

FCC PART 15.247 IC RSS-210, ISSUE 8, DEC 2010 TEST AND MEASUREMENT REPORT

For

Ruckus Wireless, Inc.

880 West Maude Avenue, Suite 101,

Sunnyvale, CA 94085, USA

FCC ID: S9G-MPE2N33A IC: 5912A-MPE2N33A

Report Type:

Original Report

Product Type:

802.11 b/g/n Wireless Module

Test Engineers: Quinn Jiang

Report Number: R1110211-247

Report Date: 2012-02-01

Victor Zhang

Reviewed By: EMC/RF Lead

Prepared By: Bay Area Compliance Laboratories Corp.

(LH) 1274 Anvilwood Avenue,

Sunnyvale, CA 94089, USA

Tel: (408) 732-9162 Fax: (408) 732-9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1	GE	NERAL DESCRIPTION	6
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT). MECHANICAL DESCRIPTION OF EUT. OBJECTIVE RELATED SUBMITTAL(S)/GRANT(S) TEST METHODOLOGY. MEASUREMENT UNCERTAINTY TEST FACILITY.	
2	SYS	TEM TEST CONFIGURATION	8
	2.1 2.2 2.3 2.4 2.5 2.6	JUSTIFICATION EUT EXERCISE SOFTWARE EQUIPMENT MODIFICATIONS SPECIAL ACCESSORIES LOCAL SUPPORT EQUIPMENT EUT INTERNAL CONFIGURATION	
3	SUN	MMARY OF TEST RESULTS	9
4	FCC	C §15.247(I), §2.1091 & IC RSS-102 - RF EXPOSURE	10
	4.1 4.2 4.3	APPLICABLE STANDARD MPE PREDICTION MPE RESULTS	11 11
5	FCC	C §15.203 & IC RSS-GEN §7.1.2 – ANTENNA REQUIREMENTS	
	5.1 5.2	APPLICABLE STANDARD ANTENNA LIST	12
6	FCC	C §15.207 & IC RSS-GEN §7.2.2 – AC LINE CONDUCTED EMISSIONS	13
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	APPLICABLE STANDARD TEST SETUP TEST PROCEDURE TEST SETUP BLOCK DIAGRAM CORRECTED AMPLITUDE & MARGIN CALCULATION TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS SUMMARY OF TEST RESULTS CONDUCTED EMISSIONS TEST PLOTS AND DATA	
7	FCC	C §15.247(D) & IC RSS-210 §A8.5 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	18
	7.1 7.2 7.3 7.4 7.5	APPLICABLE STANDARD MEASUREMENT PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULTS	18 18 18
8	FCC	C §15.205, §15.209, §15.247(D) & IC RSS-210 §A8.5 – SPURIOUS RADIATED EMISSIONS	47
	8.1 8.2 8.3	APPLICABLE STANDARD TEST SETUP EUT SETUP	48

8.4	TEST PROCEDURE	
8.5	CORRECTED AMPLITUDE & MARGIN CALCULATION	
8.6	TEST EQUIPMENT LIST AND DETAILS	
8.7	TEST ENVIRONMENTAL CONDITIONS	
8.8	SUMMARY OF TEST RESULTS	
8.9	RADIATED EMISSIONS TEST RESULT DATA	
	CC §15.247(A)(2) & IC RSS-210 §A8.2–6 DB & 99% BANDWIDTH	
9.1	APPLICABLE STANDARD	
9.2	MEASUREMENT PROCEDURE	
9.3 9.4	TEST EQUIPMENT LIST AND DETAILS	
	CC \$15.247(B) & IC RSS-210 \$A8.4- PEAK OUTPUT POWER MEASUREMENT	
10.1	APPLICABLE STANDARD	
10.1	MEASUREMENT PROCEDURE	
10.2	TEST EQUIPMENT LIST AND DETAILS.	
10.3	TEST ENVIRONMENTAL CONDITIONS	
10.5	TEST RESULTS.	
11 FC	CC §15.247(D) & IC RSS-210 §A8.5 - 100 KHZ BANDWIDTH OF BAND EDGES	77
11.1	APPLICABLE STANDARD	
11.2	MEASUREMENT PROCEDURE	
11.3	TEST EQUIPMENT LIST AND DETAILS	
11.4	TEST ENVIRONMENTAL CONDITIONS	
11.5	TEST RESULTS	
12 FC	CC §15.247(E) & IC RSS-210 §A8.2 (B) - POWER SPECTRAL DENSITY	86
12.1	APPLICABLE STANDARD	
12.2	MEASUREMENT PROCEDURE	
12.3 12.4	TEST EQUIPMENT LIST AND DETAILS	
12.4	TEST RESULTS	
	RSS-210 §2.3 & RSS-GEN §6 - RECEIVER SPURIOUS RADIATED EMISSIONS	
13.1	APPLICABLE STANDARD	
13.2	EUT SETUP.	
13.3	TEST PROCEDURE	
13.4	CORRECTED AMPLITUDE & MARGIN CALCULATION	
13.5	TEST EQUIPMENT LISTS AND DETAILS	
13.6	TEST ENVIRONMENTAL CONDITIONS	
13.7	SUMMARY OF TEST RESULTS	
13.8	TEST RESULTS	
	KHIBIT A - FCC & IC EQUIPMENT LABELING REQUIREMENTS	
14.1	FCC ID LABEL REQUIREMENTS	
14.2 14.3	IC LABEL REQUIREMENTSFCC ID & IC LABEL CONTENTS	
14.3	FCC ID & IC LABEL CONTENTS	
	KHIBIT B - TEST SETUP PHOTOGRAPHS	
15.1	CONDUCTED EMISSION FRONT VIEW	
15.1	CONDUCTED EMISSION FRONT VIEW	
15.3	RADIATED EMISSION FRONT VIEW	
15.4	RADIATED EMISSION BELOW 1 GHz REAR VIEW	
15.5	RADIATED EMISSION ABOVE 1 GHZ REAR VIEW	

16 EX	KHIBIT C - EUT PHOTOGRAPHS	110
16.1	EUT-Top View	110
16.2	EUT-BOTTOM VIEW	110
	ANTENNA TOP VIEW	
	ANTENNA BOTTOM VIEW	
	SUPPORTING BOARD TOP VIEW	
	SUPPORTING BOARD BOTTOM VIEW	
16.7	EUT – TOP VIEW WITHOUT SHIELDING	113
16.8	AC/DC Power Supply View	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1110211-247	Original Report	2012-02-01

1 General Description

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Ruckus Wireless, Inc.*, and their product model: *MPE2N33A*, *FCC ID: S9G-MPE2N33A*, *IC: 5912A-MPE2N33A* or the "EUT" as referred to in this report. The EUT is a dual band Wireless 802.11b/g/n wireless module.

1.2 Mechanical Description of EUT

The "EUT" measures approximately 6.9cm (L) x 3.9cm (W) x 1.0cm (H), and weighs approximately 16.0g.

The test data gathered are from typical production sample, serial number: 114721040001, provided by the manufacturer.

1.3 Objective

This report is prepared on behalf of *Ruckus Wireless, Inc.*, in accordance with Part 2, Subpart J, and Part 15, Subparts B and C of the Federal Communication Commissions rules and IC RSS-210 Issue 8, Dec 2010.

The objective is to determine compliance with FCC/IC rules for Antenna Requirements, Conducted Emissions, Occupied Bandwidth, Output Power, Power Spectral Density, Radiated and Conducted Spurious Emissions, and Band Edge.

1.4 Related Submittal(s)/Grant(s)

N/A

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2:2003, The Treatment of Uncertainty in EMC Measurements, the values ranging from ± 2.0 dB for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz as well as ANSI C63.4-2003, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: R-3729, C-4176, G-469, and T-1206. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is a National Institute of Standards and Technology (NIST) accredited laboratory under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2001670.htm

2 System Test Configuration

2.1 Justification

The EUT was configured for testing according to ANSI C63.4-2003.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

The worst-case data rates are determined to be as follows for each mode based upon investigation by measuring the average power, peak power and PPSD across all data rates bandwidths, and modulations.

2.2 EUT Exercise Software

The software used, 3CDaemon Version 2.0, Putty Version 0.60.0.0, and Snoop Art version 2.18.2 were provided by client and verified by Quinn Jiang to comply with the standard requirements being tested against.

2.3 Equipment Modifications

No modifications were made to the EUT.

2.4 Special Accessories

Manufacturer	Description	Model No.	Serial No.	
Atheros Communications	Module Supporting Board	HPCB D1 94V-0	PB92-021-D0897	

2.5 Local Support Equipment

Manufacturer Description		Model No.	Serial No.	
Dell Laptop		Latitude E5420	CHZMLQ1	

2.6 EUT Internal Configuration

NA: Only the module card was tested the s/n was in the section 1.2.

3 Summary of Test Results

Results reported relate only to the product tested.

FCC & IC Rules	Description of Test	Results
FCC §15.247(i), §2.1091 IC RSS-102	RF Exposure	Compliant
FCC §15.203 IC RSS-Gen §7.1.2	Antenna Requirement	Compliant
FCC §15.207(a) IC RSS-Gen §7.2.4	AC Line Conducted Emissions	Compliant
FCC §15.247(d) IC RSS-210 §A8.5	Spurious Emissions at Antenna Port	Compliant
FCC §15.205 IC RSS-210 §2.2	Restricted Bands	Compliant
FCC §15.209, §15.247 IC RSS-210 §A8.5	Radiated Spurious Emissions	Compliant
FCC §15.247(a)(2) IC RSS-210 §A8.2	6 dB Emission Bandwidth	Compliant
FCC §15.247(b)(3) IC RSS-210 §A8.4	Maximum Peak Output Power	Compliant
FCC §15.247(d) IC RSS-210 §A8.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
FCC §15.247(e) IC RSS-210 §A8.2 (b)	Power Spectral Density	Compliant
IC §RSS-210 §2.3 RSS-Gen §6	Receiver Spurious Emission	Compliant

4 FCC §15.247(i), §2.1091 & IC RSS-102 - RF Exposure

4.1 Applicable Standard

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)
	Limits for General Population/Uncontrolled Exposure			
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	$*(180/f^2)$	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

Before equipment certification is granted, the procedure of IC RSS-102 must be followed concerning the exposure of humans to RF fields.

According to RSS-102 Issue 2 section 4.1, RF limits used for general public will be applied to the EUT.

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Time Averaging (min)
0.003 - 1	280	2.19	-	6
1 - 10	280 / f	2.19 / f	-	6
10 - 30	28	2.19 / f	-	6
30 - 300	28	0.073	2*	6
300 – 1 500	1.585 f ^{0.5}	$0.0042 \text{ f}^{0.5}$	f / 150	6
1 500 – 15 000	61.4	0.163	10	6
15 000 – 150 000	61.4	0.163	10	616000 / f ^{1.2}
150 000- 300 000	0.158 f ^{0.5}	4.21 x 10 -4 f ^{0.5}	6.67 x 10 ⁻⁵ f	616000 / f ^{1.2}

Note: *f* is frequency in MHz

^{* =} Plane-wave equivalent power density

^{*} Power density limit is applicable at frequencies greater than 100 MHz

<u>10</u>

4.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

4.3 MPE Results

Maximum peak output power at antenna input terminal (dBm): 25.72 Maximum peak output power at antenna input terminal (mW): 373.25 Prediction distance (cm): <u>20</u> Prediction frequency (MHz): 2462 Maximum Antenna Gain, typical (dBi): 3.0 Maximum Antenna Gain (numeric): 1.995 Power density of prediction frequency at 20.0 cm (mW/cm²): 0.14816 Power density of prediction frequency at 20.0 cm (W/m²): 1.4816 MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

Device is compliance with the requirement MPE limit at 20 cm distance for the uncontrolled exposure.

MPE limit for uncontrolled exposure at prediction frequency (W/m²):

5 FCC §15.203 & IC RSS-Gen §7.1.2 – Antenna Requirements

5.1 Applicable Standard

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC §15.247 (b)(4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

As per IC RSS-Gen §7.1.2: Transmitter Antenna

A transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to RSS-210 Annex 8 (Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands) or RSS-210 Annex 9 (Local Area Network Devices), the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

5.2 Antenna List

Antenna Model	Antenna Gain (dBi) 2.4 GHz	
FAB 100-11205-001 REV 4	3.0	

6 FCC §15.207 & IC RSS-Gen §7.2.2 – AC Line Conducted Emissions

6.1 Applicable Standard

As per FCC §15.207 & RSS-Gen §7.2.2 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted Limit (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

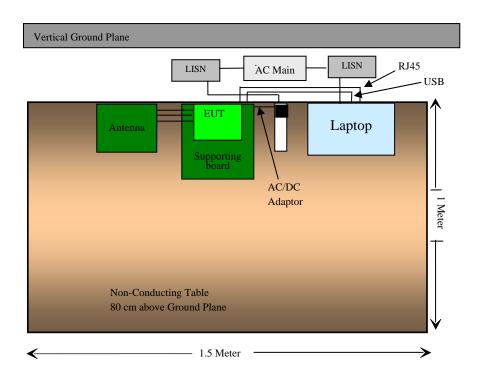
Decreases with the logarithm of the frequency.

6.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.4-2003 measurement procedure. The specification used was FCC and IC limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The AC/DC power adapter of the Support Board was connected with LISN-1 which provided 120 V/60 Hz AC power.


6.3 Test Procedure

During the conducted emissions test, the power cord of the EUT host system was connected to the mains outlet of the LISN-2

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with a "QP." Average readings are distinguished with an "Ave".

6.4 Test Setup Block Diagram

6.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Cable Loss (CL), the Attenuator Factor (Atten) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + CL + Atten$$

For example, a corrected amplitude of 46.2 dBuV = Indicated Reading (32.5 dBuV) + Cable Loss (3.7 dB) + Attenuator (10 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

6.6 Test Equipment List and Details

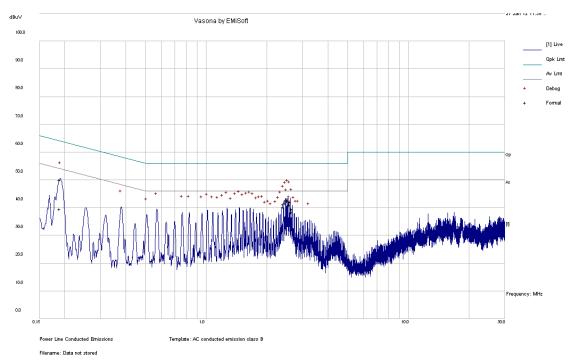
Manufacturer	Description	Model No.	Serial No.	Calibration Date
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100044	2011-04-14
Solar Electronics	LISN	9252-R-24-BNC	511205	2011-06-25
TTE	Filter, High Pass	H9962-150K-50- 21378	K7133	2011-06-10

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

6.7 Test Environmental Conditions

Temperature:	19~23 °C
Relative Humidity:	37~45 %
ATM Pressure:	101-102 kPa

The testing was performed by Quinn Jiang on 01-27-2012 in 5 meter chamber 3.

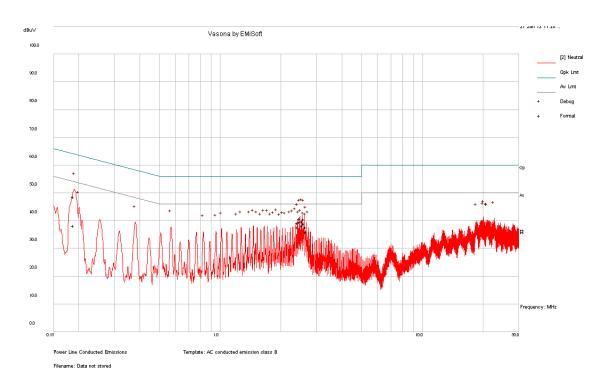

6.8 Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC/IC standard's</u> conducted emissions limits, with the margin reading of:

Connection: 120 V/60 Hz, AC			
Margin (dB)	Frequency (MHz)	Conductor (Line/Neutral)	Range (MHz)
-3.63	2.535954	Line	0.15 to 30

6.9 Conducted Emissions Test Plots and Data

802.11b: 2462 MHz 120 V, 60 Hz – Line


Quasi-Peak Measurements

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (Line/Neutral)	Limit (dBµV)	Margin (dB)
2.535954	42.83	Line	56	-13.17
2.599608	42.13	Line	56	-13.87
2.471305	42.59	Line	56	-13.41
0.189579	50.17	Line	64.06	-13.89
2.408075	41.26	Line	56	-14.74
2.662115	39.62	Line	56	-16.38

Average Measurements

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (Line/Neutral)	Limit (dBµV)	Margin (dB)
2.535954	42.37	Line	46	-3.63
2.599608	41.08	Line	46	-4.92
2.471305	41.73	Line	46	-4.27
0.189579	39.47	Line	54.06	-14.58
2.408075	40.27	Line	46	-5.73
2.662115	38.44	Line	46	-7.56

120 V, 60 Hz – Neutral

Quasi-Peak Measurements

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (Line/Neutral)	Limit (dBµV)	Margin (dB)
0.187977	48.5	Neutral	64.13	-15.62
2.53955	39.82	Neutral	56	-16.18
2.600606	40.48	Neutral	56	-15.52
2.473426	40.78	Neutral	56	-15.22
2.410963	39.13	Neutral	56	-16.87
2.66461	37.6	Neutral	56	-18.4

Average Measurements

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (Line/Neutral)	Limit (dBµV)	Margin (dB)
0.187977	38.2	Neutral	54.13	-15.92
2.53955	38.24	Neutral	46	-7.76
2.600606	38.99	Neutral	46	-7.01
2.473426	39.51	Neutral	46	-6.49
2.410963	37.65	Neutral	46	-8.35
2.66461	35.87	Neutral	46	-10.13

7 FCC §15.247(d) & IC RSS-210 §A8.5 - Spurious Emissions at Antenna Terminals

7.1 Applicable Standard

For FCC §15.247(d) and IC RSS-210 § A8.5 in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

7.2 Measurement Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

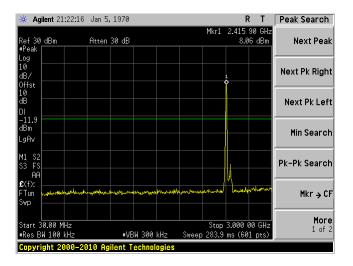
7.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date
Agilent	Spectrum Analyzer	E4446A	US44300386	2011-08-11

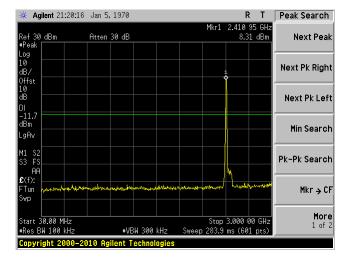
Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

7.4 Test Environmental Conditions

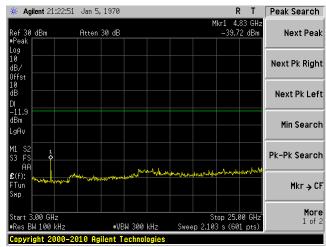
Temperature:	19~24 °C
Relative Humidity:	38~48 %
ATM Pressure:	101.2-102 kPa

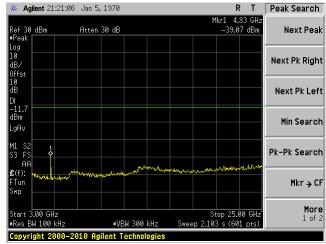

The testing was performed by Quinn Jiang on 01-19-2012 to 01-20-2012 in RF site.

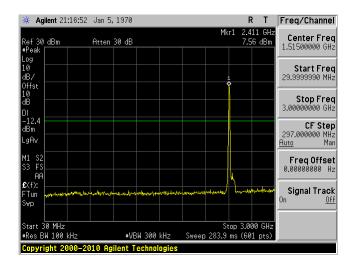
7.5 Test Results

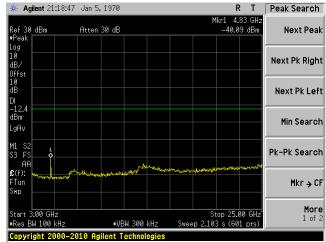

Please refer to following plots.

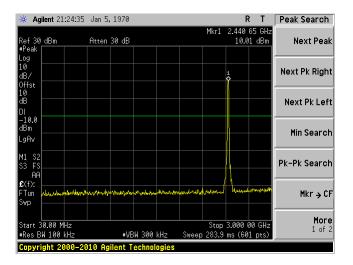
2400 MHz - 2483.5 MHz

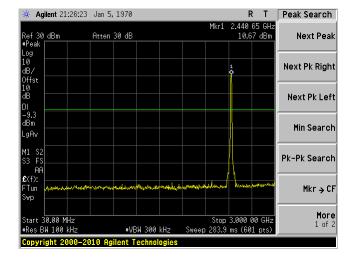

802.11b mode, Low Channel, Chain J1 30MHz – 3GHz

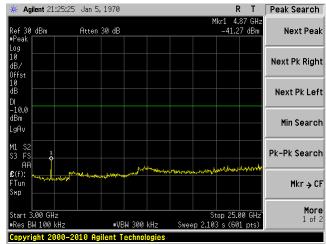

802.11b mode, Low Channel, Chain J2 30MHz – 3GHz

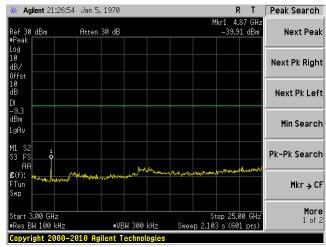

802.11b mode, Low Channel, Chain J1 3G – 25 GHz

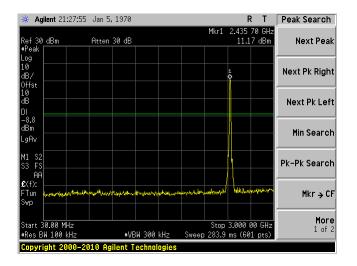

802.11b mode, Low channel, Chain J2 3G – 25 GHz

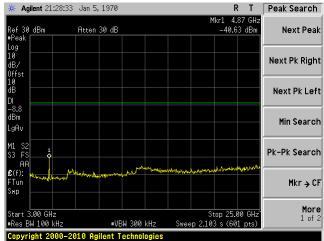

802.11b mode, Low Channel, Chain J3 30MHz – 3GHz


802.11b mode, Low Channel, Chain J3 3G – 25 GHz

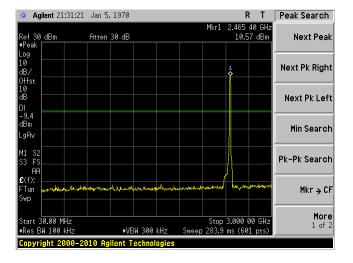

802.11b mode, Middle Channel, Chain J1 30MHz – 3GHz


802.11b mode, Middle Channel, Chain J2 30MHz – 3GHz

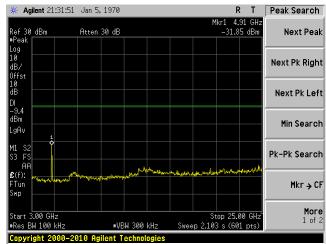

802.11b mode, Middle Channel, Chain J1 3G – 25 GHz

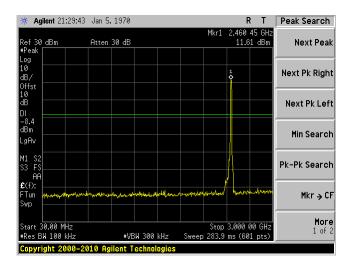

802.11b mode, Middle Channel, Chain J2 3G – 25 GHz

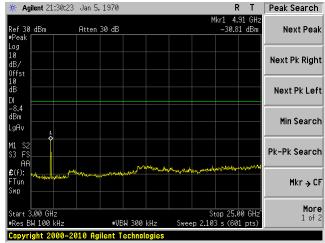

802.11b mode, Middle Channel, Chain J3 30MHz – 3GHz

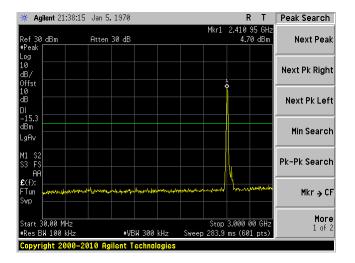

802.11b mode, Middle Channel, Chain J3 3G – 25 GHz

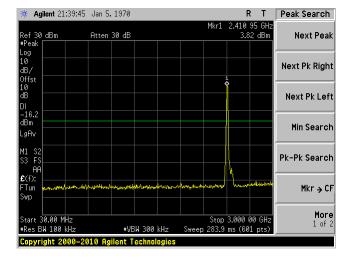
802.11b mode, High Channel, Chain J1 30MHz – 3GHz

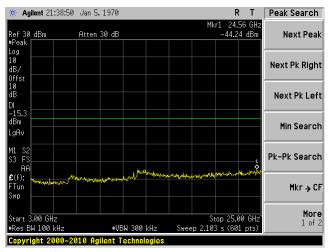

802.11b mode, High Channel, Chain J2 30MHz – 3GHz

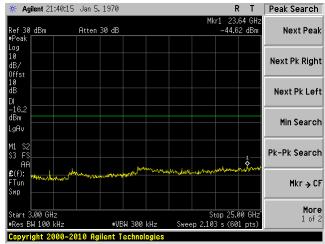

802.11b mode, High Channel, Chain J1 3G – 25 GHz

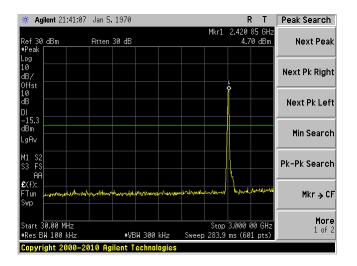

802.11b mode, High Channel, Chain J2 3G – 25 GHz

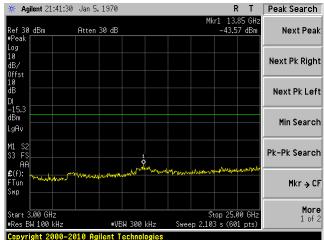

802.11b mode, High Channel, Chain J3 30MHz – 3GHz

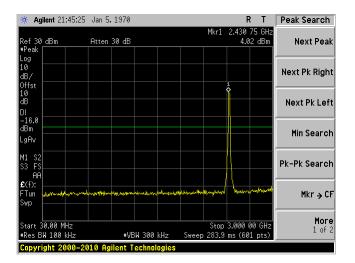

802.11b mode, High Channel, Chain J3 3G – 25 GHz

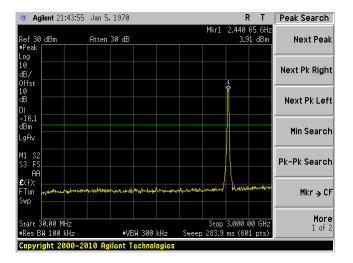

802.11g mode, Low Channel, Chain J1 30MHz – 3GHz

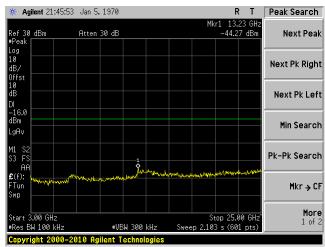

802.11g mode, Low Channel, Chain J2 30MHz – 3GHz

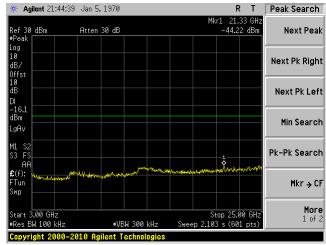

802.11g mode, Low Channel, Chain J1 3G - 25 GHz

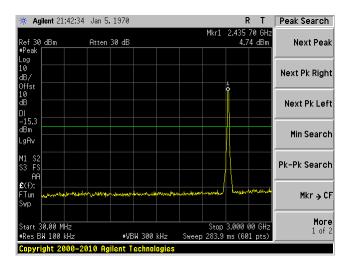

802.11g mode, Low Channel, Chain J2 3G – 25 GHz

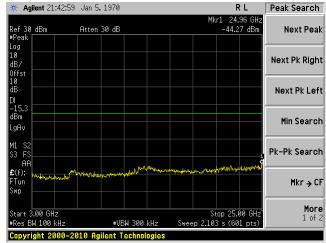

802.11g mode, Low Channel, Chain J3 30 MHz - 3 GHz

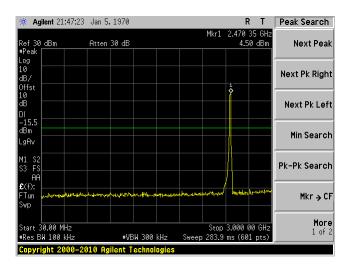

802.11g mode, Low Channel, Chain J3 3G - 25 GHz

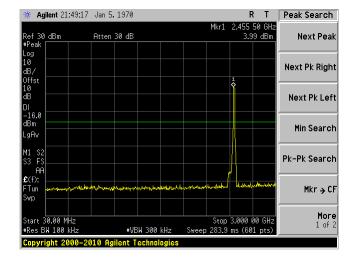

802.11g mode, Middle Channel, Chain J1 30MHz – 3GHz

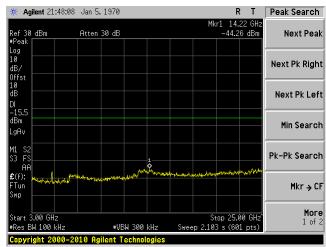

802.11g mode, Middle Channel, Chain J2 30MHz – 3GHz

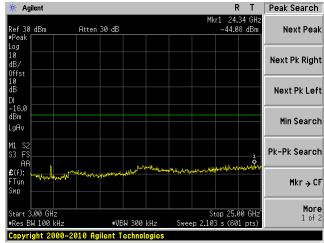

802.11g mode, Middle Channel, Chain J1 3G – 25 GHz

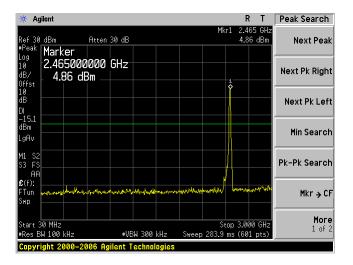

802.11g mode, Middle Channel, Chain J2 3G – 25 GHz

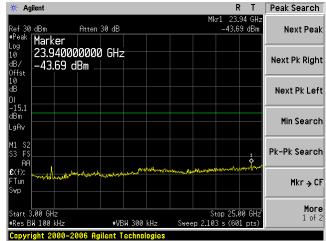

802.11g mode, Middle Channel, Chain J3 30MHz – 3GHz

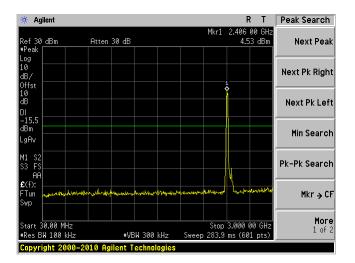

802.11g mode, Middle Channel, Chain J3 3G - 25 GHz

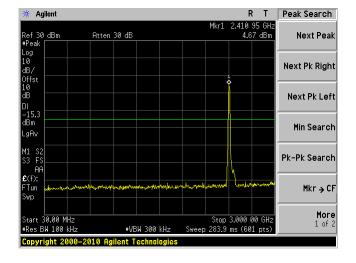

802.11g mode, High Channel, Chain J1 30MHz – 3GHz

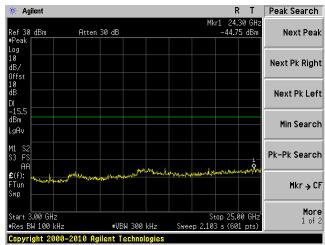

802.11g mode, High Channel, Chain J2 30MHz – 3GHz

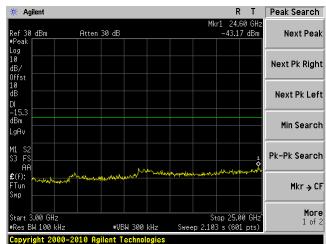

802.11g mode, High Channel, Chain J1 3G – 25 GHz

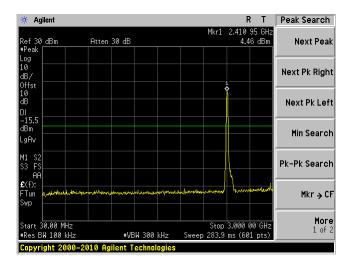

802.11g mode, High Channel, Chain J2 3G – 25 GHz

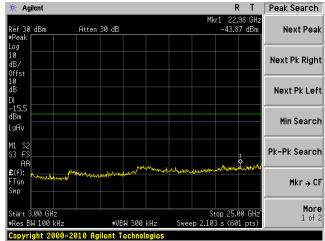

802.11g mode, High Channel, Chain J3 30MHz – 3GHz

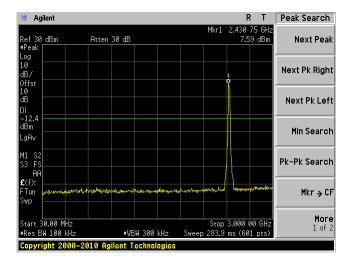

802.11g mode, High Channel, Chain J3 3G – 25 GHz

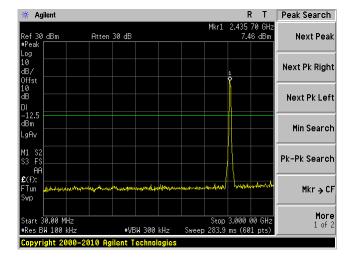

802.11n20 mode, Low Channel, Chain J1 30MHz – 3GHz

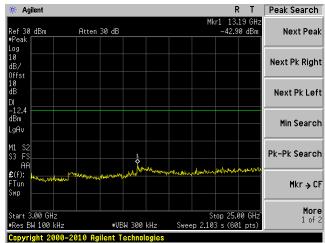

802.11n20 mode, Low Channel, Chain J2 30MHz – 3GHz

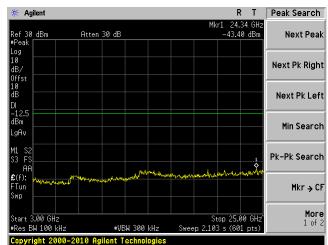

802.11n20 mode, Low Channel, Chain J1 3G – 25 GHz

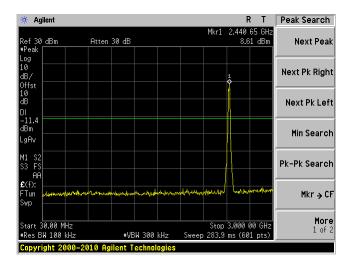

802.11n20 mode, Low Channel, Chain J2 3G – 25 GHz

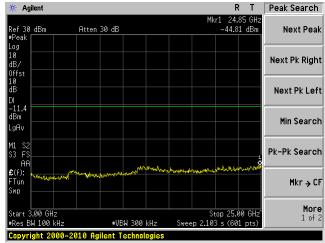

802.11n20 mode, Low Channel, Chain J3 30MHz – 3GHz

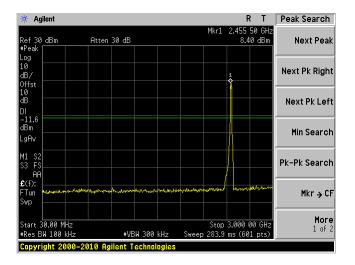

802.11 n20 mode, Low Channel, Chain J3 3G - 25 GHz

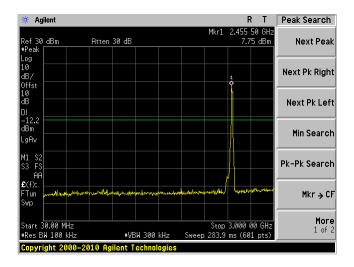

802.11 n20 mode, Middle Channel, Chain J1 30MHz – 3GHz

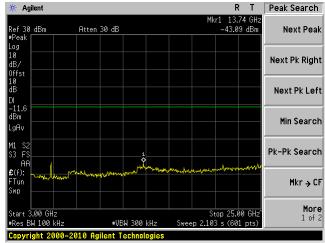

802.11n20 mode, Middle Channel, Chain J2 30MHz – 3GHz

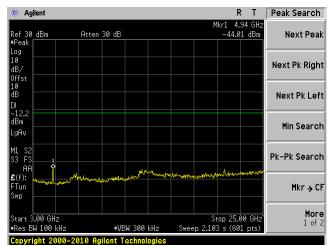

802.11 n20 mode, Middle Channel, Chain J1 3G – 25 GHz

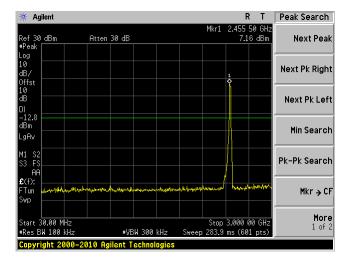

802.11n20 mode, Middle Channel, Chain J2 3G – 25 GHz

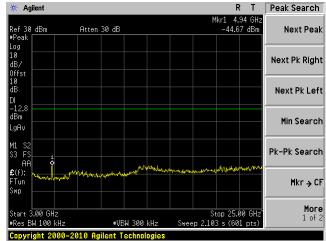

802.11n20 mode, Middle Channel, Chain J3 30MHz – 3GHz

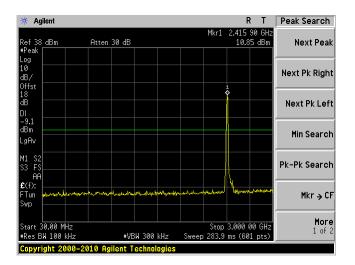

802.11n20 mode, Middle Channel, Chain J3 3G-25 GHz

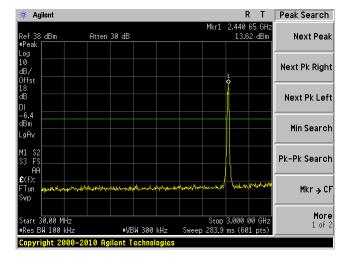

802.11n20 mode, High Channel, Chain J1 30MHz – 3GHz

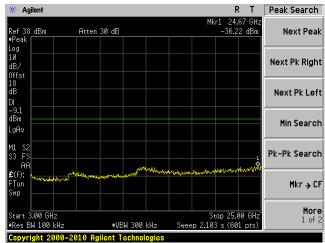

802.11n20 mode, High Channel, Chain J2 30MHz – 3GHz

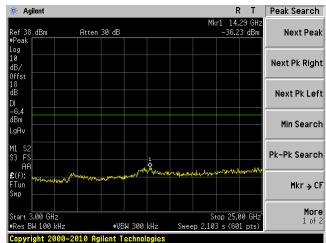

802.11n20 mode, High Channel, J1 3G – 25 GHz

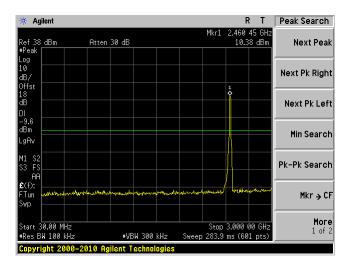

802.11n20 mode, High Channel, Chain J2 3G – 25 GHz

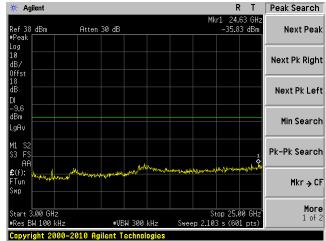

802.11n20 mode, High Channel, Chain J3 30MHz - 3GHz

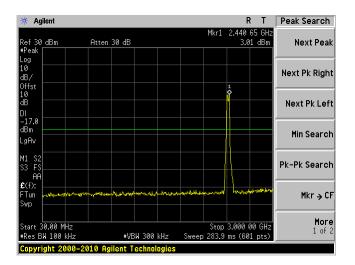

802.11n20 mode, High Channel, Chain J3 3G – 25 GHz

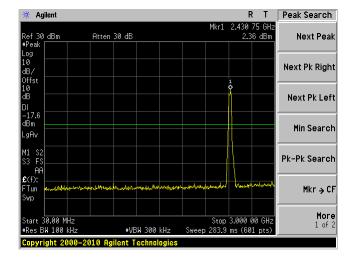

802.11n20 mode, Low Channel, Chain J1, J2, J3 30MHz – 3GHz

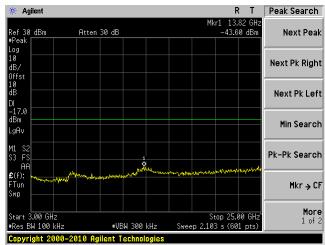

802.11n20 mode, Middle Channel, Chain J1, J2, J3 30MHz – 3GHz

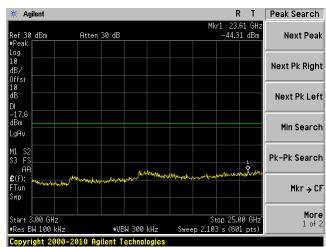

802.11n20 mode, Low Channel, Chain J1, J2, J3 3G – 25 GHz

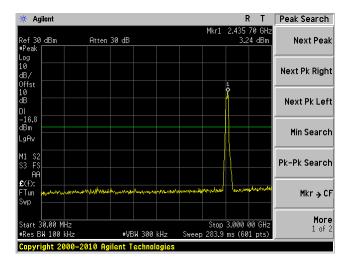

802.11n20 mode, Middle Channel, Chain J1, J2, J3 3G – 25 GHz

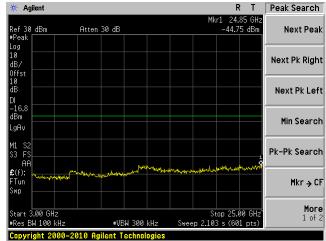

802.11n20 mode, High Channel, Chain J1, J2, J3 30MHz – 3GHz

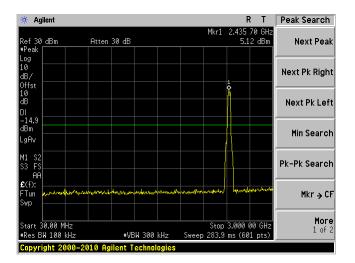

802.11n20 mode, High Channel, Chain J1, J2, J3 3G - 25 GHz

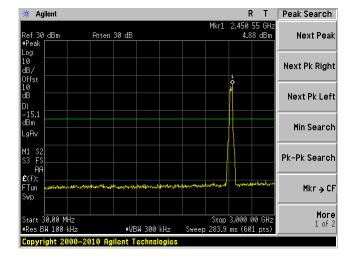

802.11n40 mode, Low Channel, Chain J1 30MHz – 3GHz

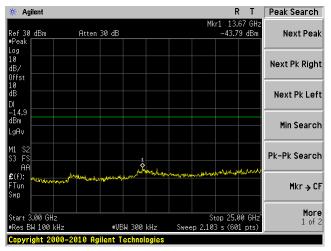

802.11n40 mode, Low Channel, Chain J2 30MHz – 3GHz

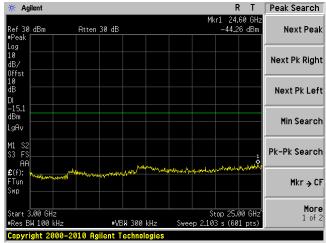

802.11n40 mode, Low Channel, Chain J1 3G – 25 GHz

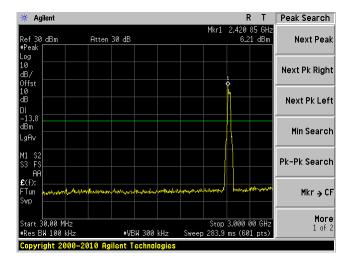

802.11n40 mode, Low Channel, Chain J2 3G – 25 GHz

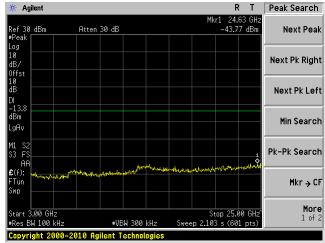

802.11n40 mode, Low Channel, Chain J3 30MHz – 3GHz

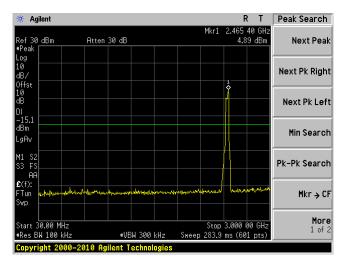

802.11n40 mode, Low Channel, Chain J33G-25 GHz

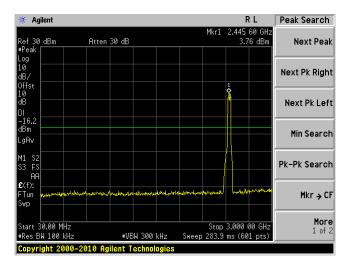

802.11n40 mode, Middle Channel, Chain J1 30MHz – 3GHz

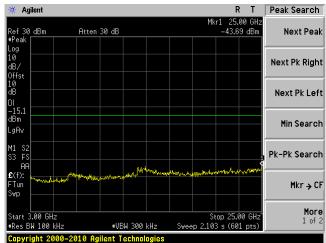

802.11n40 mode, Middle Channel, Chain J2 30MHz – 3GHz

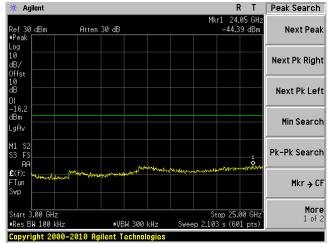

802.11n40 mode, Middle Channel, Chain J1 3G – 25 GHz

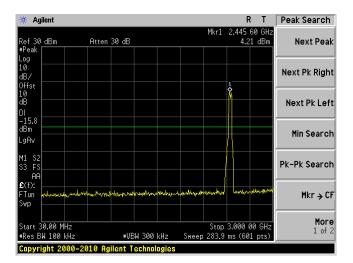

802.11n40 mode, Middle Channel, Chain J2 3G – 25 GHz

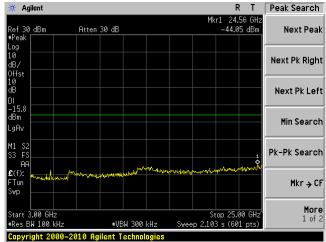

802.11n40 mode, Middle Channel, Chain J3 30MHz – 3GHz

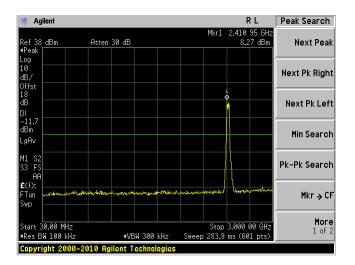

802.11n40 mode, Middle Channel, Chain J33G-25 GHz

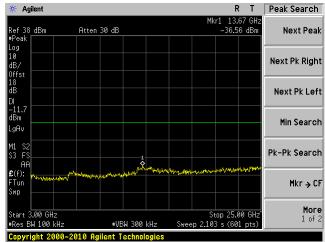

802.11n40 mode, High Channel, Chain J1 30MHz – 3GHz

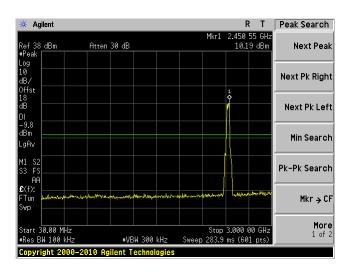

802.11n40 mode, High Channel, Chain J2 30MHz – 3GHz

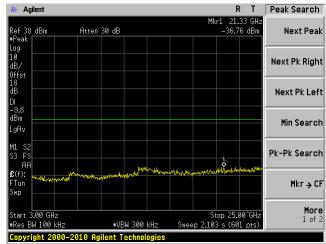

802.11n40 mode, High Channel, Chain J1 3G – 25 GHz

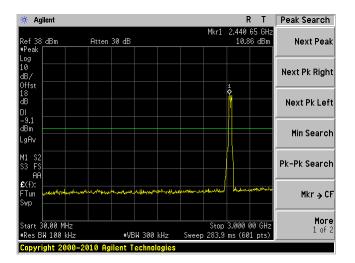

802.11n40 mode, High Channel, Chain J2 3G – 25 GHz

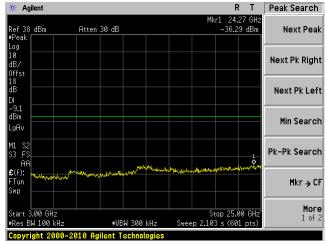

802.11n40 mode, High Channel, Chain J3 30MHz - 3GHz


802.11n40 mode, High Channel, Chain J3 3G – 25 GHz


802.11n40 mode, Low Channel, Chain J1, J2, J3 30MHz – 3GHz


802.11n40 mode, Low Channel, Chain J1, J2, J3 3G – 25 GHz


802.11n40 mode, Middle Channel, Chain J1, J2, J3 30MHz – 3GHz


802.11n40 mode, Middle Channel, Chain J1, J2, J3 3G – 25 GHz

802.11n40 mode, High Channel, Chain J1, J2, J3 30MHz -3GHz

802.11n40 mode, High Channel, Chain J1, J2, J3 3G-25 GHz

8 FCC §15.205, §15.209, §15.247(d) & IC RSS-210 §A8.5 – Spurious Radiated Emissions

8.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As per FCC §15.209(a) and RSS-210: Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110 0.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	16.42 - 16.423 16.69475 - 16.69525 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4 399.9 - 410 608 - 614	960 – 1240 1300 – 1427 1435 – 1626.5 1645.5 – 1646.5 1660 – 1710 1718.8 – 1722.2 2200 – 2300 2310 – 2390 2483.5 – 2500 2690 – 2900 3260 – 3267 3.332 – 3.339 3 3458 – 3 358 3.600 – 4.400	4. 5 - 5. 15 5. 35 - 5. 46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8 36.43 - 36.5 Above 38.6

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

8.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.4-2003. The specification used was the FCC 15 Subpart C and IC RSS-210 limits.

8.3 EUT Setup

The radiated emissions tests were performed using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15C, IC RSS-210 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

8.4 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

$$RBW = 100 \text{ kHz} / VBW = 300 \text{ kHz} / Sweep = Auto$$

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
- (2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to the indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, the Corrected Amplitude (CA) of 40.3 dBuV/m = indicated Amplitude reading (Ai) 32.5 dBuV + Antenna Factor (AF) 23.5 dB + Cable Loss (CL) 3.7 dB + Attenuator (Atten) 10 dB - Amplifier Gain (Ga) 29.4 dB

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

8.6 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2011-03-21	
Agilent	Spectrum Analyzer	E4440A	MY44303352	2011-05-10	
Sunol Science Corp	System Controller	SC99V	122303-1	N/R	
Sunol Science Corp	Combination Antenna	JB3	A0020106-3	2011-06-29	
EMCO	Horn antenna	3115	9511-4627	2011-10-03	
Hewlett Packard	Pre amplifier	8447D	2944A06639	2011-06-09	
Mini-Circuits	Pre Amplifier	ZVA-183-S	570400946	2011-05-09	

Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

8.7 Test Environmental Conditions

Temperature:	18~25 °C
Relative Humidity:	38~50 %
ATM Pressure:	101-102 kPa

The testing was performed by Quinn Jiang on 10-21-2011, 01-17-2012 and 01-23-2012 in 5 meter chamber 3.

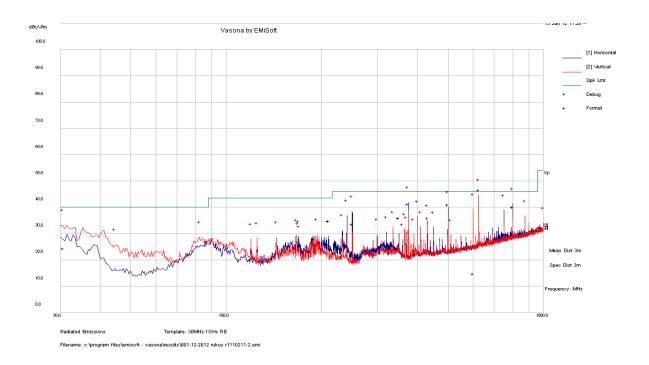
8.8 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the FCC Part 15, Subpart C, section 15.205, 15.209 and 15.247</u> & IC RSS-210, RSS-Gen standard's radiated emissions limits, and had the worst margin of:

30-1000 MHz:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range
-5.18	249.95	Vertical	30 MHz-1 GHz

Above 1GHz:

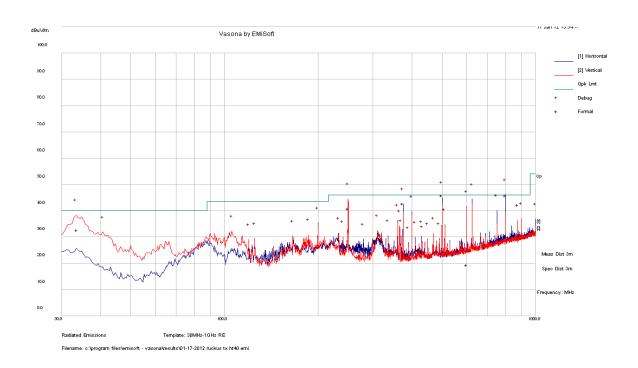

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range
-0.36	7385	Vertical	1 GHz- 25 GHz

Please refer to the following table and plots for specific test result details

8.9 Radiated Emissions Test Result Data

(1) Radiated Emission at 3 meters, 30 MHz – 1 GHz

802.11b mode (2462 MHz)



Quasi-Peak Measurements

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	
249.9538	33.65	99	Н	130	46	-12.35	

Note: other emissions are from the supporting board/equipments.

802.11n40 mode (2422 MHz)

Quasi-Peak Measurements

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	
249.95	40.82	100	V	285	46	-5.18	

Note: other emissions are from the supporting board/equipments.

(2) Radiated Emission at 3 meters, above 1 GHz

802.11b Mode:

Frequency	S.A.	Turntable	Te	st Anteni	na	Cable	Pre-	Cord.	FCC	² /IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
			Lo	w Chann	el 2412 N	MHz, mea	sured at 3	meters			
4823	43.23	91	137	V	32.6	5.56	27.77	53.62	74	-20.38	Peak
4823	42.32	146	133	Н	32.6	5.56	27.77	52.71	74	-21.29	Peak
4823	38.61	91	137	V	32.6	5.56	27.77	49	54	-5	Ave
4823	37.44	146	133	Н	32.6	5.56	27.77	47.83	54	-6.17	Ave
			Mid	dle Chan	nel 2437	MHz me	asured at 3	meters			
4874	42.71	26	137	V	32.8	5.52	27.7	53.33	74	-20.67	Peak
4874	41.89	187	120	Н	32.8	5.52	27.7	52.51	74	-21.49	Peak
4874	36.28	26	137	V	32.8	5.52	27.7	46.90	54	-7.10	Ave
4874	36.46	187	120	Н	32.8	5.52	27.7	47.08	54	-6.92	Ave
7310	52.09	337	126	V	35.9	6.57	27.9	66.70	74	-7.30	Peak
7310	50.1	14	140	Н	35.9	6.57	27.9	64.71	74	-9.29	Peak
7310	36.79	337	126	V	35.9	6.57	27.9	51.40	54	-2.60	Ave
			Hig	gh Chann	nel 2462	MHz mea	sured at 3 i	neters			
4920	44.31	268	129	V	32.8	5.52	27.7	54.93	74	-19.07	Peak
4920	43.38	161	133	Н	32.8	5.52	27.7	54.00	74	-20.00	Peak
4920	39.91	268	129	V	32.8	5.52	27.7	50.53	54	-3.47	Ave
4920	38.77	161	133	Н	32.8	5.52	27.7	49.39	54	-4.61	Ave
7385	44.71	330	116	V	36.1	6.62	27.9	59.53	74	-14.47	Peak
7385	43.83	15	148	Н	36.1	6.62	27.9	58.65	74	-15.35	Peak
7385	38.82	330	116	V	36.1	6.62	27.9	53.64	54	-0.36	Ave
7385	36.27	15	148	Н	36.1	6.62	27.9	51.09	54	-2.91	Ave

802.11g Mode:

Frequency	S.A.	Turntable	Te	st Anteni	na	Cable	Pre-	Cord.	FCC	C/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
Low Channel 2412 MHz, measured at 3 meters											
2385	55.02	7	200	V	28.4	4.05	27.61	59.86	74	-14.14	Peak
2385	56.39	109	186	Н	28.4	4.05	27.61	61.23	74	-12.77	Peak
2385	34.09	7	200	V	28.4	4.05	27.61	38.93	54	-15.07	Ave
2385	35.88	109	186	Н	28.4	4.05	27.61	40.72	54	-13.28	Ave
			Mid	ldle Chan	nel 2437	MHz me	asured at 3	meters			
7310	52.87	339	124	V	35.9	6.57	27.9	67.48	74	-6.52	Peak
7310	48.68	24	145	Н	35.9	6.57	27.9	63.29	74	-10.71	Peak
7310	37.29	339	124	V	35.9	6.57	27.9	51.90	54	-2.10	Ave
7310	34	24	145	Н	35.9	6.57	27.9	48.61	54	-5.39	Ave
			Hiş	gh Chanr	nel 2462 l	MHz mea	sured at 3 i	meters			
7385	45	351	124	V	36.1	6.62	27.9	59.82	74	-14.18	Peak
7385	42.44	22	135	Н	36.1	6.62	27.9	57.26	74	-16.74	Peak
7385	30	351	124	V	36.1	6.62	27.9	44.82	54	-9.18	Ave
7385	27.62	22	135	Н	36.1	6.62	27.9	42.44	54	-11.56	Ave

802.11n HT20 Mode:

Frequency	S.A.	Turntable	Te	st Anteni	na	Cable	Pre-	Cord.	FCC	C/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
Low Channel 2412 MHz, measured at 3 meters											
4828	41	92	126	V	32.6	5.56	27.77	51.39	74	-22.61	Peak
4828	38.03	158	143	Н	32.6	5.56	27.77	48.42	74	-25.58	Peak
4828	25.57	92	126	V	32.6	5.56	27.77	35.96	54	-18.04	Ave
4828	23	158	143	Н	32.6	5.56	27.77	33.39	54	-20.61	Ave
			Mid	dle Chan	nel 2437	MHz me	asured at 3	meters			
7310	54.45	340	126	V	35.9	6.57	27.9	69.06	74	-4.94	Peak
7310	51.15	23	126	Н	35.9	6.57	27.9	65.76	74	-8.24	Peak
7310	38.87	340	126	V	35.9	6.57	27.9	53.48	54	-0.52	Ave
7310	35.38	23	126	Н	35.9	6.57	27.9	49.99	54	-4.01	Ave
			Hi	gh Chanr	nel 2462 l	MHz mea	sured at 3 i	meters			
7385	48.4	340	125	V	36.1	6.62	27.9	63.22	74	-10.78	Peak
7385	45.74	15	126	Н	36.1	6.62	27.9	60.56	74	-13.44	Peak
7385	32.47	340	125	V	36.1	6.62	27.9	47.29	54	-6.71	Ave
7385	30.35	15	126	Н	36.1	6.62	27.9	45.17	54	-8.83	Ave

802.11n HT40 Mode:

Frequency	S.A.	Turntable	Te	est Anteni	na	Cable	Pre-	Cord.	FCC	/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
Low Channel 2422 MHz, measured at 3 meters											
7263	42.43	231	160	V	35.9	6.57	27.9	57.04	74	-16.96	Peak
7263	38.27	144	148	Н	35.9	6.57	27.9	52.88	74	-21.12	Peak
7263	25.39	231	160	V	35.9	6.57	27.9	40.00	54	-14.00	Ave
7263	22.47	144	148	Н	35.9	6.57	27.9	37.08	54	-16.92	Ave
			Mid	ldle Char	nel 2437	MHz me	asured at 3	meters			
7310	45.16	232	161	V	35.9	6.57	27.9	59.77	74	-14.23	Peak
7310	41.62	144	142	Н	35.9	6.57	27.9	56.23	74	-17.77	Peak
7310	29.01	232	161	V	35.9	6.57	27.9	43.62	54	-10.38	Ave
7310	24.85	144	142	Н	35.9	6.57	27.9	39.46	54	-14.54	Ave
			Hi	gh Chanr	nel 2452	MHz mea	sured at 3 i	meters			
7357	45.93	29	152	V	36.1	6.62	27.9	60.75	74	-13.25	Peak
7357	42.47	143	130	Н	36.1	6.62	27.9	57.29	74	-16.71	Peak
7357	28.87	29	152	V	36.1	6.62	27.9	43.69	54	-10.31	Ave
7357	25.9	143	130	Н	36.1	6.62	27.9	40.72	54	-13.28	Ave

(3) Restricted Band Emissions

802.11b Mode

Low Channel 2412 MHz, measured at 3 meters

Frequency		Turntable	Т	est Anteni	na	Cable	Pre-Amp.	Cord.	FCC	C/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	(4D)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
2390	41.2	285	157	V	28.1	3.12	0	72.42	74	-1.58	Peak
2390	39.42	57	173	Н	28.1	3.12	0	70.64	74	-3.36	Peak
2390	22.56	285	157	V	28.1	3.12	0	53.78	54	-0.22	Ave
2390	19.98	57	173	Н	28.1	3.12	0	51.2	54	-2.8	Ave

High Channel 2462 MHz, measured at 3 meters

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-Amp.	Cord.	FCC		
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	OSS (AD)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
2483.5	30.86	99	150	V	28.4	3.25	0	62.51	74	-11.49	Peak
2483.5	26.4	55	150	Н	28.4	3.25	0	58.05	74	-15.95	Peak
2483.5	14.02	99	150	V	28.4	3.25	0	45.67	54	-8.33	Ave
2483.5	12.96	55	150	Н	28.4	3.25	0	44.61	54	-9.39	Ave

802.11g Mode

Low Channel 2412 MHz, measured at 3 meters

Frequency	S.A. Turntable	Т	est Anten	na	Cable	Pre-Amp.	Cord.	FCC			
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	(dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin	Comments
2390	41.26	95	120	V	28.1	3.12	0	72.48	74	-1.52	Peak
2390	31.7	78	218	Н	28.1	3.12	0	62.92	74	-11.08	Peak
2390	21.69	95	120	V	28.1	3.12	0	52.91	54	-1.09	Ave
2390	15.14	78	218	Н	28.1	3.12	0	46.36	54	-7.64	Ave

High Channel 2462 MHz, measured at 3 meters

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-Amp.	Cord.	FCC		
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	(4D)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
2483.5	29.2	92	150	V	28.4	3.25	0	60.85	74	-13.15	Peak
2483.5	25.19	80	207	Н	28.4	3.25	0	56.84	74	-17.16	Peak
2483.5	13.6	92	150	V	28.4	3.25	0	45.25	54	-8.75	Ave
2483.5	12.53	80	207	Н	28.4	3.25	0	44.18	54	-9.82	Ave

802.11n HT20 Mode

Low Channel 2412 MHz, measured at 3 meters

Frequency	S.A.	Turntable	Т	est Anteni	na	Cable	Pre-Amp.	Cord.	FCC		
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	(4D)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
2390	42.63	279	156	V	28.1	3.12	0	73.85	74	-0.15	Peak
2390	38.11	280	190	Н	28.1	3.12	0	69.33	74	-4.67	Peak
2390	22.08	279	156	V	28.1	3.12	0	53.3	54	-0.7	Ave
2390	18.46	280	190	Н	28.1	3.12	0	49.68	54	-4.32	Ave

High Channel 2462 MHz, measured at 3 meters

Frequency		Turntable	Т	est Anteni	na	Cable	Pre-Amp.	Cord.	FCC		
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	(JD)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
2483.5	33.2	98	147	V	28.4	3.25	0	64.85	74	-9.15	Peak
2483.5	28.56	272	107	Н	28.4	3.25	0	60.21	74	-13.79	Peak
2483.5	17.13	98	147	V	28.4	3.25	0	48.78	54	-5.22	Ave
2483.5	14.21	272	107	Н	28.4	3.25	0	45.86	54	-8.14	Ave

802.11n HT40 Mode

Low Channel 2422 MHz, measured at 3 meters

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-Amp.	Cord.	FCC	C/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	(dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin	Comments
2390	39.1	99	149	V	28.1	3.12	0	70.32	74	-3.68	Peak
2390	37.35	275	180	Н	28.1	3.12	0	68.57	74	-5.43	Peak
2390	22.29	99	149	V	28.1	3.12	0	53.51	54	-0.49	Ave
2390	16.72	275	180	Н	28.1	3.12	0	47.94	54	-6.06	Ave

High Channel 2452 MHz, measured at 3 meters

Frequency	S.A.	Turntable	Test Antenna			Cable	Pre-Amp.	Cord.	FCC		
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	(dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin	Comments
2483.5	36.58	97	146	V	28.4	3.25	0	68.23	74	-5.77	Peak
2483.5	31.55	277	136	Н	28.4	3.25	0	63.2	74	-10.8	Peak
2483.5	21.26	97	146	V	28.4	3.25	0	52.91	54	-1.09	Ave
2483.5	17.1	277	136	Н	28.4	3.25	0	48.75	54	-5.25	Ave

9 FCC §15.247(a)(2) & IC RSS-210 §A8.2– 6 dB & 99% Bandwidth

9.1 Applicable Standard

According to FCC §15.247(a)(2) and IC RSS-210 A8.2 (a), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz

9.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emissions bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

9.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date
Agilent	Spectrum Analyzer	E4446A	US44300386	2011-08-11

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

9.4 Test Environmental Conditions

Temperature:	19~24 °C
Relative Humidity:	38~48 %
ATM Pressure:	101.2-102 kPa

The testing was performed by Quinn Jiang on 01-19-2012 to 01-20-2012 in RF site.

802.11b mode

Chain J1

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	10.139	13.7488	> 500	Compliant
Middle	2437	10.186	13.9781	> 500	Compliant
High	2462	10.120	13.8531	> 500	Compliant

Chain J2

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	10.161	13.7552	> 500	Compliant
Middle	2437	10.181	14.0521	> 500	Compliant
High	2462	10.172	13.9877	> 500	Compliant

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	10.160	13.6633	> 500	Compliant
Middle	2437	10.212	14.3398	> 500	Compliant
High	2462	10.146	14.0864	> 500	Compliant

802.11g mode

Chain J1

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	16.677	16.5046	> 500	Compliant
Middle	2437	16.705	16.5242	> 500	Compliant
High	2462	16.681	16.4830	> 500	Compliant

Chain J2

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	16.682	16.4999	> 500	Compliant
Middle	2437	16.663	16.5050	> 500	Compliant
High	2462	16.719	16.5414	> 500	Compliant

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	16.669	16.5062	> 500	Compliant
Middle	2437	16.707	16.5779	> 500	Compliant
High	2462	16.682	16.5206	> 500	Compliant

802.11n HT20 mode

Chain J1

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	17.892	17.7074	> 500	Compliant
Middle	2437	17.926	17.7271	> 500	Compliant
High	2462	17.883	17.6833	> 500	Compliant

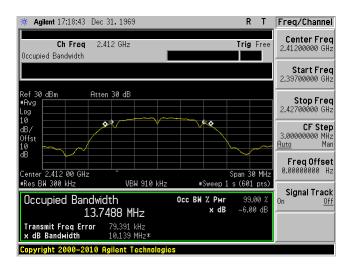
Chain J2

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	17.914	17.7052	> 500	Compliant
Middle	2437	17.885	17.7051	> 500	Compliant
High	2462	17.925	17.7177	> 500	Compliant

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	17.873	17.7134	> 500	Compliant
Middle	2437	17.943	17.7986	> 500	Compliant
High	2462	17.906	17.7264	> 500	Compliant

802.11n HT40 mode

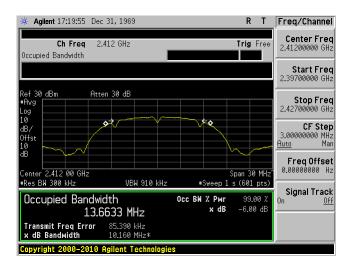
Chain J1

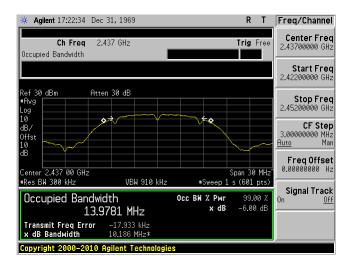

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2422	36.775	36.2841	> 500	Compliant
Middle	2437	36.863	36.3972	> 500	Compliant
High	2452	36.796	36.3304	> 500	Compliant

Chain J2

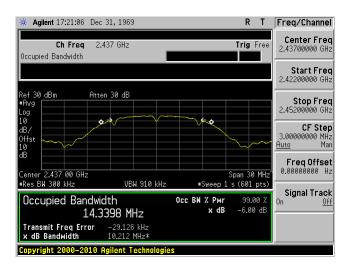
Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2422	36.821	36.3443	> 500	Compliant
Middle	2437	36.843	36.3545	> 500	Compliant
High	2452	36.803	36.3295	> 500	Compliant

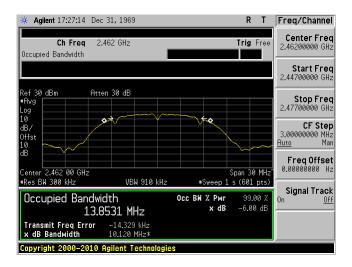
Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (kHz)	Results
Low	2422	36.819	36.2646	> 500	Compliant
Middle	2437	36.847	36.4559	> 500	Compliant
High	2452	36.773	36.3238	> 500	Compliant

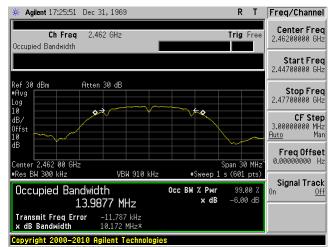

802.11b mode, Low Channel, Chain J1

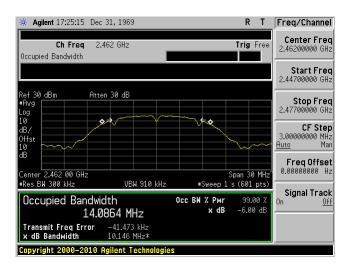

802.11b mode, Low Channel, Chain J2


802.11b mode, Low Channel, Chain J3

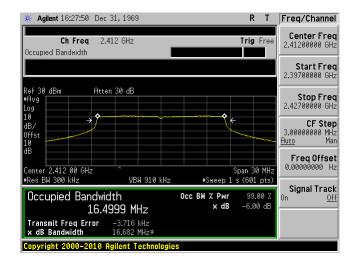

802.11b mode, Mid Channel, Chain J1

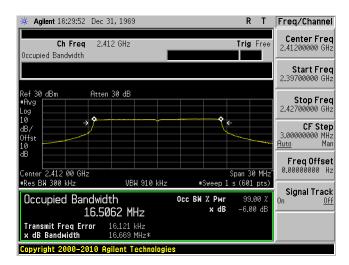

802.11b mode, Mid Channel, Chain J2


802.11b mode, Mid Channel, Chain J3

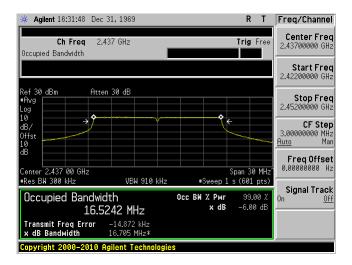

802.11b mode, High Channel, Chain J1

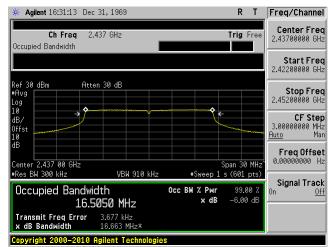
802.11b mode, High Channel, Chain J2

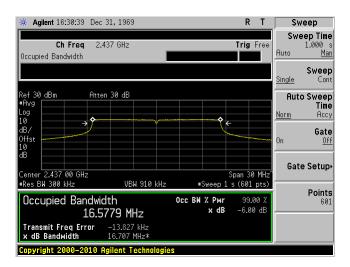

802.11b mode, High Channel, Chain J3

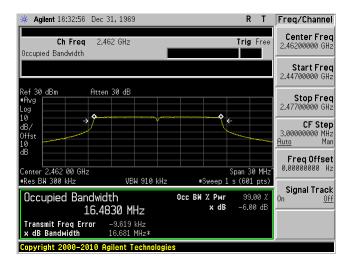

802.11g mode, Low Channel, Chain J1

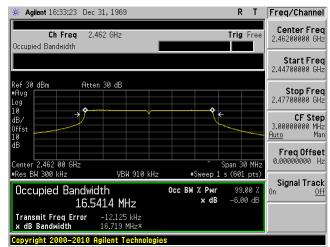
* Agilent 16:26:06 Dec 31, 1969 R T Freq/Channel Center Freq Ch Freq 2.412 GHz Trig Free Occupied Bandwidth Start Freq 2.39700000 GHz Atten 30 dB Ref 30 dBm **Stop Freq** 2.42700000 GHz **CF Step** 3.000000000 MHz Freq Offset 0.00000000 Hz Center 2.412 00 GHz #Res BW 300 kHz VBW 910 kHz #Sweep 1 s (601 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % x dB -6.00 dB 16.5046 MHz Transmit Freq Error x dB Bandwidth

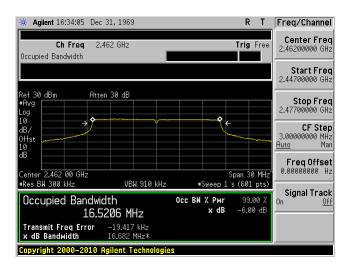

802.11g mode, Low Channel, Chain J2


802.11g mode, Low Channel, Chain J3

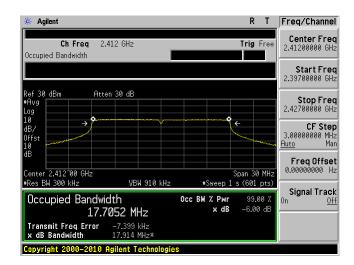

802.11g mode, Middle Channel, Chain J1

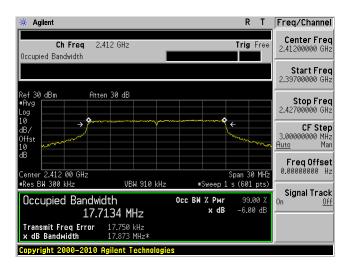

802.11g mode, Middle Channel, Chain J2


802.11g mode, Middle Channel, Chain J3


802.11g mode, High Channel, Chain J1

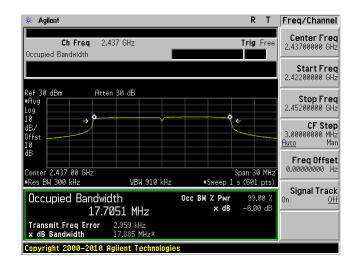
802.11g mode, High Channel, Chain J2

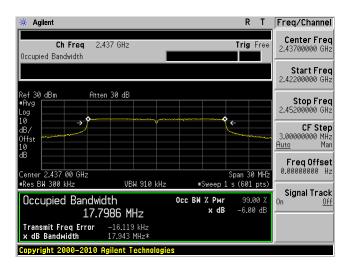

802.11g mode, High Channel, Chain J3


802.11n20 mode, Low Channel, Chain J1

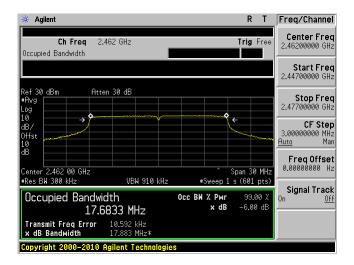
Agilent R T Freq/Channel Center Freq Ch Freq 2.412 GHz Trig Free Occupied Bandwidth Start Freq 2.39700000 GHz Atten 30 dB Ref 30 dBm **Stop Freq** 2.42700000 GHz **CF Step** 3.000000000 MHz Freq Offset 0.00000000 Hz Center 2.412 00 GHz #Res BW 300 kHz VBW 910 kHz #Sweep 1 s (601 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % x dB -6.00 dB 17.7074 MHz Transmit Freq Error x dB Bandwidth

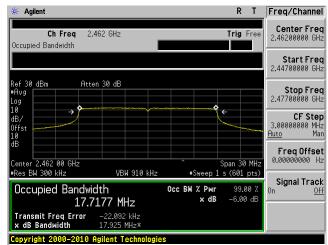
802.11n20 mode, Low Channel, Chain J2

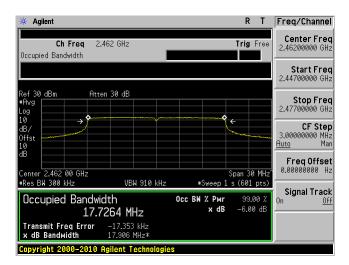

802.11n20 mode, Low Channel, Chain J3


802.11n20 mode, Middle Channel, Chain J1

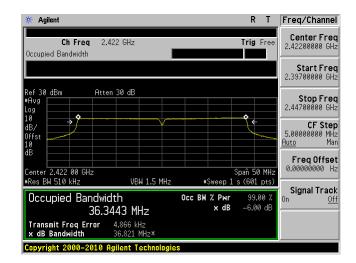
Agilent R T Freq/Channel Center Freq Ch Freq 2.437 GHz Trig Free Occupied Bandwidth Start Freq 2.42200000 GHz Atten 30 dB Ref 30 dBm **Stop Freq** 2.45200000 GHz **CF Step** 3.000000000 MHz Freq Offset 0.00000000 Hz Center 2.437 00 GHz #Res BW 300 kHz VBW 910 kHz #Sweep 1 s (601 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % x dB -6.00 dB 17.7271 MHz Transmit Freq Error x dB Bandwidth

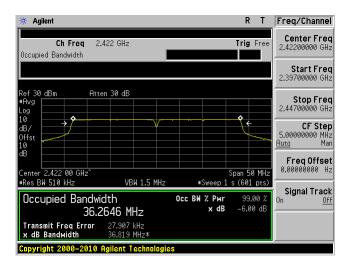

802.11n20 mode, Middle Channel, Chain J2


802.11n20 mode, Middle Channel, Chain J3


802.11n20 mode, High Channel, Chain J1

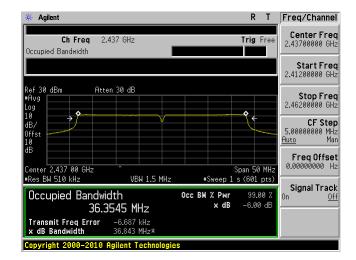
802.11n20 mode, High Channel, Chain J2

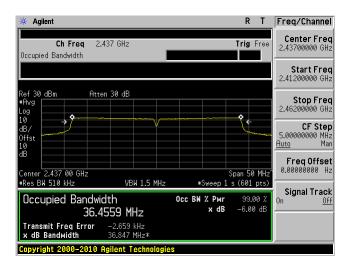

802.11n20 mode, High Channel, Chain J3


802.11n40 mode, Low Channel, Chain J1

Freq/Channel Center Freq 2,42200000 GHz Ch Freq 2.422 GHz Trig Free Occupied Bandwidth Start Freq 2.39700000 GHz Ref 30 dBm #Avg Atten 30 dB **Stop Freq** 2.44700000 GHz 5.000000000 MHz Freq Offset 0.00000000 Hz Center 2.422 00 GHz #Res BW 510 kHz VBW 1.5 MHz Signal Track Occ BW % Pwr Occupied Bandwidth 99.00 2 x dB -6.00 dB 36.2841 MHz 17.830 kHz 36.775 MHz* Transmit Freq Error x dB Bandwidth Copyright 2000-2010 Agilent Technologies

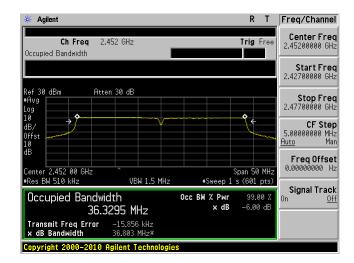
802.11n40 mode, Low Channel, Chain J2

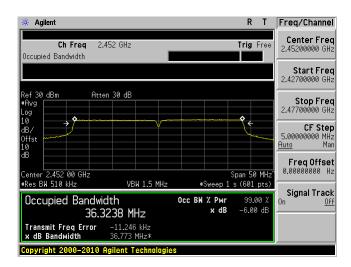

802.11n40 mode, Low Channel, Chain J3


802.11n40 mode, Middle Channel, Chain J1

Agilent R T Freq/Channel Center Freq Ch Freq 2.437 GHz Trig Free Occupied Bandwidth Ref 30 dBm #Avg Atten 30 dB Stop Freq 2.46200000 GHz **CF Step** 5.000000000 MHz Au<u>to</u> Man Freq Offset 0.00000000 Hz 2.437 00 GHz VBW 1.5 MHz #Res BW 510 kHz #Sweep 1 s (601 pts) Signal Track Occ BW % Pwr Occupied Bandwidth 99.00 % x dB -6.00 dB 36.3972 MHz Transmit Freq Error x dB Bandwidth 4.314 kHz

802.11n40 mode, Middle Channel, Chain J2

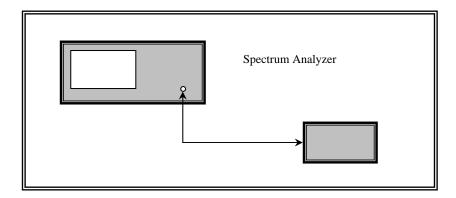

802.11n40 mode, Middle Channel, Chain J3


802.11n40 mode, High Channel, Chain J1

* Agilent R T Freq/Channel Center Freq 2.45200000 GHz Trig Free Occupied Bandwidth Start Freq 2.42700000 GHz Atten 30 dB Ref 30 dBm Stop Freq 2.47700000 GHz **CF Step** 5.000000000 MHz <u>Auto</u> Man **Freq Offset** 0.000000000 Hz Center 2.452 00 GHz #Res BW 510 kHz Span 50 MHz VBW 1.5 MHz #Sweep 1 s (601 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % 36.3304 MHz -6.00 dB Transmit Freq Error x dB Bandwidth

802.11n40 mode, High Channel, Chain J2

802.11n40 mode, High Channel, Chain J3


10 FCC §15.247(b) & IC RSS-210 §A8.4- Peak Output Power Measurement

10.1 Applicable Standard

According to FCC §15.247(b) (3) and RSS-210 §A8.4 (4) for systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

10.2 Measurement Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a spectrum analyzer.
- 3. Add a correction factor to the display.

10.3 Test Equipment List and Details

Manufacturers	Description	Models	Serial Numbers	Calibration Dates	
Agilent	Spectrum Analyzer	E4446A	US44300386	2011-08-11	

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

10.4 Test Environmental Conditions

Temperature:	19~24 °C
Relative Humidity:	38~48 %
ATM Pressure:	101.2-102 kPa

The testing was performed by Quinn Jiang on 01-19-2012 to 01-20-2012 in RF site.

10.5 Test Results

802.11b mode

Channel	Frequency (MHz)	TX Chain J1 Power (dBm)	TX Chain J2 Power (dBm)	TX Chain J3 Power (dBm)	Total Power (dBm)	Limit (dBm)	Margin (dB)	Power Setting
Low	2412	18.1	18.21	18.34	22.99	30	-7.01	21
Middle	2437	20.35	20.7	20.96	25.45	30	-4.55	24
High	2462	20.62	20.94	21.27	25.72	30	-4.28	24

802.11g mode

Channel	Frequency (MHz)	TX Chain J1 Power (dBm)	TX Chain J2 Power (dBm)	TX Chain J3 Power (dBm)	Total Power (dBm)	Limit (dBm)	Margin (dB)	Power Setting
Low	2412	18.39	18.01	18.38	23.03	30	-6.97	20.5
Middle	2437	18.44	18.66	19.31	23.59	30	6.41	21
High	2462	18.86	18.46	19.27	23.65	30	-6.35	21

802.11n HT20 mode

Channel	Frequency (MHz)	TX Chain J1 Power (dBm)	TX Chain J2 Power (dBm)	TX Chain J3 Power (dBm)	Total Power (dBm))	Limit (dBm)	Margin (dB)	Power Setting
Low	2412	17.26	17.41	16.8	21.94	30	-8.06	19.5
Middle	2437	19.25	19.47	20	24.36	30	-5.64	22
High	2462	19.76	19.2	20.17	24.50	30	-5.50	22

802.11n HT40 mode

Channel	Frequency (MHz)	TX Chain J1 Power (dBm)	TX Chain J2 Power (dBm)	TX Chain J3 Power (dBm)	Total Power (dBm))	Limit (dBm)	Margin (dB)	Power Setting
Low	2422	17.84	17.94	17.72	22.61	30	-7.39	19.5
Middle	2437	19.62	19.72	20.29	24.66	30	-5.34	22
High	2452	18.48	18.23	19.56	23.57	30	-6.43	20.5

11 FCC §15.247(d) & IC RSS-210 §A8.5 - 100 kHz Bandwidth of Band Edges

11.1 Applicable Standard

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c).

According to IC RSS-210 §A8.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

11.2 Measurement Procedure

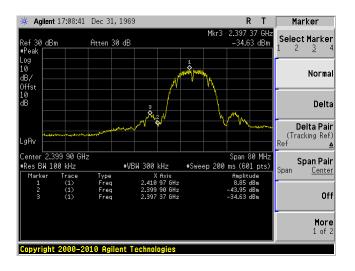
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

11.3 Test Equipment List and Details

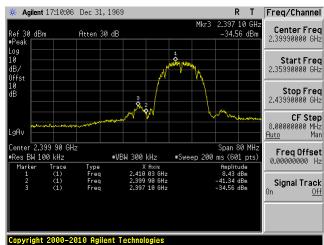
Manufacturer	Description	Model No.	Serial No.	Calibration Date	
Agilent	Spectrum Analyzer	E4446A	US44300386	2011-08-11	

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

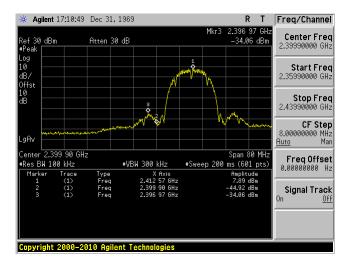
11.4 Test Environmental Conditions

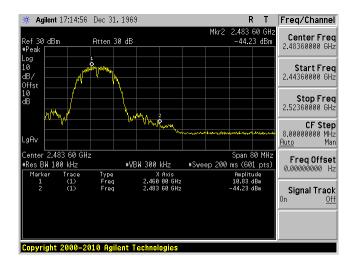

Temperature:	19~24 °C
Relative Humidity:	38~48 %
ATM Pressure:	101.2-102 kPa

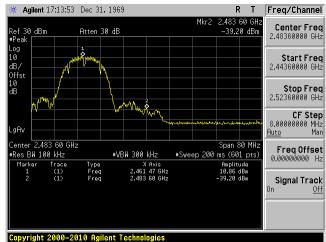
The testing was performed by Quinn Jiang on 01-19-2012 to 01-20-2012 in RF site.

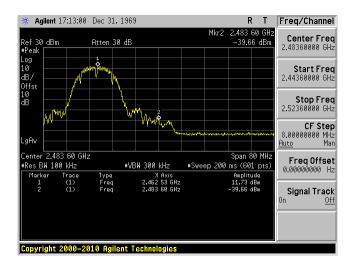

11.5 Test Results

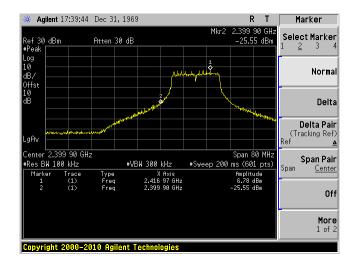
Please refer to following pages for plots of band edge.

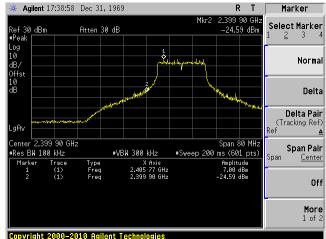

802.11b mode, Lowest Channel, Chain J1

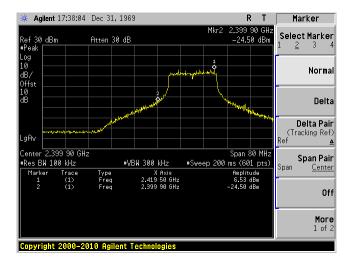

802.11b mode, Lowest Channel, Chain J2

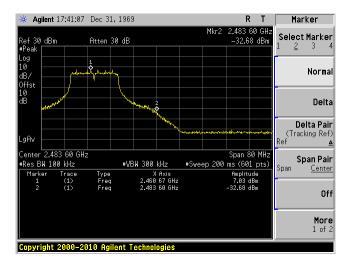

802.11b mode, Lowest Channel, Chain J3

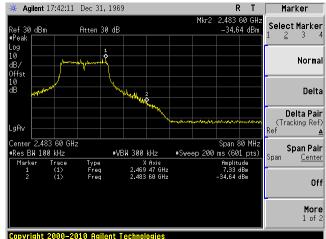

802.11b mode, Highest Channel, Chain J1

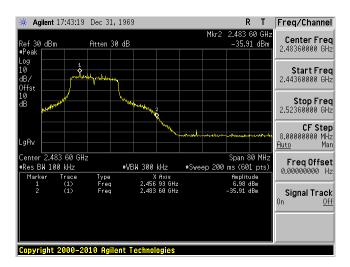

802.11b mode, Highest Channel, Chain J2


802.11b mode, Highest Channel, Chain J3

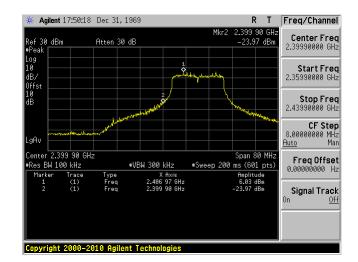

802.11g mode, Lowest Channel, Chain J1

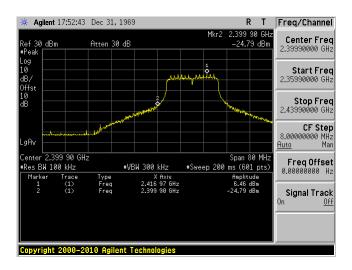

802.11g mode, Lowest Channel, Chain J2


802.11g mode, Lowest Channel, Chain J3

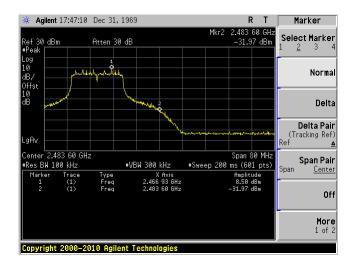

802.11g mode, Highest Channel, Chain J1

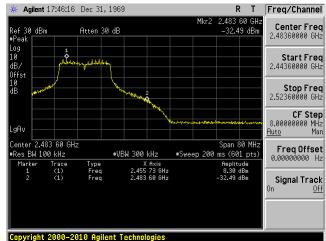
802.11g mode, Highest Channel, Chain J2

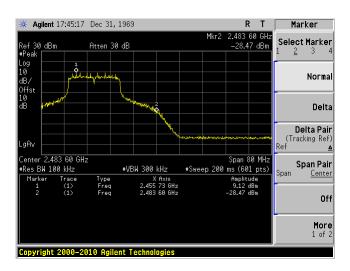

802.11g mode, Highest Channel, Chain J3


802.11n20 mode, Lowest Channel, Chain J1

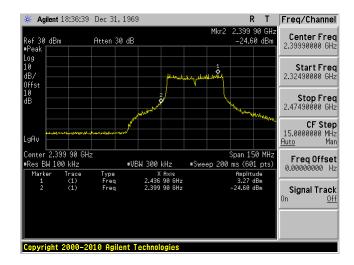
Agilent 17:49:22 Dec 31, 1969 R T Freq/Channel Center Freq Atten 30 dB 2.39990000 GHz Stop Freq 2.43990000 GHz **CF Step** 8.000000000 MHz Au<u>to</u> Man Span 80 MHz #Sweep 200 ms (601 pts) Center 2.399 90 GHz Freq Offset 0.00000000 Hz #Res BW 100 kHz #VBW 300 kHz X Axis 2.419 50 GHz 2.399 90 GHz Signal Track Copyright 2000-2010 Agilent Technologie

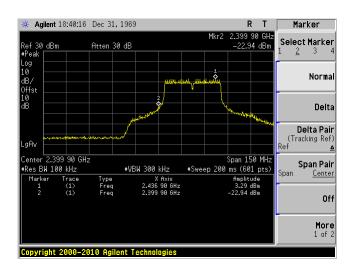

802.11 n20 mode, Lowest Channel, Chain J2


802.11n20 mode, Lowest Channel, Chain J3


802.11n20 mode, Highest Channel, Chain J1

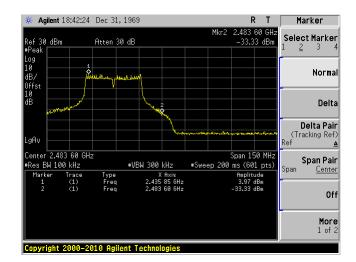
802.11n20 mode, Highest Channel, Chain J2

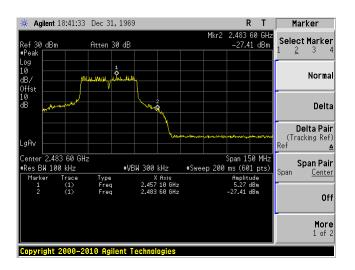

802.11n20 mode, Highest Channel, Chain J3


802.11n40 mode, Lowest Channel, Chain J1

Agilent 18:37:32 Dec 31, 1969 R T Marker Select Marker Log 10 dB/ Offst 10 dB Normal Delta **Delta Pair** (Tracking Ref) Center 2.399 90 GHz Span 150 MHz Span Pair Center #Res BW 100 kHz #VBW 300 kHz *****Sweep 200 ms (601 pts) Off More 1 of 2

802.11n40 mode, Lowest Channel, Chain J2


802.11n40 mode, Lowest Channel, Chain J3


802.11n40 mode, Highest Channel, Chain J1

Agilent 18:43:34 Dec 31, 1969 Marker Select Marker Atten 30 dB Normal Delta Delta Pair (Tracking Ref) Span 150 MHz #Sweep 200 ms (601 pts) Center 2.483 60 GHz Span Pair #Res BW 100 kHz #VBW 300 kHz Span Type Freq Freq Off More 1 of 2

802.11n40 mode, Highest Channel, Chain J2

802.11n40 mode, Highest Channel, Chain 3

12 FCC §15.247(e) & IC RSS-210 §A8.2 (b) - Power Spectral Density

12.1 Applicable Standard

According to FCC §15.247 (e) and IC RSS-210 §A8.2 (b), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

12.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to 1.5MHz span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Repeat above procedures until all frequencies measured were complete.

12.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	
Agilent	Spectrum Analyzer	E4446A	US44300386	2011-08-11	

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

12.4 Test Environmental Conditions

Temperature:	19~24 °C
Relative Humidity:	38~48 %
ATM Pressure:	101.2-102 kPa

The testing was performed by Quinn Jiang on 01-19-2012 to 01-20-2012 in RF site.

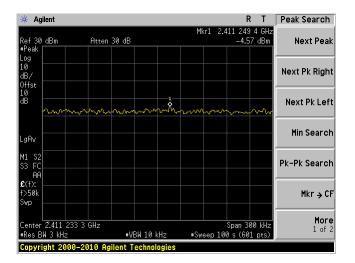
12.5 Test Results

802.11b mode

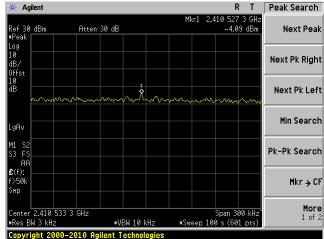
Channel	Frequency (MHz)	TX Chain J1 PSD (dBm)	TX Chain J2 PSD (dBm))	TX Chain J3 PSD (dBm	Total PSD (dBm)	Limit (dBm/3kHz)	Margin (dB)	Power Setting
Low	2412	-4.57	-4.09	-4.12	0.52	8	-7.48	21
Middle	2437	-0.71	-1.96	-1.98	3.26	8	-4.74	24
High	2462	-2.28	-2.54	-1.42	2.72	8	-5.28	24

802.11g mode

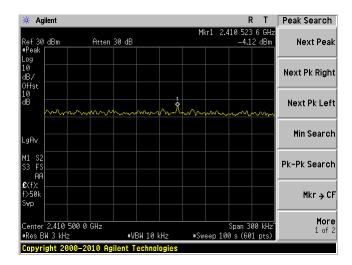
Channel	Frequency (MHz)	TX Chain J1 PSD (dBm)	TX Chain J2 PSD (dBm))	TX Chain J3 PSD (dBm	Total PSD (dBm)	Limit (dBm/3kHz)	Margin (dB)	Power Setting
Low	2412	0.17	-7.98	-6.72	1.50	8	-6.5	20.5
Middle	2437	0.36	-7.55	-6.12	1.78	8	-6.22	21
High	2462	-6.62	-7.07	-6.11	-1.81	8	-9.81	21


802.11n HT20 mode

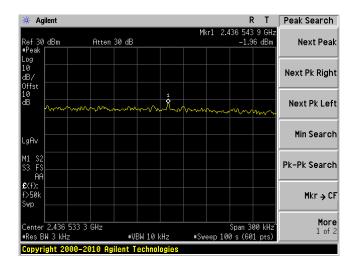
Channel	Frequency (MHz)	TX Chain J1 PSD (dBm)	TX Chain J2 PSD (dBm))	TX Chain J3 PSD (dBm	Total PSD (dBm)	Limit (dBm/3kHz)	Margin (dB)	Power Setting
Low	2412	-8.85	-8.53	-7.76	-3.58	8	-11.58	19.5
Middle	2437	-5.93	-6.64	-2.17	0.33	8	-7.67	22
High	2462	-5.24	1.74	-5.86	3.12	8	-4.88	22

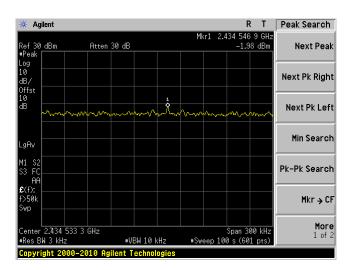

802.11n HT40 mode

Channel	Frequency (MHz)	TX Chain J1 PSD (dBm)	TX Chain J2 PSD (dBm))	TX Chain J3 PSD (dBm	Total PSD (dBm)	Limit (dBm/3kHz)	Margin (dB)	Power Setting
Low	2422	-9.75	-9.87	-10.89	-5.37	8	-13.37	19.5
Middle	2437	-8.41	-7.56	-5.12	-2.03	8	-10.03	22
High	2452	-9.29	-9.71	-9.26	-4.64	8	-12.64	20.5

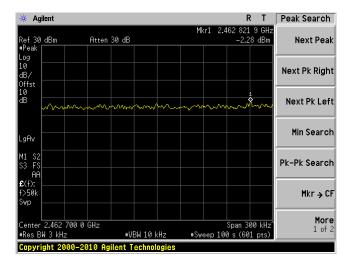

802.11bmode, Low Channel, Chain J1

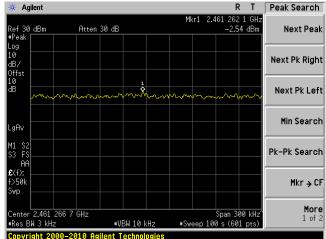
802.11b mode, Low Channel, Chain J2

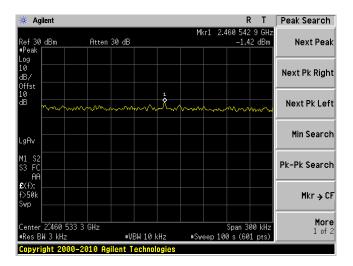

802.11b mode, Low Channel, Chain J3

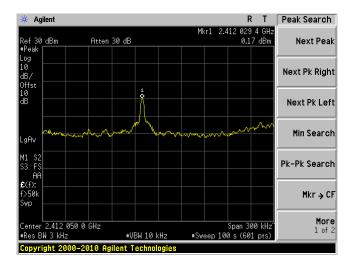

802.11b mode, Middle Channel, Chain J1

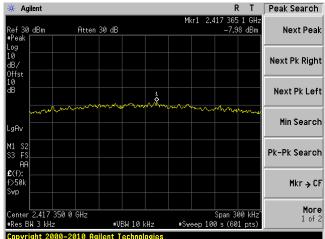
R L # Agilent Peak Search Atten 30 dB **Next Peak** Next Pk Right Next Pk Left Min Search Pk-Pk Search £(f): f>50k Mkr → CF More 1 of 2 Span 300 kHz #Sweep 100 s (601 pts) 2.437 033 3 GHz #VBW 10 kHz Copyright 2000-2010 Agilent Technologies

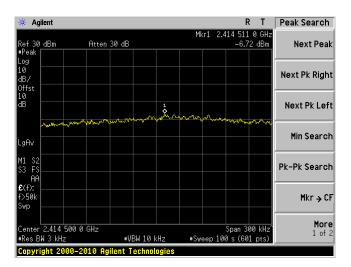

802.11b mode, Middle Channel, Chain J2

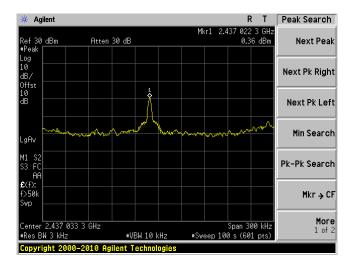

802.11b mode, Middle Channel, Chain J3

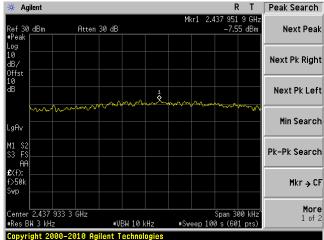

802.11b mode, High Channel, Chain J1

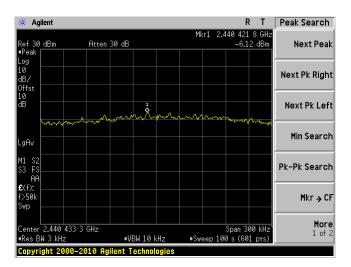

802.11b mode, High Channel, Chain J2

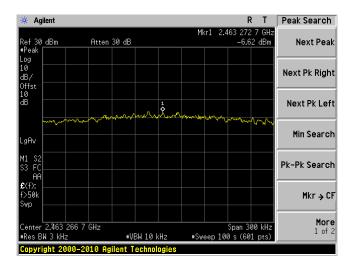

802.11b mode, High Channel, Chain J3

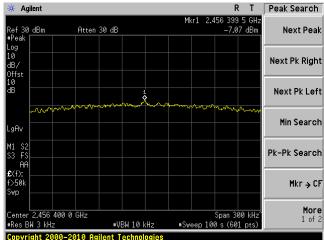

802.11g mode, Low Channel, Chain J1

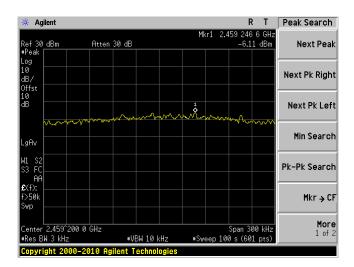

802.11g mode, Low Channel, Chain J2


802.11g mode, Low Channel, Chain J3

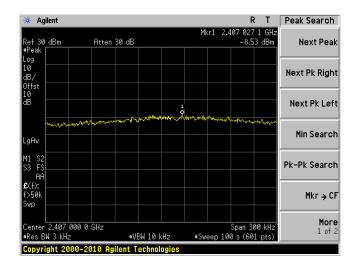

802.11g mode, Middle Channel, Chain J1

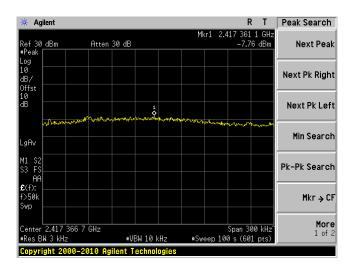

802.11g mode, Middle Channel, Chain J2


802.11g mode, Middle Channel, Chain J3

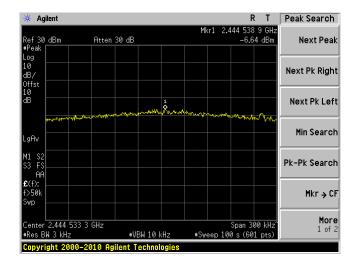

802.11g mode, High Channel, Chain J1

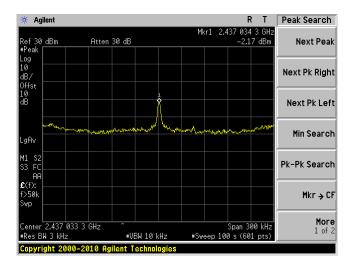
802.11g mode, High Channel, Chain J2

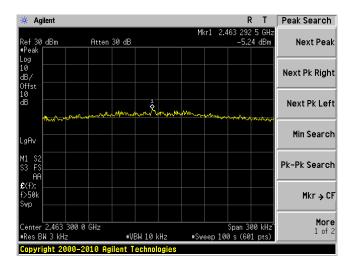

802.11g mode, High Channel, Chain J3

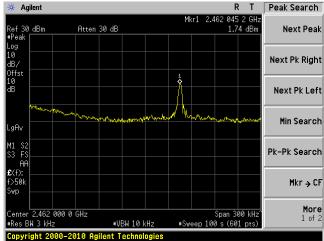

802.11n20 mode, Low Channel, Chain J1

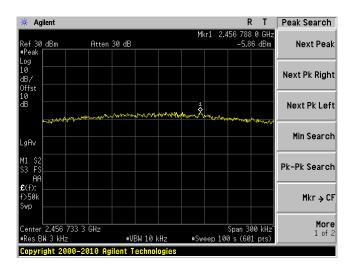
802.11n20 mode, Low Channel, Chain J2


802.11n20 mode, Low Channel, Chain J3

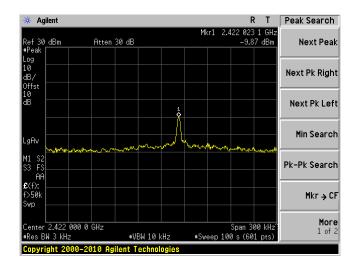

802.11n20 mode, Middle Channel, Chain J1

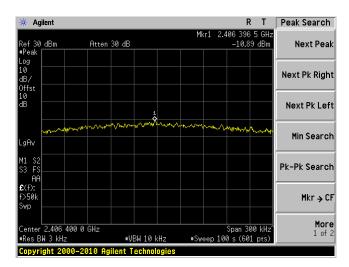

802.11n20 mode, Middle Channel, Chain J2


802.11n20 mode, Middle Channel, Chain J3

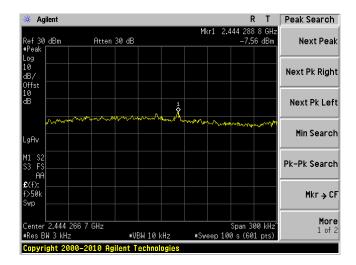

802.11n20 mode, High Channel, Chain J1

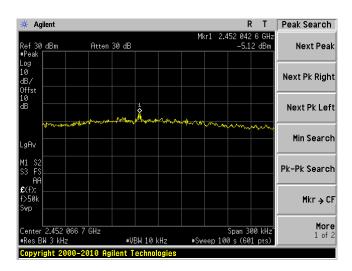
802.11n20 mode, High Channel, Chain J2

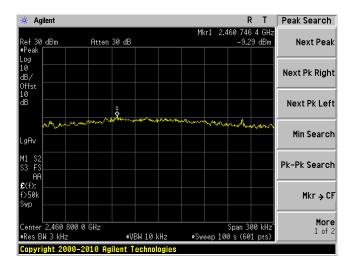

802.11n20 mode, High Channel, Chain J3

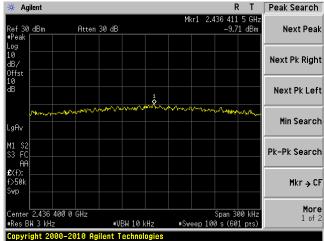

802.11n40 mode, Low Channel, Chain J1

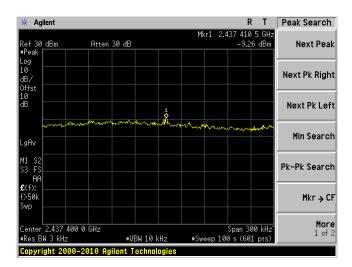
802.11 n40 mode, Low Channel, Chain J2


802.11n40 mode, Low Channel, Chain J3


802.11n40 mode, Middle Channel, Chain J1


802.11n40 mode, Middle Channel, Chain J2


802.11n40 mode, Middle Channel, Chain J3


802.11n40 mode, High Channel, Chain J1

802.11n40 mode, High Channel, Chain J2

802.11n40 mode, High Channel, Chain J3

13 IC RSS-210 §2.3 & RSS-Gen §6 - Receiver Spurious Radiated Emissions

13.1 Applicable Standard

According to IC RSS-Gen §4.10, the receiver shall be operated in the normal receive mode near the mid-point of the band over which the receiver is designed to operate.

Unless otherwise specified in the applicable RSS, the radiated emission measurement is the standard measurement method (with the device's antenna in place) to measure receiver spurious emissions.

Radiated emission measurements are to be performed using a calibrated open-area test site.

For either method, the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tuneable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

For emissions below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector with the same measurement bandwidth as that for CISPR quasi-peak measurements. Above 1 GHz, measurements shall be performed using an average detector and a resolution bandwidth of 300 kHz to 1 MHz.

According to RSS-Gen §6.1, Table 2, the radiated limit of receiver spurious emissions

Frequency (MHz)	Field Strength (Microvolts/m at 3 meters)
30-88	100
88-216	150
216-960	200
Above 960	500

13.2 EUT Setup

The radiated emissions tests were performed in the 3 meter chamber, using the setup in accordance with ANSI C63.4-2003.

13.3 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data were recorded in the peak detection mode. Quasi-peak readings was performed only when an emissions was found to be marginal (within -4 dB of specification limits), and are distinguished with a "QP" in the data table.

13.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

13.5 Test Equipment Lists and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Sunol Science Corp	Combination Antenna	JB3	A020106-3	2011-06-29
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2011-03-21
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
EMCO	Horn antenna	3115	9511-4627	2011-10-03
Agilent	PSA Series Spectrum Analyzer	E4440A	MY44303352	2011-05-10
НР	Pre Amplifier	8449B	3147A00400	2011-02-03

Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

13.6 Test Environmental Conditions

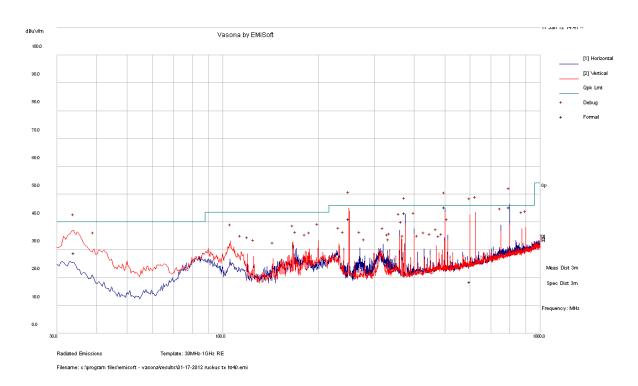
Temperature:	18~25 °C		
Relative Humidity:	38~50 %		
ATM Pressure:	101-102 kPa		

The testing was performed by Quinn Jiang on 01-17-2012 and 01-23-2012 in 5 meter chamber 3.

13.7 Summary of Test Results

According to the test data,, the EUT $\underline{\text{complied with the WSS-210/RSS-Gen}}$, with the closest margins from the limit listed below:

30-1000 MHz:


Mode: Receiving							
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range (MHz)				
-4.91	249.9545	Vertical	30 to 1000				

Above 1GHz

Mode: Receiving							
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range (GHz)				
-9.82	1600.01	Vertical	Above 1GHz				

13.8 Test Results

(1) Radiated Emission at 3 meters, 30 MHz -1 GHz

Quasi-Peak Measurements

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
799.9845	45.26	99	Н	12	46	-0.74
249.9545	41.09	99	V	288	46	-4.91
500.0003	45.32	139	Н	219	46	-0.68
34.003	28.8	153	V	277	40	-11.2
374.9993	43.24	100	Н	242	46	-2.76
600.1105	18.42	209	V	214	46	-27.58

Note: 799.9845 MHz, 500 MHz and 375 MHz are Digital Emissions from the supporting board.

(2) Radiated Emission at 3 meters, above 1 GHz

Average Measurement

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
1600.01	44.18	121	V	283	54	-9.82
1056.178	31.15	100	Н	238	54	-22.85
1992.967	26.47	170	V	94	54	-27.53
2141.604	23.67	100	V	220	54	-30.33
2173.141	23.28	119	V	192	54	-30.72
2033.045	22.72	102	V	172	54	-31.28