

W66 N220 Commerce Court • Cedarburg, WI 53012 • USA Phone: 262.375.4400 • Fax: 262.375.4248 www.lsr.com

TEST REPORT # 313049-B LSR Job #: C-1677

Compliance Testing of: Whistle Dog Monitor

Test Date(s): July 19, August 8-15, 2013

Prepared For: Attn: Kevin Lloyd Whistle Labs 251 Rhode Island St Suite 211 San Francisco, CA 94103

In accordance with: Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Industry Canada (IC) RSS 210 Annex 8 Frequency Hopping Spread Spectrum (FHSS) Operating in the Frequency Band 2400-2483.5 MHz

Date:

This Test Report is issued under the Authority of: Peter Feilen, EMC Engineer

Signature:

lota Tries

Test Report Reviewed by: Adam Alger, EMC Engineer

Date: 8-27-13

Tested by: Peter Feilen, EMC Engineer

Signature: Adum O Alge

Signature:

Date: 8-21-13

later File

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS

	4
1.1 - Scope	4
1.2 – Normative References	4
1.3 - LS Research, LLC Test Facility	5
1.4 – Location of Testing	5
1.5 – Test Equipment Utilized	5
EXHIBIT 2. PERFORMANCE ASSESSMENT	6
2.1 – Client Information	6
2.2 - Equipment Under Test (EUT) Information	6
2.3 - Associated Antenna Description	6
2.4 - EUT'S Technical Specifications	7
2.5 - Product Description	8
EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS	9
3.1 - Climate Test Conditions	9
3.2 - Applicability & Summary Of EMC Emission Test Results	9
3.3 - Modifications Incorporated In The EUT For Compliance Purposes	9
3.4 - Deviations & Exclusions From Test Specifications	9
EXHIBIT 4. DECLARATION OF CONFORMITY	.10
EXHIBIT 5. RADIATED EMISSIONS TEST	.11
5.1 - Test Setup	.11
5.2 - Test Procedure	.11
E.2. Toot Equipment Litilized	4.4
5.5 - Test Equipment Ounzed	.
5.4 - Test Results	. 1 1 . 11
5.5 - Test Results	. 1 1 . 11 . 12
5.5 - Test Equipment Offized 5.4 - Test Results 5.5 - Calculation of Radiated Emissions Limits 5.6 - Radiated Emissions Test Data Chart	.11 .11 .12 .13
 5.3 - Test Equipment Offized 5.4 - Test Results 5.5 - Calculation of Radiated Emissions Limits 5.6 - Radiated Emissions Test Data Chart 5.7 - Screen Captures - Radiated Emissions Test 	.11 .11 .12 .13 .15
 5.3 - Test Equipment Offized 5.4 - Test Results 5.5 - Calculation of Radiated Emissions Limits 5.6 - Radiated Emissions Test Data Chart 5.7 - Screen Captures - Radiated Emissions Test 5.9 - Receive Mode Testing 	.11 .12 .13 .15 .18
 5.3 - Test Equipment Offized 5.4 - Test Results 5.5 - Calculation of Radiated Emissions Limits 5.6 - Radiated Emissions Test Data Chart 5.7 - Screen Captures - Radiated Emissions Test 5.9 - Receive Mode Testing 5.10 - Screen Captures - Radiated Emissions Testing – Receive Mode 	.11 .12 .13 .15 .15 .18
 5.3 - Test Equipment Ounzed. 5.4 - Test Results	.11 .12 .13 .13 .15 .18 .19 .21
 5.3 - Test Equipment Offized. 5.4 - Test Results	.11 .12 .13 .15 .15 .18 .19 .21
 5.3 - Test Equipment Ouized. 5.4 - Test Results. 5.5 - Calculation of Radiated Emissions Limits. 5.6 - Radiated Emissions Test Data Chart. 5.7 - Screen Captures - Radiated Emissions Test. 5.9 - Receive Mode Testing. 5.10 - Screen Captures - Radiated Emissions Testing – Receive Mode . EXHIBIT 6. OCCUPIED BANDWIDTH . 6.1 - Method of Measurements . 6.2 - Test Data . 	.11 .12 .13 .15 .15 .18 .19 .21 .21

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
-		
LSR Job #: C-1677	Serial#: Engineering Sample	Page 2 of 47
		-

EXHIBIT 7. BAND EDGE MEASUREMENTS	28
7.1 - Method of Measurements	28
EXHIBIT 8. POWER OUTPUT (CONDUCTED)	30
8.1 - Method of Measurements	30
8.2 - Test Data	30
8.3 - Screen Captures – Power Output (Conducted)	31
EXHIBIT 9. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)	34
9.1 - Limits	34
9.2 – Conducted Harmonic And Spurious RF Measurements	34
9.3 - Screen Captures – Spurious Conducted Emissions	35
EXHIBIT 10. CHANNEL PLAN AND SEPARATION	36
10.1 - Screen Captures – Channel Separation	37
EXHIBIT 11. CHANNEL OCCUPANCY	39
EXHIBIT 12. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE	43
EXHIBIT 13. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH	44
APPENDIX A – Test Equipment List	45
APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO	46
APPENDIX C - Uncertainty Statement	47

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 3 of 47

EXHIBIT 1. INTRODUCTION

<u> 1.1 - Scope</u>

References:	FCC Part 15, Subpart C, Section 15.247 and 15.209 RSS GEN and RSS 210 Annex 8
Title:	 FCC : Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC : Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
Purpose of Test:	To gain FCC and IC Certification Authorization for Low- Power License-Exempt Transmitters.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Commercial, Industrial or Business Residential

<u> 1.2 – Normative References</u>

Publication	Title
47 CFR, Parts 0-15 (FCC)	Code of Federal Regulations - Telecommunications
RSS 210 Annex 8	Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
FCC Public Notice DA 00-705	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 4 of 47
		-

<u>1.3 - LS Research, LLC Test Facility</u>

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted.

<u>1.4 – Location of Testing</u>

All testing was performed at the following location utilizing the facilities listed below, unless otherwise noted.

LS Research, LLC W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA,

List of Facilities Located at LS Research, LLC:

Compact Chamber Semi-Anechoic Chamber Open Area Test Site (OATS)

<u> 1.5 – Test Equipment Utilized</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated by a calibration laboratory accredited to the requirements of ISO 17025 and are traceable to the SI standard.

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 5 of 47
		-

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 – Client Information

Manufacturer Name:	Whistle Labs Inc
Address:	251 Rhode Island St, Suite 211, San Francisco, CA 94103
Contact Name:	Kevin Lloyd

<u>2.2 - Equipment Under Test (EUT) Information</u> The following information has been supplied by the applicant.

Product Name:	Whistle Dog Monitor
Model Number:	W01A
Serial Number:	Engineering Sample

2.3 - Associated Antenna Description

Custom designed PIFA antenna.

The antenna tuning is dependent on the EUT housing structure and material.

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 6 of 47
		-

2.4 - EUT'S Technical Specifications

ELIT Frequency (Dense (in MUT)	2402 2400 MUL
EUT Frequency Range (In MHZ)	2402-2480 MHZ
Maximum Conducted Output Power (in dBm)	GFSK: 2.9 dBm
	EDR2: 2.7 dBm
	EDR3: 2.6 dBm
Minimum Conducted Output Power (in dBm)	GFSK: 1.9 dBm
	EDR2: 1.7 dBm
	EDR3: 1.6 dBm
Maximum RF Power in Watts	GFSK: 0.0019
	EDR2: 0.0019
	EDR3: 0.0018
Minimum RF Power in Watts	GFSK: 0.0015
	EDR2: 0.0015
	EDR3: 0.0014
Occupied Bandwidth (99% BW) (kHz)	GFSK: 873 kHz
	EDR2: 1226 kHz
	EDR3: 1227 kHz
Type of Modulation	BT Classic: GFSK
	EDR: DPSK
Emission Designator	GFSK: 873kFXD
	EDR2: 1M23FXD
	EDR3: 1M23FXD
Transmitter Spurious (worst case) at 3 meters	52.7 dBuV/m @ 3m
Receiver Spurious (worst case) at 3 meters	42.9 dBuV/m @ 3m
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Microprocessor Model # (if applicable)	CC2564
Antenna Information	
Detachable/non-detachable	Non-detachable
Туре	Custom design PIFA
Gain (in dBi)	0 dBi
EUT will be operated under FCC Rule Part(s)	15.247
EUT will be operated under RSS Rule Part(s)	RSS 210
Modular Filing	Yes No
Portable or Mobile?	Portable

RF Technical Information:

Type of		SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation	Х	SAR Evaluation: Body-worn Device
(check one)		RF Evaluation

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC		
Report # 313049-B	Model #: W01A			
LSR Job #: C-1677	Serial#: Engineering Sample	Page 7 of 47		
		-		

2.5 - Product Description

Whistle is a consumer electronics product for dogs that measures activity levels and transmits them to company servers via Bluetooth and/or WiFi connections.

Whistle is powered via a 200mAH lithium-polymer battery, through a TI TPS62402 dual-voltage (1.8V and 3.3V) switching power supply (switching frequency: 2.2MHz).

Whistle contains a TI CC2564 dual-mode Bluetooth (BT) and Bluetooth Low-Energy system-onintegrated-circuit. The data source/sink and command interface for the transceiver is through a 4wire UART Host Control Interface (HCI).

The transmitter is based on a direct PLL modulation for the FSK-based modulations (BT 2.1 and BLE 4.0 signaling) and uses Polar modulation techniques for the higher EDR rates which employ differential phase-shift keying modulation. The receiver uses a near-zero IF architecture. Both transmit and receive local oscillators are generated at two-times the carrier frequency and divided by two. A bandpass filter is included on the path between the CC2654 RF signal and the antenna terminal.

The device was programmed through a PC, with USB interface and utilizing TeraTerm software for programming, using commands issued by the device manufacturer specific to the CC2564 chip.

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
·		
LSR Job #: C-1677	Serial#: Engineering Sample	Page 8 of 47
		-

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 - Climate Test Conditions

Temperature:	15-35 °C
Humidity:	30-60%
Pressure:	645-795 mmHg

3.2 - Applicability & Summary Of EMC Emission Test Results

FCC and IC Paragraph	Test Requirements	Compliance (Yes/No)
FCC : 15.247 (a)(1)(i) IC : RSS 210 A8.1 (a)	20 dB Bandwidth	Yes
FCC : 15.247(b) & 1.1310 IC : RSS 210 A8.4	Maximum Output Power	Yes
FCC : 15.247(d), 15.209 & 15.205 IC : RSS 210 A8.5, section 2.2	Transmitter Radiated Emissions	Yes
FCC :15.247(d) IC : RSS 210 A8.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes
FCC:15.247 (a)(1)(i) IC: RSS 210 A8.1(b)	Carrier Frequency Separation	Yes
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 A8.1(d)	Number of hopping channels	Yes
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 A8.1(d)	Time of occupancy (Dwell Time)	Yes

<u>3.3 - Modifications Incorporated In The EUT For Compliance Purposes</u>

🛛 None

Yes (explain below)

3.4 - Deviations & Exclusions From Test Specifications

🛛 None

Yes (explain below)

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 9 of 47
		Ũ

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-210, Issue 8, Section Annex 8 (section A8.1) for a Frequency Hopping Spread Spectrum (FHSS) Transmitter.

Note: If some emissions are seen to be within 3 dB of their respective limits; as these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC		
Report # 313049-B	Model #: W01A			
LSR Job #: C-1677	Serial#: Engineering Sample	Page 10 of 47		
		-		

EXHIBIT 5. RADIATED EMISSIONS TEST

<u>5.1 - Test Setup</u>

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4-2003. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuous modulated transmit mode for final testing using power as provided by a device battery. 3 separate units were provided for testing on 3 different channels.

The applicable limits apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels: low (2402 MHz), middle (2440 MHz) and high (2480 MHz) to comply with FCC Part 15.31(m). The channels and operating modes were controlled with a laptop pc for programming the test unit.

5.2 - Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 10000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Bi-conical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 18 GHz. A standard gain antenna and preamp were used to make measurements from 18-25 GHz. The maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities.

The EUT was rotated along three orthogonal axes during the investigations to find the highest emission levels.

5.3 - Test Equipment Utilized

Please see Appendix A.

5.4 - Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-210, Issue 8, Annex 8 for a FHSS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC		
Report # 313049-B	Model #: W01A			
LSR Job #: C-1677	Serial#: Engineering Sample	Page 11 of 47		
		-		

5.5 - Calculation of Radiated Emissions Limits

The maximum peak output power of an intentional radiator in the 2402 to 2480 MHz band, as specified in Title 47 CFR 15.247 and RSS 210 is 1 Watt.

The following table depicts the general radiated emission limits. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS 210 section 2.7.

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBμV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-24,000	500	54.0	63.5

Sample conversion of field strength (μ V/m to dB μ V/m): dB μ V/m = 20 log ₁₀ (100)= 40 dB μ V/m (from 30-88 MHz)

For measurements made at 1.0 meter, a 9.5 dB correction has been invoked.

960 MHz to 10,000 MHz 500 μ V/m or 54.0 dB/ μ V/m at 3 meters 54.0 + 9.5 = 63.5 dB/ μ V/m at 1 meter

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC		
Report # 313049-B	Model #: W01A			
LSR Job #: C-1677	Serial#: Engineering Sample	Page 12 of 47		

5.6 - Radiated Emissions Test Data Chart

Manufacturer:	W	Whistle Labs					
Date(s) of Test:	Ju	ly 19, August 8-15, 2013					
Project Engineer:	Pe	ter Feilen					
Voltage:	3 \	/DC					
Operation Mode:	Со	ntinuous, transmit, modulated	l mod	de			
Environmental	Те	mperature: 20 °C					
Conditions in the Lab:	Re	lative Humidity: 38 %					
		Single PhaseVAC		3 Phase VAC			
EUT FOWEL.	Х	Battery Other: Bench DC		DC SI	Supply		
EUT Placement:	Х	80cm non-conductive table		10cm Spacers			
FLIT Test Location:		3 Meter Semi-Anechoic		3/10m OATS			
	~	FCC Listed Chamber					
Measurements:		Pre-Compliance		Preliminary X Final			
Detectors Used:	X	Peak	X	X Quasi-Peak X Average			

Frequency Range Inspected: 30 MHz to 25000 MHz

The following table depicts the level of significant spurious radiated RF emissions found

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
87.6	1.00	0	37.42	31.82	40.0	8.2	Vert	Vert
87.6	1.00	0	34.08	20.54	40.0	19.5	Vert	Side
858.0	1.17	229	42.3	40.68	46.0	5.3	Vert	Vert
702.0	1.00	216	41.01	38.95	46.0	7.1	Vert	Vert
572.0	1.00	0	38.3	36.71	46.0	9.3	Vert	Vert
416.0	1.00	0	33.51	31.51	46.0	14.5	Vert	Vert
312.0	1.29	37	33.16	31.13	46.0	14.9	Vert	Vert
858.0	1.24	0	42.84	41.49	46.0	4.5	Vert	Flat
624.0	1.00	321	39.17	37.57	46.0	8.4	Vert	Flat
702.0	1.00	204	40.84	39.03	46.0	7.0	Vert	Flat
572.0	1.00	0	35.95	33.92	46.0	12.1	Vert	Flat

Note:

1. Horiz = Horizontal, Vert = Vertical.

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
·		
LSR Job #: C-1677	Serial#: Engineering Sample	Page 13 of 47
		-

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of significant radiated harmonic emissions seen on Channel Low:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4804	1.14	210	50.9	45.6	63.5	17.9	Vertical	Vertical
12010	1.09	64	59.4	52.2	63.5	11.3	Horizontal	Vertical
19216	1.00	204	56.8	46.0	63.5	17.5	Horizontal	Side

The following table depicts the level of significant radiated harmonic emissions seen on Channel Middle:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBµV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4880	1.02	202	54.3	49.8	63.5	13.7	Vertical	Vertical
7320	1.24	100	64.0	61.2	63.5	2.3	Horizontal	Side
12200	1.00	171	63.3	56.6	63.5	6.9	Horizontal	Vertical
19520	1.00	207	55.7	44.7	63.5	18.8	Horizontal	Side

The following table depicts the level of significant radiated harmonic emissions seen on Channel High:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4960	1.00	203	56.7	53.1	63.5	10.4	Vertical	Vertical
7440	1.24	115	64.9	62.2	63.5	1.3	Horizontal	Side
12400	1.00	131	63.7	57.1	63.5	6.4	Horizontal	Vertical
19840	1.00	190	53.4	42.1	63.5	21.4	Horizontal	Side

Notes:

1. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used. A peak detector with video averaging was used for measurements above 1 GHz. For average measurements a peak detector with a 10Hz video bandwidth was utilized.

2. Measurements above 4 GHz were made at 1 meters of separation from the EUT. Limits have been corrected to reflect the change in measurement distance.

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 14 of 47
		-

5.7 - Screen Captures - Radiated Emissions Test

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged Peak detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 2402 MHz, 2440 MHz, or 2480 MHz, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Antenna Vertically Polarized, 200-1000 MHz, at 3m

EUT: Whistle Dog Monitor	LS Research, LLC		
Model #: W01A			
Serial#: Engineering Sample	Page 15 of 47		
	EUT: Whistle Dog Monitor Model #: W01A Serial#: Engineering Sample		

Note: The frequency range 2310-2390 MHz and 2483.5-2500 MHz is in the Band-edge section (Exhibit 8).

Antenna Vertically Polarized, 2500-4000 MHz, at 3m

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 16 of 47
		-

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 17 of 47

5.9 - Receive Mode Testing

Per the requirements of RSS-210 and CFR 47 part 15, the EUT was placed in continuous receive mode and the radiated spurious emissions were measured and compared to the limits stated in RSS-Gen Section 4.10 and CFR 47 15.109.

The test setup, procedure, and equipment utilized were identical to that described in sections 5.1, 5.2, and 5.3 of this document.

Measurement data and screen captures from the receive tests are presented below:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
572.0	1.00	0	36.66	34.65	46.0	11.4	Vert	Flat
858.0	1.22	350	42.62	41.27	46.0	4.7	Vert	Flat
858.0	1.24	333	43.96	42.92	46.0	3.1	Vert	Vert
858.0	1.00	342	37.26	34.28	46.0	11.7	Horiz	Vert
858.0	1.02	270	42.14	40.27	46.0	5.7	Horiz	Flat
86.6	1.00	0	38.32	32.36	40.0	7.6	Vert	Vert

Frequency (GHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Average Reading (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
9605.0	1.13	100	57.1	52.4	63.5	11.1	HORIZ	SIDE
4802.0	1.14	155	48.4	42.7	63.5	20.8	VERT	SIDE
9757.5	1.07	156	55.3	51.1	63.5	12.4	HORIZ	SIDE
4878.8	1.09	162	50.8	45.4	63.5	18.1	VERT	SIDE
9988.7	1.07	238	53.9	48.8	63.5	14.7	HORIZ	SIDE
4995.4	1.07	155	51.4	45.0	63.5	18.5	VERT	SIDE

Notes:

1. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used. A peak detector with video averaging was used for measurements above 1 GHz. For average measurements a peak detector with a 10Hz video bandwidth was utilized. 2. Measurements above 4 GHz were made at 1 meters of separation from the EUT.

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 18 of 47

5.10 - Screen Captures - Radiated Emissions Testing - Receive Mode

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged Peak detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 2402 MHz, 2440 MHz, or 2480 MHz, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Antenna Vertically Polarized, 200-1000 MHz, at 3m

EUT: Whistle Dog Monitor	LS Research, LLC		
Model #: W01A			
Serial#: Engineering Sample	Page 19 of 47		
E M S	odel #: W01A erial#: Engineering Sample		

Screen Captures - Radiated Emissions Testing – Receive Mode (continued)

Antenna Horizontally Polarized, 4000 MHz to 18000MHz * Aglient 21:54:21 Aug 15, 2013 R T Trace

Antenna Horizontally Polarized, 18000 MHz to 25000MHz

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 20 of 47
		C C

EXHIBIT 6. OCCUPIED BANDWIDTH

6.1 - Method of Measurements

The transmitter output was connected to the Spectrum Analyzer. The bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 10 kHz RBW and VBW=100 kHz.

For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the attenuator was added on the analyzer as gain offset settings, allowing direct measurements, without the need for any further corrections. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the chart below.

<u>6.2 - Test Data</u>

Mode	Channel	Frequency (MHz)	20 dB BW (kHz)	99 % BW (kHz)
	Low	2402	922.3	866.9
GFSK	Mid	2440	922.3	871.2
	High	2480	923.9	872.8
	Low	2402	1384.3	1225.7
EDR2	Mid	2440	1375.9	1223.2
	High	2480	1374.2	1225.2
	Low	2402	1369.2	1226.5
EDR3	Mid	2440	1369.2	1225.8
	High	2480	1370.9	1222.2

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 21 of 47
		-

6.3 - Screen Captures - Occupied Bandwidth

GFSK Mode

EUT: Whistle Dog Monitor	LS Research, LLC
Model #: W01A	
Serial#: Engineering Sample	Page 22 of 47
	-
	EUT: Whistle Dog Monitor Model #: W01A Serial#: Engineering Sample

EDR2 Mode

Channel middle -20 dBc Occupied Bandwidth

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 23 of 47
		-

EDR3 Mode

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 24 of 47

GFSK Mode

Channel middle 99% dBc Occup	oied	Ва	ndwidth
N/ A 1 4 00-00-1E 0 14 0010	D	т	Marsa Cature

🦮 Aynent 00.30.13 Hug 14, 2013	n i	neas setup
Ch Freq 2.44 GHz Occupied Bandwidth	Trig Free	Avg Number 10 On <u>Off</u>
Sweep Time 4.497 ms		Avg Mode Exp Repeat
Ref 10 dBm Atten 10 dB Ext PG -10	dB	Max Hold On Off
dB/	E Contraction	Occ BW % Pwr 99.00 %
Center 2.440 000 0 GHz	Span 3 MHz	OBW Span 3.00000000 MHz
Occupied Bandwidth 871 2023 HHz	*Sweep 4.497 ms (1500 pts) Occ BW % Pwr 99.00 % × dB -26.00 dB	x dB –26.00 dB
Transmit Freq Error -26.796 kHz x dB Bandwidth 1.145 MHz		Optimize RefLevel
Copyright 2000-2010 Agilent Technologies	8	

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 25 of 47

EDR2 Mode

Channel low 99% Occupied Bandwidth Agilent 02:20:39 Aug 14, 2013 R T Trace Trace Ch Freq 2.402 GHz Trig Free 2 Occupied Bandwidth VBW 100.0 kHz **Clear Write** Atten 10 dB Ext PG -10 dB Peal Max Hold Dа Min Hold View Center 2.402 000 0 GHz #Res BW 30 kHz Span 3 MHz #VBW 100 kHz Sweep 3.198 ms (1500 pts) Blank Occupied Bandwidth Occ BW % Pwr 99.00% **x dB** -26.00 dB 1.2257 MHz More Transmit Freq Error x dB Bandwidth –28.670 kHz 1.439 MHz 1 of 2 Copyright 2000-2010 Agilent Technologies

Channel middle 99% dBc Occupied Bandwidth * Agilent 02:46:28 Aug 14, 2013 R T Span

Channel high 99% dBc Occupied Bandwidth

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 26 of 47

EDR3 Mode

Channel middle 99% dBc Occupied Bandwidth

W Aylient 05.25.21	Huy 14, 2013		N I	rieas setup
Ch Freq	2.44 GHz		Trig Free	Avg Number
Occupied Bandwidth				
VBW 100.0 kH	łz			Avg Mode Exp Repeat
Ref 5 dBm #Peak Log	Atten 10 dB Ext PG	-10 dB		Max Hold On Off
dB/	~~		\sim	Occ BW % Pwr 99.00 %
Center 2.440 000 0	GHz		Span 3 MHz	OBW Span 3.00000000 MHz
Occupied Bar	*VBW 100 idwidth 1 2258 MH-	0cc BW % Pwr x dB	99.00 % 99.00 % -26.00 dB	x dB -26.00 dB
- Transmit Freq Eri x dB Bandwidth	ror –31.894 kHz 1.433 MHz			Optimize Ref Level
Copyright 2000-2	010 Agilent Technol	ogies		

Channel high 99% dBc Occupied Bandwidth

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 27 of 47

EXHIBIT 7. BAND EDGE MEASUREMENTS

7.1 - Method of Measurements

The following screen captures demonstrate compliance of the intentional radiator at the 2402 MHz to 2480 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the lower Band-Edge.

Radiated Bandedge

Agilent 01:08:18 Aug 8, 2013 RT Peak Search 🔆 Agilent 01:08:03 Aug 8, 2013 R T Peak Search Mkr1 2.350 00 GHz 58.08 dBµV/m Mkr1 2.389 87 GH: 44.56 dBµV/m #Atten 0 dB ef 80 dB**µ**V/m Next Peak lef 80 dB**µ**V∕m #Atten 0 dB Next Peak 'ea eal? .0g og Next Pk Right Next Pk Right dBZ R. Next Pk Left Next Pk Left 54.0 dBµ∖ 74.0 ¦B₽\ Min Search Min Search gĤv gA∖ Pk-Pk Search Pk-Pk Search AL Ĥ £(f): Marker 2.350000000 GHz £(f): Tun Mkr → CF Tur Mkr→CF WD 58.08 dBµV/m More 1 of 2 Stop 2.390 00 GHz More Stop 2.390 00 GHz Start 2 310 00 GHz 2310 00 GHz tart 1 of 2 BW 1 MHz ■VBW 3 MHz s BW 1 MHz •VBW 10 H; Sweep eration Status, C:\B3HRN.AN file Inade ie Inade File Operation n Stati is. C:\B3 PEAK AVERAGE

Screen Capture Demonstrating Compliance at the Lower Band-Edge

Screen Capture Demonstrating Compliance at the Higher Band-Edge

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 28 of 47

Conducted Bandedge

Screen Capture Demonstrating Compliance at the Lower Band-Edge

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 29 of 47
		-

EXHIBIT 8. POWER OUTPUT (CONDUCTED)

8.1 - Method of Measurements

The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the the attenuator was added on the analyzer as gain offset setting. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source.

<u>8.2 - Test Data</u>

Mode	Channel	Frequency (MHz)	Measured Power (dBm)	Cable Insertion Loss (dB)	Adjusted Power (dBm)	Limit (dBm)	Margin (dBm)
	Low	2402	1.9	1.0	2.9	30.0	27.1
GFSK	Mid	2440	1.4	1.0	2.4	30.0	27.6
	High	2480	0.9	1.0	1.9	30.0	28.1
	Low	2402	1.7	1.0	2.7	30.0	27.3
EDR2	Mid	2440	1.3	1.0	2.3	30.0	27.8
	High	2480	0.8	1.0	1.8	30.0	28.2
	Low	2402	1.6	1.0	2.6	30.0	27.4
EDR3	Mid	2440	1.1	1.0	2.1	30.0	27.9
	High	2480	0.6	1.0	1.6	30.0	28.4

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 30 of 47
		-

8.3 - Screen Captures - Power Output (Conducted)

GFSK Mode:

EDR2 Mode:

Channel Middle * Agilent 02:50:15 Aug 14, 2013 R T Peak Search Mkr1 2.440 012 GHz 1.25 dBm Ref 5 Atten 10 dB Ext PG -10 dB Next Peak dBm eal Log 10 dB/ Next Pk Right Next Pk Left Min Search .gAv M1 S3 Pk-Pk Search £(f): Marker 2.440012000 GHz Mkr → CF wр 1.25 dBm **More** 1 of 2 Center 2.440 000 GHz Span 6.9 MHz Sweep 999.3 µs (1500 pts) #Res BW 3 MHz VBW 3 MHz Copyright 2000-2010 Agilent Technologies

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 32 of 47
		-

EDR3 Mode:

Channel Middle * Agilent 03:31:55 Aug 14, 2013 R T Peak Search Mkr1 2.439 942 GHz 1.10 dBm Atten 10 dB Ext PG -10 dB Next Peak dBm eal Log 10 dB/ Next Pk Right Next Pk Left Min Search .gAv M1 S3 Pk-Pk Search £(f): Marker 2.439942000 GHz Mkr → CF wр 1.10 dBm **More** 1 of 2 Span 6.9 MHz Sweep 999.3 **µ**s (1500 pts) Center 2.440 000 GHz #Res BW 3 MHz VBW 3 MHz Copyright 2000-2010 Agilent Technologies

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
-		
LSR Job #: C-1677	Serial#: Engineering Sample	Page 33 of 47
		C C

EXHIBIT 9. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)

<u>9.1 - Limits</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 db below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 – Conducted Harmonic And Spurious RF Measurements

FCC Part 15.247(d) and IC RSS 210 A8.5 both require a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

Freq\Chan	0\2402	19\2440	39\2480
fo	2.1	1.9	1.3
2fo	-52.6	-57.2	-57.3
3fo	-50.7	-50.7	-51.8
4fo	Noise Floor	Noise Floor	Noise Floor
5fo	Noise Floor	Noise Floor	Noise Floor
6fo	Noise Floor	Noise Floor	Noise Floor
7fo	Noise Floor	Noise Floor	Noise Floor
8fo	Noise Floor	Noise Floor	Noise Floor
9fo	Noise Floor	Noise Floor	Noise Floor
10fo	Noise Floor	Noise Floor	Noise Floor

Conducted Spurious Data

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 34 of 47
		-

9.3 - Screen Captures - Spurious Conducted Emissions

1000 MHz up to 10000 MHz

10000 MHz up to 26000 MHz

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 35 of 47
		2

EXHIBIT 10. CHANNEL PLAN AND SEPARATION

A spectrum analyzer was used with a resolution bandwidth of 30 kHz to measure the channel separation of the EUT. Plots of all channels are provided with a 300 kHz resolution bandwidth.

The minimum and maximum channel-separations measured for this device are 967.7 kHz and 1004 kHz respectively.

The minimum channel separation limit as stated in FCC CFR 47 15.247 and IC RSS210 is 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided power is 125 mW or below, which this device qualifies for.

The minimum number of channels limit as stated in FCC CFR 47 15.247 and IC RSS210 is 15 channels.

The following plots describe this spacing, and also establish the channel separation and plan.

RANGE (MHz)	NUMBER OF CHANNELS PER CAPTURE	Max separation (Hz)
2400 -2419.5	18	1000
2419.5 – 2439.5	20	1002
2439.5 – 2459.5	20	1000
2459.5 – 2483.5	21	1004

Total Channels	79
Max separation	1002
Min Separation	996.7

Total number of channels = 79

Sample Screen Capture of Channel Separation Examination

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 36 of 47
		_

10.1 - Screen Captures - Channel Separation

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 37 of 47

Screen Captures – Channel Separation (continued)

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 38 of 47

EXHIBIT 11. CHANNEL OCCUPANCY

Part 15.247(a)(1) requires a channel occupancy of no more than 400 milliseconds in a 31.6 second window for this device, based on 79 hop channels. The channel occupancy for this EUT was measured using a spectrum analyzer, set to zero-span at the frequency of interest. With the analyzer in peak-hold mode, the transmission lengths can be measured by adjusting the sweep rate of the analyzer. A suitable sweep rate was used to measure the channel occupancy at the low, mid and high channels.

The longest time any transmission will occur on a single channel is 2.9 milliseconds. In a 10 second window, each channel has 32 transmissions. The maximum occupancy in a 31.6 second window is calculated by multiplying 32 transmissions/10-second window by 3.16 10-second windows by 2.908 milliseconds, to arrive at 294 milliseconds total occupancy.

GFSK

Channel	Frequency (MHz)	Occupancy in 5 ms window (ms)	Total Occupancy in 10 seconds (ms)
Low	2402	2.903	92.9
Middle	2440	2.908	93.0
High	2480	2.908	93.0

EDR2

Channel	Frequency (MHz)	Occupancy in 5 ms window	Total Occupancy in 10 seconds
	()	(ms)	(ms)
Low	2402	1.581	50.6
Middle	2440	1.576	50.4
High	2480	1.571	50.3

EDR3

	Frequency	Occupancy in 5 ms	Total Occupancy
Channel	(MHz)	window	in 10 seconds
		(ms)	(ms)
Low	2402	1.115	32.3
Middle	2440	1.115	32.3
High	2480	1.115	32.3

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 39 of 47
		-

Middle Channel Occupancy

5 ms window10 seconds windowPrepared For: Whistle Labs, Inc.EUT: Whistle Dog MonitorLS Research, LLCReport # 313049-BModel #: W01ALS Research, LLCLSR Job #: C-1677Serial#: Engineering SamplePage 41 of 47

Serial#: Engineering Sample

Page 42 of 47

EDR3

LSR Job #: C-1677

EXHIBIT 12. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE.

By virtue of following the Bluetooth standard, the CC2564 chipset ensures equal channel usage and pseudorandom hopping sequence is met.

The following information is provided from the customer:

Bluetooth devices shall use the hopping kernel as defined in the following sections.

In total, six types of hopping sequence are defined \Box five for the basic hop system and one for an adapted set of hop locations used by adaptive frequency hopping (AFH). These sequences are:

• A **page hopping sequence** with 32 wake-up frequencies distributed equally over the 79 MHz, with a period length of 32;

• A **page response hopping sequence** covering 32 response frequencies that are in a one-to-one correspondence to the current page hopping sequence. The master and slave use different rules to obtain the same sequence;

• An **inquiry hopping sequence** with 32 wake-up frequencies distributed equally over the 79 MHz, with a period length of 32;

• An **inquiry response hopping sequence** covering 32 response frequencies that are in a one-to-one correspondence to the current inquiry hopping sequence.

• A **basic channel hopping sequence** which has a very long period length, which does not show repetitive patterns over a short time interval, and which distributes the hop frequencies equally over the 79 MHz during a short time interval.

• An **adapted channel hopping sequence** derived from the basic channel hopping sequence which uses the same channel mechanism and may use fewer than 79 frequencies. The adapted channel hopping sequence is only used in place of the basic channel hopping sequence. All other hopping sequences are not affected by hop sequence adaptation.

General Selection Scheme

The selection scheme consists of two parts:

- selecting a sequence;
- mapping this sequence onto the hop frequencies

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
·		
LSR Job #: C-1677	Serial#: Engineering Sample	Page 43 of 47
		-

EXHIBIT 13. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.

By virtue of following the Bluetooth standard, receiver synchronization and receiver input bandwidth requirements are met.

Receiver synchronization is accomplished by correlating a 64bit word, breaking each bit to 5 chips (resulting in 320 chips), if more than ~290 chips are correct, sync is received.

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
-		
LSR Job #: C-1677	Serial#: Engineering Sample	Page 44 of 47
		-

<u>APPENDIX A – Test Equipment List</u>

	Date	22-Jul-2013	Type Test	Radiated Emission	ons		Job # :	C-1677
	Prepared By:		Customer :	Whistle			Quote #:	313049
No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960156	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	6/30/2012	7/30/2013	Active Calibration
2	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/29/2012	7/29/2013	Active Calibration
3	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/29/2012	7/30/2013	Active Calibration
4	AA 960081	Double Ridge Horn Antenna	EMCO	3115	6907	1/29/2013	1/29/2014	Active Calibration
5	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	5/28/2013	5/28/2014	Active Calibration
6	AA 960150	Bicon Antenna	ETS	3110B	0003-3346	12/12/2012	12/12/2013	Active Calibration
7	AA 960004	Log Periodic Antenna	EMCO	93146	9512-4276	9/17/2012	9/17/2013	Active Calibration
8	EE 960147	Pre-Amp	Adv. Micro	WLA612	123101	2/1/2013	2/1/2014	Active Calibration
2	US RE Wireles Equi	SEARCH LLC s Product Development pment Calibration	Type Test	Conducted Radio	Measurements		Job # :	C-1677
	Prepared By:		Customer :	Whistle			_ Quote #:	313049
No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	5/28/2013	5/28/2014	Active Calibration

Project Engineer. letter Film Quality Assurance: Alur O Alger

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 45 of 47

APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO

STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2003		
CISPR 22	2008-09		
RSS GEN	2007-06		
RSS 210	2010-08		
FCC 47 CFR, Parts 0-15, 18, 90, 95	2009		
FCC DA-0075	2000		

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 46 of 47

APPENDIX C - Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.82 dB
	3-Meter Chamber, Log Periodic	
Radiated Emissions	Antenna	4.88 dB
Radiated Emissions	3-Meter Chamber, Horn Antenna	4.85 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.32 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.63 dB
Absolute Conducted Emissions	Agilent PSA/ESA Series	1.38 dB
AC Line Conducted Emissions	Shielded Room/EMCO LISN	3.20 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	2.05 Volts/Meter
Conducted Immunity	3 Volts level	2.33 V
EFT Burst, Surge, VDI	230 VAC	54.4 V
ESD Immunity	Discharge at 15kV	32 <i>00</i> V
Temperature/Humidity	Thermo-hygrometer	0.64°/2.88 %RH

Prepared For: Whistle Labs, Inc.	EUT: Whistle Dog Monitor	LS Research, LLC
Report # 313049-B	Model #: W01A	
LSR Job #: C-1677	Serial#: Engineering Sample	Page 47 of 47
		C C