

Electromagnetic Emissions Test Report Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C on the Ruckus Wireless **Transmitter** Model: 7962

> UPN: 5912A-7962 S9G7962 FCC ID:

GRANTEE: **Ruckus Wireless**

880 West Maude Ave. Suite 101

Sunnyvale, CA 94085

TEST SITE(S): Elliott Laboratories

> 684 W. Maude Ave Sunnyvale, CA 94086

IC Site Registration #: IC 2845-1; IC 2845-2

REPORT DATE: March 2, 2009

FINAL TEST DATE: November 13 and November 23, 2008, February

4, February 11, February 12 and February 17,

2009

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
1			

File: R74729 Rev 1 Page 2 of 21

TABLE OF CONTENTS

COVER PAGE	
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)	
DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	9
EQUIPMENT UNDER TEST (EUT) DETAILS	10
GENERAL	10
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSUREMODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	11
TEST SITE	12
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	13
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	13
LINE IMPEDANCE STABILIZATION NETWORK (LISN)FILTERS/ATTENUATORS	13
ANTENNASANTENNAS	
ANTENNASANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	15
EUT AND CABLE PLACEMENT	15
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	18
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	19
SAMPLE CALCULATIONS - RADIATED EMISSIONS	20
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	21
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	2
EXHIBIT 3: Photographs of Test Configurations	3
EXHIBIT 4: Proposed FCC ID Label & Label Location	4
EXHIBIT 5: Detailed Photographs	5
EXHIBIT 6: Operator's Manual	6
EXHIBIT 7: Block Diagram	7
EXHIBIT 8: Schematic Diagrams	8
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: RF Exposure Information	10

SCOPE

An electromagnetic emissions test has been performed on the Ruckus Wireless model 7962 pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Ruckus Wireless model 7962 and therefore apply only to the tested sample. The sample was selected and prepared by Craig Owens of Ruckus Wireless.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

File: R74729 Rev 1 Page 5 of 21

Report Date: March 2, 2009

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Ruckus Wireless model 7962 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R74729 Rev 1 Page 6 of 21

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM/DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	802.11b – 10.3 MHz 802.11g – 16.4 MHz 802.11 HT20 – 17.8 MHz 802.11 HT40 – 34.3 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	802.11b – 17.3 MHz 802.11g – 18.3 MHz 802.11 HT20 – 19.3 MHz 802.11 HT40 – 37.4 MHz	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11b: 27.7 dBm (0.591 Watts) EIRP = 1.179 W 802.11g: 25.8 dBm (0.381 Watts) EIRP = 0.761 W 802.11 HT20 25.8 dBm (0.382 Watts) EIRP = 0.763 W 802.11 HT40 25.7 dBm (0.374 Watts) EIRP = 0.747 W	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	802.11b 6.7 dBm/3kHz 802.11g 5.7 dBm/3kHz 802.11 HT20 7.7 dBm/3kHz 802.11 HT40 5.8 dBm/3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All spurious emissions < - 30dBc	<-30dBc Note 3	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	73.9dBµV/m @ 2388.5MHz (-0.1dB)	15.207 in restricted bands, all others <-30dBc Note 3	Complies

File: R74729 Rev 1 Page 7 of 21

Note 1: EIRP calculated using an effective antenna gain of 3 dBi for the highest EIRP. Note 3: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4).

DIGITAL TRANSMISSION SYSTEMS (5725 -5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM/DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	802.11a – 16.3 MHz 802.11 HT20 – 17.7 MHz 802.11 HT40 – 36.2 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	802.11a – 18.4 MHz 802.11 HT20 – 18.6 MHz 802.11 HT40 – 37.2 MHz	Information only	Complies
15.247 (b)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11a 24.4 dBm (0.279 Watts) EIRP = 0.556 W 802.11 HT20 24.4 dBm (0.276 Watts) EIRP = 0.550 W 802.11 HT40 23.6 dBm (0.228 Watts) EIRP = 0.456 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	802.11a 5.3 dBm/3KHz 802.11 HT20 4.3 dBm/3kHz 802.11 HT40 –	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All spurious emissions < -30dBc	< -30dBc Note 3	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	53.9dBμV/m @ 11489.2MHz (- 0.1dB)	15.207 in restricted bands, all others <-30dBc Note 2	Complies

File: R74729 Rev 1 Page 8 of 21

Note 1: EIRP calculated using an effective antenna gain of 3 dBi for the highest EIRP.

Note 3: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

Note 4: The device is operating under the smart antenna rules as detailed in FCC 15.247/RSS 210 A8.4 (6). Refer to the operational description for additional justification.

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule	RSS Bula part	Description	Measured Value /	Limit /	Result
Part	Rule part		Comments	Requirement	(margin)
15.203	-	RF Connector	All antennas are internal	-	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	47.5dBμV/m @ 7713.4MHz (-6.5dB)	Refer to standard	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	52.6dBμV @ 13.853MHz (-7.4dB)	Refer to standard	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Frequency Range (MHz)	Calculated Uncertainty (dB)
0.15 to 30	± 2.4
0.015 to 30	± 3.0
30 to 1000	± 3.6
1000 to 40000	± 6.0
	0.15 to 30 0.015 to 30 0.015 to 30 30 to 1000

File: R74729 Rev 1 Page 9 of 21

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Ruckus Wireless model 7962 is an Access Point that is designed to distribute WiFi. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/230 Volts, 50/60 Hz, 0.5 Amps. The EUT can also be powered over the POE port.

The sample was received on November 13, 2008 and tested on November 13 and November 23, 2008, February 4, February 11, February 12 and February 17, 2009. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Ruckus Wireless,	7962	802.11a/b/g/n	0901000003	S9G7962
Inc.		Access Point		

OTHER EUT DETAILS

The following power supplies are supported in addition to any PoE injector or switch. Ruckus does not supply the PoE supply.

DVE	S024EU1200150	Power Supply	-	-

ANTENNA SYSTEM

The four antennas used in the system are internal to the device.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 19 cm wide by 15 cm deep by 10 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

No equipment was used as local support equipment for emissions testing.

The following equipment was used as remote support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	-	Laptop Computer	-	DoC

File: R74729 Rev 1 Page 10 of 21

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Dort	Connected To	Cable(s)			
Port Connected To		Description	Shielded or Unshielded	Length(m)	
Ethernet	Laptop	CAT5	Unshielded	3m	
DC Power	AC/DC Adapter	Multiconductor	Shielded	1.5	

EUT OPERATION

During transmit mode testing, the EUT was set to continuously transmit at the desired channel, power, and mode. For receive mode testing, the EUT was configured in a receive only mode.

File: R74729 Rev 1 Page 11 of 21

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on November 13 and November 23, 2008, February 4, February 11, February 12 and February 17, 2009 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	
SVOATS #1	90592	IC 2845A-1	684 West Maude Ave,
SVOATS #2	90593	IC 2845A-2	Sunnyvale CA 94085-3518

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception, on OATS sites, of predictable local TV, radio, and mobile communications traffic. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R74729 Rev 1 Page 12 of 21

Test Report Report Date: March 2, 2009

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R74729 Rev 1 Page 13 of 21

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

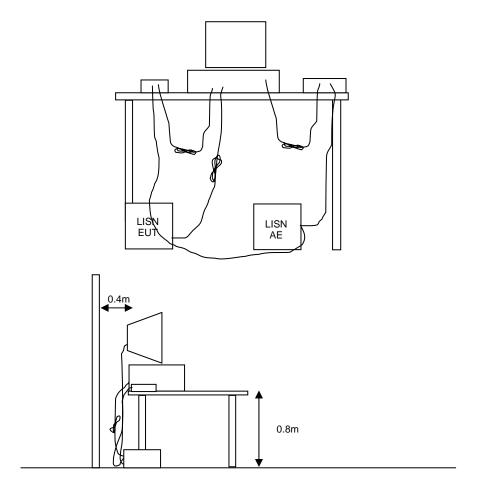
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R74729 Rev 1 Page 14 of 21


TEST PROCEDURES

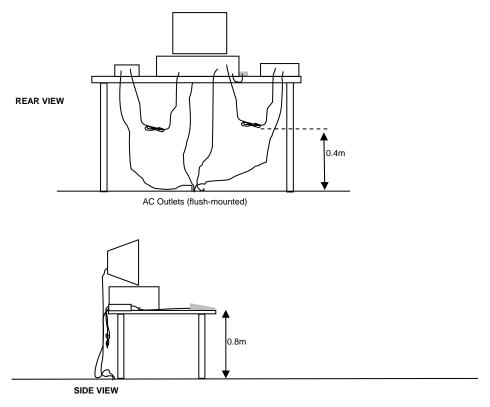
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

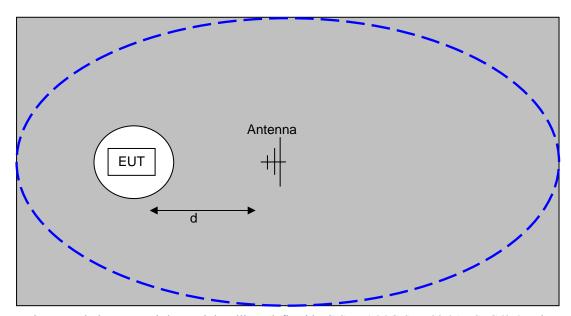
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R74729 Rev 1 Page 15 of 21

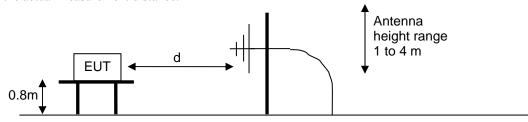

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.


Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

File: R74729 Rev 1 Page 16 of 21

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u>
<u>OATS- Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

File: R74729 Rev 1 Page 17 of 21

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

File: R74729 Rev 1 Page 18 of 21

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

File: R74729 Rev 1 Page 19 of 21

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R74729 Rev 1 Page 20 of 21

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter
3
where P is the eirp (Watts)

File: R74729 Rev 1 Page 21 of 21

EXHIBIT 1: Test Equipment Calibration Data

3 Pages

File: R74729 Rev 1 Exhibit Page 1 of 10

Radiated Emissions, 30 - 2	6,500 MHz, 13-Nov-08			
Engineer: Rafael Varelas				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	
EMCO	Antenna, Horn, 1-18 GHz	3115	487	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Nov-08
Radiated Emissions, 30 - 2	6,500 MHz, 23-Nov-08			
Engineer: Rafael Varelas				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	06-Jun-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Nov-08
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	05-Aug-09
EMCO	Antenna, Horn, 1-18 GHz	3115	487	15-Jul-10
Radiated Emissions, 30 - 2	6,500 MHz, 18-Dec-08			
Engineer: Rafael Varelas				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	09-Oct-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Dec-08
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152	13-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	10-Jun-10
Radiated Emissions, 1000	- 18,000 MHz, 04-Feb-09			
Engineer: Rafael Varelas				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	06-Jun-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Mar-09
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152	13-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	10-Jun-10
Radiated Emissions, 1000	- 18,000 MHz, 12-Feb-09			
Engineer: Rafael Varelas	B 1.4			0.15
<u>Manufacturer</u>	Description	Model #	Asset #	
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non-Program	8563E	284	29-Dec-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	09-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	10-Jun-10

Radio Antenna Port (Power and Spurious Emissions), 13-Feb-09

Engineer: Joseph Cadigal

 Manufacturer
 Description
 Model #
 Asset #
 Cal Due

 Hewlett Packard
 SpecAn 30 Hz -40 GHz, SV (SA40) Red
 8564E (84125C)
 1148
 24-Feb-09

 Rohde & Schwarz
 Power Meter, Single Channel
 NRVS
 1422
 06-Nov-09

 Rohde & Schwarz
 Pwr Sensor 300 uW - 30 Watts (+ 25dB pad)
 NRV-Z54
 1788
 01-Jul-09

Radio Antenna Port (Power and Spurious Emissions), 18-Feb-09

Engineer: Rafael Varelas

 Manufacturer
 Description
 Model #
 Asset #
 Cal Due

 Hewlett Packard
 SpecAn 30 Hz -40 GHz, SV (SA40) Red
 8564E (84125C)
 1148
 24-Mar-09

Radiated Emissions, 30 -	1,000 MHz, 13-Nov-08			
Engineer: Peter Sales Manufacturer	Deceriation	Madel #	A	Cal Dua
Sunol Sciences	<u>Description</u> Biconilog, 30-3000 MHz	Model # JB3	1549	Cal Due 23-May-09
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	22-Feb-09
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1632	22-May-09
Radiated Emissions, 30 -	1,000 MHz, 26-Nov-08			
Engineer: Chris Groat	,			
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1543	14-Nov-09
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	23-May-10
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	04-Dec-08
Radiated Emissions, 30 -	1,000 MHz, 17-Jan-09			
Engineer: rvarelas				
<u>Manufacturer</u>	<u>Description</u>	Model #		Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	19-Sep-09
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	13-Jun-10
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447E	1606	29-May-09
	AC Power Ports, 22-Jan-09			
Engineer: Riaz Momand	Description	Model #	Accet #	Cal Duc
Manufacturer Hewlett Packard	Description	Model # 8563E		<u>Cal Due</u> 29-Dec-09
Elliott Laboratories	SpecAn 9 KHz-26.5 GHz, Non-Program LISN, FCC / CISPR	LISN-3, OATS	284 304	29-Dec-09 31-Jul-09
Solar Electronics	LISN	8028-50-TS-24-BNC support	904	15-Feb-09
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337	02-Oct-09
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1398	12-Feb-09
Conducted Emissions - I Engineer: Riaz Momand	-O Ports, 22-Jan-09			
Manufacturer	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non-Program	8563E	284	29-Dec-09
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304	31-Jul-09
O . E	LISN	0000 FO TO 04 DNO	004	15-Feb-09
Solar Electronics	LION	8028-50-TS-24-BNC support	904	
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337	02-Oct-09
Rohde & Schwarz Rohde& Schwarz	Test Receiver, 9 kHz-2750 MHz Pulse Limiter	ESCS 30 ESH3 Z2	1337 1398	02-Oct-09 12-Feb-09
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337	02-Oct-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm.	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907)	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02	1337 1398	02-Oct-09 12-Feb-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm.	Test Receiver, 9 kHz-2750 MHz Pulse Limiter	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02	1337 1398	02-Oct-09 12-Feb-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907)	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02	1337 1398 1906	02-Oct-09 12-Feb-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jan	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02	1337 1398 1906	02-Oct-09 12-Feb-09 05-Jul-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jan Description	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model #	1337 1398 1906	02-Oct-09 12-Feb-09 05-Jul-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jan Description LISN, FCC / CISPR	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS	1337 1398 1906 Asset # 362	02-Oct-09 12-Feb-09 05-Jul-09 <u>Cal Due</u> 31-Jul-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM	1337 1398 1906 <u>Asset #</u> 362 787	02-Oct-09 12-Feb-09 05-Jul-09 <u>Cal Due</u> 31-Jul-09 19-Feb-09 12-Feb-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2	1337 1398 1906 Asset # 362 787 812	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support	1337 1398 1906 Asset # 362 787 812 904	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 19-Feb-09 12-Feb-09 09-Sep-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm.	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jan Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M	1337 1398 1906 Asset # 362 787 812 904 1296	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 19-Feb-09 12-Feb-09 09-Sep-09 30-Jan-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jan Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN	1337 1398 1906 Asset # 362 787 812 904 1296 1332	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 19-Feb-09 12-Feb-09 09-Sep-09 30-Jan-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm.	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907)	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 26-Mar-10
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jan Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907)	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906	02-Oct-09 12-Feb-09 05-Jul-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907)	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 30-Jan-09 26-Mar-10 05-Jul-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906	02-Oct-09 12-Feb-09 05-Jul-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu)	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 12-Feb-09 12-Feb-09 93-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906	02-Oct-09 12-Feb-09 05-Jul-09 231-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 30-Jan-09 26-Mar-10 05-Jul-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30-Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 19-Feb-09 12-Feb-09 90-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-01 13-Jun-10
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 12,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 12-Feb-09 12-Feb-09 93-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 19-Feb-09 12-Feb-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 all Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C)	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771	02-Oct-09 12-Feb-09 05-Jul-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emissions - 1 Engineer: Joseph Cadiga	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Felecommunications Ports, 21-Feb-09 al	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 15-Feb-09 12-Feb-09 15-Feb-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emissions - 1 Engineer: Joseph Cadiga Manufacturer	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 all Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Telecommunications Ports, 21-Feb-09 all Description	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115	02-Oct-09 12-Feb-09 05-Jul-09 2al Due 31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 30-Jan-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emissions - T Engineer: Joseph Cadiga Manufacturer Emgineer: Joseph Cadiga Manufacturer Emgineer: Joseph Cadiga Manufacturer	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Felecommunications Ports, 21-Feb-09 al Description LISN, 10 kHz-100 MHz	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 12-Feb-09 12-Feb-09 15-Feb-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emissions - 1 Engineer: Joseph Cadiga Manufacturer Emgineer: Joseph Cadiga Manufacturer Emgineer: Joseph Cadiga Manufacturer EMCO Rohde& Schwarz	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Telecommunications Ports, 21-Feb-09 al Description LISN, 10 kHz-100 MHz Pulse Limiter	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 12-Feb-09 12-Feb-09 93-Sep-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emissions - T Engineer: Joseph Cadiga Manufacturer Hewlett Packard	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Felecommunications Ports, 21-Feb-09 al Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2 ESH3 Z2 ESIB7	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10 10-Feb-10 20-Oct-09 19-Nov-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emissions - 1 Engineer: Joseph Cadiga Manufacturer EMCO Rohde& Schwarz Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Telecommunications Ports, 21-Feb-09 al Description LISN, 10 kHz-100 MHz Pulse Limiter	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 15-Feb-09 15-Feb-09 15-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emissions - 1 Engineer: Joseph Cadiga Manufacturer EMCO Rohde& Schwarz Fischer Custom Comm.	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Felecommunications Ports, 21-Feb-09 al Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF Non-Contact Voltage Probe	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2 ESIB7 F-16M	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756 1820	02-Oct-09 12-Feb-09 05-Jul-09 19-Feb-09 19-Feb-09 15-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emissions - T Engineer: Joseph Cadiga Manufacturer EMCO Rohde& Schwarz Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm.	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Felecommunications Ports, 21-Feb-09 al Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2 ESIB7 F-16M	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756 1820	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 15-Feb-09 15-Feb-09 15-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Conducted Emissions - 1 Engineer: Mark Hill	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Felecommunications Ports, 21-Feb-09 al Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF Non-Contact Voltage Probe	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2 ESIB7 F-16M	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756 1820	02-Oct-09 12-Feb-09 05-Jul-09 19-Feb-09 19-Feb-09 15-Feb-09 15-Feb-09 09-Sep-09 30-Jan-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emissions - T Engineer: Joseph Cadiga Manufacturer EMCO Rohde& Schwarz Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Conducted Emissions - T Engineer: Mark Hill Manufacturer	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 1-2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Felecommunications Ports, 21-Feb-09 al Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF Non-Contact Voltage Probe	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2 ESIB7 F-16M F-CVP-1	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756 1820 1958	02-Oct-09 12-Feb-09 05-Jul-09 19-Feb-09 12-Feb-09 15-Feb-09 15-Feb-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 19-Nov-09 Cal Due 22-Feb-09 17-Apr-09 10-Feb-10 26-Mar-10 11-Dec-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Fischer Custom Comm. Conducted Emissions - Tengineer: Joseph Cadiga Manufacturer EMCO Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - Tengineer: Mark Hill Manufacturer Elliott Laboratories	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Telecommunications Ports, 21-Feb-09 al Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF Non-Contact Voltage Probe Telecommunications Ports, 05-Mar-09 Description	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2 ESIB7 F-16M F-CVP-1	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1756 1820 1958	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 12-Feb-09 12-Feb-09 15-Feb-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 17-Apr-09 17-Apr-09 17-Apr-09 11-Dec-09 Cal Due 31-Jul-09
Rohde & Schwarz Rohde& Schwarz Fischer Custom Comm. Conducted Emissions - A Engineer: Chris Groat Manufacturer Elliott Laboratories Hewlett Packard Rohde& Schwarz Solar Electronics Fischer Custom Comm. Rohde & Schwarz Fischer Custom Comm. Radiated Emissions, 30 - Engineer: Joseph Cadiga Manufacturer Hewlett Packard EMCO Sunol Sciences Rohde & Schwarz Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emissions - 1 Engineer: Joseph Cadiga Manufacturer EMCO Rohde& Schwarz Fischer Custom Comm.	Test Receiver, 9 kHz-2750 MHz Pulse Limiter FCC-TLISN-T8-02 (Includes 1907) AC Power and Telecommunications Ports, 29-Jai Description LISN, FCC / CISPR EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Pulse Limiter LISN Non-Contact Voltage Probe Test Receiver, 0.009-2750 MHz Current Probe, RF FCC-TLISN-T8-02 (Includes 1907) 2,000 MHz, 21-Feb-09 al Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Blu) Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple Preamplifier, 100 kHz - 1.3 GHz Felecommunications Ports, 21-Feb-09 al Description LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz Current Probe, RF Non-Contact Voltage Probe Felecommunications Ports, 05-Mar-09 Description LISN, FCC / CISPR	ESCS 30 ESH3 Z2 FCC-TLISN-T8-02 n-09 Model # LISN-4, OATS 8595EM ESH3 Z2 8028-50-TS-24-BNC support F-CVP-1 ESN F-16M FCC-TLISN-T8-02 Model # 8449B 3115 JB3 ESIB7 8564E (84125C) 8447D OPT Model # 3825/2 ESH3 Z2 ESIB7 F-16M F-CVP-1	1337 1398 1906 Asset # 362 787 812 904 1296 1332 1820 1906 Asset # 263 1386 1548 1756 1771 2115 Asset # 1292 1401 1758 1820 1958	02-Oct-09 12-Feb-09 05-Jul-09 Cal Due 31-Jul-09 19-Feb-09 12-Feb-09 12-Feb-09 30-Jan-09 26-Mar-10 05-Jul-09 Cal Due 09-Oct-09 02-Sep-10 13-Jun-10 10-Feb-10 20-Oct-09 17-Apr-09 17-Apr-09 17-Apr-09 10-Feb-10 26-Mar-10 11-Dec-09

EXHIBIT 2: Test Measurement Data

86 Pages

File: R74729 Rev 1 Exhibit Page 2 of 10

EMC Test Date				
Client:	Ruckus Wireless	Job Number:	J73710	
Model:	Dalmatian (7962)	T-Log Number:	T73745	
		Account Manager:	Dean Eriksen	
Contact:	Craig Owens		-	
Emissions Standard(s):	FCC Part 15.247/RSS-210	Class:	В	
Immunity Standard(s):	-	Environment:	-	

For The

Ruckus Wireless

Model

Dalmatian (7962)

Date of Last Test: 2/21/2009

Elliott Adivision of ATA Adi		Ei	MC Test Data
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7962)	T-Log Number:	T73745
		Account Manger:	Dean Eriksen
Contact:	Craig Owens		
Emissions Standard(s):	FCC Part 15.247/RSS-210	Class:	В
Immunity Standard(s):	-	Environment:	-

EUT INFORMATION

General Description

The EUT is an Access Point that is designed to distribute WiFi. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/230 Volts, 50/60 Hz, 0.5 Amps using an external AC/DC adapter. The EUT can also be powered over the POE port.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Ruckus Wireless, Inc.	7962	802.11a/b/g/n Access	0901000003	S9G7962

Other EUT Details

The following power sup	olies are supported in additi	on to any PoE injector or sv	<u>vitch. Ruckus does not supp</u>	ly the PoE supply.
DVE	S024EU1200150	Power Supply	-	-

EUT Antenna (Intentional Radiators Only)

The six antennas (3 for each band) used in the system are internal to the device.

EUT Enclosure

The EUT enclosure is primarily constructed of plastic. It measures approximately 19 cm wide by 15 cm deep by 10 cm high.

Modification History

Mod. #	Test	Date	Modification
1	-	-	No modifications were made to the EUT during testing.

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

A division of			
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7962)	T-Log Number:	T73745
		Account Manger:	Dean Eriksen
Contact:	Craig Owens		
Emissions Standard(s):	FCC Part 15.247/RSS-210	Class:	В
Immunity Standard(s):	-	Environment:	-

Test Configuration #1

The following information was collected during the test session(s).

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
-	-	-	-	-

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	-	Laptop Computer	-	DoC

Cabling and Ports

Port	Connected To	Cable(s)				
		Description Shielded or Unshielded Lengtl				
Ethernet	Laptop	CAT5	Unshielded	3m		
DC Power	AC/DC Adapter	Multiconductor	Shielded	1.5		

EUT Operation During Emissions Tests

During transmit mode testing, the EUT was set to continuously transmit at the desired channel, power, and mode. For receive mode testing, the EUT was configured in a receive only mode.

E		IC An A)	tt
	_	1.67	_	

	An Z(Z/Z) company		
Client:	Ruckus Wireless	Job Number:	J73710
Madalı	Dalmatian (7962)	T-Log Number:	T73745
Model.	Daimatian (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	b mode	low	22	_	Restricted Band Edge	FCC Part 15.209 /	49.9dBµV/m @
Ta	billode	IOW	22		(2390 MHz)	15.247(c)	2386.1MHz (-4.1dB)
1c	b mode	high	22		Restricted Band Edge	FCC Part 15.209 /	46.5dBµV/m @
IC	b mode	High	22	-	(2483.5 MHz)	15.247(c)	2486.4MHz (-7.5dB)
2a	a mode	low	22		Restricted Band Edge	FCC Part 15.209 /	52.6dBµV/m @
Zā	g mode	low	22	-	(2390 MHz)	15.247(c)	2384.2MHz (-1.4dB)
20	a mode	hiah	22		Restricted Band Edge	FCC Part 15.209 /	47.1dBµV/m @
2c	g mode	high	22	-	(2483.5 MHz)	15.247(c)	2483.5MHz (-6.9dB)
20	MSC0	low	22		Restricted Band Edge	FCC Part 15.209 /	73.9dBµV/m @
3a	HT20	low	22	-	(2390 MHz)	15.247(c)	2388.5MHz (-0.1dB)
20	MSC0	h i a h	22		Restricted Band Edge	FCC Part 15.209 /	47.5dBµV/m @
3c	HT20	high	22	-	(2483.5 MHz)	15.247(c)	2485.3MHz (-6.5dB)
40	MSC0	low	21		Restricted Band Edge	FCC Part 15.209 /	53.6dBµV/m @
4a	HT40	low	21	-	(2390 MHz)	15.247(c)	2380.6MHz (-0.4dB)
40	MSC0	h i a h	21		Restricted Band Edge	FCC Part 15.209 /	48.1dBµV/m @
4c	HT40	high	21	-	(2483.5 MHz)	15.247(c)	2485.8MHz (-5.9dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

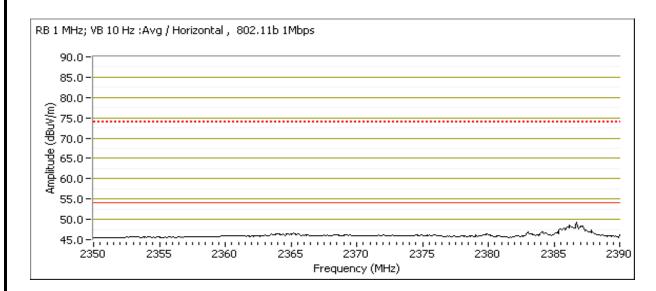
Deviations From The Standard

No deviations were made from the requirements of the standard.

	All DIES Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
wodei.	Dailiduali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

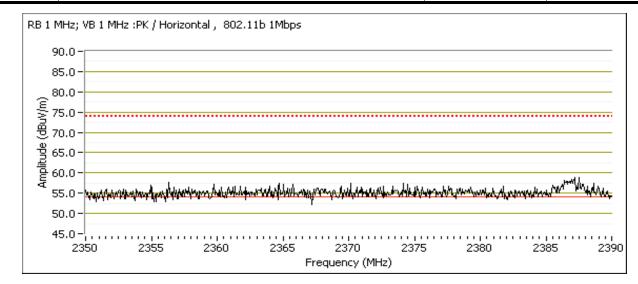
Run #1: Radiated Spurious Emissions, Bandedges, Operating Mode: 802.11b

Date of Test: 11/13/2008 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #1 EUT Voltage: 120V/60Hz


Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 80 %

Run #1a: Low Channel @ 2412 MHz

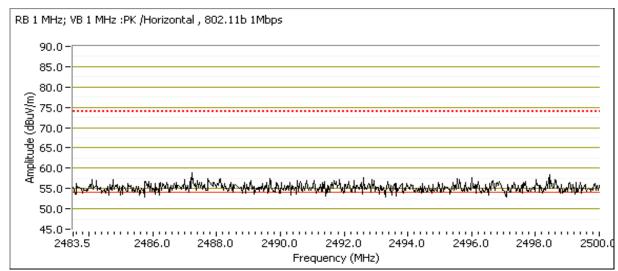

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

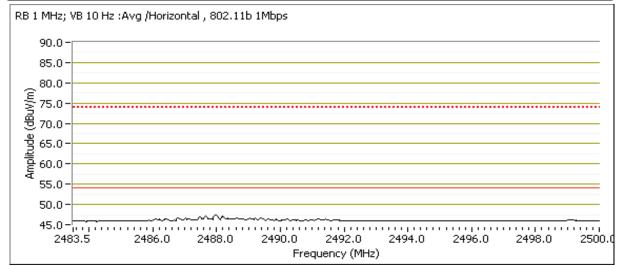
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2413.270	113.0	Н	-	•	AVG	360	1.8	RB 1 MHz; VB: 10 Hz
2413.240	116.2	Н	-	•	PK	360	1.8	RB 1 MHz; VB: 1 MHz
2412.970	109.4	V	-	•	AVG	280	1.4	RB 1 MHz; VB: 10 Hz
2413.870	112.8	V	-	-	PK	280	1.4	RB 1 MHz; VB: 1 MHz

	Till Dill Stormany		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7962)	T-Log Number:	T73745
Model.	Daimatian (1702)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Band Edge Signal Field Strength

-aa -a.g.	orginal i rola	. • • g						
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2386.070	49.9	V	54.0	-4.1	Avg	280	1.4	RB 1 MHz; VB: 10 Hz
2385.980	49.5	Н	54.0	-4.5	Avg	359	1.8	RB 1 MHz; VB: 10 Hz
2385.830	60.3	Н	74.0	-13.7	PK	359	1.8	RB 1 MHz; VB: 1 MHz
2386.910	59.6	V	74.0	-14.4	PK	280	1.4	RB 1 MHz; VB: 1 MHz


Run #1c: High Channel @ 2462 MHz


Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2459.600	109.3	Н	-	-	AVG	360	1.6	RB 1 MHz; VB: 10 Hz
2460.630	112.0	Н	-	-	PK	360	1.6	RB 1 MHz; VB: 1 MHz
2460.500	104.8	V	-	-	AVG	351	1.3	RB 1 MHz; VB: 10 Hz
2460.620	109.3	V	-	-	PK	351	1.3	RB 1 MHz; VB: 1 MHz

	An 2023 company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
wouei.	Dailiduali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

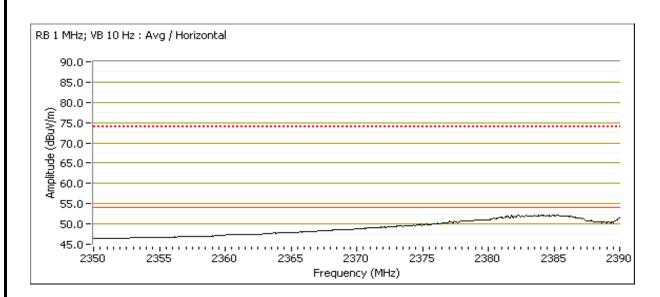
Band Edge Signal Field Strength

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2486.350	46.5	Н	54.0	-7.5	Avg	360	1.6	RB 1 MHz; VB: 10 Hz
2484.370	58.4	Н	74.0	-15.6	PK	360	1.6	RB 1 MHz; VB: 1 MHz
2486.420	46.1	V	54.0	-7.9	Avg	351	1.3	RB 1 MHz; VB: 10 Hz
2486.140	57.9	V	74.0	-16.1	PK	351	1.3	RB 1 MHz; VB: 1 MHz

	All 2022 Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7962)	T-Log Number:	T73745
	Dailiduali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

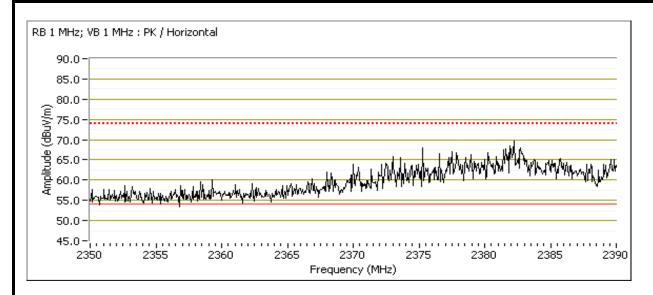
Run #2: Radiated Spurious Emissions, Bandedges, Operating Mode: 802.11g

Config. Used: 1 Date of Test: 11/13/2008 Config Change: None Test Engineer: Rafael Varelas Test Location: SVOATS #1 EUT Voltage: 120V/60Hz


Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 80 %

Run #2a: Low Channel @ 2412 MHz


Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

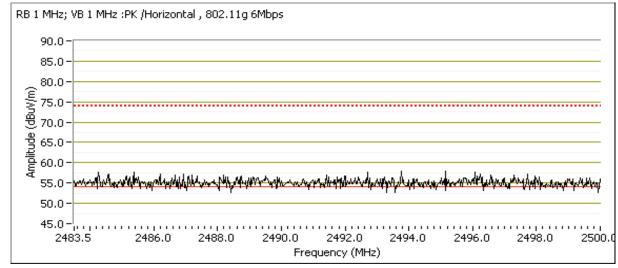
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2413.430	109.3	Н		-	AVG	0	1.8	RB 1 MHz; VB: 10 Hz
2411.220	118.1	Н		-	PK	0	1.8	RB 1 MHz; VB: 1 MHz
2416.220	106.5	V		-	AVG	284	1.4	RB 1 MHz; VB: 10 Hz
2419.560	115.8	V	-	-	PK	284	1.4	RB 1 MHz; VB: 1 MHz

	An DUES company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7042)	T-Log Number:	T73745
	Dalmatian (7962)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Band Edge Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2384.190	52.6	Н	54.0	-1.4	Avg	0	1.8	RB 1 MHz; VB: 10 Hz
2384.420	70.3	Н	74.0	-3.7	PK	0	1.8	RB 1 MHz; VB: 1 MHz
2389.990	52.2	V	54.0	-1.8	Avg	284	1.4	RB 1 MHz; VB: 10 Hz
2389.770	70.2	V	74.0	-3.8	PK	284	1.4	RB 1 MHz; VB: 1 MHz


Run #2c: High Channel @ 2462 MHz


Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2459.580	107.1	Н	-	•	AVG	360	1.6	RB 1 MHz; VB: 10 Hz
2464.540	116.2	Н	-	•	PK	360	1.6	RB 1 MHz; VB: 1 MHz
2458.870	99.7	V	-	-	AVG	353	1.8	RB 1 MHz; VB: 10 Hz
2455.170	109.4	V	-	-	PK	353	1.8	RB 1 MHz; VB: 1 MHz

	All 2022 Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7962)	T-Log Number:	T73745
	Dailiduali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

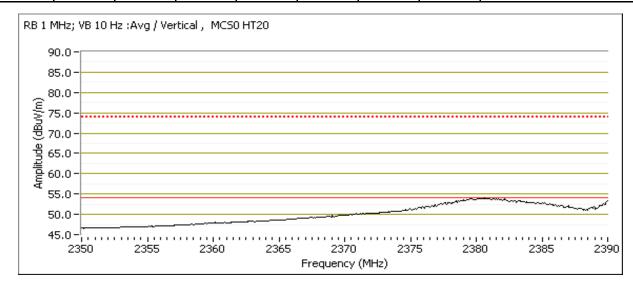
Band Edge Signal Field Strength

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.500	47.1	Н	54.0	-6.9	Avg	360	1.6	RB 1 MHz; VB: 10 Hz
2484.040	59.5	Н	74.0	-14.5	PK	360	1.6	RB 1 MHz; VB: 1 MHz
2483.500	46.4	V	54.0	-7.6	Avg	352	1.8	RB 1 MHz; VB: 10 Hz
2485.210	58.1	V	74.0	-15.9	PK	352	1.8	RB 1 MHz; VB: 1 MHz

	All DIES Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7962)	T-Log Number:	T73745
	Dailidiali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

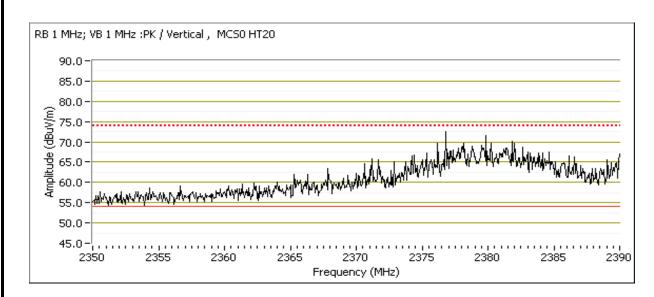
Run #3: Radiated Spurious Emissions, Bandedges, Operating Mode: MSC0 HT20

Date of Test: 11/13/2008 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #1 EUT Voltage: 120V/60Hz


Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 80 %

Run #3a: Low Channel @ 2412 MHz

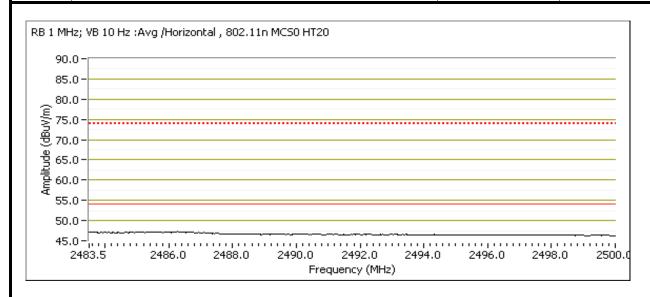

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

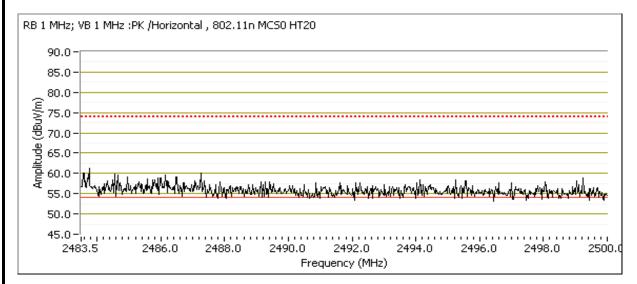
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2418.710	105.7	V	-	•	AVG	284	1.4	RB 1 MHz; VB: 10 Hz
2417.950	116.3	V	-	•	PK	284	1.4	RB 1 MHz; VB: 1 MHz
2416.700	109.7	Н	-	•	AVG	0	1.8	RB 1 MHz; VB: 10 Hz
2416.370	118.3	Н	-	-	PK	0	1.8	RB 1 MHz; VB: 1 MHz

	All DEED Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
Model.	Daimatian (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Band Edge Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2388.510	73.9	V	74.0	-0.1	PK	284	1.4	RB 1 MHz; VB: 1 MHz
2389.770	53.5	V	54.0	-0.5	Avg	284	1.4	RB 1 MHz; VB: 10 Hz
2389.730	53.1	Н	54.0	-0.9	Avg	1	1.8	RB 1 MHz; VB: 10 Hz
2389.030	73.0	Н	74.0	-1.0	PK	1	1.8	RB 1 MHz; VB: 1 MHz


Run #3c: High Channel @ 2462 MHz


Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2462.370	99.4	V		-	AVG	352	1.8	RB 1 MHz; VB: 10 Hz
2463.080	108.9	V		-	PK	352	1.8	RB 1 MHz; VB: 1 MHz
2462.290	108.4	Н	-	-	AVG	360	1.6	RB 1 MHz; VB: 10 Hz
2457.580	116.4	Н	-	-	PK	360	1.6	RB 1 MHz; VB: 1 MHz

	An DUES company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7042)	T-Log Number:	T73745
	Dalmatian (7962)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

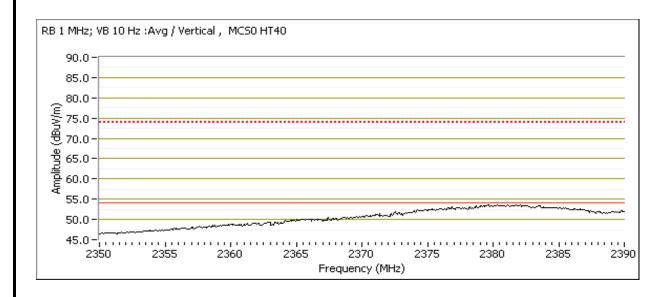
Band Edge Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2485.340	47.5	Н	54.0	-6.5	Avg	360	1.6	RB 1 MHz; VB: 10 Hz
2484.810	46.6	V	54.0	-7.4	Avg	352	1.8	RB 1 MHz; VB: 10 Hz
2484.850	63.7	Н	74.0	-10.3	PK	360	1.6	RB 1 MHz; VB: 1 MHz
2486.270	60.0	V	74.0	-14.0	PK	352	1.8	RB 1 MHz; VB: 1 MHz

	All 2022 Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7962)	T-Log Number:	T73745
	Dailiduali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #4: Radiated Spurious Emissions, Bandedges, Operating Mode: MSC0 HT40

Date of Test: 11/13/2008 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #1 EUT Voltage: 120V/60Hz


Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 80 %

Run #1a: Low Channel @ 2422 MHz

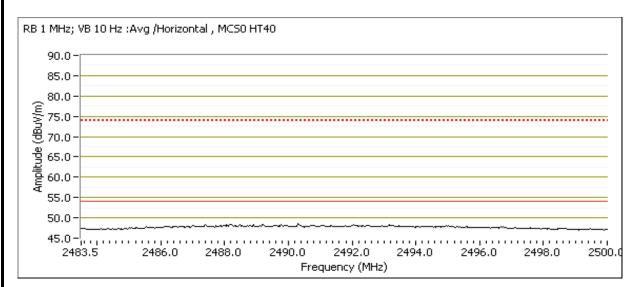
Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

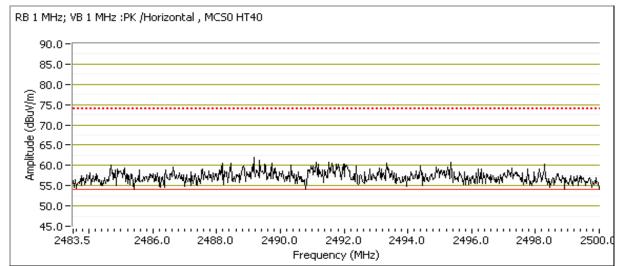
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2428.730	103.8	V	-	-	AVG	283	1.3	RB 1 MHz; VB: 10 Hz
2428.120	114.4	V	-	-	PK	283	1.3	RB 1 MHz; VB: 1 MHz
2431.730	105.5	Н	-	-	AVG	360	1.8	RB 1 MHz; VB: 10 Hz
2430.900	113.8	Н	-	-	PK	360	1.8	RB 1 MHz; VB: 1 MHz

	All DIES Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7962)	T-Log Number:	T73745
	Dailidiali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Band Edge Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2380.560	53.6	V	54.0	-0.4	Avg	283	1.3	RB 1 MHz; VB: 10 Hz
2380.360	53.5	Н	54.0	-0.5	Avg	360	1.8	RB 1 MHz; VB: 10 Hz
2387.900	73.4	V	74.0	-0.6	PK	283	1.3	RB 1 MHz; VB: 1 MHz
2380.330	73.4	V	74.0	-0.6	PK	360	1.8	RB 1 MHz; VB: 1 MHz


Run #1c: High Channel @ 2452 MHz


Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209 /	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2435.920	97.8	V	-	-	AVG	351	1.6	RB 1 MHz; VB: 10 Hz
2434.580	108.7	V	-	-	PK	351	1.6	RB 1 MHz; VB: 1 MHz
2452.350	105.4	Н	-	-	AVG	360	1.6	RB 1 MHz; VB: 10 Hz
2435.700	112.2	Н	-	-	PK	360	1.6	RB 1 MHz; VB: 1 MHz

	· · · · · · · · · · · · · · · · · · ·		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
Model.	Dailialiali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Band Edge Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2485.780	48.1	Н	54.0	-5.9	Avg	360	1.6	RB 1 MHz; VB: 10 Hz
2484.680	47.5	V	54.0	-6.5	Avg	351	1.6	RB 1 MHz; VB: 10 Hz
2486.470	62.2	Н	74.0	-11.8	PK	360	1.6	RB 1 MHz; VB: 1 MHz
2484.860	59.5	V	74.0	-14.5	PK	351	1.6	RB 1 MHz; VB: 1 MHz

EII	iott An AZAS company
-----	----------------------

	All ZAZZS company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
Model.	Dailidiali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
4			00		Radiated Emissions,	FCC Part 15.209 /	53.1dBµV/m @
1a	b mode	low	22	-	1 - 26 GHz	15.247(c)	4823.9MHz (-0.9dB)
11.	h a al a		22		Radiated Emissions,	FCC Part 15.209 /	53.9dBµV/m @
1b	b mode	center	22	-	1 - 26 GHz	15.247(c)	4874.1MHz (-0.1dB)
10	h mada	hiah	22		Radiated Emissions,	FCC Part 15.209 /	53.3dBµV/m @
1c	b mode	high	22	-	1 - 26 GHz	15.247(c)	4924.0MHz (-0.7dB)
20	a modo	low	22		Radiated Emissions,	FCC Part 15.209 /	52.6dBµV/m @
2a	g mode	low	22	-	1 - 26 GHz	15.247(c)	7237.2MHz (-1.4dB)
2b	a modo	center	22		Radiated Emissions,	FCC Part 15.209 /	53.5dBµV/m @
20	g mode	center	ZZ	-	1 - 26 GHz	15.247(c)	7311.7MHz (-0.5dB)
2c	a modo	high	22		Radiated Emissions,	FCC Part 15.209 /	52.6dBµV/m @
20	g mode	high	ZZ	-	1 - 26 GHz	15.247(c)	7385.3MHz (-1.4dB)
3a	802.11n	low	22		Radiated Emissions,	FCC Part 15.209 /	51.1dBµV/m @
Эđ	20MHz	IOW	22	-	1 - 26 GHz	15.247(c)	7237.1MHz (-2.9dB)
3b	802.11n	center	22		Radiated Emissions,	FCC Part 15.209 /	53.2dBµV/m @
SU	20MHz	center	22	-	1 - 26 GHz	15.247(c)	7311.1MHz (-0.8dB)
3c	802.11n	high	22		Radiated Emissions,	FCC Part 15.209 /	52.7dBµV/m @
30	20MHz	High	22	-	1 - 26 GHz	15.247(c)	7386.3MHz (-1.3dB)
4a	802.11n	low	21		Radiated Emissions,	FCC Part 15.209 /	37.9dBµV/m @
4a	40MHz	IOW	21	-	1 - 26 GHz	15.247(c)	7266.8MHz (-16.1dB)
4b	802.11n	center	21		Radiated Emissions,	FCC Part 15.209 /	40.2dBµV/m @
40	40MHz	CEITTEI	Z I	-	1 - 26 GHz	15.247(c)	7311.5MHz (-13.8dB)
4c	802.11n	high	21		Radiated Emissions,	FCC Part 15.209 /	42.4dBµV/m @
46	40MHz	High	۷1	-	1 - 26 GHz	15.247(c)	7357.4MHz (-11.6dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

	An ZAZZZZ company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
Model.	Dalifiduali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: Radiated Spurious Emissions, 30 - 26000 MHz. Operating Mode: 802.11b

Date of Test: 11/23/2008 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

Ambient Conditions: Temperature: 11 °C

Rel. Humidity: 82 %

Run #1a: Low Channel @ 2412 MHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4823.850	53.1	V	54.0	-0.9	AVG	223	1.3	RB 1 MHz; VB: 10 Hz	
4824.020	49.9	Н	54.0	-4.1	AVG	35	2.0	RB 1 MHz; VB: 10 Hz	
9648.040	44.3	Н	54.0	-9.7	AVG	226	1.3	RB 1 MHz; VB: 10 Hz	
12061.190	40.5	Н	54.0	-13.5	AVG	51	1.8	RB 1 MHz; VB: 10 Hz	
7236.980	36.0	Н	54.0	-18.0	AVG	257	2.0	RB 1 MHz; VB: 10 Hz	
4824.060	55.0	V	74.0	-19.0	PK	223	1.3	RB 1 MHz; VB: 1 MHz	
4823.940	53.2	Н	74.0	-20.8	PK	35	2.0	RB 1 MHz; VB: 1 MHz	
9648.440	52.0	Н	74.0	-22.0	PK	226	1.3	RB 1 MHz; VB: 1 MHz	
12059.070	51.4	Н	74.0	-22.6	PK	51	1.8	RB 1 MHz; VB: 1 MHz	
7234.520	47.5	Н	74.0	-26.5	PK	257	2.0	RB 1 MHz; VB: 1 MHz	

	All 2/22 Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
wodei.	Dailidiali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #1b: Center Channel @ 2437 MHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4874.070	53.9	Н	54.0	-0.1	AVG	305	1.7	RB 1 MHz; VB: 10 Hz
4874.040	53.6	٧	54.0	-0.4	AVG	227	1.3	RB 1 MHz; VB: 10 Hz
7312.080	42.2	V	54.0	-11.8	AVG	185	1.3	RB 1 MHz; VB: 10 Hz
7311.910	38.4	Н	54.0	-15.6	AVG	189	1.7	RB 1 MHz; VB: 10 Hz
4874.290	56.7	V	74.0	-17.3	PK	227	1.3	RB 1 MHz; VB: 1 MHz
4874.060	55.4	Н	74.0	-18.6	PK	305	1.7	RB 1 MHz; VB: 1 MHz
7309.720	50.3	V	74.0	-23.7	PK	185	1.3	RB 1 MHz; VB: 1 MHz
7311.610	48.2	Н	74.0	-25.8	PK	189	1.7	RB 1 MHz; VB: 1 MHz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Run #1c: High Channel @ 2462 MHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4924.020	53.3	V	54.0	-0.7	AVG	231	1.3	RB 1 MHz; VB: 10 Hz
4924.040	53.0	Н	54.0	-1.0	AVG	177	1.8	RB 1 MHz; VB: 10 Hz
7386.910	45.2	V	54.0	-8.8	AVG	185	1.0	RB 1 MHz; VB: 10 Hz
7386.850	39.5	Н	54.0	-14.5	AVG	29	1.4	RB 1 MHz; VB: 10 Hz
4924.040	55.2	V	74.0	-18.8	PK	231	1.3	RB 1 MHz; VB: 1 MHz
4924.060	54.9	Н	74.0	-19.1	PK	177	1.8	RB 1 MHz; VB: 1 MHz
7387.180	52.5	V	74.0	-21.5	PK	185	1.0	RB 1 MHz; VB: 1 MHz
7386.930	49.0	Н	74.0	-25.0	PK	29	1.4	RB 1 MHz; VB: 1 MHz

	All ZAZZS company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
Model.	Dailidiali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2: Radiated Spurious Emissions, 30 - 26000 MHz. Operating Mode: 802.11g

Date of Test: 11/23/2008 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

Ambient Conditions: Temperature: 11 °C

Rel. Humidity: 82 %

Run #2a: Low Channel @ 2412 MHz

itaii #2a. E	Adit #Ed. Edw Gridinici & Ette Wite									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
7237.230	52.6	V	54.0	-1.4	AVG	190	1.0	MHz; VB: 10 Hz		
7236.290	49.5	Н	54.0	-4.5	AVG	245	1.4	MHz; VB: 10 Hz		
7237.150	66.5	V	74.0	-7.5	PK	190	1.0	MHz; VB: 1 MHz		
7236.870	64.8	Н	74.0	-9.2	PK	245	1.4	MHz; VB: 1 MHz		
4823.630	42.6	V	54.0	-11.4	AVG	223	1.2	MHz; VB: 10 Hz		
4824.620	42.2	Н	54.0	-11.8	AVG	36	2.0	MHz; VB: 10 Hz		
4825.100	56.0	Н	74.0	-18.0	PK	36	2.0	MHz; VB: 1 MHz		
4825.030	55.6	V	74.0	-18.4	PK	223	1.2	MHz; VB: 1 MHz		

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Run #2b: Center Channel @ 2437 MHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7311.670	53.5	V	54.0	-0.5	AVG	187	1.3	RB 1 MHz; VB: 10 Hz
7312.300	50.0	Н	54.0	-4.0	AVG	252	1.5	RB 1 MHz; VB: 10 Hz
7311.890	69.3	V	74.0	-4.7	PK	187	1.3	RB 1 MHz; VB: 1 MHz
7311.310	64.7	Н	74.0	-9.3	PK	252	1.5	RB 1 MHz; VB: 1 MHz
4874.000	42.4	V	54.0	-11.6	AVG	225	1.3	RB 1 MHz; VB: 10 Hz
4875.010	40.3	Н	54.0	-13.7	AVG	319	2.0	RB 1 MHz; VB: 10 Hz
4873.730	54.7	V	74.0	-19.3	PK	225	1.3	RB 1 MHz; VB: 1 MHz
4875.120	51.8	Н	74.0	-22.2	PK	319	2.0	RB 1 MHz; VB: 1 MHz

	All ZAZZS company		
Client:	Ruckus Wireless	Job Number:	J73710
Madali	Dalmatian (7962)	T-Log Number:	T73745
wodei.	Dailidiali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2c: High Channel @ 2462 MHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7385.250	52.6	V	54.0	-1.4	AVG	185	1.1	RB 1 MHz; VB: 10 Hz
7386.900	71.7	V	74.0	-2.3	PK	185	1.1	RB 1 MHz; VB: 1 MHz
7386.580	46.1	Н	54.0	-7.9	AVG	30	1.4	RB 1 MHz; VB: 10 Hz
7386.790	65.1	Н	74.0	-8.9	PK	30	1.4	RB 1 MHz; VB: 1 MHz
4923.030	40.2	V	54.0	-13.8	AVG	234	1.5	RB 1 MHz; VB: 10 Hz
4922.830	39.1	Н	54.0	-14.9	AVG	180	1.8	RB 1 MHz; VB: 10 Hz
4924.690	53.1	Н	74.0	-20.9	PK	180	1.8	RB 1 MHz; VB: 1 MHz
4922.900	52.6	V	74.0	-21.4	PK	234	1.5	RB 1 MHz; VB: 1 MHz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Run #3: Radiated Spurious Emissions, 30 - 26000 MHz. Operating Mode: 802.11n 20MHz, MCS0 HT20

Date of Test: 11/23/2008 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

Ambient Conditions: Temperature: 11 °C Rel. Humidity: 82 %

Run #3a: Low Channel @ 2412 MHz

rtair # oar E	on onamo	9 L IL WII	_					
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7237.060	51.1	V	54.0	-2.9	AVG	221	1.4	RB 1 MHz; VB: 10 Hz
7236.960	50.1	Н	54.0	-3.9	AVG	248	1.4	RB 1 MHz; VB: 10 Hz
7237.420	66.2	V	74.0	-7.8	PK	221	1.4	RB 1 MHz; VB: 1 MHz
7235.600	64.1	Н	74.0	-9.9	PK	248	1.4	RB 1 MHz; VB: 1 MHz
4823.330	42.4	V	54.0	-11.6	AVG	106	1.0	RB 1 MHz; VB: 10 Hz
4824.870	38.2	Н	54.0	-15.8	AVG	222	1.4	RB 1 MHz; VB: 10 Hz
4824.230	54.6	V	74.0	-19.4	PK	106	1.0	RB 1 MHz; VB: 1 MHz
4823.150	49.8	Н	74.0	-24.2	PK	222	1.4	RB 1 MHz; VB: 1 MHz

Elliott EMC Test Data Client: Ruckus Wireless Job Number: J73710 T-Log Number: T73745 Model: Dalmatian (7962) Account Manager: Dean Eriksen Contact: Craig Owens Standard: FCC Part 15.247/RSS-210 Class: N/A Run #3b: Center Channel @ 2437 MHz Pol 15.209 / 15.247 Level Detector Azimuth Comments Frequency Height Pk/QP/Avg MHz dBµV/m v/h Limit Margin degrees meters 7311.060 53.2 ٧ 54.0 -0.8 AVG 190 1.0 RB 1 MHz; VB: 10 Hz 7311.430 49.7 Н 54.0 -4.3 AVG 253 1.5 RB 1 MHz; VB: 10 Hz 7309.510 68.9 ٧ 74.0 -5.1 PK 190 1.0 RB 1 MHz; VB: 1 MHz 7312.420 64.7 Н 74.0 -9.3 PK 253 1.5 RB 1 MHz; VB: 1 MHz 4872.770 39.4 Η 54.0 -14.6 **AVG** 311 1.5 RB 1 MHz; VB: 10 Hz 4872.880 AVG RB 1 MHz; VB: 10 Hz 38.5 ٧ 54.0 -15.5 231 1.2 4873.680 51.1 Н 74.0 -22.9 PΚ 311 1.5 RB 1 MHz; VB: 1 MHz 4872.810 V PK 231 1.2 RB 1 MHz; VB: 1 MHz 51.0 74.0 -23.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the Note 1: level of the fundamental and measured in 100kHz. Signal is not in a restricted band but the more stringent restricted band limit was used. Note 2: Run #3c: High Channel @ 2462 MHz 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz Limit Pk/QP/Avg $dB\mu V/m$ v/h Margin degrees meters 7386.270 52.7 ٧ 54.0 -1.3 AVG 181 1.4 RB 1 MHz; VB: 10 Hz 7385.730 49.3 Н 54.0 -4.7 **AVG** 112 1.4 RB 1 MHz; VB: 10 Hz 7384.670 68.5 ٧ 74.0 -5.5 PK 181 1.4 RB 1 MHz; VB: 1 MHz 7386.100 64.5 Н 74.0 -9.5 PΚ 112 1.4 RB 1 MHz; VB: 1 MHz 4922.540 39.0 ٧ 54.0 -15.0 **AVG** 357 1.0 RB 1 MHz; VB: 10 Hz

Note 1.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
Note 1:	level of the fundamental and measured in 100kHz.

AVG

PΚ

PΚ

188

357

188

1.3

1.0

1.3

RB 1 MHz; VB: 10 Hz

RB 1 MHz; VB: 1 MHz

RB 1 MHz; VB: 1 MHz

-15.5

-23.0

-24.6

54.0

74.0

74.0

4924.900

4923.770

4923.520

38.5

51.0

49.4

Н

٧

Н

	All 2022 Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
Model.	Dailidiali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #4: Radiated Spurious Emissions, 30 - 26000 MHz. Operating Mode: 802.11n 40MHz, MCS0 HT40

Date of Test: 11/23/2008 Config. Used: 1 Config Change: None Test Engineer: Rafael Varelas Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

Ambient Conditions: Temperature: 11 °C

Rel. Humidity: 82 %

Run #4a: Low Channel @ 2422 MHz

	on oname							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7266.770	37.9	V	54.0	-16.1	AVG	191	1.0	RB 1 MHz; VB: 10 Hz
7266.830	37.2	Н	54.0	-16.8	AVG	260	1.4	RB 1 MHz; VB: 10 Hz
4845.350	34.0	V	54.0	-20.0	AVG	265	1.7	RB 1 MHz; VB: 10 Hz
4845.310	32.5	Н	54.0	-21.5	AVG	340	1.0	RB 1 MHz; VB: 10 Hz
7265.480	51.9	V	74.0	-22.1	PK	191	1.0	RB 1 MHz; VB: 1 MHz
4845.450	50.3	V	74.0	-23.7	PK	265	1.7	RB 1 MHz; VB: 1 MHz
7267.250	50.1	Н	74.0	-23.9	PK	260	1.4	RB 1 MHz; VB: 1 MHz
4844.650	43.6	Н	74.0	-30.4	PK	340	1.0	RB 1 MHz; VB: 1 MHz

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the Note 1: level of the fundamental and measured in 100kHz.

Signal is not in a restricted band but the more stringent restricted band limit was used. Note 2:

Run #4b: Center Channel @ 2437 MHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7311.530	40.2	Н	54.0	-13.8	AVG	200	1.3	RB 1 MHz; VB: 10 Hz
7311.710	39.2	V	54.0	-14.8	AVG	44	1.0	RB 1 MHz; VB: 10 Hz
4875.500	33.4	V	54.0	-20.6	AVG	117	1.7	RB 1 MHz; VB: 10 Hz
4875.450	33.2	Н	54.0	-20.8	AVG	238	1.0	RB 1 MHz; VB: 10 Hz
7311.790	53.1	Н	74.0	-20.9	PK	200	1.3	RB 1 MHz; VB: 1 MHz
7311.290	48.7	V	74.0	-25.3	PK	44	1.0	RB 1 MHz; VB: 1 MHz
4874.900	44.2	V	74.0	-29.8	PK	117	1.7	RB 1 MHz; VB: 1 MHz
4874.730	44.1	Н	74.0	-29.9	PK	238	1.0	RB 1 MHz; VB: 1 MHz

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the Note 1: level of the fundamental and measured in 100kHz. Signal is not in a restricted band but the more stringent restricted band limit was used.

Note 2:

Client:	Ruckus Wire	T company						Job Number:	J73710
								Log Number:	T73745
Model:	Dalmatian (7	962)				Dean Eriksen			
Contact:	Craig Owens	<u> </u>						<u> </u>	
	t: FCC Part 15.247/RSS-210 Class: N/A								
	igh Channel								
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7357.370	42.4	V	54.0	-11.6	AVG	192	1.4	RB 1 MHz; \	VB: 10 Hz
7355.530	36.7	Н	54.0	-17.3	AVG	0	1.0	RB 1 MHz; \	√B: 10 Hz
7357.260	55.6	V	74.0	-18.4	PK	192	1.4	RB 1 MHz; \	VB: 1 MHz
4905.450	33.4	V	54.0	-20.6	AVG	230	1.0	RB 1 MHz; \	√B: 10 Hz
4905.020	32.3	Н	54.0	-21.7	AVG	360	1.7	RB 1 MHz; \	√B: 10 Hz
7357.480	47.7	Н	74.0	-26.3	PK	0	1.0	RB 1 MHz; \	VB: 1 MHz
4904.210	44.8	V	74.0	-29.2	PK	230	1.0	RB 1 MHz; \	VB: 1 MHz
4903.540	43.7	Н	74.0	-30.3	PK	360	1.7	RB 1 MHz; \	VB: 1 MHz

	An DUZ Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
iviouei.	Daimatian (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results - Device Operating in the 5725 - 5850 MHz Band

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	a mode	low	21.5		Radiated Emissions,	FCC Part 15.209 /	53.9dBµV/m @
Id	a mode	IOW	21.5	-	1 - 40GHz	15.247(c)	11489.2MHz (-0.1dB)
1b	a mode	center	21.5		Radiated Emissions,	FCC Part 15.209 /	51.8dBµV/m @
ID	a mode	center	21.3	-	1 - 40GHz	15.247(c)	11569.3MHz (-2.2dB)
1c	a mada	high	21 5	-	Radiated Emissions,	FCC Part 15.209 /	51.8dBµV/m @
IC.	a mode	high	21.5		1 - 40GHz	15.247(c)	11648.9MHz (-2.2dB)
2a	802.11n	low	21.5		Radiated Emissions,	FCC Part 15.209 /	53.9dBµV/m @
Za	20MHz	low	21.5	-	1 - 40GHz	15.247(c)	11489.2MHz (-0.1dB)
2b	802.11n	aontor	21 E		Radiated Emissions,	FCC Part 15.209 /	52.6dBµV/m @
20	20MHz	center	21.5	-	1 - 40GHz	15.247(c)	11568.6MHz (-1.4dB)
2c	802.11n	hiah	21 E		Radiated Emissions,	FCC Part 15.209 /	51.4dBµV/m @
20	20MHz	high	21.5	-	1 - 40GHz	15.247(c)	11648.7MHz (-2.6dB)
3a	802.11n	low	20 E		Radiated Emissions,	FCC Part 15.209 /	50.3dBµV/m @
38	40MHz	low	20.5	-	1 - 40GHz	15.247(c)	11509.7MHz (-3.7dB)
3b	802.11n	aontor	20 E		Radiated Emissions,	FCC Part 15.209 /	49.1dBµV/m @
30	40MHz	center	20.5	-	1 - 40GHz	15.247(c)	11569.4MHz (-4.9dB)
20	802.11n	hiah	20 E		Radiated Emissions,	FCC Part 15.209 /	49.2dBµV/m @
3c	40MHz	high	20.5	-	1 - 40GHz	15.247(c)	11609.9MHz (-4.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	All DIES Company		
Client:	Ruckus Wireless	Job Number:	J73710
Madali	Dalmatian (7962)	T-Log Number:	T73745
wodei.	Dailidiali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #1: Radiated Spurious Emissions, 30 - 40000 MHz. Operating Mode: 802.11a

Date of Test: 2/4/2009 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

Ambient Conditions: Temperature: 11 °C

Rel. Humidity: 56 %

Run #1a: Low Channel @ 5745 MHz

Power Setting = 21.5dbm

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11489.180	53.9	Н	54.0	-0.1	Avg	60	1.2	RB 1 MHz; VB: 10 Hz
11489.230	51.6	V	54.0	-2.4	Avg	20	1.6	RB 1 MHz; VB: 10 Hz
11489.970	67.8	Н	74.0	-6.2	PK	60	1.2	RB 1 MHz; VB: 1 MHz
11490.590	66.0	V	74.0	-8.0	PK	20	1.6	RB 1 MHz; VB: 1 MHz
17233.500	45.9	Н	54.0	-8.1	AVG	9	1.0	RB 1 MHz; VB: 10 Hz
17233.500	45.6	V	54.0	-8.4	AVG	66	1.0	RB 1 MHz; VB: 10 Hz
17235.220	57.7	Н	74.0	-16.3	PK	9	1.0	RB 1 MHz; VB: 1 MHz
17233.740	56.7	V	74.0	-17.3	PK	66	1.0	RB 1 MHz; VB: 1 MHz

ı	Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
ı	NOIC I.	level of the fundamental and measured in 100kHz.
ı	Note 2:	Signal is not in a restricted band but the more stringent restricted band limit was used.

	All DIES Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
wodel.	Dailialiali (1702)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #1b: Center Channel @ 5785 MHz

Power Setting = 21.5dbm

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.340	51.8	Н	54.0	-2.2	AVG	53	1.1	RB 1 MHz; VB: 10 Hz
11568.940	50.7	V	54.0	-3.3	Avg	12	1.6	RB 1 MHz; VB: 10 Hz
17353.500	47.1	V	54.0	-6.9	AVG	329	1.0	RB 1 MHz; VB: 10 Hz
17353.500	46.5	Н	54.0	-7.5	AVG	93	1.0	RB 1 MHz; VB: 10 Hz
11570.120	64.2	V	74.0	-9.8	PK	12	1.6	RB 1 MHz; VB: 1 MHz
11568.910	64.0	Н	74.0	-10.0	PK	53	1.1	RB 1 MHz; VB: 1 MHz
17355.240	58.2	V	74.0	-15.8	PK	329	1.0	RB 1 MHz; VB: 1 MHz
17353.880	57.5	Н	74.0	-16.5	PK	93	1.0	RB 1 MHz; VB: 1 MHz
								•

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Run #1c: High Channel @ 5825 MHz

Power Setting = 21.5dbm

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11648.890	51.8	Н	54.0	-2.2	AVG	47	1.2	RB 1 MHz; VB: 10 Hz
11648.960	51.6	V	54.0	-2.4	AVG	3	1.0	RB 1 MHz; VB: 10 Hz
17473.510	49.9	Н	54.0	-4.1	AVG	123	1.4	RB 1 MHz; VB: 10 Hz
17473.510	49.3	V	54.0	-4.7	AVG	122	1.0	RB 1 MHz; VB: 10 Hz
11651.130	64.6	V	74.0	-9.4	PK	3	1.0	RB 1 MHz; VB: 1 MHz
17474.220	64.3	Н	74.0	-9.7	PK	123	1.4	RB 1 MHz; VB: 1 MHz
11650.770	64.0	Н	74.0	-10.0	PK	47	1.2	RB 1 MHz; VB: 1 MHz
17474.460	61.4	V	74.0	-12.6	PK	122	1.0	RB 1 MHz; VB: 1 MHz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

	All 2022 Company		
Client:	Ruckus Wireless	Job Number:	J73710
Modol:	Dalmatian (7962)	T-Log Number:	T73745
Model.	Daimatian (1702)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2: Radiated Spurious Emissions, 30 - 40000 MHz. Operating Mode: 802.11n 20MHz, MCS0 HT20

Date of Test: 2/4/2009 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

Ambient Conditions:Temperature:11 °CRel. Humidity:56 %

Run #2a: Low Channel @ 5745 MHz

Power Setting = 21.5dbm

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11489.230	53.9	Н	54.0	-0.1	Avg	60	1.2	RB 1 MHz; VB: 10 Hz
11489.250	52.0	V	54.0	-2.0	Avg	20	1.6	RB 1 MHz; VB: 10 Hz
11489.580	67.3	Н	74.0	-6.7	PK	60	1.2	RB 1 MHz; VB: 1 MHz
17233.550	46.0	Н	54.0	-8.0	AVG	9	1.0	RB 1 MHz; VB: 10 Hz
11489.550	65.8	V	74.0	-8.2	PK	20	1.6	RB 1 MHz; VB: 1 MHz
17233.500	45.8	V	54.0	-8.2	AVG	66	1.0	RB 1 MHz; VB: 10 Hz
17234.720	57.5	Н	74.0	-16.5	PK	9	1.0	RB 1 MHz; VB: 1 MHz
17233.830	56.8	V	74.0	-17.2	PK	66	1.0	RB 1 MHz; VB: 1 MHz

Note 1.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
Note 1:	level of the fundamental and measured in 100kHz.
Note 2:	Signal is not in a restricted band but the more stringent restricted band limit was used.

	All DIES Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
wodel.	Dailialiali (1702)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2b: Center Channel @ 5785 MHz

Power Setting = 21.5dbm

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11568.590	52.6	Н	54.0	-1.4	AVG	53	1.1	RB 1 MHz; VB: 10 Hz
11569.040	52.6	V	54.0	-1.4	AVG	12	1.6	RB 1 MHz; VB: 10 Hz
17353.500	47.2	V	54.0	-6.8	AVG	329	1.0	RB 1 MHz; VB: 10 Hz
17353.500	46.8	Н	54.0	-7.2	AVG	93	1.0	RB 1 MHz; VB: 10 Hz
11569.080	64.8	Н	74.0	-9.2	PK	53	1.1	RB 1 MHz; VB: 1 MHz
11569.500	64.6	V	74.0	-9.4	PK	12	1.6	RB 1 MHz; VB: 1 MHz
17353.820	59.1	V	74.0	-14.9	PK	329	1.0	RB 1 MHz; VB: 1 MHz
17353.550	58.0	Н	74.0	-16.0	PK	93	1.0	RB 1 MHz; VB: 1 MHz
								•

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Run #2c: High Channel @ 5825 MHz

Power Setting = 21.5dbm

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11648.650	51.4	Н	54.0	-2.6	AVG	47	1.2	RB 1 MHz; VB: 10 Hz
11648.540	50.6	V	54.0	-3.4	AVG	3	1.0	RB 1 MHz; VB: 10 Hz
17473.500	49.7	Н	54.0	-4.3	AVG	123	1.4	RB 1 MHz; VB: 10 Hz
17473.500	48.5	V	54.0	-5.5	AVG	122	1.0	RB 1 MHz; VB: 10 Hz
11649.620	63.3	Н	74.0	-10.7	PK	47	1.2	RB 1 MHz; VB: 1 MHz
11649.300	63.0	V	74.0	-11.0	PK	3	1.0	RB 1 MHz; VB: 1 MHz
17475.800	63.0	Н	74.0	-11.0	PK	123	1.4	RB 1 MHz; VB: 1 MHz
17473.630	60.4	V	74.0	-13.6	PK	122	1.0	RB 1 MHz; VB: 1 MHz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

	All Details Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7962)	T-Log Number:	T73745
Model.	Dailiduali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #3: Radiated Spurious Emissions, 30 - 40000 MHz. Operating Mode: 802.11n 40MHz, MCS0 HT40

Date of Test: 2/4/2009 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

Ambient Conditions: Temperature: 11 °C Rel. Humidity: 56 %

Run #3a: Low Channel @ 5755 MHz

	Turn out I on ordanior - 0700 initi							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11509.690	50.3	V	54.0	-3.7	AVG	0	1.6	RB 1 MHz; VB: 10 Hz
11509.830	48.0	Н	54.0	-6.0	AVG	34	1.2	RB 1 MHz; VB: 10 Hz
17263.510	46.0	V	54.0	-8.0	AVG	179	1.2	RB 1 MHz; VB: 10 Hz
17263.500	45.8	Н	54.0	-8.2	AVG	205	1.0	RB 1 MHz; VB: 10 Hz
11509.650	62.3	V	74.0	-11.7	PK	0	1.6	RB 1 MHz; VB: 1 MHz
11507.970	58.9	Н	74.0	-15.1	PK	34	1.2	RB 1 MHz; VB: 1 MHz
17264.370	57.3	V	74.0	-16.7	PK	179	1.2	RB 1 MHz; VB: 1 MHz
17264.850	56.8	Н	74.0	-17.2	PK	205	1.0	RB 1 MHz; VB: 1 MHz
								·

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Run #3b: Center Channel @ 5785 MHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.410	49.1	Н	54.0	-4.9	AVG	34	1.2	RB 1 MHz; VB: 10 Hz
11569.270	47.4	V	54.0	-6.6	AVG	292	1.1	RB 1 MHz; VB: 10 Hz
17353.500	46.4	V	54.0	-7.6	AVG	85	1.0	RB 1 MHz; VB: 10 Hz
17353.500	46.2	Н	54.0	-7.8	AVG	61	2.0	RB 1 MHz; VB: 10 Hz
11569.680	61.2	Н	74.0	-12.8	PK	34	1.2	RB 1 MHz; VB: 1 MHz
11569.350	58.4	V	74.0	-15.6	PK	292	1.1	RB 1 MHz; VB: 1 MHz
17354.710	57.6	V	74.0	-16.4	PK	85	1.0	RB 1 MHz; VB: 1 MHz
17354.370	57.2	Н	74.0	-16.8	PK	61	2.0	RB 1 MHz; VB: 1 MHz

Dalmatian (79							Job Number:			
)almatian / /0										
Zannanan (7	962)				•		Log Number: unt Manager:	Dean Eriksen		
Craig Owens							<u> </u>			
		10					Class:	N/A		
								l		
Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
49.2	Н	54.0	-4.8	AVG	32	1.2	RB 1 MHz; \	VB: 10 Hz		
47.6	V	54.0	-6.4	AVG	352	1.0	RB 1 MHz; \	VB: 10 Hz		
47.1	Н	54.0	-6.9	AVG	105	1.1	RB 1 MHz; \	VB: 10 Hz		
46.8	V	54.0	-7.2	AVG	306	1.0	RB 1 MHz; \	VB: 10 Hz		
60.3	Н	74.0	-13.7	PK	32	1.2	RB 1 MHz; \	VB: 1 MHz		
59.4	V	74.0	-14.6	PK	352	1.0	RB 1 MHz; \	VB: 1 MHz		
58.6	Н	74.0	-15.4	PK	105	1.1	RB 1 MHz; \	VB: 1 MHz		
58.6	V	74.0	-15.4	PK	306	1.0	RB 1 MHz; \	VB: 1 MHz		
اا	CC Part 15 h Channel α Level dBμV/m 49.2 47.6 47.1 46.8 60.3 59.4 58.6	h Channel @ 5805 MH Level Pol dBμV/m v/h 49.2 H 47.6 V 47.1 H 46.8 V 60.3 H 59.4 V 58.6 H	CC Part 15.247/RSS-210 h Channel @ 5805 MHz Level Pol 15.209 dBμV/m v/h Limit 49.2 H 54.0 47.6 V 54.0 47.1 H 54.0 46.8 V 54.0 60.3 H 74.0 59.4 V 74.0 58.6 H 74.0	CC Part 15.247/RSS-210 h Channel @ 5805 MHz Level Pol 15.209 / 15.247 dBμV/m V/h Limit Margin 49.2 H 54.0 -4.8 47.6 V 54.0 -6.4 47.1 H 54.0 -6.9 46.8 V 54.0 -7.2 60.3 H 74.0 -13.7 59.4 V 74.0 -14.6 58.6 H 74.0 -15.4	CC Part 15.247/RSS-210 h Channel @ 5805 MHz Level Pol 15.209 / 15.247 Detector dBμV/m v/h Limit Margin Pk/QP/Avg 49.2 H 54.0 -4.8 AVG 47.6 V 54.0 -6.4 AVG 47.1 H 54.0 -6.9 AVG 46.8 V 54.0 -7.2 AVG 60.3 H 74.0 -13.7 PK 59.4 V 74.0 -14.6 PK 58.6 H 74.0 -15.4 PK	CC Part 15.247/RSS-210 h Channel @ 5805 MHz Level Pol 15.209 / 15.247 Detector Azimuth dBμV/m V/h Limit Margin Pk/QP/Avg degrees 49.2 H 54.0 -4.8 AVG 32 47.6 V 54.0 -6.4 AVG 352 47.1 H 54.0 -6.9 AVG 105 46.8 V 54.0 -7.2 AVG 306 60.3 H 74.0 -13.7 PK 32 59.4 V 74.0 -14.6 PK 352 58.6 H 74.0 -15.4 PK 105	raig Owens CC Part 15.247/RSS-210 h Channel @ 5805 MHz Level Pol 15.209 / 15.247 Detector Azimuth Height Margin Pk/QP/Avg degrees meters 49.2 H 54.0 -4.8 AVG 32 1.2 47.6 V 54.0 -6.4 AVG 352 1.0 47.1 H 54.0 -6.9 AVG 105 1.1 46.8 V 54.0 -7.2 AVG 306 1.0 60.3 H 74.0 -13.7 PK 32 1.2 59.4 V 74.0 -14.6 PK 352 1.0 58.6 H 74.0 -15.4 PK 105 1.1	CC Part 15.247/RSS-210 Class: Channel @ 5805 MHz		

	An 2022 company		
Client:	Ruckus Wireless	Job Number:	J73710
Madalı	Dalmatian (7962)	T-Log Number:	T73745
wodei.	Dailiduali (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	В

Radiated Emissions - Receive Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 2/11/2009 Config. Used: 1
Test Engineer: Rafael varelas Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 15 °C

Rel. Humidity: 38 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
	RE, 1000 - 10000 MHz, Maximized	RSS GEN	Pass	35.6dBµV/m @ 7311.8MHz (-18.4dB)
802.11g Mode	Emissions			, ,
4 - RX on 2437 MHz	RE, 1000 - 10000 MHz, Maximized	RSS GEN	Pass	35.4dBµV/m @
HT-40 Mode	Emissions	N33 GLN	Pa55	7310.5MHz (-18.6dB)
7 - RX on 5785 MHz	RE, 1000 - 18000 MHz, Maximized	RSS GEN	Pass	47.5dBµV/m @
Legacy Mode	Emissions	KSS GEN	Pass	7713.4MHz (-6.5dB)
8 - RX on 5785 MHz	RE, 1000 - 18000 MHz, Maximized	RSS GEN	Pass	47.1dBµV/m @
HT-40 Mode	Emissions	KSS GEN	Pd55	7713.4MHz (-6.9dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Note: Preliminary testing showed no emissions below 1 GHz related to the radio.

	All Deed Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
woder:	Daimatian (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	В

Run #3: Maximized readings, 1000 - 10000 MHz EUT set to Receive mode at 2437 MHz, 802.11g Mode

ĺ	Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
	1000 - 10000 MHz	3	3	0.0

Frequency	Level	Pol	RSS	Gen	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7311.830	35.6	Н	54.0	-18.4	AVG	122	1.0	RB 1 MHz; VB: 10 Hz
1625.060	34.8	V	54.0	-19.2	AVG	184	1.0	RB 1 MHz; VB: 10 Hz
3249.360	32.0	V	54.0	-22.0	AVG	349	1.0	RB 1 MHz; VB: 10 Hz
4874.550	31.3	Н	54.0	-22.7	AVG	156	1.0	RB 1 MHz; VB: 10 Hz
4875.150	31.2	V	54.0	-22.8	AVG	125	1.0	RB 1 MHz; VB: 10 Hz
3249.420	29.3	Н	54.0	-24.7	AVG	214	1.5	RB 1 MHz; VB: 10 Hz
1625.070	27.8	Н	54.0	-26.2	AVG	0	1.6	RB 1 MHz; VB: 10 Hz
7311.800	47.2	Н	74.0	-26.8	PK	122	1.0	RB 1 MHz; VB: 1 MHz
4874.550	42.6	Н	74.0	-31.4	PK	156	1.0	RB 1 MHz; VB: 1 MHz
4872.710	42.1	V	74.0	-31.9	PK	125	1.0	RB 1 MHz; VB: 1 MHz
3249.280	41.8	V	74.0	-32.2	PK	349	1.0	RB 1 MHz; VB: 1 MHz
3249.310	41.5	Н	74.0	-32.5	PK	214	1.5	RB 1 MHz; VB: 1 MHz
1625.210	41.3	V	74.0	-32.7	PK	184	1.0	RB 1 MHz; VB: 1 MHz
1625.150	38.0	Н	74.0	-36.0	PK	0	1.6	RB 1 MHz; VB: 1 MHz
1020.100	00.0		7 110	00.0			1.0	IND THINIE, VOI THINE

	All Deed Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian (7962)	T-Log Number:	T73745
woder:	Daimatian (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	В

Run #4: Maximized readings, 1000 - 10000 MHz EUT set to Receive mode at 2437 MHz, HT-40 Mode

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 10000 MHz	3	3	0.0

Frequency Level Pol RSS Gen Detector Azimuth Height Comments 7310.500 35.4 V 54.0 -18.6 AVG 143 1.0 RB 1 MHz; VB: 10 Hz 1625.090 34.9 V 54.0 -19.1 AVG 183 1.0 RB 1 MHz; VB: 10 Hz 1623.630 32.3 H 54.0 -21.7 AVG 170 1.0 RB 1 MHz; VB: 10 Hz 4872.500 32.0 H 54.0 -22.0 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 3249.390 31.3 V 54.0 -22.7 AVG 350 1.0 RB 1 MHz; VB: 10 Hz 4874.960 31.1 V 54.0 -22.9 AVG 222 1.0 RB 1 MHz; VB: 10 Hz 3249.140 29.4 H 54.0 -24.6 AVG 224 1.0 RB 1 MHz; VB: 10 Hz 7311.770 46.7 V 74.0 -27.3 PK 143 1.0 RB 1 MHz; VB:									
7310.500 35.4 V 54.0 -18.6 AVG 143 1.0 RB 1 MHz; VB: 10 Hz 1625.090 34.9 V 54.0 -19.1 AVG 183 1.0 RB 1 MHz; VB: 10 Hz 1623.630 32.3 H 54.0 -21.7 AVG 170 1.0 RB 1 MHz; VB: 10 Hz 4872.500 32.0 H 54.0 -22.0 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 3249.390 31.3 V 54.0 -22.7 AVG 350 1.0 RB 1 MHz; VB: 10 Hz 4874.960 31.1 V 54.0 -22.9 AVG 222 1.0 RB 1 MHz; VB: 10 Hz 3249.140 29.4 H 54.0 -24.6 AVG 224 1.0 RB 1 MHz; VB: 10 Hz 7311.770 46.7 V 74.0 -27.3 PK 143 1.0 RB 1 MHz; VB: 1 MHz 4873.350 42.4 H 74.0 -31.6 PK 360 1.0 RB	Frequency	Level	Pol	RSS	Gen	Detector	Azimuth	Height	Comments
1625.090 34.9 V 54.0 -19.1 AVG 183 1.0 RB 1 MHz; VB: 10 Hz 1623.630 32.3 H 54.0 -21.7 AVG 170 1.0 RB 1 MHz; VB: 10 Hz 4872.500 32.0 H 54.0 -22.0 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 3249.390 31.3 V 54.0 -22.7 AVG 350 1.0 RB 1 MHz; VB: 10 Hz 4874.960 31.1 V 54.0 -22.9 AVG 222 1.0 RB 1 MHz; VB: 10 Hz 3249.140 29.4 H 54.0 -24.6 AVG 224 1.0 RB 1 MHz; VB: 10 Hz 7311.770 46.7 V 74.0 -27.3 PK 143 1.0 RB 1 MHz; VB: 1 MHz 4873.350 42.4 H 74.0 -31.6 PK 360 1.0 RB 1 MHz; VB: 1 MHz 4873.310 42.2 V 74.0 -31.8 PK 222 1.0 RB	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1623.630 32.3 H 54.0 -21.7 AVG 170 1.0 RB 1 MHz; VB: 10 Hz 4872.500 32.0 H 54.0 -22.0 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 3249.390 31.3 V 54.0 -22.7 AVG 350 1.0 RB 1 MHz; VB: 10 Hz 4874.960 31.1 V 54.0 -22.9 AVG 222 1.0 RB 1 MHz; VB: 10 Hz 3249.140 29.4 H 54.0 -24.6 AVG 224 1.0 RB 1 MHz; VB: 10 Hz 7311.770 46.7 V 74.0 -27.3 PK 143 1.0 RB 1 MHz; VB: 1 MHz 1624.940 46.5 V 74.0 -27.5 PK 183 1.0 RB 1 MHz; VB: 1 MHz 4873.350 42.4 H 74.0 -31.6 PK 360 1.0 RB 1 MHz; VB: 1 MHz 3249.350 41.0 V 74.0 -33.8 PK 222 1.0 RB 1	7310.500	35.4	V	54.0	-18.6	AVG	143	1.0	RB 1 MHz; VB: 10 Hz
4872.500 32.0 H 54.0 -22.0 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 3249.390 31.3 V 54.0 -22.7 AVG 350 1.0 RB 1 MHz; VB: 10 Hz 4874.960 31.1 V 54.0 -22.9 AVG 222 1.0 RB 1 MHz; VB: 10 Hz 3249.140 29.4 H 54.0 -24.6 AVG 224 1.0 RB 1 MHz; VB: 10 Hz 7311.770 46.7 V 74.0 -27.3 PK 143 1.0 RB 1 MHz; VB: 1 MHz 1624.940 46.5 V 74.0 -27.5 PK 183 1.0 RB 1 MHz; VB: 1 MHz 4873.350 42.4 H 74.0 -31.6 PK 360 1.0 RB 1 MHz; VB: 1 MHz 4873.310 42.2 V 74.0 -31.8 PK 222 1.0 RB 1 MHz; VB: 1 MHz 3249.350 41.0 V 74.0 -33.0 PK 350 1.0 RB 1	1625.090	34.9	V	54.0	-19.1	AVG	183	1.0	RB 1 MHz; VB: 10 Hz
3249.390 31.3 V 54.0 -22.7 AVG 350 1.0 RB 1 MHz; VB: 10 Hz 4874.960 31.1 V 54.0 -22.9 AVG 222 1.0 RB 1 MHz; VB: 10 Hz 3249.140 29.4 H 54.0 -24.6 AVG 224 1.0 RB 1 MHz; VB: 10 Hz 7311.770 46.7 V 74.0 -27.3 PK 143 1.0 RB 1 MHz; VB: 1 MHz 1624.940 46.5 V 74.0 -27.5 PK 183 1.0 RB 1 MHz; VB: 1 MHz 4873.350 42.4 H 74.0 -31.6 PK 360 1.0 RB 1 MHz; VB: 1 MHz 4873.310 42.2 V 74.0 -31.8 PK 222 1.0 RB 1 MHz; VB: 1 MHz 3249.350 41.0 V 74.0 -33.0 PK 350 1.0 RB 1 MHz; VB: 1 MHz 3248.810 40.5 H 74.0 -33.5 PK 224 1.0 RB 1 M	1623.630	32.3	Н	54.0	-21.7	AVG	170	1.0	RB 1 MHz; VB: 10 Hz
4874.960 31.1 V 54.0 -22.9 AVG 222 1.0 RB 1 MHz; VB: 10 Hz 3249.140 29.4 H 54.0 -24.6 AVG 224 1.0 RB 1 MHz; VB: 10 Hz 7311.770 46.7 V 74.0 -27.3 PK 143 1.0 RB 1 MHz; VB: 1 MHz 1624.940 46.5 V 74.0 -27.5 PK 183 1.0 RB 1 MHz; VB: 1 MHz 4873.350 42.4 H 74.0 -31.6 PK 360 1.0 RB 1 MHz; VB: 1 MHz 4873.310 42.2 V 74.0 -31.8 PK 222 1.0 RB 1 MHz; VB: 1 MHz 3249.350 41.0 V 74.0 -33.0 PK 350 1.0 RB 1 MHz; VB: 1 MHz 3248.810 40.5 H 74.0 -33.5 PK 224 1.0 RB 1 MHz; VB: 1 MHz	4872.500	32.0	Н	54.0	-22.0	AVG	360	1.0	RB 1 MHz; VB: 10 Hz
3249.140 29.4 H 54.0 -24.6 AVG 224 1.0 RB 1 MHz; VB: 10 Hz 7311.770 46.7 V 74.0 -27.3 PK 143 1.0 RB 1 MHz; VB: 1 MHz 1624.940 46.5 V 74.0 -27.5 PK 183 1.0 RB 1 MHz; VB: 1 MHz 4873.350 42.4 H 74.0 -31.6 PK 360 1.0 RB 1 MHz; VB: 1 MHz 4873.310 42.2 V 74.0 -31.8 PK 222 1.0 RB 1 MHz; VB: 1 MHz 3249.350 41.0 V 74.0 -33.0 PK 350 1.0 RB 1 MHz; VB: 1 MHz 3248.810 40.5 H 74.0 -33.5 PK 224 1.0 RB 1 MHz; VB: 1 MHz	3249.390	31.3	V	54.0	-22.7	AVG	350	1.0	RB 1 MHz; VB: 10 Hz
7311.770 46.7 V 74.0 -27.3 PK 143 1.0 RB 1 MHz; VB: 1 MHz 1624.940 46.5 V 74.0 -27.5 PK 183 1.0 RB 1 MHz; VB: 1 MHz 4873.350 42.4 H 74.0 -31.6 PK 360 1.0 RB 1 MHz; VB: 1 MHz 4873.310 42.2 V 74.0 -31.8 PK 222 1.0 RB 1 MHz; VB: 1 MHz 3249.350 41.0 V 74.0 -33.0 PK 350 1.0 RB 1 MHz; VB: 1 MHz 3248.810 40.5 H 74.0 -33.5 PK 224 1.0 RB 1 MHz; VB: 1 MHz	4874.960	31.1	V	54.0	-22.9	AVG	222	1.0	RB 1 MHz; VB: 10 Hz
1624.940 46.5 V 74.0 -27.5 PK 183 1.0 RB 1 MHz; VB: 1 MHz 4873.350 42.4 H 74.0 -31.6 PK 360 1.0 RB 1 MHz; VB: 1 MHz 4873.310 42.2 V 74.0 -31.8 PK 222 1.0 RB 1 MHz; VB: 1 MHz 3249.350 41.0 V 74.0 -33.0 PK 350 1.0 RB 1 MHz; VB: 1 MHz 3248.810 40.5 H 74.0 -33.5 PK 224 1.0 RB 1 MHz; VB: 1 MHz	3249.140	29.4	Н	54.0	-24.6	AVG	224	1.0	RB 1 MHz; VB: 10 Hz
4873.350 42.4 H 74.0 -31.6 PK 360 1.0 RB 1 MHz; VB: 1 MHz 4873.310 42.2 V 74.0 -31.8 PK 222 1.0 RB 1 MHz; VB: 1 MHz 3249.350 41.0 V 74.0 -33.0 PK 350 1.0 RB 1 MHz; VB: 1 MHz 3248.810 40.5 H 74.0 -33.5 PK 224 1.0 RB 1 MHz; VB: 1 MHz	7311.770	46.7	V	74.0	-27.3	PK	143	1.0	RB 1 MHz; VB: 1 MHz
4873.310 42.2 V 74.0 -31.8 PK 222 1.0 RB 1 MHz; VB: 1 MHz 3249.350 41.0 V 74.0 -33.0 PK 350 1.0 RB 1 MHz; VB: 1 MHz 3248.810 40.5 H 74.0 -33.5 PK 224 1.0 RB 1 MHz; VB: 1 MHz	1624.940	46.5	V	74.0	-27.5	PK	183	1.0	RB 1 MHz; VB: 1 MHz
3249.350 41.0 V 74.0 -33.0 PK 350 1.0 RB 1 MHz; VB: 1 MHz 3248.810 40.5 H 74.0 -33.5 PK 224 1.0 RB 1 MHz; VB: 1 MHz	4873.350	42.4	Н	74.0	-31.6	PK	360	1.0	RB 1 MHz; VB: 1 MHz
3248.810 40.5 H 74.0 -33.5 PK 224 1.0 RB 1 MHz; VB: 1 MHz	4873.310	42.2	V	74.0	-31.8	PK	222	1.0	RB 1 MHz; VB: 1 MHz
	3249.350	41.0	V	74.0	-33.0	PK	350	1.0	RB 1 MHz; VB: 1 MHz
1/25 240 27 0 U 74 0 27 1 DV 170 1.0 DD 1.MU VD. 1.MU-	3248.810	40.5	Н	74.0	-33.5	PK	224	1.0	RB 1 MHz; VB: 1 MHz
1025.340 30.9 H 74.0 -37.1 PK 170 1.0 RB MHZ; VB: I MHZ	1625.340	36.9	Н	74.0	-37.1	PK	170	1.0	RB 1 MHz; VB: 1 MHz

	All Delle Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model	Dolmotion (7042)	T-Log Number:	T73745
woden.	Dalmatian (7962)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	В

Run #7: Maximized readings, 1000 - 18000 MHz EUT set to Receive mode at 5785 MHz, Legacy Mode

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor	
1000 - 18000 MHz	3	3	0.0	

Frequency	Level	Pol	RSS	Gen	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7713.410	47.5	V	54.0	-6.5	AVG	296	1.7	RB 1 MHz; VB: 10 Hz
3856.750	43.8	V	54.0	-10.2	AVG	333	1.4	RB 1 MHz; VB: 10 Hz
7713.410	40.2	Н	54.0	-13.8	AVG	154	1.6	RB 1 MHz; VB: 10 Hz
11570.950	39.8	V	54.0	-14.2	AVG	360	1.0	RB 1 MHz; VB: 10 Hz
11571.390	39.7	Н	54.0	-14.3	AVG	307	1.0	RB 1 MHz; VB: 10 Hz
3856.750	35.2	Н	54.0	-18.8	AVG	117	1.0	RB 1 MHz; VB: 10 Hz
7713.330	52.1	V	74.0	-21.9	PK	296	1.7	RB 1 MHz; VB: 1 MHz
11570.090	51.3	Н	74.0	-22.7	PK	307	1.0	RB 1 MHz; VB: 1 MHz
11569.020	50.8	V	74.0	-23.2	PK	360	1.0	RB 1 MHz; VB: 1 MHz
7713.460	48.6	Н	74.0	-25.4	PK	154	1.6	RB 1 MHz; VB: 1 MHz
3856.720	48.2	V	74.0	-25.8	PK	333	1.4	RB 1 MHz; VB: 1 MHz
3856.510	44.4	Н	74.0	-29.6	PK	117	1.0	RB 1 MHz; VB: 1 MHz

	An Dazz Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian (7962)	T-Log Number:	T73745
	Daimatian (1902)	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC Part 15.247/RSS-210	Class:	В

Run #8: Maximized readings, 1000 - 18000 MHz EUT set to Receive mode at 5785 MHz, HT-40 Mode

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor	
1000 - 18000 MHz	3	3	0.0	

Frequency	Level	Pol	RSS	Gen	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7713.420	47.1	V	54.0	-6.9	AVG	291	1.8	RB 1 MHz; VB: 10 Hz
3856.740	44.0	V	54.0	-10.0	AVG	327	1.5	RB 1 MHz; VB: 10 Hz
7713.420	40.7	Н	54.0	-13.3	AVG	149	1.7	RB 1 MHz; VB: 10 Hz
11570.950	39.8	Н	54.0	-14.2	AVG	338	1.0	RB 1 MHz; VB: 10 Hz
11571.220	39.7	V	54.0	-14.3	AVG	175	1.0	RB 1 MHz; VB: 10 Hz
3856.690	35.0	Н	54.0	-19.0	AVG	110	1.8	RB 1 MHz; VB: 10 Hz
7713.310	51.9	V	74.0	-22.1	PK	291	1.8	RB 1 MHz; VB: 1 MHz
11570.430	50.8	Н	74.0	-23.2	PK	338	1.0	RB 1 MHz; VB: 1 MHz
11569.130	50.5	V	74.0	-23.5	PK	175	1.0	RB 1 MHz; VB: 1 MHz
3856.680	48.5	V	74.0	-25.5	PK	327	1.5	RB 1 MHz; VB: 1 MHz
7713.440	48.5	Н	74.0	-25.5	PK	149	1.7	RB 1 MHz; VB: 1 MHz
3856.700	44.0	Н	74.0	-30.0	PK	110	1.8	RB 1 MHz; VB: 1 MHz

Ellio		Ei	MC Test Data
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number:	T73801
		Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Emissions Standard(s):	FCC 15.247/RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

For The

Ruckus Wireless

Model

Dalmatian

Date of Last Test: 3/10/2009

	An 2022 Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number:	T73801
		Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements **MIMO and Smart Antenna Systems** Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/12/2009 & 2/17/2009 Config. Used: 1 Config Change: None Test Engineer: Rafael Varelas Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 18.9 °C

Rel. Humidity: 36 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power Chain A+B+C	15.247(b)	Pass	35.5 dBm (EIRP)
2	PSD Chain A+B+C	15.247(d)	Pass	6.7 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	10.3 MHz
4	99% Bandwidth	RSS GEN	Pass	17.3 MHz
5	Spurious emissions	15.247(b)	Pass	All Emissions Below -30dBc

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Note: EUT transmits on all chains in all modes and does not support a reduced number of transmit chains.

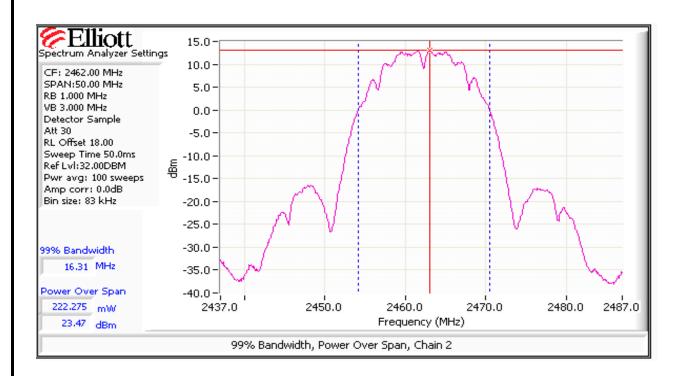
	All Details Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number:	T73801
	Daimatian	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #1: Output Power - Chain A + B + C

Operating Mode: 802.11b Transmitted signal on chain is coherent? yes

		1	T	Annum min		1	ı	
2412 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Lir	nit
Power Setting ^{Note 3}	22.0	22.0	22.0				Liiiiit	
Output Power (dBm) Note 1	22.45	23.3	22.76		27.6 dBm	0.578 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	3	3	3		3.0 dBi		Da	cc
eirp (dBm) Note 2	25.45	26.3	25.76		30.6 dBm	1.154 W	Pass	
2437 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Across	s All Chains	Limit	
Power Setting ^{Note 3}	22.0	22.0	22.0		TUIdi AUTUS.	S All Chains		
Output Power (dBm) Note 1	22.67	23.3	22.84		27.7 dBm	0.591 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	3	3	3		3.0 dBi		Da	00
eirp (dBm) Note 2	25.67	26.3	25.84		30.7 dBm	1.179 W	Pass	
2462 MHz	Chain 1	Chain 2	Chain 3	Cham 4	Total Across	s All Chains	Lir	nit
Power Setting ^{Note 3}	22.0	22.0	22.0		TUIAI ACTUS	S All Chains	Lir	IIIL
Output Power (dBm) Note 1	22.37	23.5	22.7		27.7 dBm	0.583 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	3	3	3		3.0 dBi		Pa	cc
eirp (dBm) Note 2	25.37	26.5	25.7		30.7 dBm	1.163 W	I a	22
Output power measured	• .			-			•	•
Note 1: averaging on (transmitted signal was continuous) and power integration over 50 MHz (reference method 1 of FCC DA 02-								

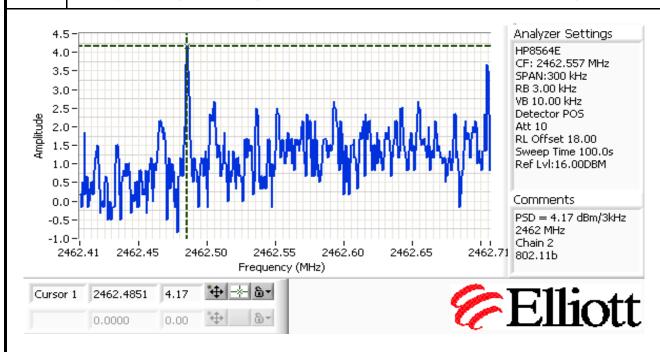
	Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power
Note 1:	averaging on (transmitted signal was continuous) and power integration over 50 MHz (reference method 1 of FCC DA 02-
	2138 for U-NII devices, August 30, 2002). Spurious limit becomes -30dBc.


As the antennas are sectorized, the effective antenna gain is the gain of any one antenna. Note 2:

Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting for Note 3: each chain is separated by a comma (e.g. x,y would indicate power setting x for chain 1, power setting y for chain 2.

	Till Dall's Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number:	T73801
	Dailiduali	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #1: Continued

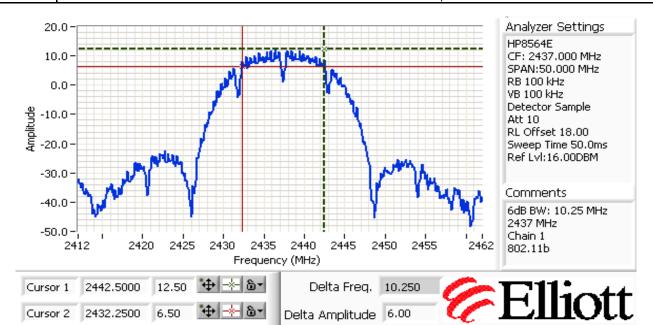

	This Date of Company				
Client:	Ruckus Wireless	Job Number:	J73710		
Model:	Dalmatian	T-Log Number:	T73801		
		Account Manager:	Dean Eriksen		
Contact:	Craig Owens				
Standard:	FCC 15.247/RSS-210	Class:	N/A		

Run #2: Power spectral Density

Power	Frequency (MHz) PSD (dBm/3kHz) Note 1			Limit	Result			
Setting	rrequericy (IVITIZ)	Chain 1	Chain 2	Chain 3	Chain 4	Total	dBm/3kHz	Result
22	2412	-0.2	0.8	-1.3		4.6	8.0	Pass
22	2437	2.3	-0.8	1.0		5.8	8.0	Pass
22	2462	0.3	4.2	-0.2		6.7	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.


	All DEED company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number:	T73801
		Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

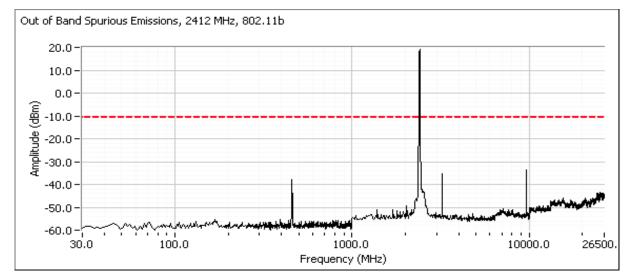
Run #3: Signal Bandwidth

Power	Fraguanay (MHz)	Resolution	Bandwid	lth (MHz)
Setting	Frequency (MHz)	Bandwidth	6dB	99%
22	2412	100kHz	11.3	16.4
22	2437	100kHz	10.3	16.4
22	2462	100kHz	11.2	17.3

Note 1: Measured on a single chain

Note 2: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

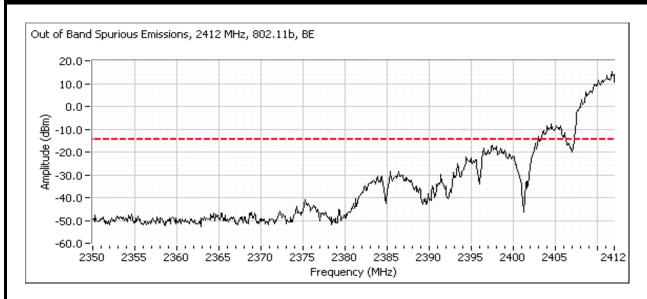
	All Del Company				
Client:	Ruckus Wireless	Job Number:	J73710		
Model:	Dalmatian	T-Log Number:	T73801		
		Account Manager:	Dean Eriksen		
Contact:	Craig Owens				
Standard:	FCC 15.247/RSS-210	Class:	N/A		

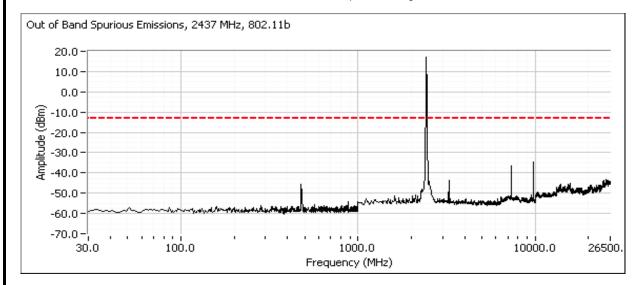

Run #4: Out of Band Spurious Emissions

Power Setting Per Chain		Fraguenou (MIIz)	Limit	Dogult		
#1	#2	#3	#4	Frequency (MHz)	Limit	Result
22	22	22		2412	-30dbc	Pass
22	22	22		2437	-30dbc	Pass
22	22	22		2462	-30dbc	Pass

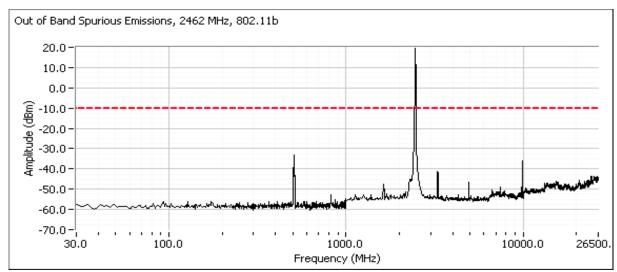
Note 1: Measured with all chains connected together through a combiner, unused ports on the combiner terminated in 50ohms.

Note 2: All plots taken with RBW=VBW=100kHz


Plots for low channel, power setting(s) = 22


Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

	All Deleter Company				
Client:	Ruckus Wireless	Job Number:	J73710		
Model:	Dalmatian	T-Log Number:	T73801		
		Account Manager:	Dean Eriksen		
Contact:	Craig Owens				
Standard:	FCC 15.247/RSS-210	Class:	N/A		


Plots for center channel, power setting(s) = 22

Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number:	T73801
		Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Plots for high channel, power setting(s) = 22

	An ZAZES company				
Client:	Ruckus Wireless	Job Number:	J73710		
Model	Dalmatian	T-Log Number:	T73801		
iviodei:		Account Manager:	Dean Eriksen		
Contact:	Craig Owens				
Standard:	FCC 15.247/RSS-210	Class:	N/A		

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements **MIMO and Smart Antenna Systems** Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/12/2009 & 2/17/2009 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 18.9 °C

Rel. Humidity: 36 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power Chain A+B+C	15.247(b)	Pass	33.6 dBm (EIRP)
2	PSD Chain A+B+C	15.247(d)	Pass	5.7 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	16.3 MHz
4	99% Bandwidth	RSS GEN	Pass	18.4 MHz
5	Spurious emissions	15.247(b)	Pass	All Emissions Below -30dBc

Modifications Made During Testing

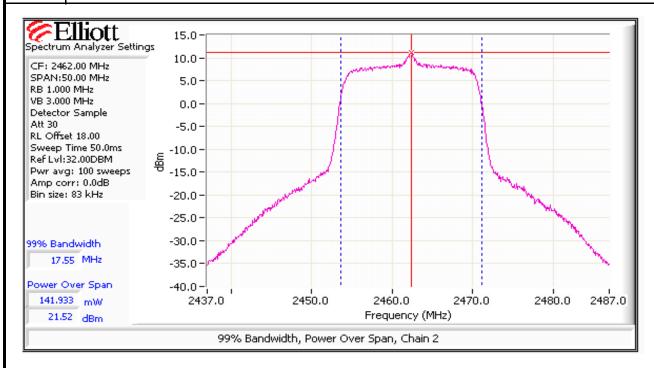
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Note: EUT transmits on all chains in all modes and does not support a reduced number of transmit chains.

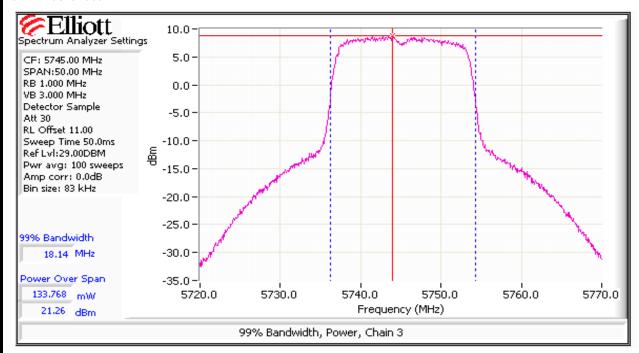
Elliott EMC Test Data Client: Ruckus Wireless Job Number: J73710 T-Log Number: T73801 Model: Dalmatian Account Manager: Dean Eriksen Contact: Craig Owens Standard: FCC 15.247/RSS-210 Class: N/A Run #1: Output Power - Chain A + B + C Operating Mode: 802.11g Transmitted signal on chain is coherent? yes 2412 MHz Chain 1 Chain 2 Chain 3 Chain 4 Total Across All Chains Limit Power Setting Note 3 22.0 22.0 22.0 Output Power (dBm) Note 1 20.67 21.09 20.71 25.6 dBm 0.363 W 30.0 dBm 1.000 W Antenna Gain (dBi) Note 2 3.0 dBi 3 3 Pass eirp (dBm) Note 2 23.67 24.09 23.71 28.6 dBm 0.724 W Chain 4 2437 MHz Chain 1 Chain 3 Chain 2 **Total Across All Chains** Limit Power Setting Note 3 22.0 22.0 22.0 Output Power (dBm) Note 1 20.77 20.81 21.51 25.8 dBm 0.381 W 30.0 dBm | 1.000 W Antenna Gain (dBi) Note 2 3.0 dBi 3 3 3 Pass eirp (dBm) Note 2 24.51 23.77 23.81 28.8 dBm 0.761 W 2462 MHz Chain 4 Chain 1 Chain 2 Chain 3 Total Across All Chains Limit Power Setting Note 3 22.0 22.0 22.0 Output Power (dBm) Note 1 20.4 21.52 20.71 25.7 dBm 0.369 W 30.0 dBm | 1.000 W Antenna Gain (dBi) Note 2 eirp (dBm) Note 2 3 3 3 3.0 dBi Pass 24.52 23.71 28.7 dBm 0.737 W 23.4 Chain 4 5745 MHz Chain 1 Chain 2 Chain 3 Total Across All Chains Limit Power Setting Note 3 21.5 21.5 21.5 Output Power (dBm) Note 1 18.3 18.88 21.26 24.4 dBm 0.279 W 30.0 dBm 1.000 W Antenna Gain (dBi) Note 2 eirp (dBm) Note 2 3.0 dBi 3 3 3 Pass 21.3 21.88 24.26 27.4 dBm 0.556 W 5785 MHz Chain 1 Chain 2 Chain 3 Chain 4 Total Across All Chains I imit Power Setting Note 3 21.5 21.5 21.5 Output Power (dBm) Note 1 23.9 dBm 0.247 W 30.0 dBm 1.000 W 18.3 18.55 20.34 Antenna Gain (dBi) Note 2 3.0 dBi 3 3 3 Pass eirp (dBm) Note 2 21.3 21.55 23.34 26.9 dBm 0.494 W 5825 MHz Chain 1 Chain 2 Chain 3 Chain 4 Total Across All Chains I imit Power Setting Note 3 21.5 21.5 21.5 Output Power (dBm) Note 1 20.04 18.92 18.48 0.249 W 30.0 dBm 1.000 W 24.0 dBm Antenna Gain (dBi) Note 2 3 3 3 3.0 dBi Pass eirp (dBm) Note 2 21.92 23.04 21.48 27.0 dBm 0.498 W


	An ZAZZZ company					
Client:	Ruckus Wireless	Job Number:	J73710			
Model:	Dalmatian	T-Log Number:	T73801			
	Dailididi	Account Manager:	Dean Eriksen			
Contact:	Craig Owens					
Standard:	FCC 15.247/RSS-210	Class:	N/A			

Run #1: Continued

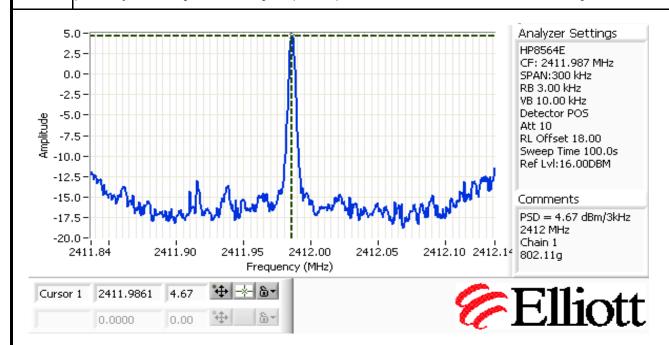
	Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power
Note 1:	averaging on (transmitted signal was continuous) and power integration over 50 MHz (reference method 1 of FCC DA 02-
	2138 for U-NII devices, August 30, 2002). Spurious limit becomes -30dBc.

Note 2: As the antennas are sectorized, the effective antenna gain is the gain of any one antenna.


Note 3: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting for each chain is separated by a comma (e.g. x,y would indicate power setting x for chain 1, power setting y for chain 2.

	Till Delle Company					
Client:	Ruckus Wireless	Job Number:	J73710			
Model:	Dalmatian	T-Log Number:	T73801			
	Dailidudii	Account Manager:	Dean Eriksen			
Contact:	Craig Owens					
Standard:	FCC 15.247/RSS-210	Class:	N/A			

Run #1: Continued

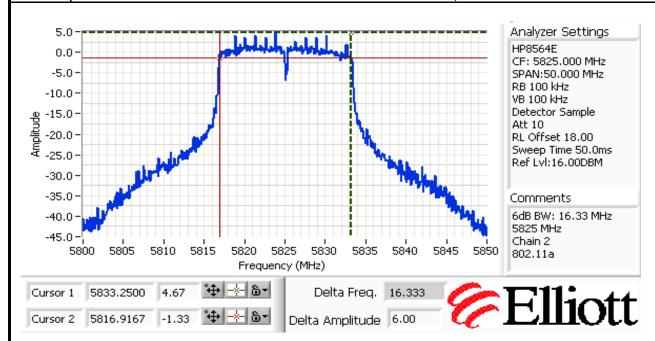


	All Dates Company					
Client:	Ruckus Wireless	Job Number:	J73710			
Model:	Dalmatian	T-Log Number:	T73801			
	Daillatiati	Account Manager:	Dean Eriksen			
Contact:	Craig Owens					
Standard:	FCC 15.247/RSS-210	Class:	N/A			

Run #2: Power spectral Density

Power	Eroguanay (MUz)		PSD (dBm/3kHz) Note 1				Limit	Result
Setting	Frequency (MHz)	Chain 1	Chain 2	Chain 3	Chain 4	Total	dBm/3kHz	Result
22	2412	4.7	-4.8	-3.2		5.7	8.0	Pass
22	2437	-1.5	-4.0	-7.0		1.2	8.0	Pass
22	2462	2.5	-2.2	-4.7		4.4	8.0	Pass
21.5	5745	0.6	-5.4	2.9		5.3	8.0	Pass
21.5	5785	1.2	-1.8	-0.1		4.7	8.0	Pass
21.5	5825	0.6	-4.8	0.1		4.0	8.0	Pass

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.


	All Dates Company					
Client:	Ruckus Wireless	Job Number:	J73710			
Model:	Dalmatian	T-Log Number:	T73801			
	Daillatiati	Account Manager:	Dean Eriksen			
Contact:	Craig Owens					
Standard:	FCC 15.247/RSS-210	Class:	N/A			

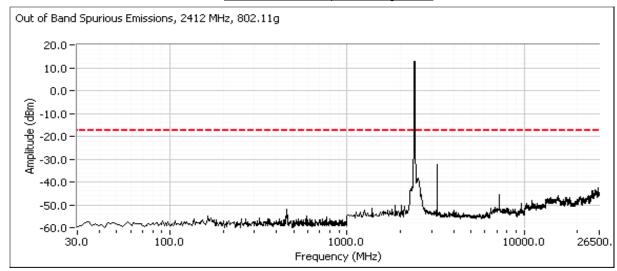
Run #3: Signal Bandwidth

Power	Fraguanay (MHz)	Resolution	Bandwid	Ith (MHz)
Setting	Frequency (MHz)	Bandwidth	6dB	99%
22	2412	100kHz	16.5	17.6
22	2437	100kHz	16.4	17.7
22	2462	100kHz	16.4	18.3
21.5	5745	100kHz	16.4	18.1
21.5	5785	100kHz	16.4	18.1
21.5	5825	100kHz	16.3	18.4

Note 1: Measured on a single chain

Note 2: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

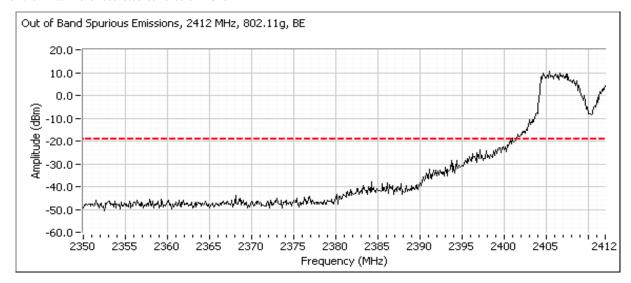
	All Dates Company				
Client:	Ruckus Wireless	Job Number:	J73710		
Model:	Dalmatian	T-Log Number:	T73801		
	Dailiduali	Account Manager:	Dean Eriksen		
Contact:	Craig Owens				
Standard:	FCC 15.247/RSS-210	Class:	N/A		

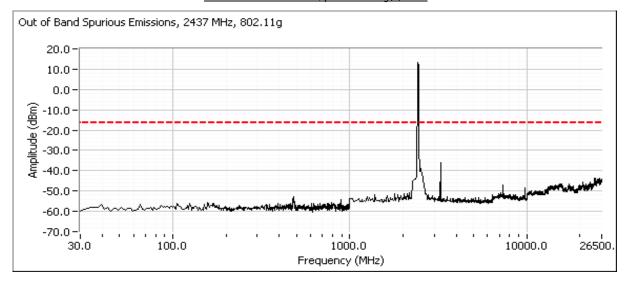

Run #4: Out of Band Spurious Emissions

	Power Settir	ng Per Chaii		Eroguopov (MUz)	Limit	Result
#1	#2	#3	#4	Frequency (MHz)	LIIIIII	Result
22	22	22		2412	-30dBc	Pass
22	22	22		2437	-30dBc	Pass
22	22	22		2462	-30dBc	Pass
21.5	21.5	21.5		5745	-30dBc	Pass
21.5	21.5	21.5		5785	-30dBc	Pass
21.5	21.5	21.5		5825	-30dBc	Pass

Note 1: Measured with all chains connected together through a combiner, unused ports on the combiner terminated in 50ohms.

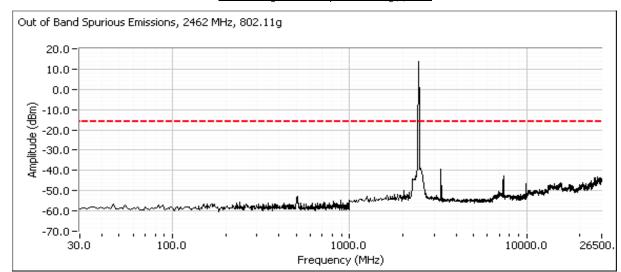
Note 2: All plots taken with RBW=VBW=100kHz

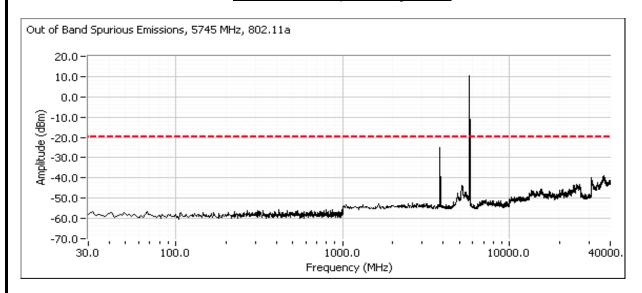

Plots for low channel, power setting(s) = 22



	An DLES company				
Client:	Ruckus Wireless	Job Number:	J73710		
Model:	Dalmatian	T-Log Number:	T73801		
	Dailidiali	Account Manager:	Dean Eriksen		
Contact:	Craig Owens				
Standard:	FCC 15.247/RSS-210	Class:	N/A		

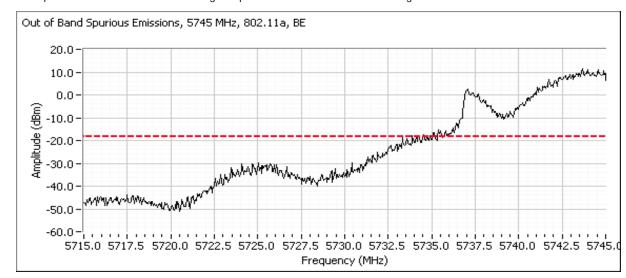
Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

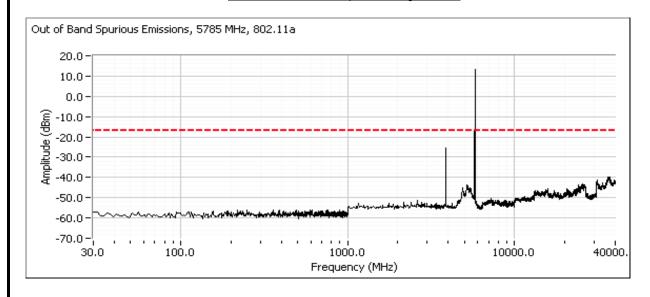

Plots for center channel, power setting(s) = 22



Client:	Ruckus Wireless	Job Number:	J73710			
Model:	Dalmatian	T-Log Number:	T73801			
	Dailidiali	Account Manager:	Dean Eriksen			
Contact:	Craig Owens					
Standard:	FCC 15.247/RSS-210	Class:	N/A			

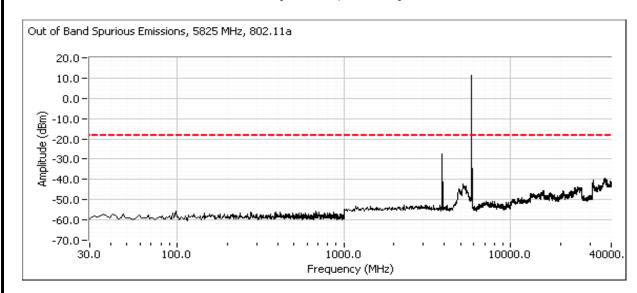
Plots for high channel, power setting(s) = 22

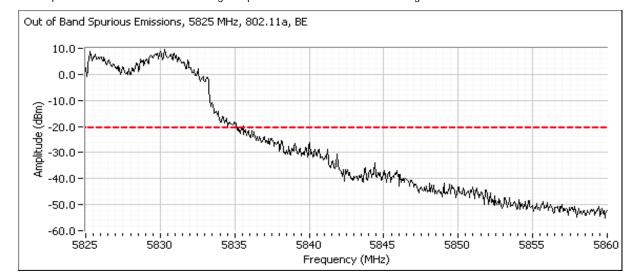

Plots for low channel, power setting(s) = 21.5



	All Dates Company					
Client:	Ruckus Wireless	Job Number:	J73710			
Model:	Dalmatian	T-Log Number:	T73801			
	Dailidudii	Account Manager:	Dean Eriksen			
Contact:	Craig Owens					
Standard:	FCC 15.247/RSS-210	Class:	N/A			

Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.


Plots for center channel, power setting(s) = 21.5



	Tan Barry		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number:	T73801
	Daimalian	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Plots for high channel, power setting(s) = 21.5

Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.

	An ZAZEO company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number: T73801	
	Dailididi	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements **MIMO and Smart Antenna Systems** Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/11/2009 Config. Used: 1 Test Engineer: Joseph Cadigal Config Change: none Test Location: SV OATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 38 %

Summary of Results

Run #	Test Performed Limit		Pass / Fail	Result / Margin
1	1 Output Power Chain A+B+C 15.247(b)		Pass	28.8 dBm (EIRP)
2	PSD Chain A+B+C	15.247(d)	Pass	7.7 dBm/3kHz
-	- 6dB Bandwidth		15.247(a) Pass	
-	- 99% Bandwidth		Pass	19.3 MHz
-	Spurious emissions	15.247(b)	Pass	All Emissions Below -30dBc

Modifications Made During Testing

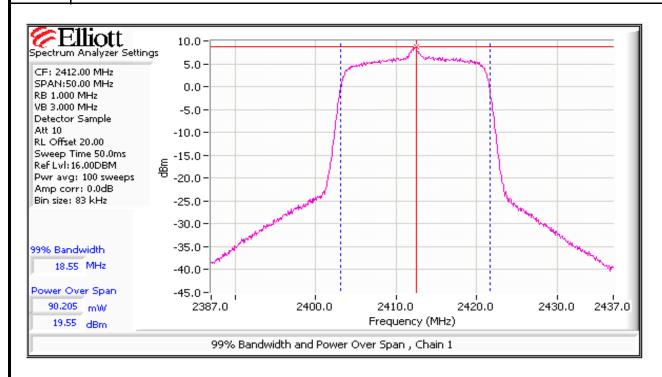
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Note: EUT transmits on all chains in all modes and does not support a reduced number of transmit chains.

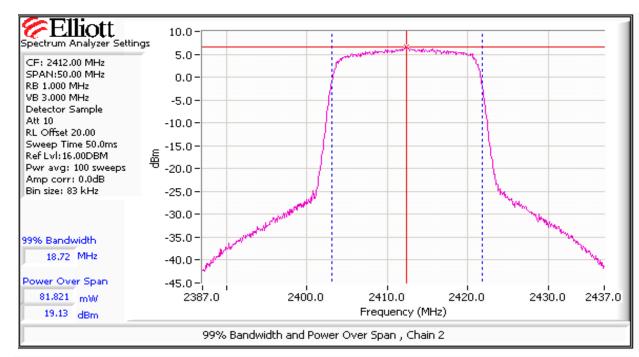
Client: Ruckus Wireless	,					ob Number:	J73710	
Olional Francisco					T-Log Number: T73801			
Model: Dalmatian							Dean Eriksei	n
Contact: Crain Owens	Contact: Craig Owens					in wanager.	Dean Linesei	
Standard: FCC 15.247/RSS-21	0					Class:	N/A	
Run #1: Output Power - Chain						0.000.		
	Operating Mode:)					
2412 MHz	Chain 1	Chain 2	Chain 3	Chain 4				
ower Setting ^{Note 3}	22.0	22.0	22.0	944944	Total Across	s All Chains	Lin	nit
Output Power (dBm) Note 1	19.55	19.13	18.65		23.9 dBm	0.245 W	30.0 dBm	1.000 V
Intenna Gain (dBi) ^{Note 2}	3	3	3			3.0 dBi		
irp (dBm) Note 2	22.55	22.13	21.65		26.9 dBm	0.489 W	Pa	22
							_	
2437 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Across	s All Chains	Lin	nit
ower Setting ^{Note 3}	22.0	22.0	22.0					
Output Power (dBm) Note 1	20.9	20.6	21.6		25.8 dBm	0.382 W	30.0 dBm	1.000 \
ntenna Gain (dBi) Note 2	3	3	3			3.0 dBi	Pass	
irp (dBm) Note 2	23.9	23.6	24.6		28.8 dBm	0.763 W		
2462 MHz	Chain 1	Chain 1	Chain 2		1		1	
	Chain 1	Chain 2	Chain 3	Cham 4	Total Across	s All Chains	Lin	nit
Ower Setting Note 3	22.0	22.0	22.0		24 0 dDm	0.312 W	30.0 dBm	1.000 \
Output Power (dBm) Note 1 Intenna Gain (dBi) Note 2	20.15	20.15 3	20.22		24.9 dBm	3.0 dBi	30.0 UBIII	1.000 \
irp (dBm) Note 2	23.15	23.15	23.22		27.9 dBm	0.623 W	Pa	SS
iip (ubiii)	23.13	23.13	23.22		27.7 dDIII	0.023 VV		
5745 MHz	Chain 1	Chain 2	Chain 3	Chan 4		411.01.1		
ower Setting ^{Note 3}	21.5	21.5	21.5		Total Across	s All Chains	Lin	nit
Output Power (dBm) Note 1	18.39	18.86	21.13		24.4 dBm	0.276 W	30.0 dBm	1.000 \
ntenna Gain (dBi) Note 2	3	3	3			3.0 dBi	Do	
irp (dBm) Note 2	21.39	21.86	24.13		27.4 dBm	0.550 W	Pa	22
		1		***************************************	3		•	
5785 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Across	s All Chains	Lin	nit
ower Setting ^{Note 3}	21.5	21.5	21.5					
Output Power (dBm) Note 1	18.7	19.03	20.5		24.3 dBm	0.266 W	30.0 dBm	1.000 \
Intenna Gain (dBi) Note 2	3	3	3		07.0.15	3.0 dBi	Pa	SS
irp (dBm) Note 2	21.7	22.03	23.5		27.3 dBm	0.531 W		
5825 MHz	Chain 1	Choin 2	Chain 2	V//K/LLLL/K///	1		1	
ower Setting ^{Note 3}	Chain 1	Chain 2	Chain 3 21.5	Chain 4	Total Across	s All Chains	Lin	nit
uteut Dower (dpm) Note 1	21.5	21.5			24 0 dDm	U 3EU W/	20.0 dDm	1 000 1
output Power (dBm) Note 1 ntenna Gain (dBi) Note 2	18.78 3	18.34 3	20.26		24.0 dBm	0.250 W 3.0 dBi	30.0 dBm	
irp (dBm) Note 2	21.78	21.34	23.26		27.0 dBm	0.499 W	Pa	SS
ווף (מטווו)	21.70	41.34	25.20		Z1.0 uDIII	U.477 VV		

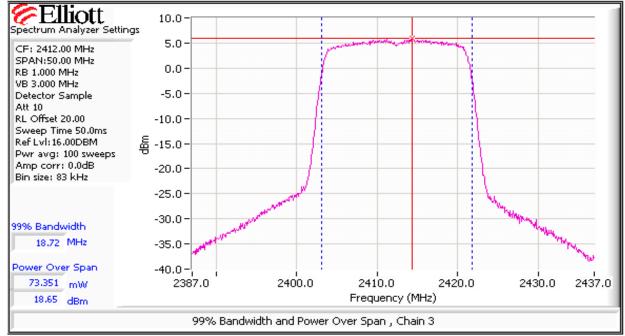

	An DOES company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number: T73801	
	Daimanan	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #1: Continued

		Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power
ı	Note 1:	averaging on (transmitted signal was continuous) and power integration over 50 MHz (reference method 1 of FCC DA 02-
		2138 for U-NII devices, August 30, 2002). Spurious limit becomes -30dBc .

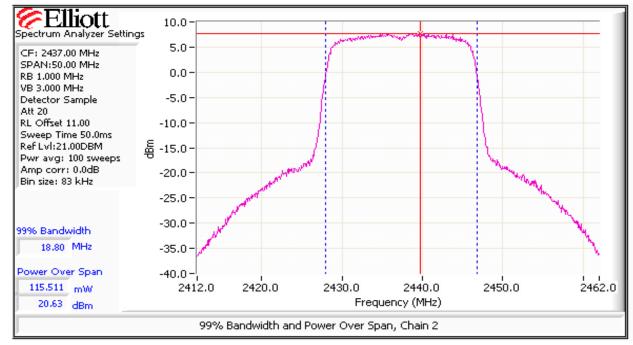
Note 2: As the antennas are sectorized, the effective antenna gain is the gain of any one antenna.


Note 3: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting for each chain is separated by a comma (e.g. x,y would indicate power setting x for chain 1, power setting y for chain 2.



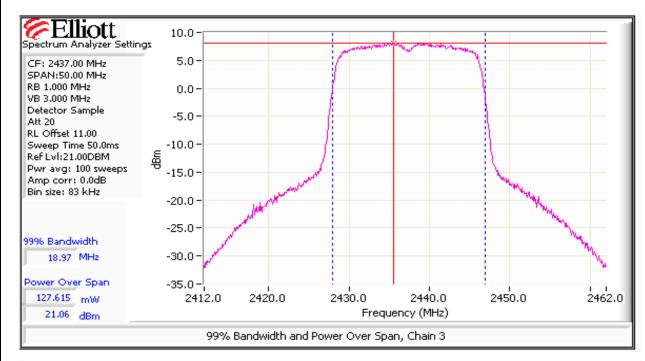
	Till Dall's Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number: T73801	
	Dailidiali	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

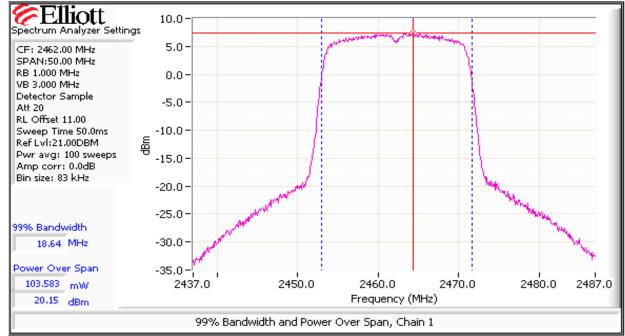
Run #1: Continued



	Till Dall's Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number: T73801	
	Dailidiali	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

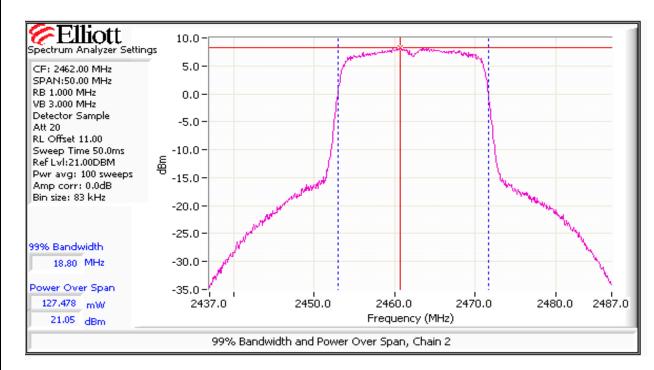
Run #1: Output Power - Chain A + B + C

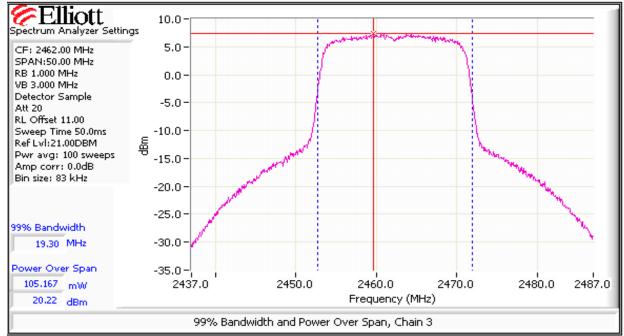




	Till Dall's Company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number: T73801	
	Dailidiali	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

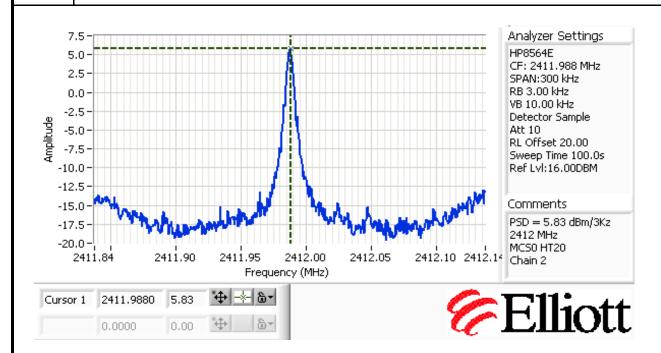
Run #1: Output Power - Chain A + B + C





Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number:	T73801
	Dailidudii	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #1: Output Power - Chain A + B + C

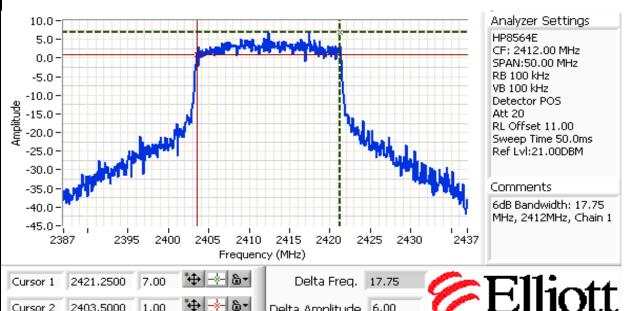

	All BEES company		
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number: T73801	
	Dailidiali	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #2: Power spectral Density

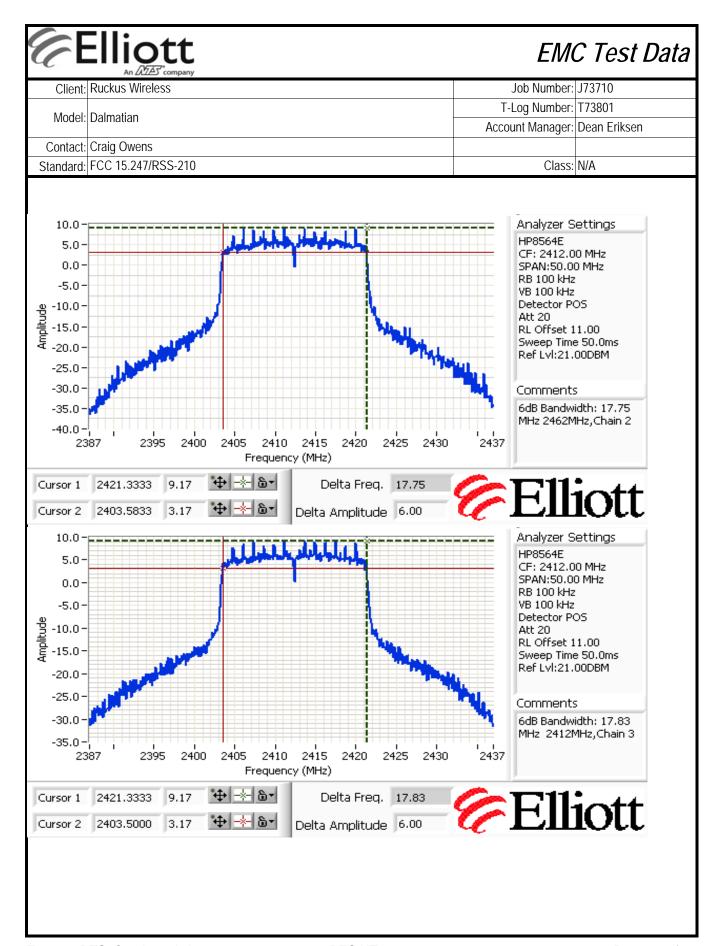
Power	Fraguanay (MIIz)		PSD (dBm/3kHz) Note 1					Dogult
Setting	Frequency (MHz)	Chain 1	Chain 2	Chain 3	Chain 4	Total	dBm/3kHz	Result
22	2412	2.7	5.8	-7.0		7.7	8.0	Pass
22	2437	6.5	-4.3	-7.7		7.0	8.0	Pass
22	2462	3.2	-3.0	-0.8		5.3	8.0	Pass
21.5	5745	-0.1	-9.3	2.1		4.3	8.0	Pass
21.5	5785	-7.6	-6.9	-2.3		-0.1	8.0	Pass
21.5	5825	-0.4	-7.6	-0.1		3.1	8.0	Pass

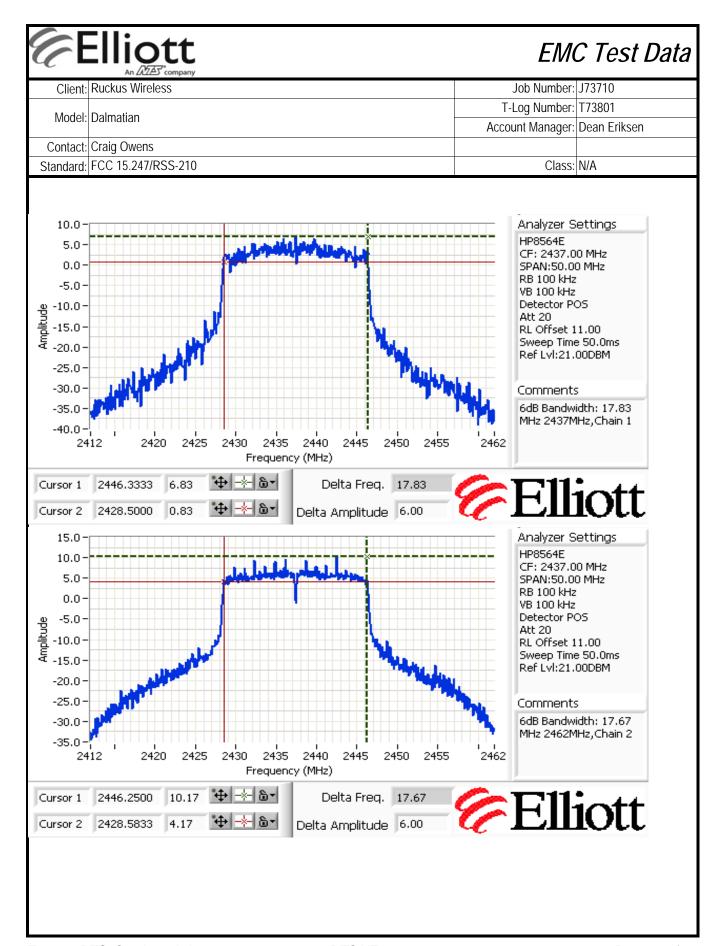
Note 1:

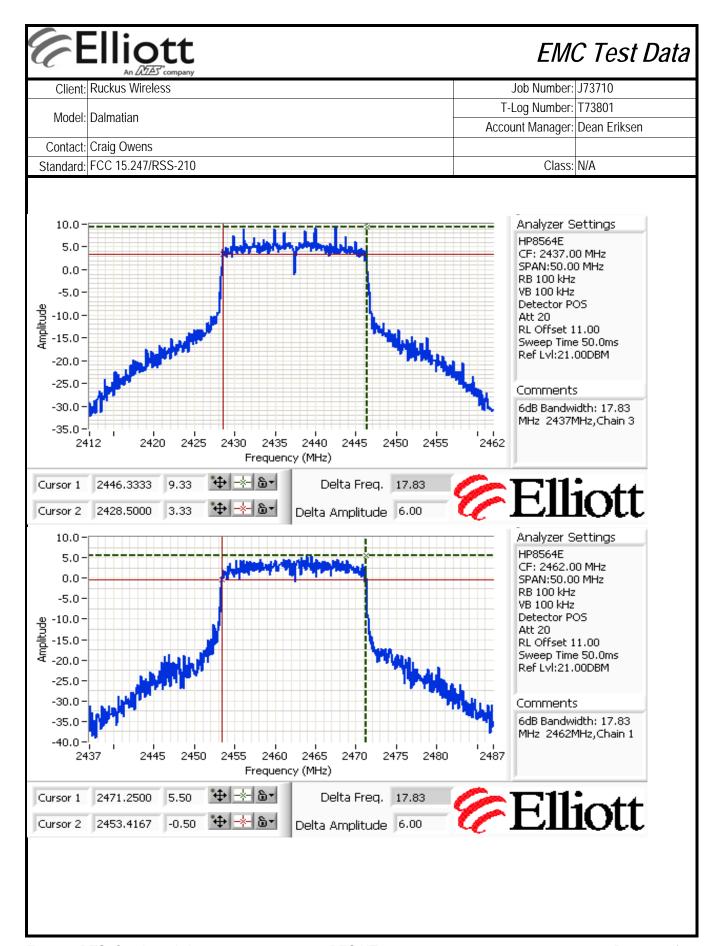
Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.


	All DIZZ Company				
Client:	Ruckus Wireless	Job Number:	J73710		
Madalı	Dalmatian	T-Log Number:	T73801		
woder:	Dailidudii	Account Manager:	Dean Eriksen		
Contact:	Craig Owens				
Standard:	FCC 15.247/RSS-210	Class:	N/A		

Run #3: Signal Bandwidth

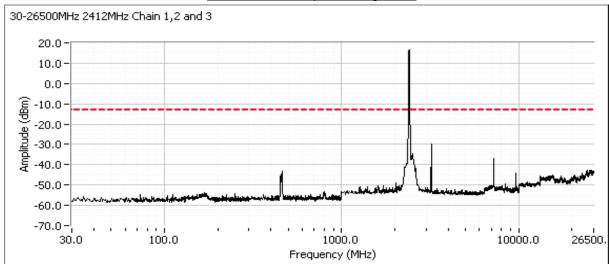

Power	Eroguanov (MUz)	Resolution	Bandwid	lth (MHz)
Setting	Frequency (MHz)	Bandwidth	6dB	99%
22	2412	100kHz	17.8	18.7
22	2437	100kHz	17.8	19.0
22	2462	100kHz	17.8	19.3
21.5	5745	100kHz	17.7	18.6
21.5	5785	100kHz	17.4	18.6
21.5	5825	100kHz	16.3	18.5


Note 1: Measured on a single chain


Note 2: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

Delta Amplitude 6.00

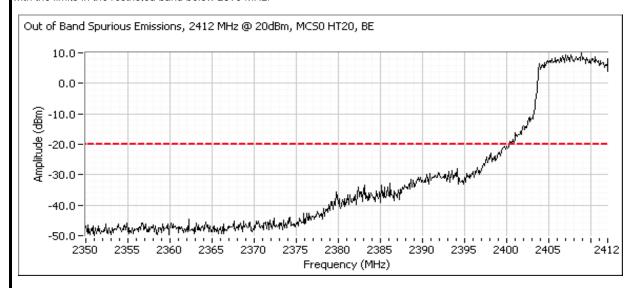
An Dazzo company				
Client:	Ruckus Wireless	Job Number:	J73710	
Madalı	Dalmatian	T-Log Number:	T73801	
woder:	Dailidiali	Account Manager:	Dean Eriksen	
Contact:	Craig Owens			
Standard:	FCC 15.247/RSS-210	Class:	N/A	

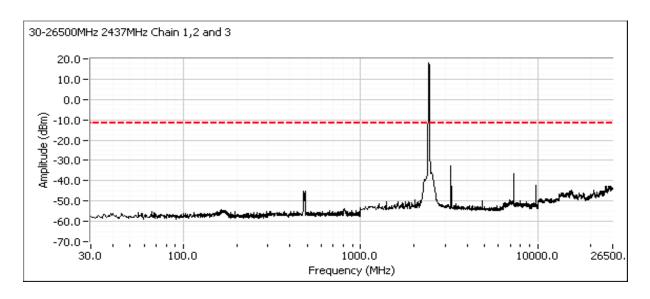

Run #4: Out of Band Spurious Emissions

	Power Settir	ng Per Chair		Frequency (MHz)	Limit	Result
#1	#2	#3	#4	rrequency (MHZ)	LIIIIIL	Result
22	22	22		2412	-30dBc	Pass
22	22	22		2437	-30dBc	Pass
22	22	22		2462	-30dBc	Pass
21.5	21.5	21.5		5745	-30dBc	Pass
21.5	21.5	21.5		5785	-30dBc	Pass
21.5	21.5	21.5		5825	-30dBc	Pass

Note 1: Measured with all chains connected together through a combiner, unused ports on the combiner terminated in 50ohms.

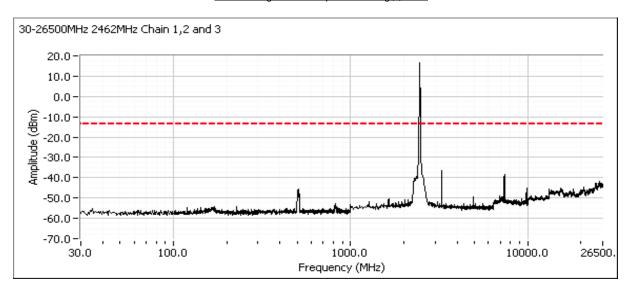
Note 2: All plots taken with RBW=VBW=100kHz

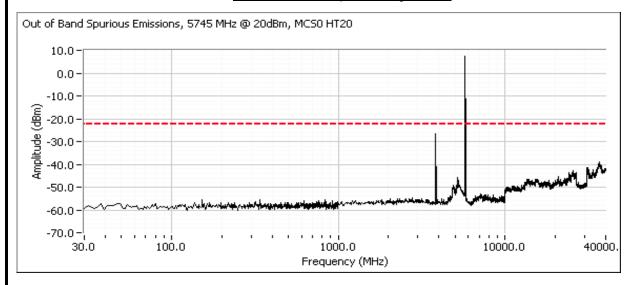

Plots for low channel, power setting(s) = 22



An Dazzo company				
Client:	Ruckus Wireless	Job Number:	J73710	
Madalı	Dalmatian	T-Log Number:	T73801	
woder:	Dailidiali	Account Manager:	Dean Eriksen	
Contact:	Craig Owens			
Standard:	FCC 15.247/RSS-210	Class:	N/A	

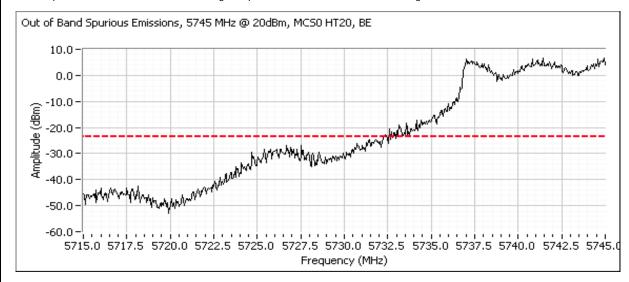
Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

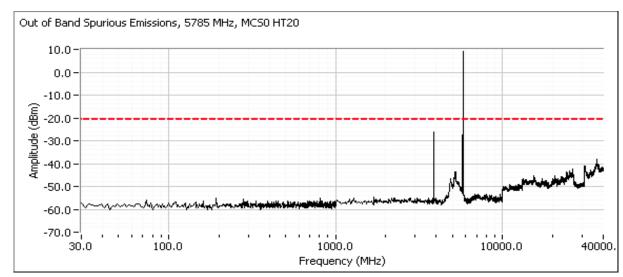

Plots for center channel, power setting(s) = 22



Client:	Ruckus Wireless	Job Number:	J73710		
Madalı	Dalmatian	T-Log Number:	T73801		
woder:	Daimanan	Account Manager:	Dean Eriksen		
Contact:	Craig Owens				
Standard:	FCC 15.247/RSS-210	Class:	N/A		

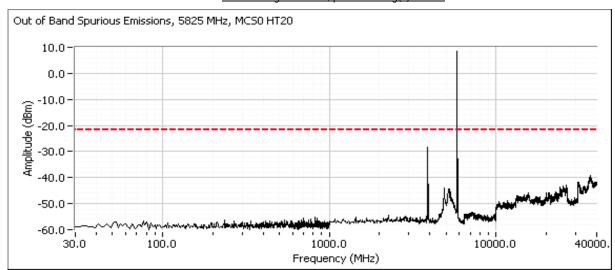
Plots for high channel, power setting(s) = 22

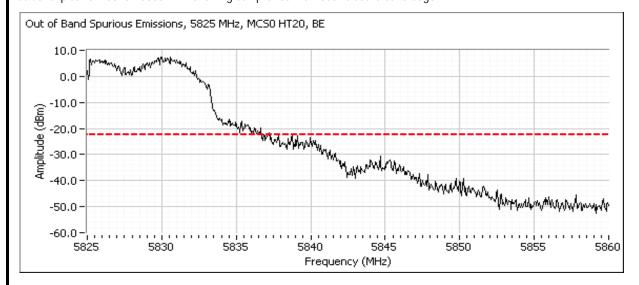

Plots for low channel, power setting(s) = 21.5



	All Diff. Company				
Client:	Ruckus Wireless	Job Number:	J73710		
Madalı	Dalmatian	T-Log Number:	T73801		
woder:	Dailidiaii	Account Manager:	Dean Eriksen		
Contact:	Craig Owens				
Standard:	FCC 15.247/RSS-210	Class:	N/A		

Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.


Plots for center channel, power setting(s) = 21.5



Client:	Ruckus Wireless	Job Number:	J73710
Madalı	Dalmatian	T-Log Number:	T73801
woder:	Daillatian	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Plots for high channel, power setting(s) = 21.5

Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.

	An 2/2/25 company				
Client:	Ruckus Wireless	Job Number:	J73710		
Model	Dalmatian	T-Log Number:	T73801		
iviodei:	Daimanan	Account Manager:	Dean Eriksen		
Contact:	Craig Owens				
Standard:	FCC 15.247/RSS-210	Class:	N/A		

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements **MIMO and Smart Antenna Systems** Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/12/2009 & 2/17/2009 Config. Used: 1 Config Change: None Test Engineer: Rafael Varelas Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 18.9 °C

Rel. Humidity: 36 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power Chain A+B+C	15.247(b)	Pass	28.7 dBm (EIRP)
2	PSD Chain A+B+C	15.247(d)	Pass	7.7 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	34.3 MHz
4	99% Bandwidth	RSS GEN	Pass	37.4 MHz
5	Spurious emissions	15.247(b)	Pass	All Emissions Below -30dBc

Modifications Made During Testing

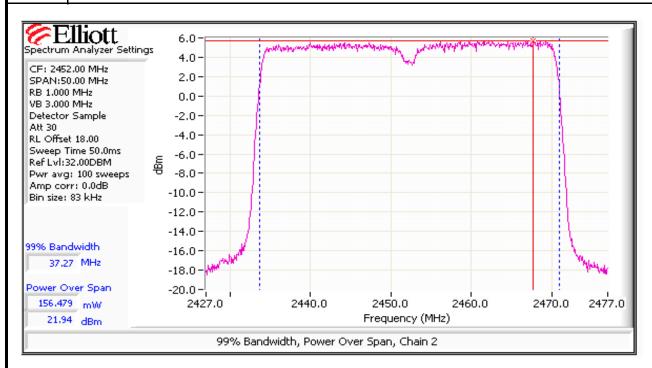
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Note: EUT transmits on all chains in all modes and does not support a reduced number of transmit chains.

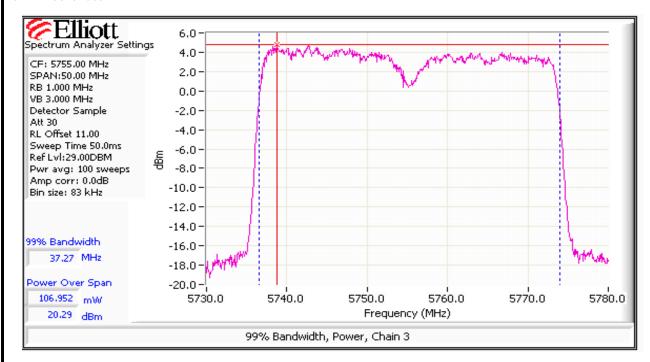
Client: Ruckus Wireless					J	ob Number:	J73710	
					T-L	.og Number:	T73801	
Model: Dalmatian	Model: Dalmatian						Dean Eriksen	
Contact: Craig Owens								
Standard: FCC 15.247/RSS-210	0					Class:	N/A	
Run #1: Output Power - Chain A								
	Operating Mode:)					
Transmitted signal on cha	ain is conerent ?	no						
2422 MHz	Chain 1	Chain 2	Chain 3	Chain 4	T	All Ol I	1	
Power Setting ^{Note 3}	19.0	19.0	19.0		Total Across	s All Chains	Limit	
Output Power (dBm) Note 1	18.54	19	18.6		23.5 dBm	0.223 W	30.0 dBm 1.00	
Antenna Gain (dBi) Note 2	3	3	3			3.0 dBi	Pass	
eirp (dBm) Note 2	21.54	22	21.6		26.5 dBm	0.446 W	F d 3 3	
2437 MHz	Chain 1	Chain 2	Chain 3	Chain 4	1		I	
Power Setting ^{Note 3}	21.0	21.0	21.0	SALVANIA A	Total Across All Chains		Limit	
Output Power (dBm) Note 1	20.33	21.83	20.36		25.7 dBm	0.369 W	30.0 dBm 1.00	
Antenna Gain (dBi) Note 2	3	3	3		23.7 UDIII	3.0 dBi	•	
eirp (dBm) Note 2	23.33	24.83	23.36		28.7 dBm	0.736 W	Pass	
onp (abin)	20.00	21.00	20.00		2017 45111	0.700 11		
2452 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Aaros	s All Chains	Limit	
Power Setting ^{Note 3}	21.0	21.0	21.0		TOTAL ACTOS:	S All Challis	Limit	
Output Power (dBm) Note 1	20.6	21.94	20.14		25.7 dBm	0.374 W	30.0 dBm 1.00	
Antenna Gain (dBi) Note 2	3	3	3			3.0 dBi	Pass	
eirp (dBm) Note 2	23.6	24.94	23.14		28.7 dBm	0.747 W	Tass	
5755 MHz	Chain 1	Chain 2	Chain 3	Chain 4	<u> </u>		I	
Power Setting ^{Note 3}	20.5	20.5	20.5	entern 4	Total Across	s All Chains	Limit	
Output Power (dBm) Note 1	17.72	17.95	20.29		23.6 dBm	0.228 W	30.0 dBm 1.00	
Antenna Gain (dBi) Note 2	3	3	3		23.0 UDIII	3.0 dBi		
eirp (dBm) Note 2	20.72	20.95	23.29		26.6 dBm	0.456 W	Pass	
on p (destin)	20172	20170	20127		2010 02	01.00 11		
5785 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Across	. All Chaine	Limit	
Power Setting ^{Note 3}	20.5	20.5	20.5		TOTAL ACTOS:	S All Challis	Limit	
Output Power (dBm) Note 1	17.64	17.93	19.94		23.4 dBm	0.219 W	30.0 dBm 1.00	
Antenna Gain (dBi) Note 2	3	3	3			3.0 dBi	Pass	
eirp (dBm) Note 2	20.64	20.93	22.94		26.4 dBm	0.437 W	1 033	
5805 MHz	Chain 1	Chain 2	Chain 3	Chain 4	<u> </u>		I	
Power Setting ^{Note 3}	Chain 1 20.5	Chain 2 20.5	Chain 3 20.5	extector, et.	Total Across	s All Chains	Limit	
Output Power (dBm) Note 1	18.35	18.19	19.51		23.5 dBm	0.224 W	30.0 dBm 1.00	
Antenna Gain (dBi) Note 2	3	3	3		20.0 00111	3.0 dBi	•	
eirp (dBm) Note 2	21.35	21.19	22.51		26.5 dBm	0.446 W	Pass	


Client:	Ruckus Wireless	Job Number:	J73710
Model	Dalmatian	T-Log Number:	T73801
woder:	Daimanan	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #1: Continued

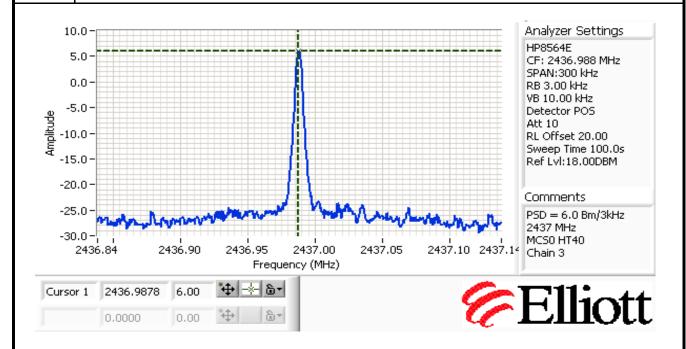
	Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power	
Not	te 1:	averaging on (transmitted signal was continuous) and power integration over 50 MHz (reference method 1 of FCC DA 02-
		2138 for U-NII devices, August 30, 2002). Spurious limit becomes -30dBc.

Note 2: As the antennas are sectorized, the effective antenna gain is the gain of any one antenna.


Note 3: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting for each chain is separated by a comma (e.g. x,y would indicate power setting x for chain 1, power setting y for chain 2.

	Till Dall's Company		
Client:	Ruckus Wireless	Job Number:	J73710
Madal	Dalmatian	T-Log Number:	T73801
Model.	Daimanan	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #1: Continued

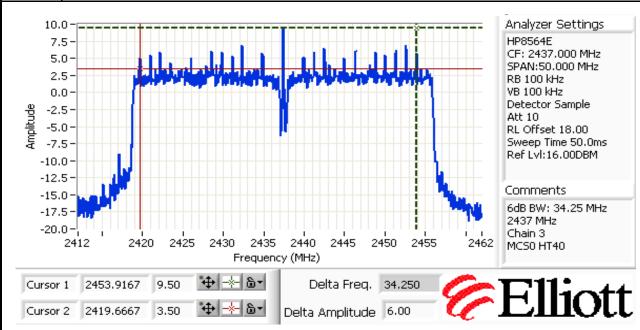


	All BEES company		
Client:	Ruckus Wireless	Job Number:	J73710
Madalı	Dalmatian	T-Log Number:	T73801
Model.	Dailialiali	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #2: Power spectral Density

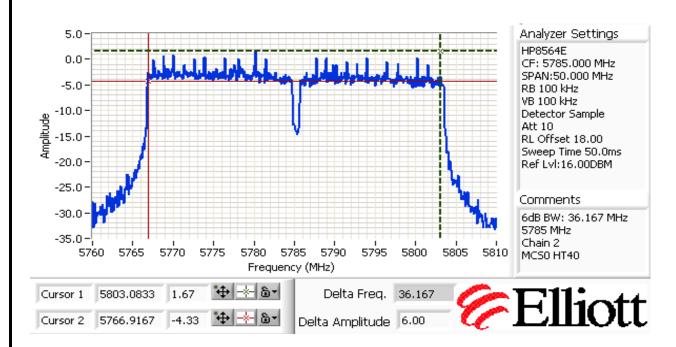
Power							Limit	Result
Setting	r requericy (wiriz)	Chain 1	Chain 2	Chain 3	Chain 4	Total	dBm/3kHz	Result
19	2422	-3.2	-0.5	-6.3		2.1	8.0	Pass
21	2437	-0.7	0.0	6.0		7.7	8.0	Pass
21	2452	3.8	0.2	1.2		6.8	8.0	Pass
20.5	5755	-9.8	-1.8	1.1		3.1	8.0	Pass
20.5	5785	-5.6	3.4	1.2		5.8	8.0	Pass
20.5	5805	3.2	-11.4	0.3		5.1	8.0	Pass

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.


	The second secon		
Client:	Ruckus Wireless	Job Number:	J73710
Madal	Dalmatian	T-Log Number:	T73801
wodei.	Dailidudi	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #3: Signal Bandwidth

Power	Eroguanov (MUz)	Resolution	Bandwidth (MHz)	
Setting	Frequency (MHz)	Bandwidth	6dB	99%
19	2422	100kHz	35.5	37.4
21	2437	100kHz	34.3	37.4
21	2452	100kHz	36.8	37.3
20.5	5755	100kHz	36.6	37.3
20.5	5785	100kHz	36.2	37.3
20.5	5805	100kHz	36.5	37.2

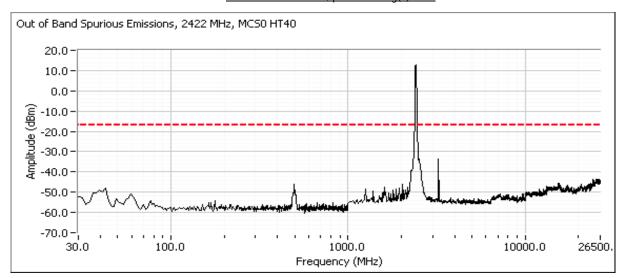

Note 1: Measured on a single chain

Note 2: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

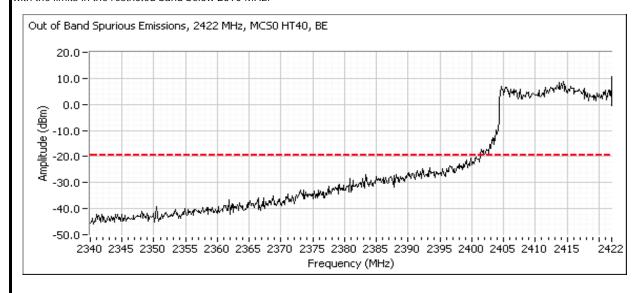
	All DEED company		
Client:	Ruckus Wireless	Job Number:	J73710
Madal	Dalmatian	T-Log Number:	T73801
Model.	Dailidudii	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #4: Out of Band Spurious Emissions

	Power Settir	ng Per Chai	n	Frequency (MHz)	Limit	Result
#1	#2	#3	 # 4	rrequency (MHZ)	LIIIII	Result
19	19	19		2422	-30dBc	Pass
21	21	21		2437	-30dBc	Pass
21	21	21		2452	-30dBc	Pass
18.5	18.5	18.5		5755	-30dBc	Pass
18.5	18.5	18.5		5785	-30dBc	Pass
18	18	18		5805	-30dBc	Pass

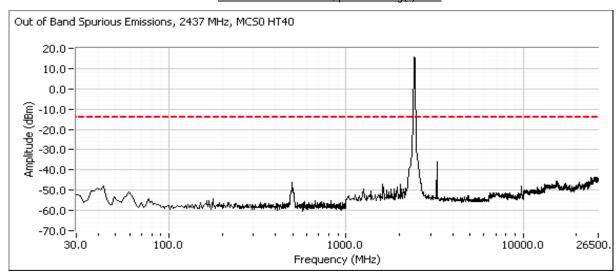

Note 1: Measured with all chains connected together through a combiner, unused ports on the combiner terminated in 50ohms.

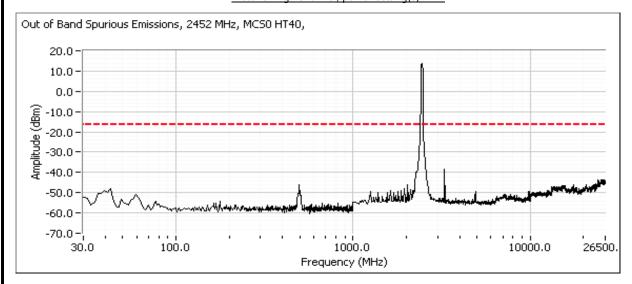
Note 1: Measured on each chain individually



	The second secon		
Client:	Ruckus Wireless	Job Number:	J73710
Madal	Dalmatian	T-Log Number:	T73801
wodei.	Dailidudi	Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

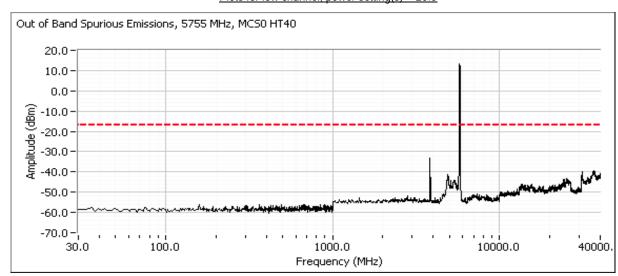
Plots for low channel, power setting(s) = 19

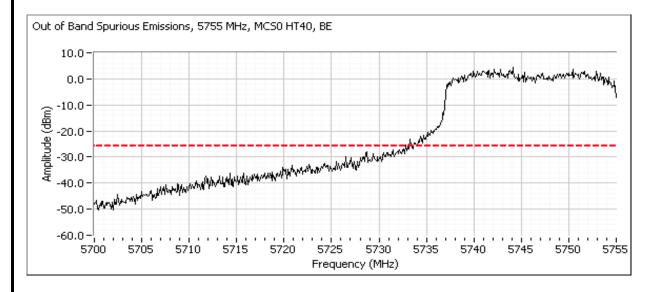

Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.



	This Date of Company			
Client:	Ruckus Wireless	Job Number:	J73710	
Model:	Dalmatian	T-Log Number:	T73801	
		Account Manager:	Dean Eriksen	
Contact:	Craig Owens			
Standard:	FCC 15.247/RSS-210	Class:	N/A	

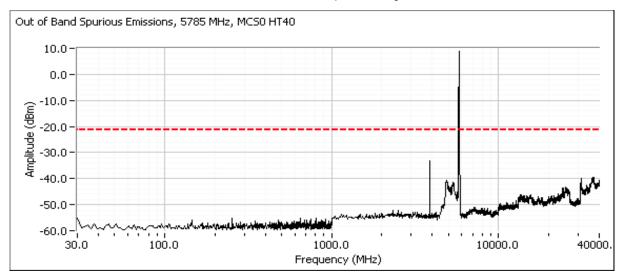
Plots for center channel, power setting(s) = 21

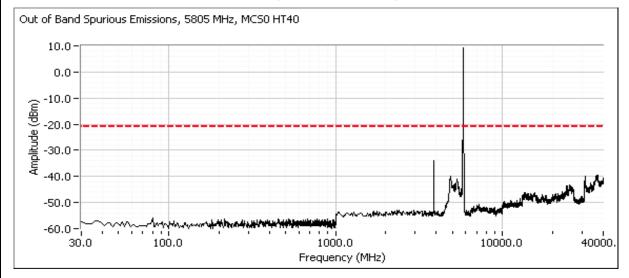

Plots for high channel, power setting(s) = 21



	······································			
Client:	Ruckus Wireless	Job Number:	J73710	
Model:	Dalmatian	T-Log Number:	T73801	
		Account Manager:	Dean Eriksen	
Contact:	Craig Owens			
Standard:	FCC 15.247/RSS-210	Class:	N/A	

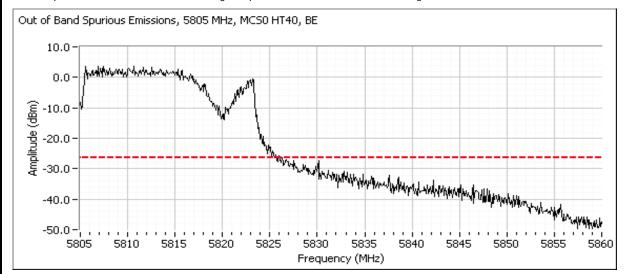
Plots for low channel, power setting(s) = 20.5


Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.



Client:	Ruckus Wireless	Job Number:	J73710	
Model:	Dalmatian	T-Log Number:	T73801	
		Account Manager:	Dean Eriksen	
Contact:	Craig Owens			
Standard:	FCC 15.247/RSS-210	Class:	N/A	

Plots for center channel, power setting(s) = 20.5


Plots for high channel, power setting(s) = 20.5

All DEED Company			
Client:	Ruckus Wireless	Job Number:	J73710
Model:	Dalmatian	T-Log Number:	T73801
		Account Manager:	Dean Eriksen
Contact:	Craig Owens		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.

EXHIBIT 3: Photographs of Test Configurations

File: R74729 Rev 1 Exhibit Page 3 of 10

EXHIBIT 4: Proposed FCC ID Label & Label Location

File: R74729 Rev 1 Exhibit Page 4 of 10

EXHIBIT 5: Detailed Photographs of Ruckus Wireless Model 7962Construction

File: R74729 Rev 1 Exhibit Page 5 of 10

EXHIBIT 6: Operator's Manual for Ruckus Wireless Model 7962

Pages

File: R74729 Rev 1 Exhibit Page 6 of 10

EXHIBIT 7: Block Diagram of Ruckus Wireless Model 7962

File: R74729 Rev 1 Exhibit Page 7 of 10

EXHIBIT 8: Schematic Diagrams for Ruckus Wireless Model 7962

Pages

File: R74729 Rev 1 Exhibit Page 8 of 10

EXHIBIT 9: Theory of Operation for Ruckus Wireless Model 7962

File: R74729 Rev 1 Exhibit Page 9 of 10

EXHIBIT 10: RF Exposure Information

File: R74729 Rev 1 Exhibit Page 10 of 10