

TEST REPORT

FCC Part15C STANDARD: RSS-210 Issue 9

Japan K.K. Kashima Laboratory
capanitana macinina zaberatery
S Sada, Kashima, Ibaraki 0027 Japan 81 299 82 8464 http://www.japan.intertek-etlsemko.com

Equipment Type ENDOSCOPE REPROCESSOR Trademark OLYMPUS Model(s) OER-Pro Serial No. 2733707 **Equipment Authorization** Certification **FCC ID** S8Q-GN4215 ISED CN and UPN 4763B-GN4215 **Test Result** Complied Report Number 19030115JKA-001 **Original Issue Date** May 27, 2019 July 02, 2019 **Revised Issue Date**

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Approved by

Hideaki Kosemura [Technical Manager] Tested by

Koichi Wagatsuma

[Engineer]

TESTING NVLAP LAB CODE 600233-0 NVLAP accreditation are valid for RSS-210.

FCC Part15C is outside the NVLAP scope.

Responsible Party of Test Item (Product)

Responsible Party

Add.

Tel.

Fax.

Contact Person

Wagatsuma

Report No.: 19030115JKA-001

FCC ID: S8Q-GN4215

ISED CN and UPN: 4763B-GN4215

TABLE OF CONTENTS

			Page
SECTION	1.	GENERAL INFORMATION	3
SECTION	2.	SUMMARY OF TEST RESULTS	4
SECTION	3.	EQUIPMENT UNDER TEST	5
SECTION	4.	SUPPORT EQUIPMENT	6
SECTION	5.	USED CABLE(S)	7
SECTION	6.	TEST CONFIGURATION	8
SECTION	7.	OPERATING CONDITION	9
SECTION	8.	UNCERTAINTY	10
SECTION	9.	EVALUATION OF TEST RESULTS	11
SECTION	10.	LIST OF MEASURING INSTRUMENTS	20
ANNEX			22
APPENDIX	PH	OTOGRAPHS OF MAXIMUM EMISSION SET-UP	

Original: May 27, 2019

Revised: July 02, 2019

ISED CN and UPN: 4763B-GN4215

SECTION 1. GENERAL INFORMATION

Test Performed

EUT Received	April 15, 2019
Date of Test	From May 07, 2019 to May 08, 2019
Standard Applied	FCC Part15C RSS-210 Issue 9
Test methods	ANSI C63.10-2013
Deviation from Standard(s)	None

Qualifications of Testing Laboratory

Accreditation / Recognition	Scope	ID Number	Remarks
VLAC	Wireless / EMC Testing	VLAC-008-1	JAPAN
NVLAP	Wireless Testing	600233-0	USA
FCC	Wireless / EMC Testing	JP0008	USA
ISED	Wireless Testing	CABID : JP0008 ISED# : 2042Q	Canada
Filing			
VCCI	EMC Testing	A-0126	JAPAN
CB-Scheme	EMC Testing	TL222	IECEE

Abbreviations

EUT	Equipment Under Test	DoC	Declaration of Conformity
AMN	Artificial Mains Network	ISN	Impedance Stabilization Network
LISN	Line Impedance Stabilization Network	Q-P	Quasi-peak
AMP	Amplifier	AVG	Average
ATT	Attenuator	PK	Peak
ANT	Antenna	Cal	Calibration
BBA	Broadband Antenna	N/A	Not applicable or Not available
DIP	Dipole Antenna	LCD	Liquid-Crystal Display
AE	Associated Equipment	HDMI	High-Definition Multimedia Interface
OBW	Occupied Bandwidth		

Revision Summary

to riolon outlinus,							
Revised Date Section		Description of Changes					
July 02, 2019	9.3 (Page 19)	Corrected OBW plot. By TCB Request.					
July 02, 2019	10 (Page 20)	":2017" Added to ""ANSI C63.5" By TCB Request.					
July 02, 2019	10 (Page 21)	Corrected year (Effective period). Due to typo.					

ISED CN and UPN: 4763B-GN4215

SECTION 2. SUMMARY OF TEST RESULTS

See Section9 for the detailed result.

Emission Tests

Standard Applied	FCC Part15C (15.207, 15.225, 15.209) RSS-210 Issue 9 (B.6)			
Test Item	Minimum margin	Results	Remarks	
Conducted disturbance at mains terminals	11.8 dB (0.7060 MHz) [Q-P]	PASS		
Radiated disturbance (IN band)	35.2 dB (13.5530 MHz)	PASS		
Radiated disturbance (OUT band)	4.8 dB (67.81 MHz)	PASS		

Standard Applied	FCC Part15C (15.225) RSS-210 Issue 9 (B.6)	
Test Item	Results	Remarks
Frequency Tolerance	PASS	

Standard Applied	RSS-Gen Issue 5 Amd 1 (6.7)		
Test Item	Results	Remarks	
99%OBW	N/A	See Note	

Note: None Limit (for reporting purposes only)

ISED CN and UPN: 4763B-GN4215

SECTION 3. EQUIPMENT UNDER TEST

The equipment under test (EUT) consisted of the following apparatus.

3.1 System Configuration

Symbol	Item		Model No.	Serial No.	Manufacturer	Remarks
A 1	ENDOSCOPE REPROCESSOR		OER-Pro	2733707	OLYMPUS MEDICAL SYSTEMS CORP.	
A2	RFID Module (Antenna Unit)		TR3-CA004C	16050315(F)	Takaya Corporation	See note
А3	RFID Module (R/W Unit)		TR3-L301	17030555(F)	Takaya Corporation	See note
A 4	RFID Module (I/F Unit)		TR3-CIF001	16050315(F)	Takaya Corporation	See note
Rated Power : AC 120V±10% 60Hz / 700W						
Supplied Power : AC 120V, 60Hz						
Condition of Equipment Prof		Protot	Prototype			
Туре		Floor standing				
Suppression Devices		No Modifications by the laboratory were made to the device				

Note: A2, A3, and A4 are internal module of A1.

3.2 Overview of EUT

Frequency Ranges	13.56 MHz
Modulation Method	Transmitting – Amplitude Shift Keying

3.3 Port(s)/Connector(s)

Port Name	Connector Type	Connector Pin	Remarks
RS-232C	D-sub	9pin	for Maintenance

3.4 Highest Frequency Generated / Used

Operating Frequency	Operating mode	Remarks
10.0 MHz	RFID Active mode	RFID Board
13.56 MHz	RFID Active mode	RFID Board
16.0 MHz	RFID Active mode	CPU Board
36 kHz	RFID Active mode	US Board

ISED CN and UPN: 4763B-GN4215

SECTION 4. SUPPORT EQUIPMENT

The EUT was supported by the following equipment during the test.

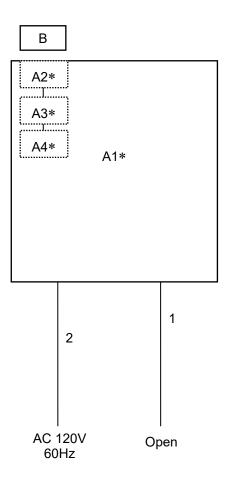
Symbol	Item	Model No.	Serial No.	Manufacturer	Remarks	FCC ID
В	Scope ID master card	GT970700	20150412000210	OLYMPUS MEDICAL SYSTEMS CORP.		N/A

ISED CN and UPN: 4763B-GN4215

SECTION 5. USED CABLE(S)

The following cable(s) was used for the test.

No.	Name	Length (m)	Shield	Metal Connector	Ferrite Core
1	RS-232C cable	2.0 m	Yes	Metal	
2	Power cable for EUT(AC)	3.5 m	No	-	


Note: No.1 cable (RS-232C) is for maintenance.

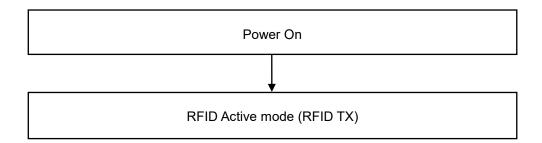
ISED CN and UPN: 4763B-GN4215

SECTION 6. TEST CONFIGURATION

6.1 Conducted disturbance at mains terminals Tests and Radiated disturbance tests

*:EUT

The symbols and numbers assigned to the equipment and cables on this diagram correspond to the ones in Sections 3 to 5.


ISED CN and UPN: 4763B-GN4215

SECTION 7. OPERATING CONDITION

The test was carried out under the following mode.

7.1 RFID Active mode

Cycle time for operation: Continuity

ISED CN and UPN: 4763B-GN4215

SECTION 8. UNCERTAINTY

Traceability to national standard in SI units is ensured with these values. Compliance with the limits in this standard are determined without in consideration of the measurement uncertainty of the measurement instrumentation.

8.1 Emission tests

Radiated disturbance at 3 m	$U_{lab}[k=2]$	U _{cispr}					
30 MHz – 1000 MHz	+/- 4.38 dB	6.3 dB					
Above 1 GHz	+/- 4.33 dB	5.2 dB					
Radiated disturbance at 10 m							
30 MHz – 1000 MHz	+/- 5.00 dB	6.3 dB					
Above 1 GHz	+/- 4.95 dB	Nil					
Conducted disturbance at mains t	erminals						
9 kHz – 150 kHz	+/- 2.82 dB	3.8 dB					
150 kHz – 30 MHz	+/- 2.80 dB	3.4 dB					
Conducted disturbance at termina	ls (High Voltage Probe)						
150 kHz – 30 MHz	+/- 2.80 dB	2.9 dB					
Conducted disturbance at telecom	nmunication ports (ISN)						
150 kHz – 30 MHz	+/- 3.85 dB	5.0 dB					
Conducted disturbance at telecom	nmunication ports (Capacitive Volt	tage Probe)					
150 kHz – 30 MHz	+/- 3.77 dB	3.9 dB					
Conducted disturbance at telecom	nmunication ports (Current Probe)						
150 kHz – 30 MHz	+/- 2.37 dB	2.9 dB					
Disturbance power	Disturbance power						
30 MHz – 300 MHz	+/- 3.34 dB	4.5 dB					
Conducted power on antenna port							
30 MHz – 1000 MHz	+/- 3.01 dB	Nil					
Above 1 GHz	+/- 2.06 dB	INII					

The above expanded instrumentation uncertainty, U_{lab.}, is estimated in accordance with CISPR 16-4-2:2011.

ISED CN and UPN: 4763B-GN4215

SECTION 9. EVALUATION OF TEST RESULTS

9.1 Emission tests

9.1.1 Conducted disturbance at mains terminals

Location	Kashima No.12 Test Site	
Test Engineer	Koichi Wagatsuma	

Frequency Range of Measurements

Required Measurement Frequency Range	Measured Frequency Range
0.15 – 30 MHz	0.15 – 30 MHz

Test Procedure

Item	Document number
Conducted disturbance at mains terminals	LEN-RJP-TE003

Setting for the Measuring instruments

Instrument	Detector	Resolution Bandwidth	Video Bandwidth	
Pagaiyar	Quasi Peak	9 kHz	N/A	
Receiver	Average	9 kHz	N/A	

< Measurement data correction >

Emission Level = Meter Reading + Factor

Margin = Limit- Emission Level

Factor = LISN Factor + Cable Loss + Attenuator

< Sample Calculations >

Sample @0.1500 MHz

Emission Level = 31.6 [dBuV] + 10.1 [dB] = 41.7 [dBuV]

Report No.: 19030115JKA-001

Original: May 27, 2019 FCC ID: S8Q-GN4215 Revised: July 02, 2019 ISED CN and UPN: 4763B-GN4215

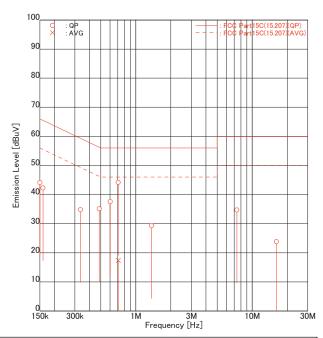
Result of Conducted disturbance at mains terminals

Intertek Japan K.K.

Kashima No.12 Test Site

Conducted Voltages on Mains Port

APPLICANT : OLYMPUS MEDICAL SYSTEMS CORP.


: Endoscope Reprocessor : OER-Pro **EUT NAME**

MODEL NO. : 2733707 SERIAL NO. TEST MODE : RF-ID Active mode POWER SOURCE: AC120 V, 60 Hz DATE TESTED : May 07 2019

FILE NO.

REGULATION : FCC Part15C(15.207) : ANSI C63.10-2013 TEST METHOD TEMPERATURE : 21.0 [degC] : 48.0 [%] HUMIDITY

NOTE

ENGINEER Koichi Wagatsuma

FF [No]	REQUENCY [MHz]	MODE	READIN [dBuV]		FACTOR	₹	EMISSIC [dBuV]		LIMIT [dBuV]	MAR([dB	
			Line1	Line2	Line1	Line2	Line1	Line2		Line1	Line2
1	0.1500	QP	31.6	34.0	10.1	10.1	41.7	44.1	66.0	24.3	21.9
2	0.1595	QP	29.7	32.2	10.1	10.1	39.8	42.3	65.5	25.7	23.2
3	0.3352	QP	<u>24.7</u>	23.8	10.1	10.1	34.8	33.9	59.3	<u>24.5</u>	25.4
4	0.4850	QP	24.9	23.7	10.2	10.2	35.1	33.9	56.3	<u>21.2</u>	22.4
5	0.6031	QP	27.3	26.8	10.3	10.3	37.6	37.1	56.0	<u>18.4</u>	18.9
6	0.7060	QP	33.1	33.9	10.3	10.3	43.4	44.2	56.0	12.6	11.8
7	0.7060	AVG	5.8	7.1	10.3	10.3	16.1	17.4	46.0	29.9	28.6
8	1.3645	QP	14.5	18.9	10.4	10.4	24.9	29.3	56.0	31.1	26.7
9	7.3870	QP	23.7	23.4	11.0	11.0	34.7	34.4	60.0	25.3	25.6
10	16.1356	QP	11.9	12.5	11.3	11.3	23.2	23.8	60.0	36.8	36.2

Higher six points are underlined.

Other frequencies: Below the FCC Part15C(15.207) limit Emission Level = Read + Factor (LISN, Pad, Cable)

emiT 3, 0, 0, 0

ISED CN and UPN: 4763B-GN4215

9.1.2 Radiated disturbance (IN band and OUT band)

Location	Kashima No.12 Test Site
Test Engineer	Koichi Wagatsuma

Frequency Range of Measurements

Operating mode	Required Frequency Range	Measured Frequency Range
RF-ID Active mode	0.009 -1000 MHz	0.009 -1000 MHz

Test Procedure

100011000000000				
Item	Document number			
Radiated disturbance	LEN-RJP-TE003			

Setting for the Measuring instruments

Frequency [MHz]	Instrument	Detector	Resolution Bandwidth	Video Bandwidth
0.009 - 30	Receiver	AVG : 0.009 - 0.090 MHz QP : 0.090 - 0.110 MHz AVG : 0.110 - 0.490 MHz QP : 0.490 - 30 MHz	200 Hz : 0.009 - 0.15 MHz 10 kHz : 0.15 – 30 MHz	N/A
30 – 1000	Receiver	Quasi Peak	120 kHz	N/A
Above 1000	Receiver	Peak	1 MHz	N/A
Above 1000	Receiver	Average	1 MHz	N/A

< Measurement data correction >

Emission Level = Meter Reading + Factor

Margin = Limit* - Emission Level

Factor = Antenna Factor + Cable Loss - Amplifier Gain + Attenuator (+ Distance Conversion Factor)*

Distance Conversion Factor = 20 log (Measurement distance / Standard distance)

< Sample Calculations >

Sample @13.2969 MHz

Emission Level = -0.5 [dBuV] +25.8 [dB/m] = 25.3 [dBuV/m]

Operating Condition	Frequency Range	Measurement distance
RF-ID Active mode	0.009 -1000 MHz	3 m

^{*} Limit for 0.009 - 30 MHz = Limit for standard distance + 40 log (Standard distance / Measurement distance)

^{*} For other than Standard distance:

Report No.: 19030115JKA-001 FCC ID: S8Q-GN4215

ISED CN and UPN: 4763B-GN4215

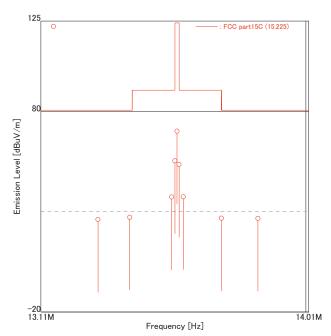
Result of Radiated disturbances 9.1.2.1 IN band

Intertek Japan K.K.

Kashima No.12 Test Site

Field Strength Emission Test

APPLICANT EUT NAME : OLYMPUS MEDICAL SYSTEMS CORP.


: Endoscope Reprocessor : OER-Pro

MODEL NO. : 2733707 SERIAL NO. TEST MODE : RF-ID Active mode POWER SOURCE : AC 120V/60Hz DATE TESTED : May 07 2019

FILE NO.

: FCC part15C (15.225) : ANSI C63.10 :2013 REGULATION TEST METHOD DISTANCE

3.00 [m] : 20.9 [degC] **TEMPERATURE** HUMIDITY : 49.0 [%] NOTE

Original: May 27, 2019

Revised: July 02, 2019

ENGINEER Koichi Wagatsuma

FREQUENCY [No] [MHz]		READING [dBuV]		FACTOR [dB]	FACTOR [dB]		[0	LIMIT [dBuV/m]		SIN I
		Hori	Vert	Hori	Vert	Hori	Vert	_	Hori	Vert
1	13.2969	-0.5	0.3	25.8	25.8	25.3	26.1	80.5	55.2	54.4
2	13.4020	0.5	<u>1.4</u>	25.8	25.8	26.3	27.2	80.5	54.2	53.3 53.2 35.2
3	13.5420	9.2	<u>11.5</u>	25.8	25.8	35.0	37.3	90.5	55.5	53.2
4	13.5530	27.3	29.5	25.8	25.8	53.1	55.3	90.5	37.4	35.2
5	13.5600	42.5	44.3	25.8	25.8	68.3	70.1	124.0	55.7	53.9
6	13.5670	25.5	<u>27.7</u>	25.8	25.8	51.3	53.5	90.5	39.2	37.0
7	13.5810	9.2	11.6	25.8	25.8	35.0	37.4	90.5	55.5	53.1
8	13.7100	0.2	0.9	25.8	25.8	26.0	26.7	80.5	54.5	53.8
9	13.8348	-0.4	0.8	25.8	25.8	25.4	26.6	80.5	55.1	53.9

Higher six points are underlined.

Other frequencies: Below the FCC part15C (15.225) limit Emisson Level = Read + Factor(Antenna, Cable, Preamp)

emiT 3, 0, 0, 0

Report No.: 19030115JKA-001

Original: May 27, 2019 FCC ID: S8Q-GN4215 Revised: July 02, 2019 ISED CN and UPN: 4763B-GN4215

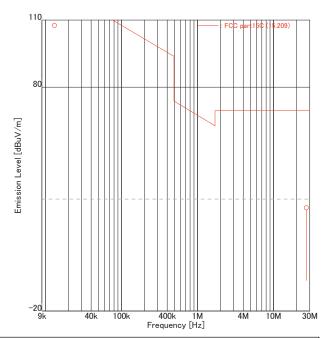
9.1.2.2 Out band 0.009 - 30 MHz

Intertek Japan K.K.

Kashima No.12 Test Site

Spurious Emissions - Radiated Test

APPLICANT EUT NAME : OLYMPUS MEDICAL SYSTEMS CORP.


: Endoscope Reprocessor : OER-Pro

MODEL NO. : 2733707 SERIAL NO. TEST MODE : RF-ID Active mode POWER SOURCE : AC 120V/60Hz DATE TESTED : May 07 2019 : May 07 2019

FILE NO.

: FCC part15C (15.209) : ANSI C63.10-2013 REGULATION TEST METHOD DISTANCE : 3.00 [m] : 20.9 [degC] TEMPERATURE HUMIDITY : 49.0 [%]

NOTE

ENGINEER Koichi Wagatsuma

FR	EQUENCY	READING		FACTOR		EMISSION		LIMIT	MARG	IN
[No]	[MHz]	[dBuV]		[dB]		[dBuV/m]	[dl	BuV/m]	[dB]	
		Hori	Vert	Hori	Vert	Hori	Vert	-	Hori	Vert
1	27.1200	<u>-1.8</u>	-2.2	27.9	27.9	<u>26.1</u>	25.7	69.5	43.4	43.8

Higher six points are underlined.

Other frequencies: Below the FCC part15C (15.209) limit Emisson Level = Read + Factor(Antenna, Cable, Preamp)

emiT 3, 0, 0, 0

ISED CN and UPN: 4763B-GN4215

30 - 1000 MHz

Intertek Japan K.K.

Kashima No.12 Test Site

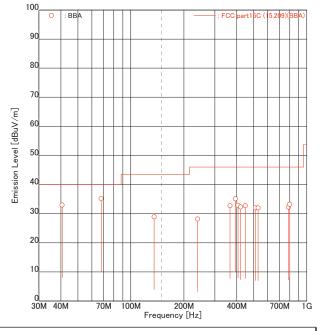
Spurious Emissions - Radiated Test

APPLICANT : OLYMPUS MEDICAL SYSTEMS CORP.

EUT NAME : Endoscope Reprocessor

MODEL NO. : OER-Pro SERIAL NO. : 2733707 TEST MODE : RF-ID Active mode POWER SOURCE : AC120 V, 60 Hz DATE TESTED : May 07 2019

FILE NO. :-


 REGULATION
 : FCC part15C (15.209)

 TEST METHOD
 : ANSI C63.10-2013

 DISTANCE
 : 3.00 [m]

 TEMPERATURE
 : 21.6 [degC]

HUMIDITY : 49.0 [%]
NOTE :

ENGINEER : Koichi Wagatsuma

FR [No]	EQUENCY [MHz]	READING [dBuV] Hori	Vert	FACTOR [dB/m] Hori	Vert	EMISSION [dBuV/m] Hori	[c	LIMIT dBuV/m]	MARG [dB] Hori	
1 2 3 4 5	40.68 67.81 135.60 240.00 366.11	- - - - 28.9	35.3 38.2 30.9 29.7 28.7	-2.3 -3.0 -2.0 -1.5 3.8	-2.3 -3.0 -2.0 -1.5 3.8	- - - - 32.7	33.0 35.2 28.9 28.2 32.5	40.0 40.0 43.5 46.0 46.0	- - - - 13.3	7.0 4.8 14.6 17.8 13.5
6 7 8 9 10	393.23 406.80 420.36 447.48 512.01	30.7 28.1 27.1	27.6 - 26.7 <u>26.8</u> 24.1	4.4 4.8 5.2 5.9 7.9	4.4 4.8 5.2 5.9 7.9	35.1 32.9 32.3	32.0 31.9 32.7 32.0	46.0 46.0 46.0 46.0 46.0	10.9 13.1 13.7	14.0 - 14.1 <u>13.3</u> 14.0
11 12 13	528.84 786.48 800.04	23.6 - 17.9	- 18.1 <u>18.7</u>	8.4 14.1 14.5	8.4 14.1 14.5	32.0 - 32.4	32.2 33.2	46.0 46.0 46.0	14.0 - 13.6	- 13.8 <u>12.8</u>

Higher six points are underlined.

Other frequencies: Below the FCC part15C (15.209) limit

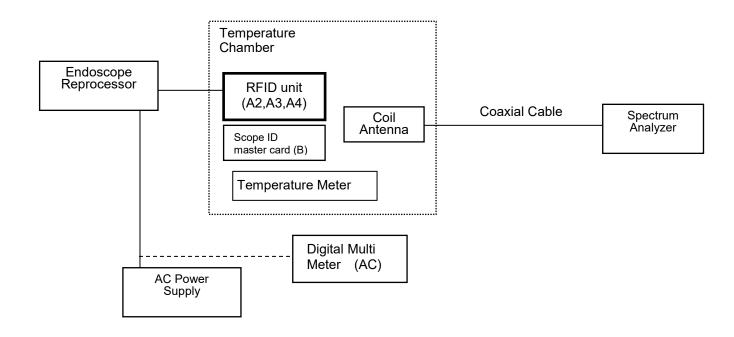
Emisson Level = Read + Factor(Antenna, Antenna Pad, Cable, Preamp)
ANT.: Used antenna (BBA = Broadband antenna, DIP = Dipole antenna)

emiT 3, 0, 0, 0

ISED CN and UPN: 4763B-GN4215

9.2 Frequency Tolerance (Temperature Variation and Voltage Variation)

Location	Kashima No.12 Test Site
Test date	May 08, 2019
Test Engineer	Koichi Wagatsuma
Test Procedure	LEN-RJP-TE003


Test Procedure

Frequency Tolerance (Temperature Variation)

- 1. The EUT and test equipment were set up as shown on the following page.
- 2. Set the temperature -20 degrees C.
- 3. Leave the EUT for 1 hour after it became the temperature that was set up.
- 4. Make the EUT the transmitting.
- 5. Measure the output frequency. (Startup, 2min, 5min and 10min)
- 6. Set the temperature -10 degrees C to +50 degrees C.
- 7. Repeat test procedure 4 to 6

Frequency Tolerance (Voltage Variation)

- 1. The EUT and test equipment (Set the Supply Voltage 100%) were set up as shown on the following page.
- 2. Set the temperature +20 degrees C.
- 3. Leave the EUT for 1 hour after it became the temperature that was set up.
- 4. Make the EUT the transmitting.
- 5. Measure the output frequency.
- 6. Set the Supply Voltage 85% and 115%.
- 7. Repeat test procedure 4 to 6

ISED CN and UPN: 4763B-GN4215

Result of Frequency Tolerance (Temperature Variation and Voltage Variation) 9.2.1 Temperature Variation

Reference Frequency: 13.560000 MHz (FCC Stability) /13.559834 MHz (RSS Stability)

MHz	Temperature	Voltage	3							Limit					
	(5	(0/)	Otavitup		Hz)	401		rtUP		nin		nin		min	(+/-)
	(Degree C)	(%)	StartUP	2min	5min	10min	FCC	RSS	FCC	RSS	FCC	RSS	FCC	RSS	(ppm)
13.56	-20	100	13.559830	13.559830	13.559830	13.559830	-12.5	-0.3	-12.5	-0.3	-12.5	-0.3	-12.5	-0.3	100.0
	-10	100	13.559862	13.559862	13.559863	13.559862	-10.2	2.1	-10.2	2.1	-10.1	2.1	-10.2	2.1	100.0
	0	100	13.559869	13.559869	13.559869	13.559869	-9.6	2.6	-9.6	2.6	-9.6	2.6	-9.6	2.6	100.0
	10	100	13.559856	13.559856	13.559856	13.559856	-10.6	1.6	-10.6	1.6	-10.6	1.6	-10.6	1.6	100.0
	20	100	13.559834	13.559834	13.559834	13.559834	-12.2	0.0	-12.2	0.0	-12.2	0.0	-12.2	0.0	100.0
	30	100	13.559810	13.559810	13.559810	13.559810	-14.0	-1.8	-14.0	-1.8	-14.0	-1.8	-14.0	-1.8	100.0
	40	100	13.559793	13.559793	13.559793	13.559793	-15.3	-3.1	-15.3	-3.1	-15.3	-3.1	-15.3	-3.1	100.0
	50	100	13.559786	13.559786	13.559786	13.559786	-15.8	-3.5	-15.8	-3.5	-15.8	-3.5	-15.8	-3.5	100.0

9.2.2 Voltage Variation

Reference Frequency: 13.560000 MHz (FCC Stability) /13.559834 MHz (RSS Stability)

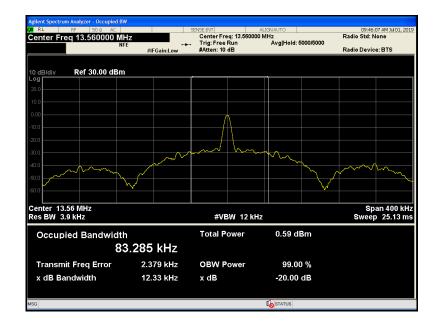
	1010101100	i roquonoy. i	0.00	0000 1111	12 (1 00	Ctability	<i>) </i>	0001	1711 12
Ī	MHz	Temperature	Voltage	Frequency		ation om)			Limit
		(Degree C)	(%)		FCC	RSS	Supply V	oltane	(+/-) (ppm)
Н		(Degree C)	(70)		100	1100	Ouppiy v	onage	(ppiii)
			85	13.559834	-12.2	0.0	102V	60Hz	100.0
	13.56	20	100	13.559834	-12.2	0.0	120V	60Hz	100.0
			115	13.559834	-12.2	0.0	138V	60Hz	100.0

ISED CN and UPN: 4763B-GN4215

9.3 99% OBW

Location	Kashima No.12 Test Site
Test date	July 01, 2019
Test Engineer	Koichi Wagatsuma
Test Procedure	LEN-RJP-TE003

Test Procedure


1 The EUT and test equipment were set up as shown on the following page.

2 Adjust the test instrument for the following setting:

RBW : 1 % to 5 % of the OBW VBW : at least 3 times the RBW

Detector : Peak
Sweep Time : Auto
Trace mode : Max Hold
3 Allow trace to fully stabilize.

4 Use "Occupied Bandwidth Measurement" function to measure the Occupied Bandwidth.

ISED CN and UPN: 4763B-GN4215

SECTION 10. LIST OF MEASURING INSTRUMENTS

Test instruments are calibrated according to Quality Manual and Calibration Rules of Intertek Japan K.K. All measurements equipment used for the measurement is calibrated based on standard. Each measurement result is traceable to national or international standards.

Antenna used for the measurement is calibrated based on the ANSI C63.5.2017

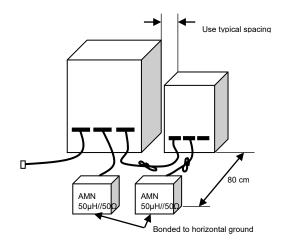
Instrument	Model No.	Serial No.	Manufacturer	Cal. Interval	Effective period
Conducted disturbar	nce at mains terminals				
LISN(EUT)	ESH2-Z5	882395/022	Rohde & Schwarz	1Y	Dec. 31, 2019
10dB LISN Pad	CFA-01	KSR00249	TME	1Y	Dec. 31, 2019
Coaxial cable	RG-5A/U (14.0 m)	R2	Intertek	1Y	Aug. 31, 2019
Coaxial cable	10D-2W (7.0m)	R4	Intertek	1Y	Aug. 31, 2019
Coaxial cable	RG-5A/U (4.0 m)	R6	Intertek	1Y	Aug. 31, 2019
Coaxial cable	RG-5A/U(0.6 m)	R7	Intertek	1Y	Aug. 31, 2019
Coaxial cable	5D-2W (1.2 m)	R10	Intertek	1Y	Aug. 31, 2019
RF Switch	ACX-150	A12301501	Intertek	1Y	Aug. 31, 2019
Radiated disturbance	e		•		
Broad Band antenna	VULB9168WP	288	Schwarzbeck	1Y	Jul. 31, 2019
Loop Antenna	HFH2-Z2	882964/17	Rohde & Schwarz	1Y	Jan. 31, 2020
6dB Attenuator	UFA-01	A00040805	TME	1Y	Aug. 31, 2019
Amplifier	ZX60-3018G	002	Intertek	1Y	Aug. 31, 2019
Coaxial Cable	5D-2W(14.0m)	R11	FUJIKURA	1Y	Aug. 31, 2019
Coaxial cable	5D-2W(8.0 m)	R1	FUJIKURA	1Y	Aug. 31, 2019
Coaxial cable	10D-2W(7.0 m)	R3	FUJIKURA	1Y	Aug. 31, 2019
Coaxial cable	RG-5A/U(4.0 m)	R5	FUJIKURA	1Y	Aug. 31, 2019
Coaxial cable	RG-5A/U(0.6 m)	R7	FUJIKURA	1Y	Aug. 31, 2019
Coaxial cable	5D-2W(1.2 m)	R10	FUJIKURA	1Y	Aug. 31, 2019
RF Switch	ACX-150	A12301501	Intertek	1Y	Aug. 31, 2019
6 dB Attenuator	6806.17.B	4692	HUBER-SUHNER	1Y	Mar. 31, 2020
Coaxial cable(M1)	5D-2W(8.0 m)	KSR00312	FUJIKURA	1Y	Mar. 31, 2020
Site Attenuation	-	-	-	1Y	Feb. 29, 2020
Common					
MXE EMI Receiver	N9038A (Firmware Version A.13.58)	MY51210201	Agilent	1Y	Nov. 30, 2019
Testing software	emiT (Version 3,0,0,0)	-	-	-	-

ISED CN and UPN: 4763B-GN4215

Instrument	rument Model No.		Manufacturer	Cal. Interval	Effective period				
Frequency Tolerance and OBW									
Spectrum Analyzer	N9030A	US51350170	Agilent	1 Y	Mar. 31, 2020				
Spectrum Analyzer (For OBW)	N9038A (Firmware Version A.13.58)	MY51210201	Agilent	1Y	Nov. 30, 2019				
Digital Multi Meter	8846A	9642018	FLUKE	1 Y	Sep. 30, 2019				
Temperature Chamber	PL-3F	5103661	Tabai	-	None				
Temperature Meter	TR-71nw	52160B67	T&D	1 Y	Jan. 31, 2020				
Coil antenna	None	None	Intertek Japan	-	None				
Coaxial Cable	KSR00100	Daiyu Densen	3D-2V	1 Y	Feb. 29, 2020				

ISED CN and UPN: 4763B-GN4215

ANNEX


ISED CN and UPN: 4763B-GN4215

A. TEST PROCEDURE(S)

Test was carried out under the following conditions.

Conducted disturbance at mains terminals

Test setup as per standard

Diagram of the measuring instruments

[Preliminary Measurement]

EUT is tested on all operating conditions.

The spectrum analyzer is controlled by the computer program to sweep the frequency range to be measured, then spectrum chart is plotted out to find the worst emission conditions in operating mode and/or configuration decision for the final test.

All leads other than safety ground are tested.

EUT was placed in transmission mode then tested for conducted emissions per 15.207 to ensure the device complies with 15.207 outside the transmitter fundamental emissions band.

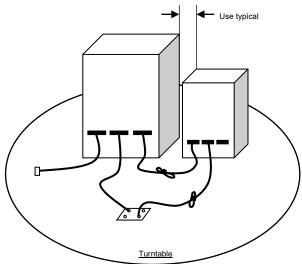
After, with a dummy load in lieu of the antenna from the EUT and only the fundamental emission band was measured to show that the fundamental emission band is in compliance with the 15.207 limits.

*In accordance with "174176 D01 Line Conducted FAQ v01r01"

[Final Measurement]

The EUT is operated in the worst emission condition found by the preliminary test.

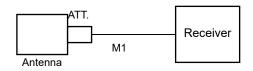
The equipment and cables are arranged or manipulated within the range of the test standard in the above condition.

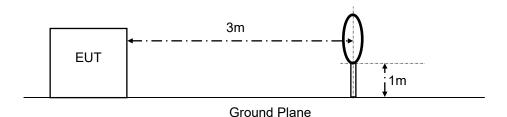

At least six highest spectrum are measured in quasi-peak and average (if necessary) using the test receiver.

Report No.: 19030115JKA-001

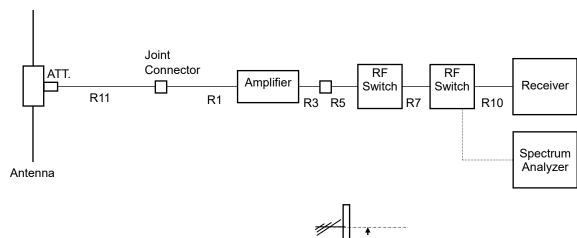
FCC ID: S8Q-GN4215 ISED CN and UPN: 4763B-GN4215

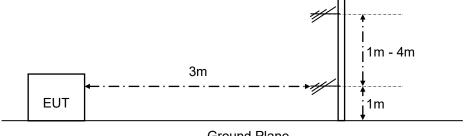
Radiated disturbance


Test setup as per standard



Original: May 27, 2019


Revised: July 02, 2019


Diagram of the measuring instruments (Below 30MHz)

30-1000MHz

Ground Plane