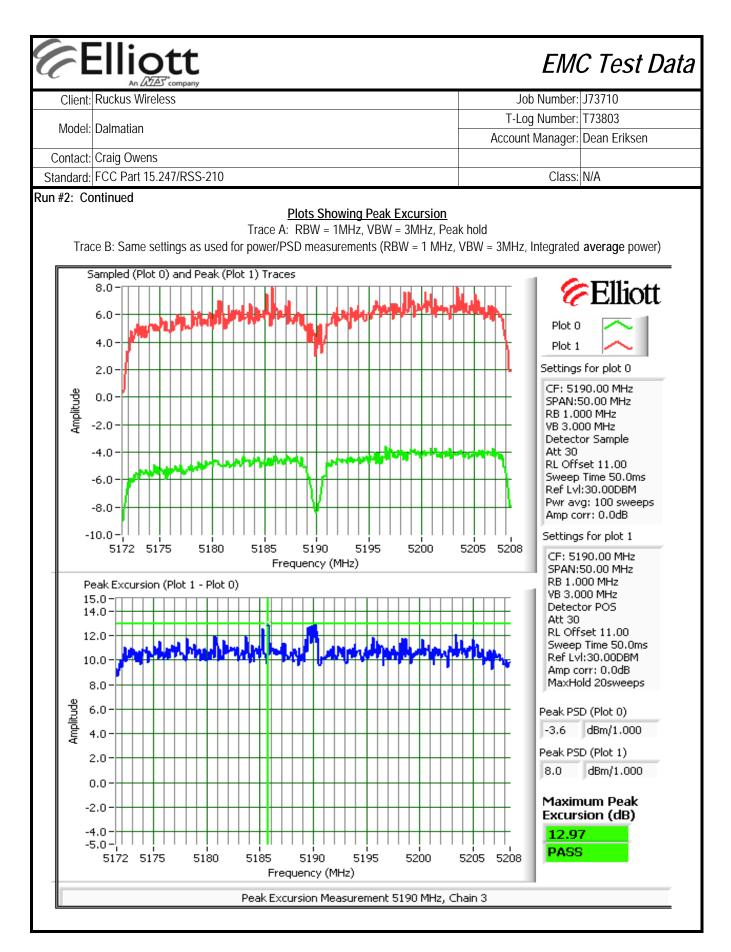

EMC Test Data

Job Number: J73710

Account Manager: Dean Eriksen

T-Log Number: T73803

Client	Ruckus Wire	eless						Job Number:	: J73710	
Model	: Dalmatian						Log Number:			
							Ассон	unt Manager:	Dean Erikse	en
	Craig Owen: FCC Part 15		0					Class	NI/A	
	ndwidth, Ou			noctral Don	city			Class:	N/A	
un #1. Da	nuwiun, ou				isity					
			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵			
	Antenna	a Gain (dBi):	3	3	3	No	3.0			
Frequency	Software	26dB BW	Maasura	d Output Po	ver ¹ dBm	To	otal		Max Power	
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Limit (dBm)	(W)	Pass or F
5190	12.5	79.1	9.2	8.0	12.1	30.8	14.9	17.0	0.043	PASS
5230	14.0	51.3	12.5	11.8	10.1	43.0	16.3	17.0	0.043	PASS
Frequency	99 % ⁴	Total		SD ² dBm/Mł	17	Tota	I PSD	Li	mit	
(MHz)	BW	Power	۲ Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Pass or F
5190	37.2	14.9	-6.5	-7.6	-3.6	0.8	-0.8	4.0	7.0	PASS
5230	37.1	16.3	-3.1	-4.4	-5.9	1.1	0.4	4.0	7.0	PASS
Note 3: Note 4:	10dBm/MHz PSD (calcula the measure	0 the limit for 2. The limits a ated from the ad value exce idth measure	re also corre measured p eds the aver	ected for insta ower divideo age by more	ances where I by the meas e than 3dB.	the highest r sured 99% b	measured va andwidth) by	lue of the PS more than 3	D exceeds th	ne average
NOLE 4.	For MIMO s	ystems the to). The antenr	ital output po na gain used	ower and tota to determine	Il PSD are ca e the EIRP a	alculated forn nd limits for F	n the sum of PSD/Output ہ transmit chai	the powers o power depen ns then the g	ds on the op	erating determine



An 2422 company			
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian	T-Log Number:	T73803
MOUEI.	Daimatian	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2: Peak Excursion Measurement

Device meets the requirement for the peak excursion

Freq	Peak Excu	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5190	12.97	13.0	5260		13.0	5500		13.0
5200		13.0	5300		13.0	5600		13.0
5230	12.9	13.0	5320		13.0	5700		13.0

Contact: (itandard: F n #3: Out MO Device chains trar	Dalmatian Craig Owens FCC Part 15.247/RSS-210 Of Band Spurious Emissions - An es: Antenna gain used is the effectiv		T-Log Number: Account Manager: Class:	Dean Eriksen
Contact: (itandard: F n #3: Out MO Device chains trar	Craig Owens FCC Part 15.247/RSS-210 Of Band Spurious Emissions - An es: Antenna gain used is the effectiv		Account Manager:	Dean Eriksen
Standard: F n #3: Out MO Device chains trar	CC Part 15.247/RSS-210 Of Band Spurious Emissions - An es: Antenna gain used is the effectiv		Class:	N/A
n #3: Out MO Device chains trar	Of Band Spurious Emissions - An es: Antenna gain used is the effectiv		Class:	N/A
MO Devic e chains trar	es: Antenna gain used is the effectiv			
chains trar				
	te load (50 ohms).	e gain calculated in the power se ted to the analyzer via a combine	•	
	Number of transmit chains:			
	Maximum Antenna Gain:			
	Spurious Limit:		ge Limit (RB=1MHz, VB=10Hz)	
	Limit Used On Plots Note 1:	-10.0 dBm/MHz Peak I		
te 1: r k	The -27dBm/MHz limit is an eirp limit. consideration the maximum antenna g nore than 50MHz from the bands and known at these frequencies.	gain (limit = -27dBm - antenna ga d that are close to the limit are m	ain). Radiated field strength me ade to determine compliance a	easurements for sign
	All spurious signals below 1GHz are r			
	Signals within 10MHz of the 5.725 or f the device is for outdoor use then th			
	Signals that fall in the restricted bands			
w channel	l, 5150 - 5250 MHz Band			
Out Of Ba	nd Spurious Emissions, 5190 MHz, I	HT40 Mode		
20.0) –			
10.0)-			
0.0) –			
ල 10.0 - ජී -20.0				
벽				
-				
-40.0			and	
)			
-50.0				

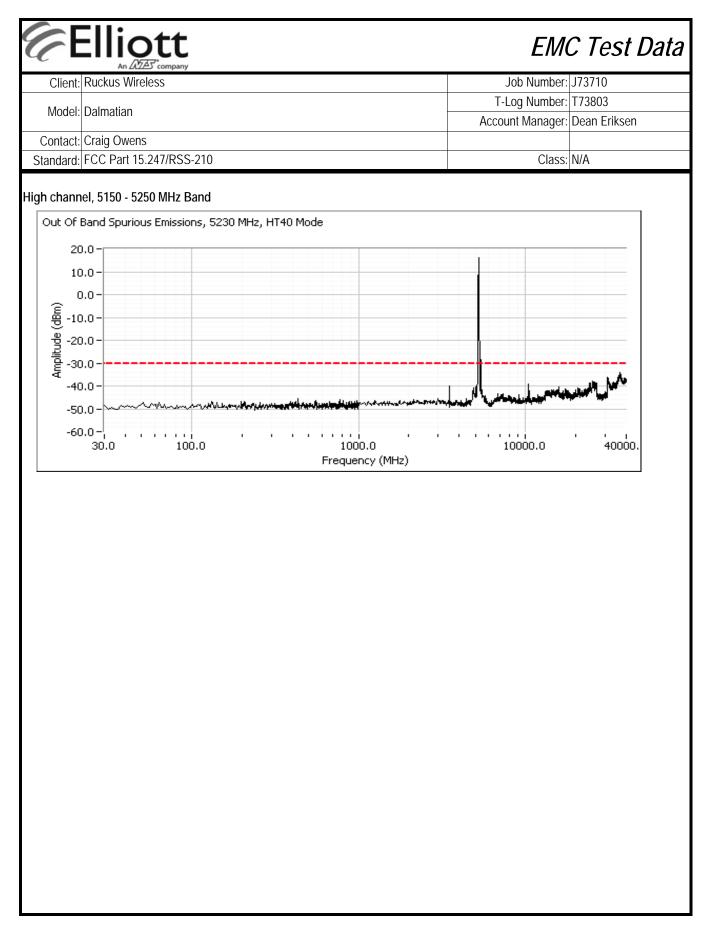


EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of Ruckus Wireless Model 7962Construction

EXHIBIT 6: Operator's Manual for Ruckus Wireless Model 7962

EXHIBIT 7: Block Diagram of Ruckus Wireless Model 7962

EXHIBIT 8: Schematic Diagrams for Ruckus Wireless Model 7962

EXHIBIT 9: Theory of Operation for Ruckus Wireless Model 7962

EXHIBIT 10: RF Exposure Information