Tripod Data Systems, Inc.

USI Radio Module installed in the Ranger X Series Handheld Computer

May 23, 2005

Report No. TRPO0007.1

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2005 Northwest EMC, Inc

Certificate of Test

Issue Date: May 23, 2005

Tripod Data Systems, Inc.

USI Radio Module installed in the Ranger X Series Handheld Computer

Emis	sions		
Specification	Test Method	Pass	Fail
FCC 15.207 AC Powerline Conducted Emissions:2005-04	ANSI C63.4:2003	\boxtimes	
FCC 15.247(d) Spurious Radiated Emissions:2005-04	ANSI C63.4:2003	\boxtimes	

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:
ADU.K.P
Greg Kiemel, Director of Engineering

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment, Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

> SCOPE For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

BSMI

NEMKO

What is measurement uncertainty?

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and measurement uncertainty, then test results can be interpreted from the diagram below.

Case D: Product does not comply.

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability	Bico	nical	Log Pe	eriodic	Di	pole
	Distribution	Ante	enna	Ante	nna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty <i>u_c(y)</i>		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty U	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence \approx 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability	Without High	With High
	Distribution	Pass Filter	Pass Filter
Combined standard uncertainty <i>u_c(y)</i>	normal	+ 1.29	+ 1.38
		- 1.25	- 1.35
Expanded uncertainty U	normal (k=2)	+ 2.57	+ 2.76
(level of confidence \approx 95%)		- 2.51	2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.05
Expanded uncertainty U	normal $(k - 2)$	2 11
(level of confidence \approx 95 %)	$\operatorname{Hormal}\left(R=2\right)$	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility Labs EV01 – EV10

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility Labs TE01 – TE03

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Party Requesting the Test	
Company Name:	Tripod Data Systems, Inc.
Address:	345 SW Avery Ave
City, State, Zip:	Corvallis, OR 97333
Test Requested By:	Dennis York
Model:	USI Radio Module installed in the Ranger X Series Handheld Computer
First Date of Test:	4/26/2005
Last Date of Test:	5/11/2005
Receipt Date of Samples:	4/26/2005
Equipment Design Stage:	Pre-Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided.
I/O Ports:	Not provided.

Functional Description of the EUT (Equipment Under Test):

The EUT is Tripod's USI radio module, FCC ID: S9E-RNGR80BT. It is an 802.11b / Bluetooth combo radio operating in the 2.4 GHz band. The radio module is installed in Tripod's Ranger X Series handheld computer.

Tripod's Ranger X handheld computer will also contain a second radio module (Cirronet), FCC ID: S9E-RNGR2410. It is a 2.4 GHz frequency hopping spread spectrum radio.

All radios in the Ranger X can transmit simultaneously – each radio through its own antenna.

The USI radio utilizes two identical chip antennas that are integral to the printed circuit board. One antenna is used for the 802.11b portion, and the other antenna is used for the Bluetooth portion.

Client Justification for EUT Selection:

The product is a representative production sample.

Client Justification for Test Selection:

The USI radio was previously certified under FCC ID: IXMWM-BB-AG-01. All the antenna direct connect test data from the previous certification continues to be representative, and will be used in support of the application of certification for the USI radio in the Tripod's Ranger X handheld computer. New radiated spurious emissions data and AC powerline conducted emissions data was taken for Tripod's Ranger X configuration and is documented in this test report.

Modifications

	Equipment modifications				
Item	Test	Date	Modification	Note	Disposition of EUT
1	Spurious Radiated Emissions	04/26/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.
2	AC Power Line Conducted Emissions for Intentional Radiator	05/11/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT was returned to the client.

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC/60 Hz.

Other Settings Investigated:

All radios transmitting simultaneously

Frequency Range Invest	igated		
Start Frequency	30 MHz	Stop Frequency	25 GHz

Software\Firmware Applied During Test												
Operating system	Windows CE	Version	2003 Ozone Update									
Exercise software	RTS 802.11	Version	1.0									
Exercise software	BlueEMI	Version	1.0									
Exercise software	Cirrochat	Version	1.0									
Description												
Program written by Tri	pod Data Systems to exercise hardware for tes	t purposes. Rι	unning Cirrochat v1.0									
to continuously Transmit PSBS, running RTS 802.11 v1.0 to continuously Transmit PSBS, running												
BlueEMI v1.0 to continuously Transmit PSBS.												

Radiated Emissions

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
EUT - 802.11b/Bluetooth Radio Module installed in Ranger X Series	USI	USI	Unknown
2.4 GHz FHSS Radio Module installed in Ranger X Series	Cirronet	Cirronet	Unknown
Host Device – Handheld Computer	Tripod Data Systems, Inc.	Ranger X Series	C24
GPS receiver	Tripod Data Systems, Inc.	Pocket Pathfinder	Unknown
Compact Flash GPS Receiver	Holux	Unknown	Unknown
DC Power Supply	Cincon	TR30R	N/A

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.0	Yes	Host Device – Handheld Computer	Unterminated
USB	Yes	1.8	No	Host Device – Handheld Computer	Unterminated
DC Leads	No	1.8	Yes	Host Device – Handheld Computer	AC Power
Serial	Yes	1.7	Yes	Host Device – Handheld Computer	GPS receiver

Measurement Equip	Measurement Equipment												
Description	Manufacturer	Model	Identifier	Last Cal	Interval								
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo								
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo								
Pre-Amplifier	Amplifier Research	LN1000A	APS	03/01/2005	13 mo								
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	01/05/2004	16 mo								
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo								
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo								
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	02/17/2005	13 mo								
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA								
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA								
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	02/15/2005	13 mo								
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo								
Attenuator	Coaxicom	66702 5910-20	RBJ	02/25/2005	13 mo								
High Pass Filter	Micro-Tronics	HPM50111	HFO	03/09/2005	13 mo								

Test Description

<u>Requirement</u>: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

<u>Configuration</u>: The antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Measurement Bandwidt	hs		
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 – 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were r	nade using the bandwidths a	and detectors specified. No	video filter was used.

Completed by: Vanil gelan

0.0 50.0 74.0 -24.0 EUT Horizontal, 802.11 data rate=1Mbps. Cirronet radio off

N	IORTHWEST				R	A	D	/	1	Γ	Ξ)	E	N		S	S)	١S)/	47	Ά		Sł		E		Γ					A(EN	CQ : MI 2	2005.1.4 005.4.13
		EUT:	USI	Radi	o M	odu	le i	nst	alle	d ir	n the	e Ra	ang	er)	(Se	eries	s Ha	and	lhel	d Co	mpı	uter							v	Vork	Ord	ler:	TRF	000	07		
S	Serial Nu	mber:				_																									Da	ate:	04/2	6/05	í		
	Cust	omer:	Trip	od D	ata	Sys	ten	ıs, I	Inc.																	_	Humidity: 46%										
	Atten	aees:	Den	nis t	OFK																					_	Barometric Pressure 30.09										
`	Teste	ed by:	Dan	Haa	s														Po	ower:	120)VA	C/60	JHz Job Site: EV01													
TEST	SPECIF	ICATI	ONS																																		
SAMD	Specific	ation:	FCC	15.2	247(d) S	pur	iou	IS R	adi	ateo	l Er	nis	sio	1s:2	2004	4				ľ	Meth	nod:	ANS	SI C	63.4	:20	03									
Rac	LE CAL	SSIONS:	Field	Streng	gth =	Meas	sure	d Lev	vel +	Ante	enna	Fac	tor +	Cat	ole F	actor	r - Ar	nplif	ier G	Gain + I	Dista	ince .	Adjus	ment	Fac	tor +	Exte	rnal	Atter	nuatio	on						
	IENTS	te Pan	Adjus	Serie	e Ha	: Mea	isure	onta	ine			ICEI	Fact	or +	Cab	ie Ati	tenu	atior	1 Fac	ctor + E	xteri	nai A	Attenu	ator													
EUTO				S	5 114	indine	.iu c	onta				TOTA	, i i u	alo	nou	uico.	•																				
Tx High	Channel	on all r	adios																																		
DEVIA No devi	TIONS ations.	FRON	I TES	ST ST	TAN	DA	RD																														
RESU Pass	LTS																																Rur	#	6		
Other																											_	-	~							_	
																							-	Ċ	De	ila	g	lar	.5								
																												Te	este	d By	y:						
	80.0 -																																				
	70.0 -					_																		_												_	
	60.0 -																																			_	
	50.0 -			1	•	-																		-												+	
BuV/n	40.0 -			:	\$	_																														_	
q	30.0 -																							_												_	
	20.0 -																																			_	
	10.0 -																																				
	0.0 -																																				
	1000	0.000	12	200.0	000	1	400).0C	00	16	500.	.000)	18	00.	000		200	0.00	000	22	200.	000	2	400	0.00	0	26	00.0	000	2	280	0.00	0	300).00	000
																		N	/H	z																	
	Freq (MHz)		Amı (dl	olitude 3uV)		Fac (di	tor: B)		Azi (deg	muth	n 5)	H (m	eigh eters	t s)	Du Co	ty Cy prrect (dB)	ycle tion	At	Exter ttenu (dE	rnal Iation 3)	P	Polari	ity	De	tecto	or	Dis Adju	stanc ustmo (dB)	e ent	Ad dE	ljuste 3uV/r	ed n	Spe dE	c. Lin suV/m	nit I	Com S	pared to Spec. (dB)
	123	4.938		31.	.4		-8	.1		19	9.0			1.3			3.0)		20.0	Н	l-Ho	orn		AV	1			0.0		43	3.3		54	.0		-10.7
	123	4.938		29.	8		-8.	1		281	0.1			1.2			3.0)		20.0	V	'-Ho	orn		AV			1	0.0		4	1.7		54	.0		-12.3
	123	4.938		41. 41	0 2		-8. -8	.1 1		19	9.0 I O			1.3 1.2			3.0	,)		20.0	H	-H0	orn vro		PK PK				0.0		5	3.5 3.1		74 74	.0		-20.5
	123	4.938		41. 41	6 2		-8. -8	.1 1		19 281	9.0			1.3 1 2			3.0)		20.0	H	I-Ho	n		PK				0.0		5	3.5 3 1		74 74	.0		-20.

EUT: US R-allo Module installed in the Ranger X Series Handheid Computer Work Occur: TPOD0007 Customer: Tropportune; 21 Attendee: Temperature; 21 Customer: Temperature; 21 Customer: Temperature; 21 Strikt Method: Hundbry; 467 Description: Socie Strikt Method: National Strikt Method: National Strikt Method: National Strikt Method: Visig Chanden and in radok: Tested By:	N	orthwest				R	A	D		47		D)	E	V		S	SI	C)N	IS)/	١	Ά	5	Sŀ	łE		T						ACC EMI	2005.1.4 2005.4.13		
Bit Number: Image: Network Image: Network Image: Network Image: Network Image: Network Image: Network Ne			EUT:	USI	Rad	io M	odu	ıle i	nst	alle	d in	the	Ra	nge	er X	Se	ries	s Ha	and	helo	d Co	mpι	ıter							W	ork (Order	: TF	RPO	0007	7			
Balandia Uppend Yok Inclusion Inclusion <t< td=""><td>S</td><td>erial Nu</td><td>mber:</td><td>Taila</td><td></td><td></td><td><u></u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>T</td><td></td><td>Date</td><td>: 04</td><td>/26/</td><td>05</td><td></td><td></td></t<>	S	erial Nu	mber:	Taila			<u></u>																				_			T		Date	: 04	/26/	05				
Outs. Bar. No.: Description Barometric Prover: 120VAC/60Hz Description		Atten	omer:	I rip Don	od L	ata	Sys	sten	ns, I	inc.																	_			Ten	Hur	ature	21	%					
Tested by: Data State Power: 120 VAC/60Hz Job Site: EV01 Specification: FCC 100 S Method: ANSI C63.4.2003 Method: ANSI C63.4.2003 SAMPLE CALCULATIONS Rescription:	0	Cust. Re	f. No.:	Den	1115																							Ва	rom	etric	: Pre	essur	e 30	0.09					
TESTS SPECIFICATIONS Specification [CC 15.247(0) Spurious Radiated Emissions:2004 Method: INSI C63.4:2003 SAMPLE CALCULATIONS Colspan="2">Colspan="2"Colspan		Test	ed by:	Dan	Haa	IS														Po	wer:	120	VA	C/60	Hz						Jol	b Site	: E\	/01					
Beelfording FOC 15,247(d) Spurious Radiated Emissions:2004 Method ANSI C63.4:2003 SAMPLE CALCULATIONS Method ANSI C63.4:2003 Method ANSI C63.4:2003 SAMPLE CALCULATIONS Method ANSI C63.4:2003 Method ANSI C63.4:2003 COMMENTS Method Ansi C63.4:2003 Method Ansi C63.4:2003 Method ANSI C63.4:2003 Method Ansi C63.4:2003 Method Ansi C63.4:2003 COMMENTS Status Tested By: Tested By: Tested By: Tested By: Tested By: Tested By: Method Method Ansi C63.4:2003 Method Ansi C63.4:2003 Globa Globa Globa Globa Globa Tested By: Tested By: Tested By: Method Ansi C63.4:2003 Method Ansi C63.4:2003	TEST S	SPECIF	ICATI	ONS	;																																		
Charles Carlos Fall Biorgin - Massandi Longi - Attesna Stater - Cable Fazer - Adjustment Fazer - Esternal Attenuation Contante Timitor: Fall Biorgin - Massandi Longi - Tantakad Fazer - Cable Fazer - Cable Fazer - Esternal Attenuation COMMENTS Maintain dita ratis. Ranger X Series Handheld contains USI & Cirrost radio modules. EUT OPERATING MODES Tringin Channel on at radios. Pass 7 Other	SAMD	Specific	ation:	FCC	: 15.: NS	247(d) S	pur	riou	IS R	adia	ated	Em	iss	ion	s:2	004	ļ				Ν	/leth	od:	ANS		53.4:	200)3										
Conductor Heatured Level + Transducer Factor + External Attenuator Conditions Maintum data rate. Ranger X Sarles Handheld contains USI & Cirronet radio modules. EUTOPERATING MODES Triflight Contains on all radios. Other Pass restort By: Totage: Contains Contains USI & Cirronet radio modules. Mainton data rate. Ranger X Sarles Handheld contains USI & Cirronet radio modules. Colspan="2">Run # Pass restort By: Testort By: <td>Rad</td> <td>liated Emi</td> <td>ssions:</td> <td>Field</td> <td>Stren</td> <td>gth =</td> <td>Mea</td> <td>sure</td> <td>d Lev</td> <td>vel +</td> <td>Ante</td> <td>nna l</td> <td>acto</td> <td>or + (</td> <td>Cab</td> <td>le Fa</td> <td>actor</td> <td>- Ar</td> <td>nplifi</td> <td>er Ga</td> <td>ain + [</td> <td>Dista</td> <td>nce A</td> <td>Adjust</td> <td>ment</td> <td>Fact</td> <td>or + 6</td> <td>xter</td> <td>nal A</td> <td>Attenu</td> <td>uatior</td> <td>n</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Rad	liated Emi	ssions:	Field	Stren	gth =	Mea	sure	d Lev	vel +	Ante	nna l	acto	or + (Cab	le Fa	actor	- Ar	nplifi	er Ga	ain + [Dista	nce A	Adjust	ment	Fact	or + 6	xter	nal A	Attenu	uatior	n							
Conternation using USI & Circonet radio modules. EUTOPERATING MODES Tright Channel on all radios. Other Run # Run # Pass Run # Other Biology Run # Tested By: Other Biology Colspan="2">Colspan="2">Colspan="2" Tested By: Tested By: Other Mathematican and an all radios Other Tested By: Tested By: Tested By: Tested By: Other Mathematican and an all radios Other Tested By: Tested By: Tested By: Tested By: Tested By: Tested By: Tested By: <th <="" colspan="2" td=""><td>Condu</td><td>ucted Emi</td><td>ssions:</td><td>Adjus</td><td>sted Le</td><td>evel =</td><td>Mea</td><td>asure</td><td>ed Le</td><td>evel -</td><td>- Tra</td><td>nsdu</td><td>cer F</td><td>acto</td><td>or + (</td><td>Cable</td><td>e Att</td><td>enua</td><td>ation</td><td>Fact</td><td>or + E</td><td>xterr</td><td>nal At</td><td>ttenua</td><td>ator</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Condu</td> <td>ucted Emi</td> <td>ssions:</td> <td>Adjus</td> <td>sted Le</td> <td>evel =</td> <td>Mea</td> <td>asure</td> <td>ed Le</td> <td>evel -</td> <td>- Tra</td> <td>nsdu</td> <td>cer F</td> <td>acto</td> <td>or + (</td> <td>Cable</td> <td>e Att</td> <td>enua</td> <td>ation</td> <td>Fact</td> <td>or + E</td> <td>xterr</td> <td>nal At</td> <td>ttenua</td> <td>ator</td> <td></td>		Condu	ucted Emi	ssions:	Adjus	sted Le	evel =	Mea	asure	ed Le	evel -	- Tra	nsdu	cer F	acto	or + (Cable	e Att	enua	ation	Fact	or + E	xterr	nal At	ttenua	ator												
Maintenance contains us a Currow rated modules. EUT OPERATING MODES Trified Contains. Other Contert rated modules. RESULTS Run # Pass Total Content rated modules. Other Contert rated modules. B0.0 Total Differ Module Contains to a fination. Run # Total Contains to a fination.	COMM	IENTS	La Dav		Orania						101.0	0.																											
EUF.02ERATING MODES Rtm # Rtm # Rtm # Book devices. Rtm # Pass 7 Other Book devices. Rtm # Tested By: Tested By: <th>Maximu</th> <th>m data ra</th> <th>te. Rar</th> <th>nger X</th> <th>Serie</th> <th>es Ha</th> <th>ndhe</th> <th>eld c</th> <th>onta</th> <th>ins (</th> <th>121 8</th> <th>k Ciri</th> <th>one</th> <th>t rad</th> <th>lio n</th> <th>nodi</th> <th>lles.</th> <th></th>	Maximu	m data ra	te. Rar	nger X	Serie	es Ha	ndhe	eld c	onta	ins (121 8	k Ciri	one	t rad	lio n	nodi	lles.																						
DelVIATIONS FROM TEST STANDARD Result 7 Detail 7 Other Juilian 0 Juilian Tested By: 0 Tested By: Tested By: 0 </td <td>EUT O Tx High</td> <td>PERAT Channel</td> <td>ING N on all i</td> <td>IOD radios</td> <td>ES</td> <td></td>	EUT O Tx High	PERAT Channel	ING N on all i	IOD radios	ES																																		
No deviations. Pass	DEVIA	TIONS	FROM		ST S	TAN	DA	RD																															
MESOLISE Kin # Pass Z Other July 80.0 July 70.0 July 70.0 July 80.0 July 70.0 July 80.0 July 70.0 July 80.0 July 80.0 July 70.0 July 80.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0	No devia	ations.																																		_			
Other Contact	RESU	LTS																															R	un #		7			
Other July Tested By: 80.0 70.0 60.0 70.0 60.0 70.0 60.0 70.0 60.0 70.0 60.0 70.0 60.0 70.0 60.0 70.0	r ass																																-			-			
$H_{\rm rested By:} = \frac{1}{120000000000000000000000000000000000$	Other																													_									
$Height = \frac{1}{1283,500} + \frac{1}{222} + \frac{1}{2250} + \frac{1}{12} + \frac{1}{30} + \frac{1}{200} + \frac{1}{12} + \frac{1}{30} + \frac{1}{200} + \frac{1}{12} + \frac{1}{30} + \frac{1}{200} + \frac{1}{12} +$																									/	7	.//	au											
Image: Trested By: 0																									/	Ven	Re	~~		2									
B0.0 Distance Adjusted Spec. Limit Compared to Spec. 40.0				Tested By:																																			
80.0 80.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																														0100									
Treq Amplitude Factor Azimuth Height Duty Cycle External Potanity Detector Adjusted Geu/ht Compared to Spec. Link Compared to Spec. 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 Hold Hold Adjusted Geu/ht Spec. Link Compared to Spec. 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 Hold Adjusted Geu/ht Spec. Spec. <td></td> <td>80.0 -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>1</td>		80.0 -						_					_																								1		
Treq Amplitude Factor Azimuth Height Correction Attenuation Polarity Detector Adjusted Spec. Linit <																																							
Treq Amplitude Factor Azimuth Height Duty Cycle External Adjusted Spec. Limit Compared to deluvim Spec. 2483.500 27.6 -2.2 285.0 1.2 3.0 20.0 H-Horn AV 0.0 46.6 54.0 -8.6 2483.500 27.6 -2.2 285.0 1.2 3.0 20.0 V-Horn AV 0.0 46.6 54.0 -8.6 2483.500 27.6 -2.2 285.0 1.2 3.0 20.0 V-Horn AV 0.0 46.6 54.0 -8.6 2483.500 27.6 -2.2 285.0 1.2 3.0 20.0 V-Horn AV 0.0 46.6 54.0 -8.6 2483.500 26.8 -2.2 285.0 1.2 3.0 20.0 V-Horn AV 0.0 46.6 54.0 -8.6 2483.500 26.8 -2.2 285.0 1.2 3.0 20.0 V-Horn <																																				Ħ	ſ.		
60.0 * 50.0 40.0 40.0 * 30.0 40.0 20.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 40.0 10.0 100.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1		70.0 -																																		\square			
60.0 70.0 70.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																																							
So.0 So.0 <th< td=""><td></td><td>60.0 -</td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		60.0 -					_	_																	_			•											
50.0 40.0 * 40.0<																																							
Freq Amplitude Factor Azimuth Height Duty Cycle External Attenuation (dB) Detector Distance Adjustment Adjusted Adjustment Spec. Limit Compared to Spec. (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 Height Duty Cycle External Attenuation (dB) Detector Distance Adjustment Adjustment Adjustment Adjustment Adjustment Spec. Limit Spec. (dB) Spec. (dB) Compared to Spec. (dB) Spec. (dB) Duty Cycle External Attenuation (dB) Detector Distance Adjustment Adjustment Adjustment Adjustment Adjustment Spec. Limit Spec. (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 45.4 54.0 -8.6 2483.500 26.8 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 60.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 PH-Horn PK																																				\square	ſ		
Freq Amplitude Factor Azimuth Height (degrees) Duty Cycle External Correction Polarity Detector Distance Adjustment (dB) Adjusted dBu/m Spec. Limit dBu/m Compared to Spec. (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 44.6 54.0 -8.6 2483.500 26.8 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 44.6 54.0 -8.6 2483.500 26.8 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 44.6 54.0 -8.6 2483.500 26.8 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 44.6 54.0 -8.6 2483.500 26.8 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 44.6 54.0 -8.6 2483.500 26.8 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 60.8 <		50.0 -						-																												+			
Freq Amplitude Factor Azimuth Height Duty Cycle External Polarity Detector Adjusted Spec. Limit Compared to Spec. 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 Height Correction Attenuation Polarity Detector Adjusted Spec. Limit Compared to Spec. (dB) (dB) Spec. Limit Compared to Spec. (dB) Compared to Spec. (dB) Compared to Spec. (dB) Compared to Spec. (dB) Spec. Limit Compared to Spec. (dB) Compare	<u>ع</u>																											*											
Freq Amplitude Factor Azimuth (dB) Height (meters) Duty Cycle Correction (dB) External Attenuation (dB) Polarity Detector Distance Adjusted Adjusted (BuV/d) Spec. Limit Spec. Compared to Spec. (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 45.4 54.0 -8.6 2483.500 26.8 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0	≥	40.0 -																																					
Teq Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Duty Cycle Correction (dB) External Attenuation (dB) Polarity (dB) Detector (dB) Distance (dB) Adjusted BUV/m Spec. Limit (dB) Compared to Spec. (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 H-Horn (dB) AV 0.0 45.4 54.0 -8.6 2483.500 26.8 -2.2 155.0 1.2 3.0 20.0 V-Horn AV AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 60.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 H-Horn PK 0.0 60.8 74.0 -13.2	<u>Б</u>																																						
30.0 200.000 2400.000 2600.000 2800.000 3000.000 3000.000 MHz MHz Duty Cycle External Atenuation (dB) Polarity Detector Adjusted dBuV/m Gompared to Spec. Limit (dB) VHz Outy Cycle External Atenuation (dB) Detector Adjusted dBuV/m Gompared to Spec. Limit (dB) VHZ Duty Cycle External Atenuation (dB) Detector Adjusted dBuV/m Gompared to Spec. Limit (dB) 2483.500 27.6 -2.2 265.0 1.2	σ																																						
Z0.0 Z0.0 <thz0.0< th=""> Z0.0 Z0.0</thz0.0<>		30.0 -						-																												+			
20.0																																							
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Duty Cycle Correction (dB) External Attenuation (dB) Polarity (dB) Detector (dB) Distance Adjusted (dB) Adjusted dBUV/m Spec. Limit dBUV/m Compared to Spec. (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 H-Horn AV AV 0.0 45.4 54.0 -8.6 2483.500 26.8 -2.2 265.0 1.2 3.0 20.0 V-Horn AV AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV AV 0.0 60.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0		20.0 -																																					
Interview Freq Amplitude Factor Azimuth Height Duty Cycle External Polarity Detector Adjusted Adjusted Spec. Limit Compared to Spec. (MHz) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 44.6 54.0 -9.4 2483.500 26.8 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 26.8 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 26.8 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 68.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 68.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.		20.0																																					
Image: 10.0																																							
No.0 1200.000 1400.000 1600.000 1800.000 2000.000 2200.000 2400.000 2600.000 2800.000 3000.000 MHz MHz Meight (degrees) Duty Cycle (orrection (dB)) External (dB) Detector Adjusted dBuV/m (dB) Spec. Limit dBuV/m (dB) Compared to Spec. (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 45.4 54.0 -9.4 2483.500 26.8 -2.2 155.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn		10.0 -					-	+												_			_													+			
O.0 Image: Constraint of the sector (MHz) Image: Consector (MHz) Image: Constraint of the sector (MHz)																																							
Freq (MHz) Amplitude (dB) Factor (dB) Azimuth (degrees) Height (meters) Duty Cycle Correction (dB) External Attenuation (dB) Polarity (dB) Detector Distance Adjustment (dB) Adjusted BUV/m Spec. Limit BUV/m Compared to Spec. (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 H-Horn (dB) AV 0.0 45.4 54.0 -8.6 2483.500 26.8 -2.2 155.0 1.2 3.0 20.0 V-Horn H-Horn AV AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn H-Horn AV AV 0.0 60.8 74.0 -13.2 2483.500 413.0 -2.2 265.0 1.2 3.0 20.0 V-Horn H-Horn AV 0.0 60.8 74.0 -13.2		0.0 -																												_									
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Duty Cycle Correction (dB) External Attenuation (dB) Polarity Detector Distance Adjustment (dB) Adjusted dBUV/m Spec. Limit dBUV/m Compared to Spec. (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 H-Horn H-Horn AV 0.0 45.4 54.0 -8.6 2483.500 26.8 -2.2 155.0 1.2 3.0 20.0 H-Horn H-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 H-Horn H-Horn AV 0.0 60.8 74.0 -13.2 2483.500 413.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.0 -13.2		1000	000	1:	200 (000	1	400	, 0 U	00	16	00	າດດ		180	ה הר	າດດ		200		00	22	ດດ່ (າດດ	2	400	000)	260	0,01	00	28	00 0	000	3(000	000		
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Duty Cycle Correction (dB) External (dB) Polarity (dB) Detector Adjusted Adjustment (dB) Adjusted BuV/m Spec. Limit dBuV/m Compared to Spec. (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 45.4 54.0 -8.6 2483.500 26.8 -2.2 155.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.0 -13.2 2483.600 413.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.0 -13.2 2483.600 413.0 -2.2 20.0 20.0 V-Horn PK 0.0 60.8 74.0 -13.2		1000		14	200.0	000		-00			10	00.	500		100	.0.0	000				00	22	00.0	500	2	100	.000		200	.0.0	00	20	00.0	.00	0	500	.000		
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Duty Cycle Correction (dB) External Attenuation (dB) Polarity Detector Distance Adjustment (dB) Adjusted dBuV/m Spec. Limit dBuV/m Compared to Spec. (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 45.4 54.0 -8.6 2483.500 26.8 -2.2 155.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.0 -13.2 2483.500 413.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.0 -13.2 2483.500 413.0 -2.2 20.0 20.0 V-Horn PK 0.0 60.8 74.0 -13.2																			N	IHz	2																		
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (dggress) Height (meters) Gorge of the Correction (dB) Correction Attenuation (dB) Polarity Polarity Detector Distance Adjusted (dB) Adjusted dBuV/m Spec. Limit dBuV/m Spec. Limit dBuV/m<				1		-			T			-			Т	Durt	hy Cu	(cle		ytor	nal							Diet	ance	,			1			0.0	mnared to		
(MHz) (dBuV) (dB) (degrees) (meters) (dB) (dB) (dB) dBuV/m dBuV/m (dB) 2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 45.4 54.0 -8.6 2483.500 26.8 -2.2 155.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 60.8 74.0 -13.2 2483.500 413.0 -2.2 265.0 1.2 3.0 20.0 H-Horn PK 0.0 60.8 74.0 -13.2 2483.500 413.0 -2.2 265.0 1.2 3.0 20.0 V-Horn PK 0.0 60.8 74.0 -13.2 2483.500 413.0 -2.2 2.0 2.0 2.0 VILITER VILITER 0.0 0		Freq		Am	plitude	э	Fac	ctor		Azi	muth		He	ight		Co	rrect	ion	At	tenua	ation	Р	olarit	y	De	tecto	r .	Adjus	stme	nt	Adji	usted	s	pec.	Limit		Spec.		
2483.500 27.6 -2.2 265.0 1.2 3.0 20.0 H-Horn AV 0.0 45.4 54.0 -8.6 2483.500 26.8 -2.2 155.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 H-Horn PK 0.0 60.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 H-Horn PK 0.0 60.8 74.0 -13.2 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 H-Horn PK 0.0 60.8 74.0 -13.2 2483.501 -40.2 -40.2 -20.0 FU FU 74.0 -13.2		(MHz)		(d	BuV)		(d	B)		(deg	rees)	(me	ters))		(dB)			(dB)							(0	dB)		dBi	uV/m		dBu\	//m		(dB)		
2483.500 26.8 -2.2 155.0 1.2 3.0 20.0 V-Horn AV 0.0 44.6 54.0 -9.4 2483.500 43.0 -2.2 265.0 1.2 3.0 20.0 H-Horn PK 0.0 60.8 74.0 -13.2 2483.500 44.0 -2.2 265.0 1.2 2.0 20.0 H-Horn PK 0.0 60.8 74.0 -13.2 2483.500 44.0 -2.2 265.0 1.2 2.0 20.0 V-Horn PK 0.0 60.8 74.0 -13.2		248	3.500		27	.6		-2.	.2		265	.0		1	.2			3.0		1	20.0	H	-Hoi	rn –	7	AV			Ō	0.0		45.4	4		54.0	_	-8.6		
2402500 43.0 -2.2 20.0 1.2 3.0 20.0 FEDUIL FK 0.0 00.8 74.0 -13.2		248	3.500		26	.8 0		-2.	2		155 265	0.		1	.2			3.0		-	20.0	V. L	-Hoi	n n	/	۹۷ مح			0	0.0		44.0	j a		54.0 74 0		-9.4		
2403.000 41.2 -2.2 100.0 1.2 3.0 20.0 V-HOM PK 0.0 59.0 /4.0 -15.0		∠48 248	3.500 3.500		43 41	.0 .2		-2. -2.	.2		∠00 155	.0 .0		1	.2 .2			3.0		:	20.0	V.	-Hor	m	F	PK			0	.0		59.0)		74.0 74.0		-13.2		

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC/60 Hz.

Other Settings Investigated:

All radios transmitting simultaneously

Software\Firmware Applied During Test												
Operating system	Windows CE	Version	2003 Ozone Update									
Exercise software	RTS 802.11	Version	1.0									
Exercise software	BlueEMI	Version	1.0									
Exercise software	Cirrochat	Version	1.0									
Description												
Program written by Tri	pod Data Systems to exercise hardware for tes	t purposes. Rι	unning Cirrochat v1.0									
to continuously Transmit PSBS, running RTS 802.11 v1.0 to continuously Transmit PSBS, running												
BlueEMI v1.0 to continuously Transmit PSBS.												

EUT and Peripherals												
Description	Manufacturer	Model/Part Number	Serial Number									
EUT - 802.11b/Bluetooth Radio Module installed in Ranger X Series	USI	USI	Unknown									
2.4 GHz FHSS Radio Module installed in Ranger X Series	Cirronet	Cirronet	Unknown									
Host Device – Handheld Computer	Tripod Data Systems, Inc.	Ranger X Series	C24									
GPS receiver	Tripod Data Systems, Inc.	Pocket Pathfinder	Unknown									
Compact Flash GPS Receiver	Holux	Unknown	Unknown									
DC Power Supply	Cincon	TR30R	N/A									

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.0	Yes	Host Device – Handheld Computer	Unterminated
USB	Yes	1.8	No	Host Device – Handheld Computer	Unterminated
DC Leads	No	1.8	Yes	Host Device – Handheld Computer	AC Power
Serial	Yes	1.7	Yes	Host Device – Handheld Computer	GPS receiver

Measurement Equipment					
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo
High Pass Filter	TTE	H97-100k-50-720B	HFC	12/29/2004	13 mo
LISN	Solar	9252-50-R-24-BNC	LIN	12/29/2004	13 mo

Test Description

Requirement: Per 47 15.207(c), in addition to devices which are powered directly from the AC power line, conducted emissions measurements shall also be made on battery operated devices that can transmit while charging, as well as on devices that are powered from AC adaptors, or devices that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines. All of these devices shall be tested to demonstrate compliance with the conducted limits of 15.207.

Configuration: The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-2003.

Completed by:				
Rolyte	Peling			

