

6 Randolph Way Hillsborough, NJ 08844 Tel: (908) 927 9288

Fax: (908) 927 0728

Electromagnetic Emission Compliance Test Report

Equipment Under Test 45W UMTS850 MCPA

(EUT) RF100252/NTUM30EA Applicant Andrew Corporation

In Accordance With FCC Part 22 & Part 2

Tested by Advanced Compliance Laboratory, Inc.

6 Randolph Way

Hillsborough, New Jersey 08844

Authorized by Wei Li Signature

Lab Manager

Date February 1, 2007

AC Lab Report 0048-070109-01-FCC Number

Lab Code:200101-0

The test result in this report is supported and covered by the NVLAP accreditation.

EUT: UMTS850 MCPA FCC ID: S8L-100252MCPA Report Number: 0048-070109-01-FCC Model: RF100252/NTUM30EA

Index

Section 1. Summary of Test Results	3
Section 2. General Equipment Specification	
Section 3. RF Output Power	
Section 4. Occupied Bandwidth	10
Section 5. Spurious Emissions at Antenna Terminals	
Section 6. Field Strength of Spurious	
Section 7. Frequency Stability	
Section 8. Test Equipment List	45
Section 9. FCC ID Labeling	
Section 10. Maximum Permissible Exposure	
Section 11. Setup Photos	
Section 12. EUT Photos	52

Section 1. Summary of Test Results

Manufacturer: Andrew Corporation

Product Name: UMTS850 MCPA

Model No.: RF100252/NTUM30EA

General: All measurements are traceable to national standards

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 22 & Part 2.

New Submission Production Unit

Class II Permissive Change Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

"See Summary of Test Data"

NVLAP LAB CODE: 200101-0

Advance Compliance Laboratory, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Advance Compliance Laboratory, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary of Test Data

DE Dower Output	22.913(a)	500W ERP	Complies**
RF Power Output	24.232(a)	100W EIRP	N/A*
Occupied Bandwidth (Voice & SAT)	2.1049(i)	Mask	N/A*
Occupies Bandwidth (Wideband Data)	2.1049(i)	Mask	N/A*
Occupied Bandwidth (Digital)	2.1049(i)	Mask	Complies
Couriero Emissione et Automo Tempinale	22.917	-13 dBm	Complies
Spurious Emissions at Antenna Terminals	24.238	-13 dBm	N/A*
Field Other with of Organizate Fredericas	22.917	-13 dBm	Complies
Field Strength of Spurious Emissions	24.238	-13 dBm E.I.R.P.	N/A*
Eroguanov Stability	22.355	1.5 ppm	N/A*
Frequency Stability	24.235	0.05 ppm	N/A*

^{*} These items are NOT applied to the EUT.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

Wei Li

Lab Manager

Advanced Compliance Lab

Date: February 1, 2007

^{**} See page 10.

Section 2. General Equipment Specification

Supply Voltage	48VDC				
Frequency Range	Cellular	Cellular DL/869MHz-894MHz			Z
Trequency Kange	PCS		N/A		
Modulation	CDMA 2000	⊠ WCDMA	GSM	EDGE	□ TDMA
Type of Emissions	F9W	F9W	GXW	G7W	DXW
Rated Power	45W average				
Operating Power	Max. 45W total power for single or multiple carriers (WCDMA)				
Output Impedance	50ohm				
Frequency	F1-F1		F1-F2		N/A
Translation	Software Duplexer Full Band Change Coverage			ov <u>er</u> age	

DC voltages and DC currents per 2.1033(c)(8)

The input supply to the transmitter was set at 48 Volts DC. The RF power output was measured with the indicated voltage and current applied into the final RF amplifying device(s).

RF100252/NTUM30EA Amplifier

RF Output, DC Current and RF Input Power are all average values.

Measured Rated RF output: 46.5dBm (45W)

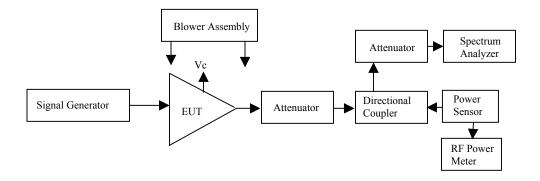
Measured DC voltage: 48.0V Measured DC current: 4.5A.

Measured Minimum RF output: 14dBm

Measured DC voltage: 48.0V Measured DC current: 2.3A

Tune-up procedure per 2.1033(c) (9)

There are no user accessible adjustments or tuning in this amplifier. All necessary adjustments and tuning are performed during manufacture of the product. Any adjustments or tuning after service or repair are done as part of that process as special equipment is required to perform such adjustments.


Description of Operation

This device is a multi-carrier power amplifier used in BTS in downlink spectrum of Cellular band. All measurements shall be made at room temperature and at nominal DC input voltage.

System Diagram

See Attachment.

General EUT Setup

Section 3. RF Output Power

Name of Test:	RF Output Power	Test Standard:	22.913(a)
Tested By:	WEI LI	Test Date:	01/09/2007-01/19/2007

Minimum Para. No. 22.913(a). The maximum effective radiated power (ERP) of **Standard:** base station transmitters and cellular repeaters must not exceed 500

Watts (57dBm).

Method of Measurement:

The EUT is a RF amplifier. The manufacturer does not provide an antenna for sale with the product, hence EIRP is not measured nor calculated.

Per 2.1046: The RF Power Output shall be measured at the output connector of the EUT. The output level shall be +46.5 dBm (45watts) ±0.25 dB over the Cellular frequency band: 869-894MHz.

Using power meter, power measurements shall be taken at the low band edge, mid, and high band edge frequencies for all modulations listed on Page 5.

Model: RF100252/NTUM30EA Report Number: 0048-070109-01-FCC

Test Result: Complies

Test Data:

FCC ID: S8L-100252MCPA

EUT: UMTS850 MCPA

Rated Output Power - Normal Condition

The inputs are set to generate rated average output power and crest factor for the multi-carrier signals intended.

Cellular Band	Channel	Modulation	Power Output (dBm)	Rated Power (dBm)	Tolerance
	Low	WCDMA	46.52	46.50	+0.02
	Mid	WCDMA	46.50	46.50	0.00
	High	WCDMA	46.55	46.50	+0.05
Total Power at Amplifier RF Input (dBm)	-0.02 (Maximum gain)				
Ref Offset	Ref offset=Cable&Attenuator&Coupler Attenuation=56.8dB				

Conclusion:

The total rated RF power is 45W for single or multiple-carrier operation. As indicated on Page 5, supported output power per carrier is 45W max. for WCDMA, which does not exceed the 500W power limit.

Section 4. Occupied Bandwidth

Name of Test:	Occupied Bandwidth	Test Standard:	2.1049(i)
Tested By:	WEI LI	Test Date:	01/09/2007-01/19/2007

Minimum Not defined by FCC. Input vs. Output.

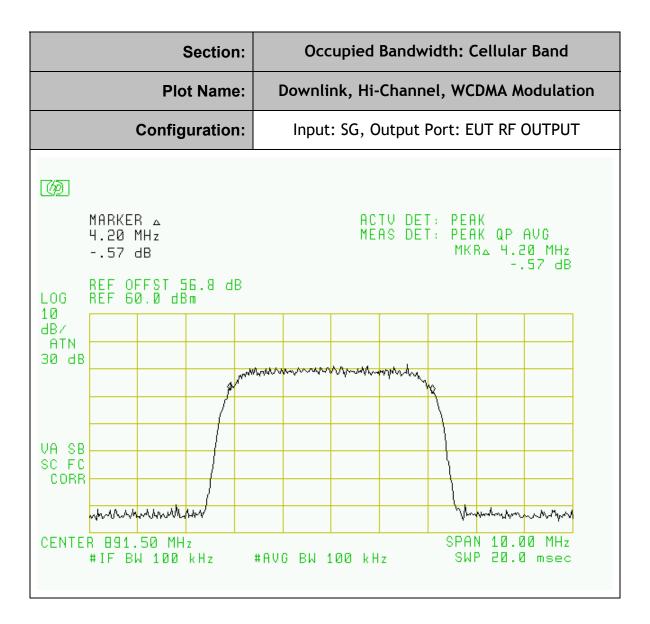
Standard:

Method of Spectrum Analyzer Settings:

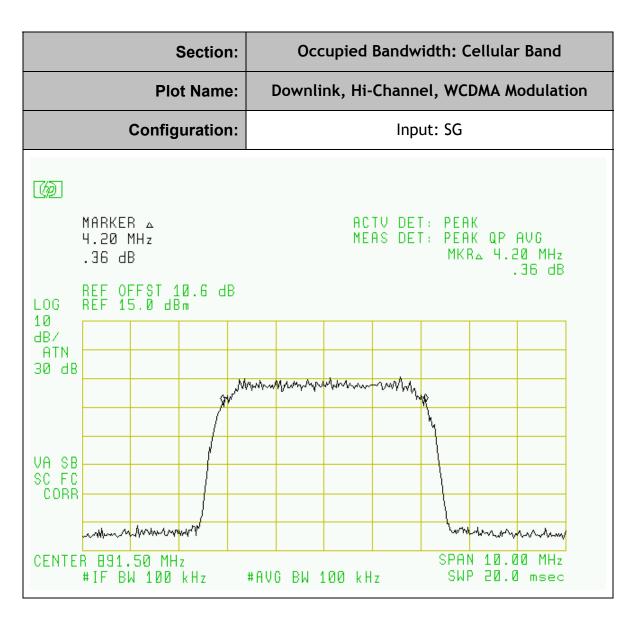
Measurement: RBW: CDMA2000 (30 kHz), WCDMA (100KHz), CDMA(30KHz),

GSM (3 kHz), EDGE (3KHz), NADC (1 kHz) and CDPD (1 kHz)

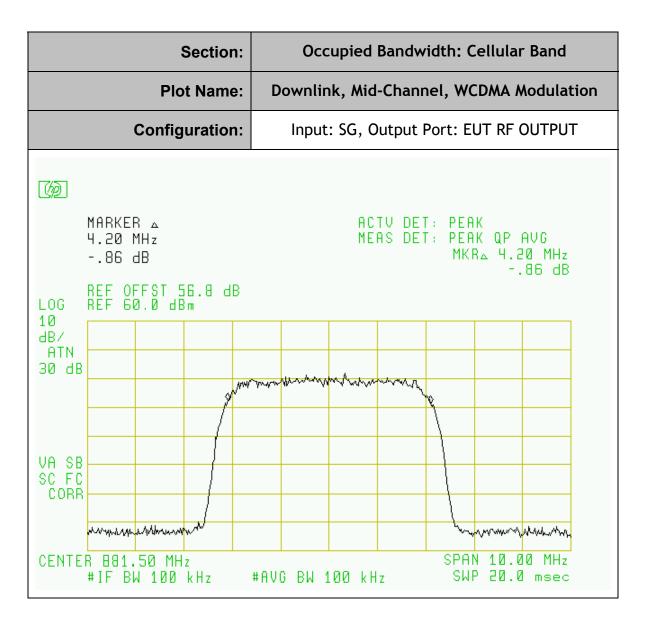
VBW: ≥RBW Span: As required Sweep: Auto

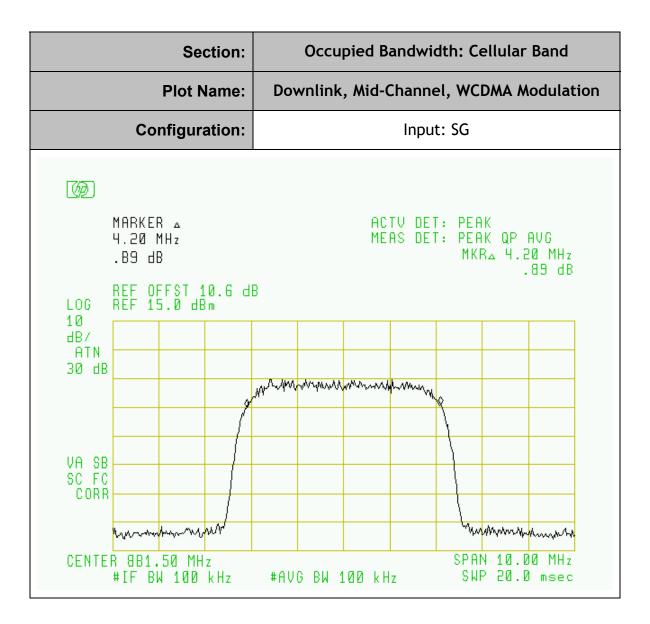

Input Signal Characteristics: Generated from Signal Generator

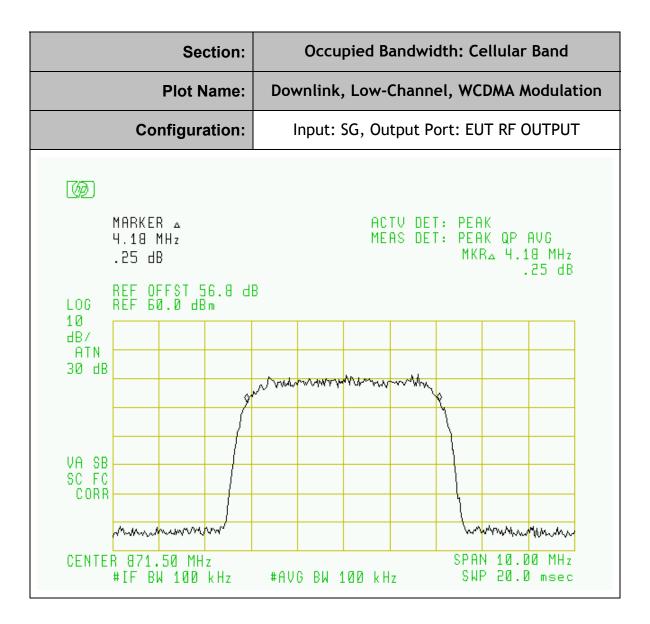
RF level: Rated, recommended by manufacturer

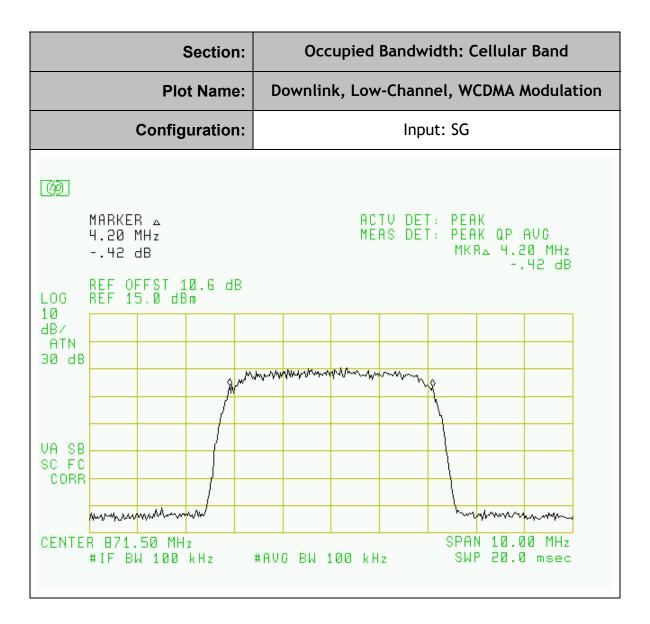

Test Result: Complies

Attached Plots **Test Data:**


Project Number:	0048-070109-01-FCC		
EUT:	ANDREW UMTS850850 MCPA RF100252		
S/N:	16T		
Tested By:	Wei Li		
Temperature:	70°F		
Humidity:	30%		


Project Number:	0048-070109-01-FCC		
EUT:	ANDREW UMTS850850 MCPA RF100252		
S/N:	16T		
Tested By:	Wei Li		
Temperature:	70°F		
Humidity:	30%		


Project Number:	0048-070109-01-FCC		
EUT:	ANDREW UMTS850 MCPA RF100252		
S/N:	16T		
Tested By:	Wei Li		
Temperature:	70°F		
Humidity:	30%		


Project Number:	0048-070109-01-FCC		
EUT:	ANDREW UMTS850 MCPA RF100252		
S/N:	16T		
Tested By:	Wei Li		
Temperature:	70°F		
Humidity:	30%		

Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

Section 5. Spurious Emissions at Antenna Terminals

Name of Test:	Spurious Emissions at Antenna Terminals	Test Standard:	22.917 &2.1051(a)
Tested By:	WEI LI EDWARD LEE	Test Date:	01/09/2007-01/19/2007

Standard:

Minimum Para. No. 22.917(e). The mean power of emissions must be attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least 43 + 10 log P. This is equivalent to -13 dBm absolute power.

Method of Spectrum Analyzer Settings:

Measurement:

RBW: 100 kHz for Cellular Tx. As required for digital modulations.

RBW: 1MHz for PCS Tx.

VBW: >=RBW

Start Frequency: 9KHz or Lowest Clock Frequency Stop Frequency: 10 GHz (Cellular), 20GHz (PCS)

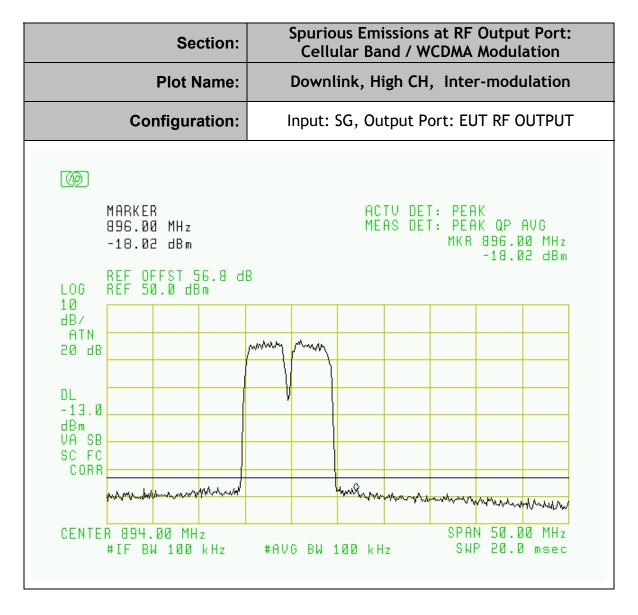
Sweep: Auto

Using in-band filter if needed.

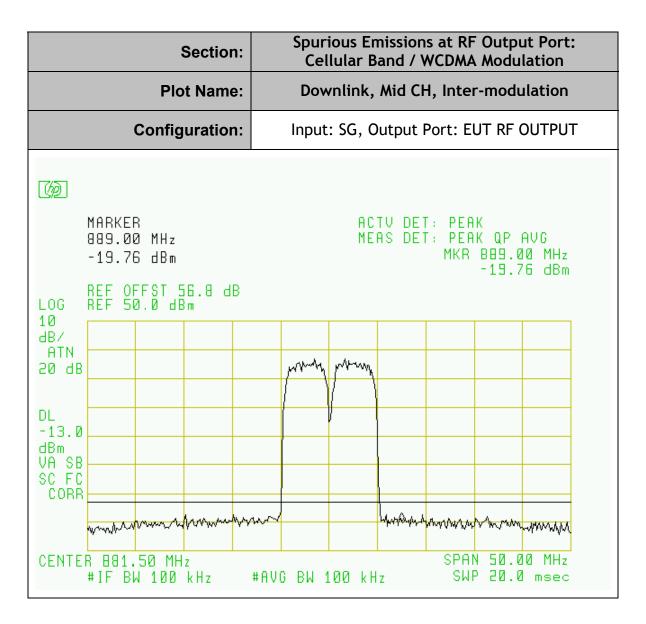
For Inter-modulation measurement: Three or Two RF signals set as inputs. The frequencies of RF signals shall be within the repeater's operating band: two signals will close to each other at the lower band edge; the third will be close to upper band edge. Or two signals are closed to Low CH, Mid CH and High CH. The level of both RF input signals shall be increased, until the maximum rated output power per channel, as declared by the manufacturer is reached.

^{*} Out of band plots show nearly identical noise floor readings for the frequency ranges below 20MHz and above 6.5GHz.

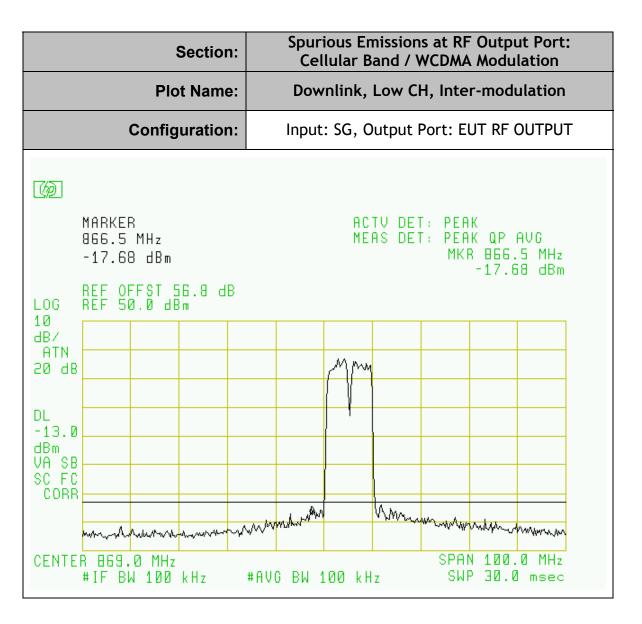
Test Result: Complies Test Data: Attached Plots

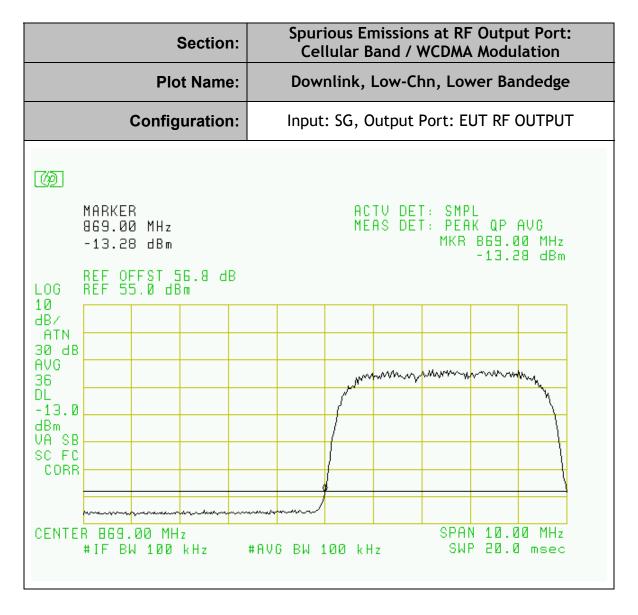

FCC ID: S8L-100252MCPA

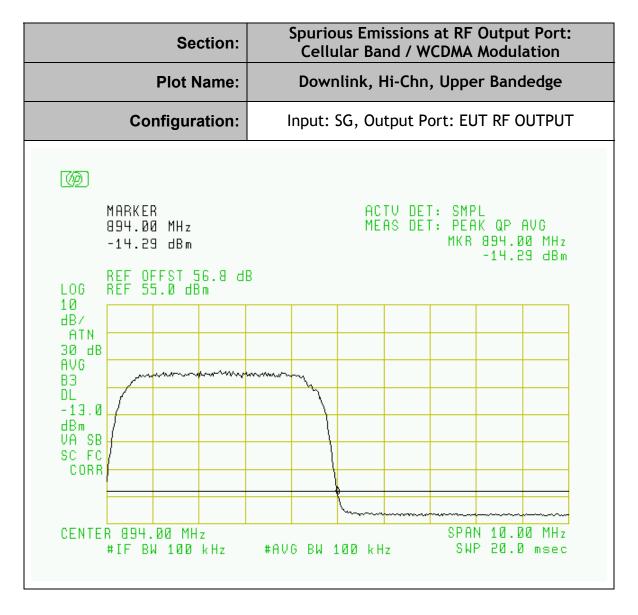
Report Number: 0048-070109-01-FCC

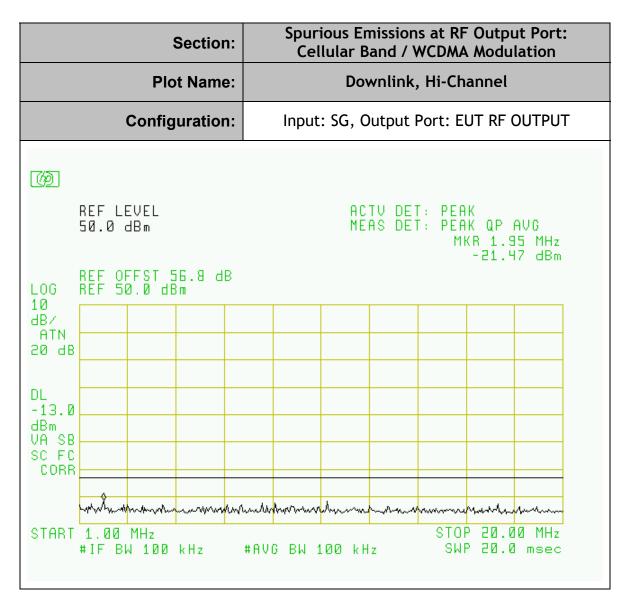

EUT: UMTS850 MCPA

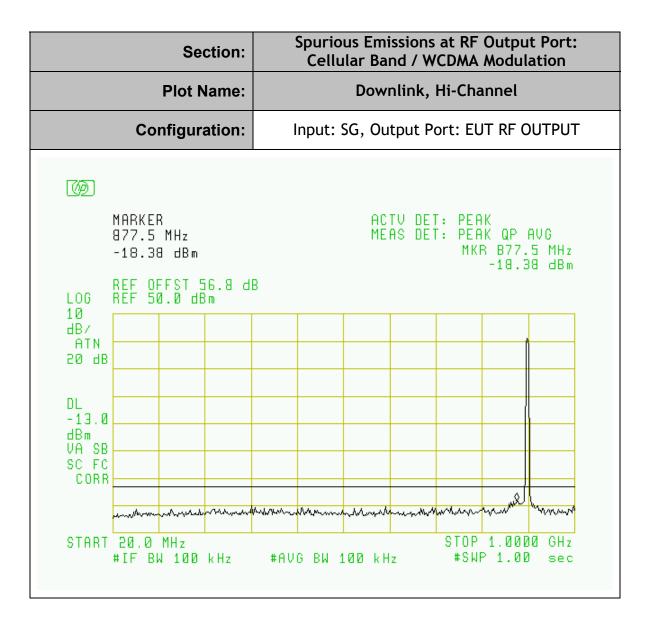
Model: RF100252/NTUM30EA

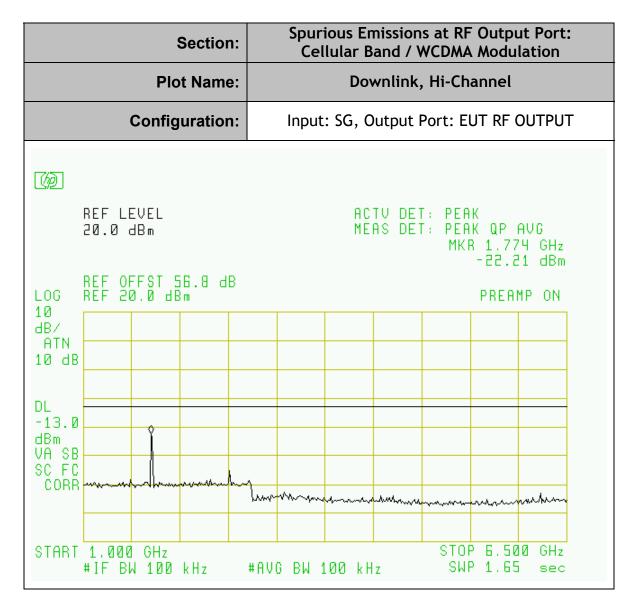

Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Edward Lee	
Temperature:	70°F	
Humidity:	30%	

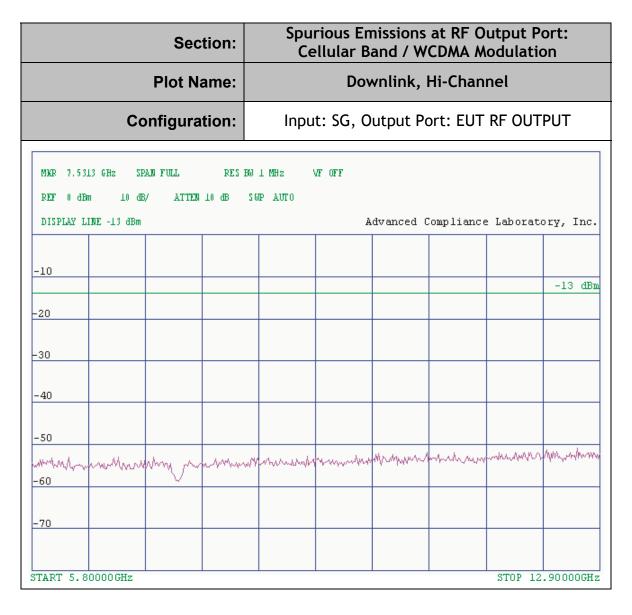

Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Edward Lee	
Temperature:	70°F	
Humidity:	30%	

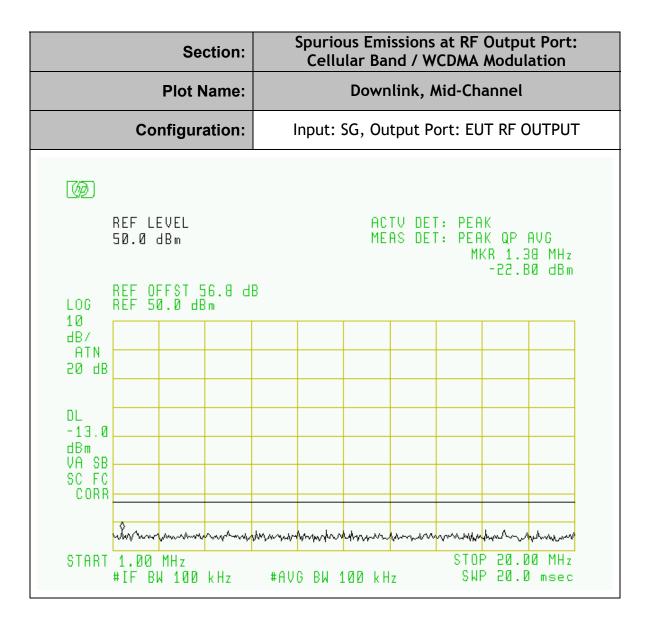

Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Edward Lee	
Temperature:	70°F	
Humidity:	30%	

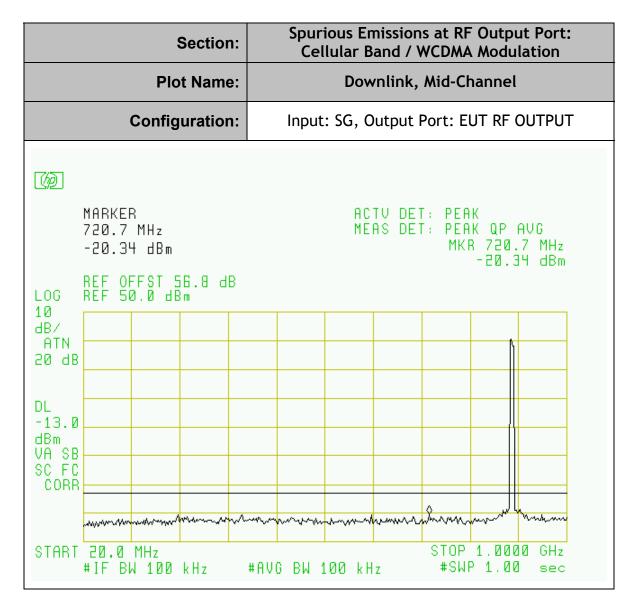

Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Edward Lee	
Temperature:	70°F	
Humidity:	30%	

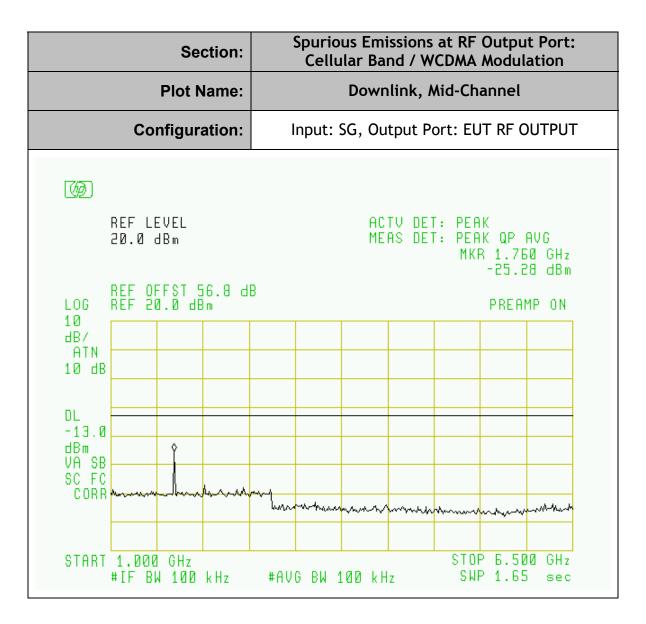

Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Edward Lee	
Temperature:	70°F	
Humidity:	30%	


Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Edward Lee	
Temperature:	70°F	
Humidity:	30%	

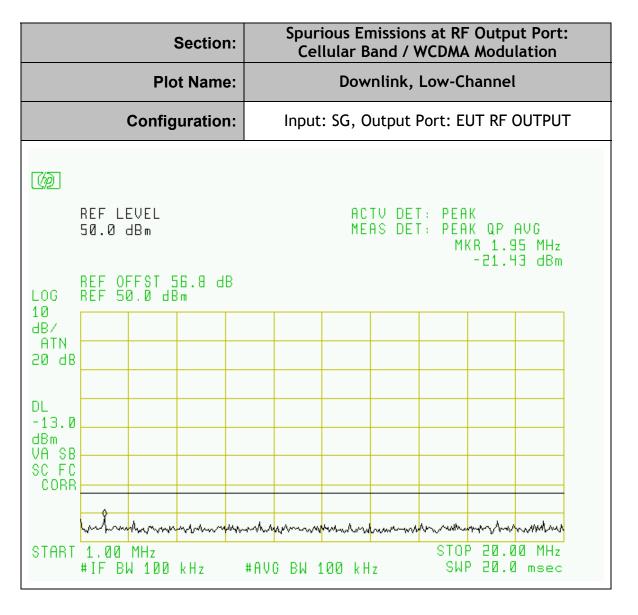

Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Edward Lee	
Temperature:	70°F	
Humidity:	30%	

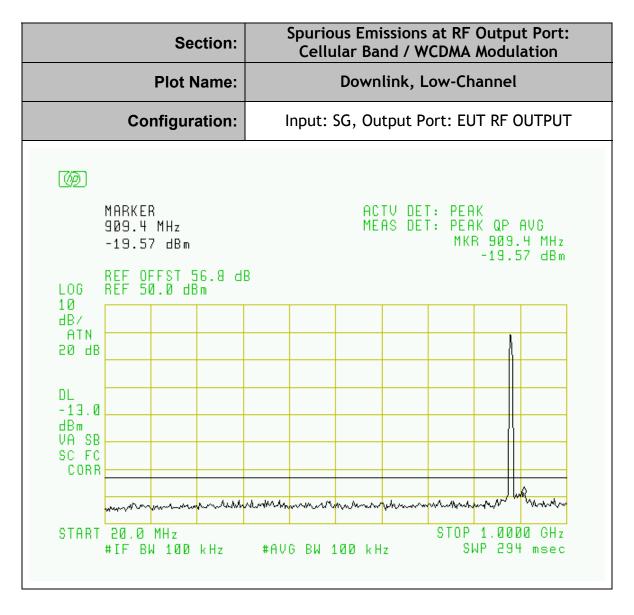

Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Edward Lee	
Temperature:	70°F	
Humidity:	30%	


Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Edward Lee	
Temperature:	70°F	
Humidity:	30%	

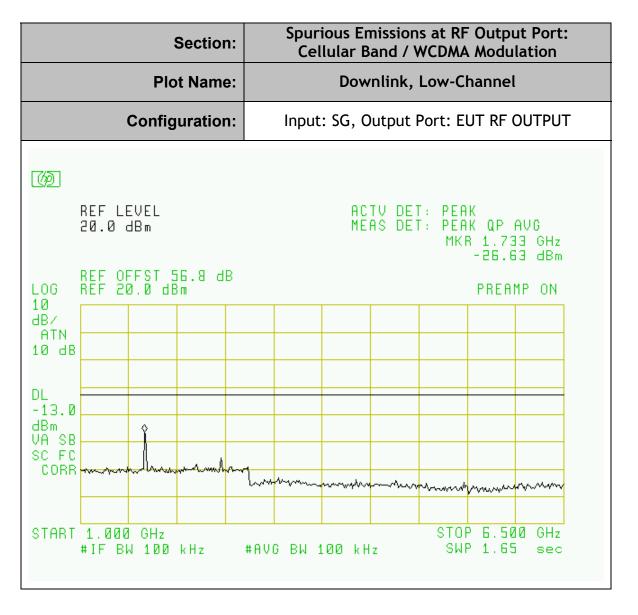

Project Number:	0048-070109-01-FCC	
EUT:	ANDREW UMTS850 MCPA RF100252	
S/N:	16T	
Tested By:	Edward Lee	
Temperature:	70°F	
Humidity:	30%	

Project Number:	0048-070109-01-FCC			
EUT:	ANDREW UMTS850 MCPA RF100252			
S/N:	16T			
Tested By:	Edward Lee			
Temperature:	70°F			
Humidity:	30%			


Project Number:	0048-070109-01-FCC		
EUT:	ANDREW UMTS850 MCPA RF100252		
S/N:	16T		
Tested By:	Edward Lee		
Temperature:	70°F		
Humidity:	30%		


Project Number:	0048-070109-01-FCC		
EUT:	ANDREW UMTS850 MCPA RF100252		
S/N:	16T		
Tested By:	Edward Lee		
Temperature:	70°F		
Humidity:	30%		

Section:	Spurious Emissions at RF Output Port: Cellular Band / WCDMA Modulation					
Plot Name:	Downlink, Mid-Channel					
Configuration:	Input: SG, Output Port: EUT RF OUTPUT					
MKR 7.6574 GHz SPAN FULL RES BW 1 MHz VF OFF REF 0 dBm 10 dB/ ATTEN 10 dB SWP AUTO						
-10						
-20						
-30						
-40						
-50	a di					
-60 MADAMAN	make and make the same that th					
-70						
START 5.80000GHz	STOP 12.90000GHz					


Project Number:	0048-070109-01-FCC		
EUT:	ANDREW UMTS850 MCPA RF100252		
S/N:	16T		
Tested By:	Edward Lee		
Temperature:	70°F		
Humidity:	30%		

Project Number:	0048-070109-01-FCC		
EUT:	ANDREW UMTS850 MCPA RF100252		
S/N:	16T		
Tested By:	Edward Lee		
Temperature:	70°F		
Humidity:	30%		

Project Number:	0048-070109-01-FCC			
EUT:	ANDREW UMTS850 MCPA RF100252			
S/N:	16T			
Tested By:	Edward Lee			
Temperature:	70°F			
Humidity:	30%			

Project Number:	0048-070109-01-FCC		
EUT:	ANDREW UMTS850 MCPA RF100252		
S/N:	16T		
Tested By:	Edward Lee		
Temperature:	70°F		
Humidity:	30%		

Section:	Spurious Emissions at RF Output Port: Cellular Band / WCDMA Modulation					
Plot Name:	Downlink, Low-Channel					
Configuration:	Input: SG, Output Port: EUT RF OUTPUT					
MMCR 7.5974 GHz SPAN FULL RES BOU 1 MHz VF OFF REF 0 dBm 10 dB/ ATTEN 10 dB S OP AUTO						
-10						
-20						
-30						
-40						
-50	h. J					
Warden was something with holder	the of many water from the first of the firs					
-70						
START 5.80000GHz	STOP 12.90000GHz					

Section 6. Field Strength of Spurious

Name of Test:	Field Strength of Spurious	Test Standard:	22.917 2.1053	
Tested By:	EDWARD LEE	Test Date:	01/09/2007-01/19/2007	

Standard:

Minimum Para. No. 22.917(e). The mean power of emissions must be attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least 43 + 10 log P. This is equivalent to -13 dBm absolute power. Para. No. 2.1053(a). The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under conditions specified in the instrction manual and/or alignment procedure, shall not less than 43+10 log (mean output power in watts) dBc below the mean power output outside a licensee's frequency block (-13dBm).

Method of **Measurement:**

TIA/EIA-603-1992, Section 2.2.12

The antenna substitution method was used to determine the equivalent radiated power at spurious frequencies. The spurious emissions were measured at a distance of 3 meters. The EUT was then replaced with a reference substitution antenna with a known gain referenced to a dipole. This antenna was fed with a signal at the spurious frequency. The level of the signal was adjusted to repeat the previously measured level. The resulting ERP is the signal level fed to the reference antenna corrected for gain referenced to a dipole.

Per FCC Requirements, the antenna substitution method can be replaced by using following calculation to yield the required limit criteria WHEN the max. level of measured spurious emissions is 30dB below the limit.

Calculation for Required Emission Limit Per 2.1053

With the MCPA RF output level set to 45 watts (46.50 dBm), Radiated Emissions between 10 MHz and 10 GHz(Cellular) or 20GHz (PCS) or 22GHz (UMTS850) shall be observed. The "Low, Mid, and High" frequencies shall be used for this test.

The Emission Limits and measuring instrumentation settings established in FCC Part 2.1053 shall be followed. Emissions shall be less than 43 + 10 log (P) dBc. Per FCC Part 2.1053(a), "Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter (amplifier), assuming all emissions are radiated from half-wave dipole antennas." The following relationships yield the required limit criteria.

For a half-wave dipole antenna in free space:

$$E = (49.2 * P)^{1/2}/R$$
 [15.684 V/m]

Where:

E = Field intensity in Volts/meter of carrier

P = transmitted power in Watts (45 W)

R = Distance from antenna to UUT in meters (3 meters)

Conversion of E, Volts/meter to dBuV/m:

$$20 \log (E * 10^6)$$
 [143.91]

Attenuation requirement (Atten): 43 + 10 log P [59.53dBc]

Thus, the required limit:

$$E_{lim} = E - Atten dBuV/m$$

For MCPA:

E = 143.91 dBuV/m (at 3 meters) Atten = 59.53 dBc

Then, $E_{lim} = 84.38 \text{ dBuV/m}$

Note: Emissions less than 64.38 dBuV/m (84.38 - 20 dB) may not be reported.

Test Result: Complies

Test Data: See Attached Table(s)

Configuration	UMTS850 w/ RF Output Port Terminated
Band	Celllular Downlink
Channel	Low

Freq. (MHz)	H,V	SA Reading (dBuV)	Height (m)	Angle (degree)	Calculated 3m Limit (dBuV)	Margin (dB)	Absolute Limit (dBm)	Margin (dB)
1744	Н	45.7	1.2	10	84.38	-38.68	-13	-48.3
2616	Н	47.0	1.2	0	84.38	-37.38	-13	-47
1744	V	46.4	1.3	10	84.38	-37.98	-13	-47.6
2616	V	46.9	1.3	10	84.38	-37.48	-13	-47.1
2229	Н	40.8	1.2	350	84.38	-43.58	-13	-53.2
2243	Н	41.5	1.2	350	84.38	-42.88	-13	-52.5
2229	V	45.6	1.4	0	84.38	-38.78	-13	-48.4
2243	V	46.3	1.4	0	84.38	-38.08	-13	-47.7

NOTE:

* Measured noise floor

SA: Spectrum Analyzer

EUT's input.: WCDMA at rated output power

H=horizontal and V=vertical SA Reading: Average Reading

Configuration	UMTS850 w/ RF Output Port Terminated
Band	Cellular Downlink
Channel	Mid

Freq. (MHz)	H,V	SA Reading (dBuV)	Height (m)	Angle (degree)	Calculated 3m Limit (dBuV)	Margin (dB)	Absolute Limit (dBm)	Margin (dB)
1762	Н	45.0	1.3	10	84.38	-39.38	-13	-49
2643	Н	46.8	1.2	0	84.38	-37.58	-13	-47.2
1762	V	45.3	1.3	10	84.38	-39.08	-13	-48.7
2643	V	46.0	1.3	10	84.38	-38.38	-13	-48
2247	Н	41.0	1.2	20	84.38	-43.38	-13	-53
2261	Н	39.5	1.2	20	84.38	-44.88	-13	-54.5
2247	V	46.1	1.3	0	84.38	-38.28	-13	-47.9
2261	V	44.2	1.3	0	84.38	-40.18	-13	-49.8

NOTE:

* Measured noise floor

SA: Spectrum Analyzer

EUT's input.: WCDMA at rated output power

H=horizontal and V=vertical SA Reading: Average Reading

Configuration	UMTS850 w/ RF Output Port Terminated
Band	Cellular Downlink
Channel	High

Freq. (MHz)	H,V	SA Reading (dBuV)	Height (m)	Angle (degree)	Calculated 3m Limit (dBuV)	Margin (dB)	Absolute Limit (dBm)	Margin (dB)
1782	Н	44.0	1.3	10	84.38	-40.38	-13	-50
2673	Н	46.1	1.2	0	84.38	-38.28	-13	-47.9
1782	V	45.6	1.3	10	84.38	-38.78	-13	-48.4
2643	V	45.7	1.3	10	84.38	-38.68	-13	-48.3
2267	Н	40.3	1.2	20	84.38	-44.08	-13	-53.7
2281	Н	39.0	1.2	20	84.38	-45.38	-13	-55
2267	V	44.7	1.3	0	84.38	-39.68	-13	-49.3
2281	V	43.8	1.3	0	84.38	-40.58	-13	-50.2

NOTE:

* Measured noise floor

SA: Spectrum Analyzer

EUT's input.: WCDMA at rated output power

H=horizontal and V=vertical SA Reading: Average Reading

Section 7. Frequency Stability

Name of Test:	Frequency Stability	Test Standard:	2.1055 22.355&24.235
Tested By:	WEI LI	Test Date:	

Minimum Standard:

Para. No. 22.355. The transmitter carrier frequency shall remain within the tolerances given in Table C-1.

TABLE C-1.—FREQUENCY TOLERANCE FOR TRANSMITTERS IN THE PUBLIC MOBILE SERVICES

Frequency range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile <=3 watts (ppm)	
25 to 50	20.0 5.0 2.5 1.5 5.0 1.5	20.0 5.0 5.0 2.5 n/a n/a	50.0 50.0 5.0 2.5 n/a n/a	
2110 to 2220	10.0	n/a	n/a	

Para No. 24.235. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Method of Measurement:

Frequency Stability With Voltage Variation:

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +25 degrees Celsius for at least 15 minutes. Set SA resolution bandwidth low enough (30Hz) to obtain the desired frequency resolution. (Using frequency counter method: The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10MHz ref, in of the signal generator). With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

Frequency Stability With Temperature Variation:

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

Test Result: Complies

Test Data: See Attached Table(s)

Section 8. Test Equipment List

Manufacture	Model	Serial No.	Description	Last	Cal Due
			-	Cal	dd/mm/
				dd/mm/	yy
				yy	
HP	HP8546A	3448A00290	EMI Receiver	01/12/06	01/12/07
HP	E4432B	US38220355	250K-3GHz Signal Generator	17/09/06	17/09/07
EMCO	3104C	9307-4396	20-300MHz Biconical Antenna	12/02/06	12/02/07
EMCO	3146	9008-2860	200-1000MHz Log-Periodic Antenna	09/02/06	09/02/07
Fischer Custom	LISN-2	900-4-0008	Line Impedance Stabilization Networks	23/08/06	23/08/07
Fischer Custom	LISN-2	900-4-0009	Line Impedance Stabilization Networks	23/08/06	23/08/07
EMCO	6502	2665	10KHz-30MHz Active Loop Antenna	27/02/06	27/02/07
EMCO	3115	4945	Double Ridge Guide Horn Antenna	11/08/06	11/08/07
HP	8569B	2607A02802	1GHz-22GHz Spectrum Analyzer	10/02/06	10/02/07
Advantest	R3271	5003583	100Hz-26.5GHz Spectrum Analyzer	30/04/06	30/04/07
Delta Design	5900C	0-67-26	Temperature Chamber	24/03/06	24/03/07
HP	E8254A	US42110367	Signal Generator	23/03/06	23/03/07
Electro-Metrics	RGA-50	8-95	Double Ridge Guide Horn Antenna	10/02/06	10/02/07
EMCO	3116	4943	Double Ridge Guide Horn Antenna	11/01/06	11/01/07
Scientific-Atlanta	12A-18	441	Wave Guide Horn Antenna	04/08/06	04/08/07
HP	4419A	US37292112	RF Power Meter w/ Sensor Probe	20/07/06	20/07/07
Agilent	E4438C	US41460731	ESG Vector Signal Generator	01/07/05	01/07/07
Agilent	E4438C	US41460771	ESG Vector Signal Generator	01/07/05	01/07/07
Agilent	E4438C	US41460400	ESG Vector Signal Generator	01/07/05	01/07/07
Lorch	5NF-	AC3	Notch Filter		
Microwave	800/1000-S	ACS	Notch Filter		
RES-NET	RFA500NFF 30	0108	30dB in-line Power Attenuator		
Narda	3022	80986	Directional Coupler		
General Purpose			0-60V, 50A DC Power Supply		