

# **FCC Test Report**

| Product Name | 23.1 inches Bar type Digital Signage |
|--------------|--------------------------------------|
| Model No     | D230                                 |
| FCC ID.      | S8CD230                              |

| Applicant | Shuttle Inc.                                                  |
|-----------|---------------------------------------------------------------|
| Address   | No.30,Lane76,Rei Kuang Rd.,Nei-Hu Dist.,Taipei, Taiwan R.O.C. |

| Date of Receipt                   | Aug. 29, 2019         |
|-----------------------------------|-----------------------|
| Issue Date                        | Nov. 12, 2019         |
| Report No.                        | 1980460R-RFUSP01V00-B |
| Report Version                    | V1.0                  |
| TAF<br>Testing Laboratory<br>3023 |                       |

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.



# Test Report

Issue Date: Nov. 12, 2019 Report No.: 1980460R-RFUSP01V00-B

# **DEKRA**

| Product Name        | 23.1 inches Bar type Digital Signage                          |  |  |
|---------------------|---------------------------------------------------------------|--|--|
| Applicant           | Shuttle Inc.                                                  |  |  |
| Address             | No.30,Lane76,Rei Kuang Rd.,Nei-Hu Dist.,Taipei, Taiwan R.O.C. |  |  |
| Manufacturer        | Shuttle Inc.                                                  |  |  |
| Model No.           | D230                                                          |  |  |
| FCC ID.             | S8CD230                                                       |  |  |
| EUT Rated Voltage   | AC 100-240V, 50-60Hz                                          |  |  |
| EUT Test Voltage    | AC 120V/60Hz                                                  |  |  |
| Trade Name          | Shuttle                                                       |  |  |
| Applicable Standard | FCC CFR Title 47 Part 15 Subpart C                            |  |  |
|                     | ANSI C63.4: 2014, ANSI C63.10: 2013                           |  |  |
| Test Result         | Complied                                                      |  |  |

Documented By :

:

Rita Huang

(Senior Adm. Specialist / Rita Huang)

Tested By

Jay Su

(Engineer / Jay Su)

Approved By :

(Director / Vincent Lin)



# TABLE OF CONTENTS

| Description |                                          | Page |
|-------------|------------------------------------------|------|
| 1.          | GENERAL INFORMATION                      | 5    |
| 1.1.        | EUT Description                          | 5    |
| 1.2.        | Operational Description                  |      |
| 1.3.        | Tested System Details                    |      |
| 1.4.        | Configuration of Tested System           |      |
| 1.5.        | EUT Exercise Software                    |      |
| 1.6.        | Test Facility                            |      |
| 1.7.        | List of Test Equipment                   |      |
| 2.          | Conducted Emission                       | 13   |
| 2.1.        | Test Setup                               |      |
| 2.2.        | Limits                                   |      |
| 2.3.        | Test Procedure                           |      |
| 2.4.        | Uncertainty                              |      |
| 2.5.        | Test Result of Conducted Emission        |      |
| 3.          | Peak Power Output                        | 19   |
| 3.1.        | Test Setup                               |      |
| 3.2.        | Limits                                   |      |
| 3.3.        | Test Procedure                           |      |
| 3.4.        | Uncertainty                              |      |
| 3.5.        | Test Result of Peak Power Output         |      |
| 4.          | Radiated Emission                        |      |
| 4.1.        | Test Setup                               |      |
| 4.2.        | Limits                                   |      |
| 4.3.        | Test Procedure                           |      |
| 4.4.        | Uncertainty                              |      |
| 4.5.        | Test Result of Radiated Emission         |      |
| 5.          | RF antenna conducted test                |      |
| 5.1.        | Test Setup                               |      |
| 5.2.        | Limits                                   |      |
| 5.3.        | Test Procedure                           |      |
| 5.4.        | Uncertainty                              |      |
| 5.5.        | Test Result of RF antenna conducted test |      |
| 6.          | Band Edge                                |      |
| 6.1.        | Test Setup                               |      |
| 6.2.        | Limits                                   |      |
| 6.3.        | Test Procedure                           |      |
| 6.4.        | Uncertainty                              |      |
| 6.5.        | Test Result of Band Edge                 |      |
| 7.          | 6dB Bandwidth                            | 83   |
| 7.1.        | Test Setup                               |      |
| 7.2.        | Limits                                   |      |
|             |                                          |      |

# DEKRA

| 7.3.          | Test Procedure                                 | 83 |
|---------------|------------------------------------------------|----|
| 7.4.          | Uncertainty                                    |    |
| 7.5.          | Test Result of 6dB Bandwidth                   | 84 |
| 8.            | Power Density                                  | 90 |
| 8.1.          | Test Setup                                     | 90 |
| 8.2.          | Limits                                         | 90 |
| 8.3.          | Test Procedure                                 | 90 |
| 8.4.          | Uncertainty                                    | 90 |
| 8.5.          | Test Result of Power Density                   |    |
| 9.            | Duty Cycle                                     | 97 |
| 9.1.          | Test Setup                                     | 97 |
| 9.2.          | Test Procedure                                 | 97 |
| 9.3.          | Uncertainty                                    |    |
| 9.4.          | Test Result of Duty Cycle                      | 98 |
| 10.           | EMI Reduction Method During Compliance Testing |    |
| Attachment 1: | EUT Test Photographs                           |    |

Attachment 2: EUT Detailed Photographs



# 1. GENERAL INFORMATION

# 1.1. EUT Description

| Product Name       | 23.1 inches Bar type Digital Signage                         |  |
|--------------------|--------------------------------------------------------------|--|
| Trade Name         | Shuttle                                                      |  |
| Model No.          | D230                                                         |  |
| FCC ID.            | S8CD230                                                      |  |
| Frequency Range    | 2412-2462MHz for 802.11b/g/n-20BW                            |  |
| Number of Channels | 802.11b/g/n-20MHz: 11                                        |  |
| Data Speed         | 802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 150Mbps |  |
| Type of Modulation | 802.11b:DSSS (DBPSK, DQPSK, CCK)                             |  |
|                    | 802.11g/n:OFDM (BPSK, QPSK, 16QAM, 64QAM)                    |  |
| Antenna Type       | PCB Antenna                                                  |  |
| Antenna Gain       | Refer to the table "Antenna List"                            |  |
| Channel Control    | Auto                                                         |  |
| Power Adapter      | MFR: APD, M/N: WA-24Q12FU                                    |  |
|                    | Input: 100-240V, 50-60Hz, 0.7A                               |  |
|                    | Output: 12V, 2A                                              |  |
|                    | Cable out: Non-Shielded, 1.8m, with one ferrite core bonded. |  |

# Antenna List

| No. | Manufacturer | Part No.        | Antenna Type | Peak Gain          |
|-----|--------------|-----------------|--------------|--------------------|
| 1   | WGT          | 43R-D23001-0300 | PCB Antenna  | 3.2dBi for 2.4 GHz |

Note:

1. The antenna of EUT conforms to FCC 15.203.

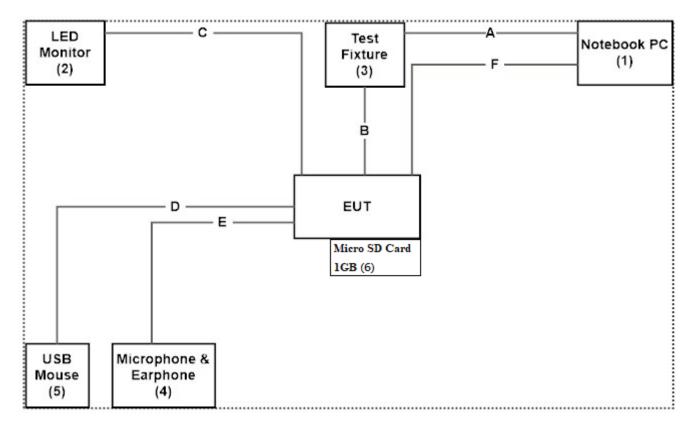


802.11b/g/n-20MHz Center Frequency of Each Channel:

| •           |           | · ·         |           |             |           |             |           |  |
|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|--|
| Channel     | Frequency | Channel     | Frequency | Channel     | Frequency | Channel     | Frequency |  |
| Channel 01: | 2412 MHz  | Channel 02: | 2417 MHz  | Channel 03: | 2422 MHz  | Channel 04: | 2427 MHz  |  |
| Channel 05: | 2432 MHz  | Channel 06: | 2437 MHz  | Channel 07: | 2442 MHz  | Channel 08: | 2447 MHz  |  |
| Channel 09: | 2452 MHz  | Channel 10: | 2457 MHz  | Channel 11: | 2462 MHz  |             |           |  |
| Note:       |           |             |           |             |           |             |           |  |

- The EUT is a 23.1 inches Bar type Digital Signage, Contains functions and so on WLAN (802.11a/b/g/n/ac) with Bluetooth (5.0 and V3.0, V2.1+EDR) combo card module transceiver, this report for 5GHz WLAN.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps \$ 802.11g is 6Mbps \$ 802.11n(20M-BW) is 7.2Mbps
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.
- 5. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

| Test Mode: | Mode 1: Transmit (802.11b 1Mbps)               |
|------------|------------------------------------------------|
|            | Mode 2: Transmit (802.11g 6Mbps)               |
|            | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) |


# **1.3.** Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

| Pro | duct                  | Manufacturer | Model No.     | Serial No.    | Power Cord         |
|-----|-----------------------|--------------|---------------|---------------|--------------------|
| 1   | Notebook PC           | DELL         | Latitude 5491 | 1PL56S2       | Non-Shielded, 0.8m |
| 2   | LED Monitor           | ViewSonic    | VX2257-mhd    | UFY163502150  | Non-Shielded, 1.8m |
| 3   | Test Fixture          | N/A          | N/A           | N/A           | N/A                |
| 4   | Microphone & Earphone | RONEVER      | MOE241        | N/A           | N/A                |
| 5   | USB Mouse             | Logitech     | M-U0026       | 1245HS0684F8  | N/A                |
| 6   | Micro SD Card 1GB     | SanDisk      | N/A           | 0801002841D2N | N/A                |

| Sig | nal Cable Type              | Signal cable Description |
|-----|-----------------------------|--------------------------|
| А   | Test Fixture Cable          | Non-Shielded, 1.2m       |
| В   | Test Fixture Cable          | Non-Shielded, 0.2m       |
| С   | HCMI Cable                  | Non-Shielded, 1.8m       |
| D   | USB Cable                   | Shielded, 1.8m           |
| Е   | Microphone & Earphone Cable | Non-Shielded, 1.2m       |
| F   | LAN Cable                   | Non-Shielded, 2.0m       |

# 1.4. Configuration of Tested System



# **1.5.** EUT Exercise Software

- 1. Setup the EUT as shown in Section 1.4.
- 2. Execute software "Ampak RF Test Tool (Ver6.1)" on the Notebook PC.

DEKRA

- 3. Configure the test mode, the test channel, and the data rate.
- 4. Press "OK" to start the continuous Transmit.
- 5. Verify that the EUT works properly.



# 1.6. Test Facility

Ambient conditions in the laboratory:

| Performed Item     | Items            | Required | Actual |
|--------------------|------------------|----------|--------|
|                    | Temperature (°C) | 10~40 °C | 23°C   |
| Conducted Emission | Humidity (%RH)   | 10~90 %  | 70%    |
|                    | Temperature (°C) | 10~40 °C | 25°C   |
| Radiated Emission  | Humidity (%RH)   | 10~90 %  | 72%    |
| Care Institut      | Temperature (°C) | 10~40 °C | 23°C   |
| Conductive         | Humidity (%RH)   | 10~90 %  | 70%    |

| USA    | : | FCC Registration Number: TW3023 |
|--------|---|---------------------------------|
| Canada | : | IC Registration Number: 4075A   |

| Accredited by TAF<br>Accredited Number: 3023              |
|-----------------------------------------------------------|
| DEKRA Testing and Certification Co., Ltd                  |
| No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, |
| Taiwan, R.O.C.                                            |
| 886-2-8601-3788                                           |
| 886-2-8601-3789                                           |
| info.tw@dekra.com                                         |
| http://www.dekra.com.tw                                   |
|                                                           |



# 1.7. List of Test Equipment

| For | Conducted | measurements | /CB3/SR8 |
|-----|-----------|--------------|----------|
|-----|-----------|--------------|----------|

|     | Equipment             | Manufacturer    | Model No.   | Serial No.      | Cali. Date | Due. Date  |
|-----|-----------------------|-----------------|-------------|-----------------|------------|------------|
|     | Temperature Chamber   | WIT GROUP       | TH-1S-B     | EQ-201-00146    | 2019/02/12 | 2020/02/11 |
| Х   | Spectrum Analyzer     | Agilent         | N9010A      | MY48030495      | 2019/10/13 | 2020/10/12 |
| Х   | Peak Power Analyzer   | Keysight        | 8990B       | MY51000410      | 2019/08/01 | 2020/07/31 |
| Х   | Wideband Power Sensor | Keysight        | N1923A      | MY56080003      | 2019/07/25 | 2020/07/24 |
| Х   | Wideband Power Sensor | Keysight        | N1923A      | MY56080004      | 2019/07/25 | 2020/07/24 |
| Х   | EMI Test Receiver     | R&S             | ESCS 30     | 100369          | 2019/11/07 | 2020/11/06 |
| Х   | LISN                  | R&S             | ESH3-Z5     | 836679/017      | 2019/02/09 | 2020/02/08 |
| Х   | LISN                  | R&S             | ENV216      | 100097          | 2019/02/09 | 2020/02/08 |
| Х   | Coaxial Cable         | DEKRA           | RG 400      | LC018-RG        | 2019/06/21 | 2020/06/20 |
| For | Radiated measurements | /Site3/CB8      |             |                 |            |            |
|     | Equipment             | Manufacturer    | Model No.   | Serial No.      | Cali. Date | Due. Date  |
| Х   | Spectrum Analyzer     | R&S             | FSP40       | 100170          | 2019/03/12 | 2020/03/11 |
|     | Loop Antenna          | Teseq           | HLA6121     | 37133           | 2019/10/13 | 2021/10/12 |
| Х   | Bilog Antenna         | Schaffner Chase | CBL6112B    | 2707            | 2019/06/24 | 2020/06/23 |
| Х   | Coaxial Cable         | DEKRA           | RG 214      | LC003-RG        | 2019/06/14 | 2020/06/13 |
| Х   | Pre-Amplifier         | Jet-Power       | JPA-10M1G33 | 170101000330010 | 2019/06/14 | 2020/06/13 |
| Х   | Horn Antenna          | ETS-Lindgren    | 3117        | 00135205        | 2019/05/03 | 2020/05/02 |
| X   | Pre-Amplifier         | EMCI            | EMC012630SE | 980210          | 2019/04/10 | 2020/04/09 |
| Х   | Horn Antenna          | Com-Power       | AH-1840     | 101043          | 2019/01/09 | 2020/01/08 |
| Х   | Amplifier + Cable     | EMCI            | EMC184045SE | 980370          | 2019/03/21 | 2020/03/20 |
| Х   | Filter                | MICRO-TRONICS   | BRM50702    | G270            | 2019/08/06 | 2020/08/05 |
| Х   | Filter                | MICRO-TRONICS   | BRM50716    | G196            | 2019/08/06 | 2020/08/05 |

Note:

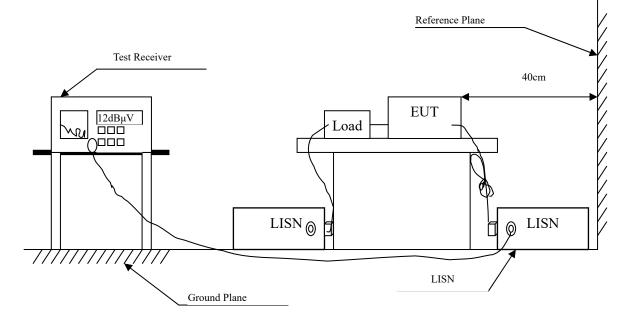
1. All equipments are calibrated every one year.

2. The test instruments marked with "X" are used to measure the final test results.

3. Test Software version : QuieTek EMI 2.0 V2.1.113.

# **1.8.** Uncertainty

Uncertainties have been calculated according to the DEKRA internal document, and is described in each test chapter of this report.


The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.



# 2. Conducted Emission

# 2.1. Test Setup





## 2.2. Limits

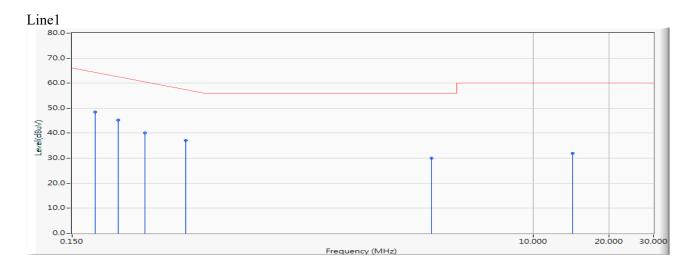
| FCC Part 15 Subpart C Paragraph 15.207 (dBμV) Limit |       |       |  |  |  |  |  |
|-----------------------------------------------------|-------|-------|--|--|--|--|--|
| Frequency                                           | I     | imits |  |  |  |  |  |
| MHz                                                 | QP    | AVG   |  |  |  |  |  |
| 0.15 - 0.50                                         | 66-56 | 56-46 |  |  |  |  |  |
| 0.50-5.0                                            | 56    | 46    |  |  |  |  |  |
| 5.0 - 30                                            | 60    | 50    |  |  |  |  |  |

# 2.3. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

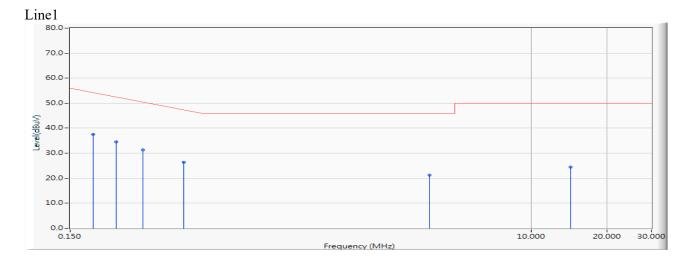

## 2.4. Uncertainty

± 2.26 dB



# 2.5. Test Result of Conducted Emission

| Product    | : | 23.1 inches Bar type Digital Signage                     |
|------------|---|----------------------------------------------------------|
| Test Item  | : | Conducted Emission Test                                  |
| Power Line | : | Line 1                                                   |
| Test Date  | : | 2019/10/04                                               |
| Test Mode  | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz) |

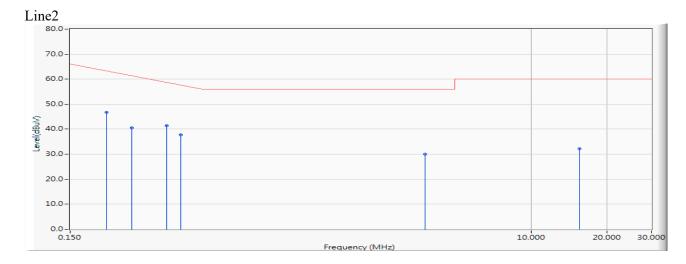



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit  | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|--------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV)        | (dB)    | (dBuV) |               |
| 1 | * | 0.185     | 9.670          | 38.720        | 48.390        | -16.610 | 65.000 | QUASIPEAK     |
| 2 |   | 0.228     | 9.672          | 35.480        | 45.152        | -18.619 | 63.771 | QUASIPEAK     |
| 3 |   | 0.291     | 9.675          | 30.520        | 40.195        | -21.776 | 61.971 | QUASIPEAK     |
| 4 |   | 0.423     | 9.683          | 27.500        | 37.183        | -21.017 | 58.200 | QUASIPEAK     |
| 5 |   | 3.974     | 9.840          | 20.200        | 30.040        | -25.960 | 56.000 | QUASIPEAK     |
| 6 |   | 14.330    | 10.090         | 21.780        | 31.870        | -28.130 | 60.000 | QUASIPEAK     |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "\*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



| Product    | : | 23.1 inches Bar type Digital Signage                     |
|------------|---|----------------------------------------------------------|
| Test Item  | : | Conducted Emission Test                                  |
| Power Line | : | Line 1                                                   |
| Test Date  | : | 2019/10/04                                               |
| Test Mode  | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz) |
|            |   |                                                          |

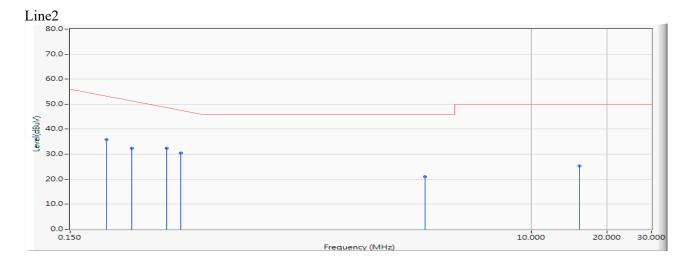



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit  | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|--------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV)        | (dB)    | (dBuV) |               |
| 1 | * | 0.185     | 9.670          | 27.860        | 37.530        | -17.470 | 55.000 | AVERAGE       |
| 2 |   | 0.228     | 9.672          | 24.790        | 34.462        | -19.309 | 53.771 | AVERAGE       |
| 3 |   | 0.291     | 9.675          | 21.550        | 31.225        | -20.746 | 51.971 | AVERAGE       |
| 4 |   | 0.423     | 9.683          | 16.690        | 26.373        | -21.827 | 48.200 | AVERAGE       |
| 5 |   | 3.974     | 9.840          | 11.420        | 21.260        | -24.740 | 46.000 | AVERAGE       |
| 6 |   | 14.330    | 10.090         | 14.380        | 24.470        | -25.530 | 50.000 | AVERAGE       |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "\*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



| Product    | : | 23.1 inches Bar type Digital Signage                     |
|------------|---|----------------------------------------------------------|
| Test Item  | : | Conducted Emission Test                                  |
| Power Line | : | Line 2                                                   |
| Test Date  | : | 2019/10/04                                               |
| Test Mode  | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz) |
|            |   |                                                          |



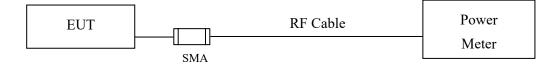

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit  | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|--------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV)        | (dB)    | (dBuV) |               |
| 1 | * | 0.209     | 9.701          | 37.080        | 46.781        | -17.533 | 64.314 | QUASIPEAK     |
| 2 |   | 0.263     | 9.704          | 30.900        | 40.604        | -22.167 | 62.771 | QUASIPEAK     |
| 3 |   | 0.361     | 9.709          | 31.780        | 41.489        | -18.482 | 59.971 | QUASIPEAK     |
| 4 |   | 0.412     | 9.712          | 28.080        | 37.792        | -20.722 | 58.514 | QUASIPEAK     |
| 5 |   | 3.802     | 9.876          | 20.220        | 30.096        | -25.904 | 56.000 | QUASIPEAK     |
| 6 |   | 15.537    | 10.242         | 21.900        | 32.142        | -27.858 | 60.000 | QUASIPEAK     |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "\*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



| Product    | : | 23.1 inches Bar type Digital Signage                     |
|------------|---|----------------------------------------------------------|
| Test Item  | : | Conducted Emission Test                                  |
| Power Line | : | Line 2                                                   |
| Test Date  | : | 2019/10/04                                               |
| Test Mode  | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz) |
|            |   |                                                          |




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit  | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|--------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV)        | (dB)    | (dBuV) |               |
| 1 |   | 0.209     | 9.701          | 26.150        | 35.851        | -18.463 | 54.314 | AVERAGE       |
| 2 |   | 0.263     | 9.704          | 22.710        | 32.414        | -20.357 | 52.771 | AVERAGE       |
| 3 | * | 0.361     | 9.709          | 22.710        | 32.419        | -17.552 | 49.971 | AVERAGE       |
| 4 |   | 0.412     | 9.712          | 20.670        | 30.382        | -18.132 | 48.514 | AVERAGE       |
| 5 |   | 3.802     | 9.876          | 11.230        | 21.106        | -24.894 | 46.000 | AVERAGE       |
| 6 |   | 15.537    | 10.242         | 15.100        | 25.342        | -24.658 | 50.000 | AVERAGE       |

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "\*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



# 3. Peak Power Output

# 3.1. Test Setup



# 3.2. Limits

The maximum peak power shall be less 1 Watt.

# 3.3. Test Procedure

Tested according to C63.10:2013 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using KDB 558074 section 8.3.1.3 PKPM1 Peak power meter method. The maximum average conducted output power using C63.10:2013 Section 11.9.1.3 PKPM1 Peak power meter method.

## 3.4. Uncertainty

± 1.19 dB



# 3.5. Test Result of Peak Power Output

| Product   | : | 23.1 inches Bar type Digital Signage |
|-----------|---|--------------------------------------|
| Test Item | : | Peak Power Output Data               |
| Test Site | : | No.3 OATS                            |
| Test Date | : | 2019/11/04                           |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps)     |

| Channel No | Frequency | For d | Average<br>ifferent Da |      | Ibps) | Peak<br>Power | Required | Result |
|------------|-----------|-------|------------------------|------|-------|---------------|----------|--------|
| Channel No | (MHz)     | 1     | 2                      | 5.5  | 11    | 1             | Limit    | Kesult |
|            |           |       | Measur                 |      |       |               |          |        |
| 01         | 2412      | 15.68 |                        |      |       | 18.88         | <30dBm   | Pass   |
| 06         | 2437      | 15.79 | 15.57                  | 15.5 | 15.42 | 19.01         | <30dBm   | Pass   |
| 11         | 2462      | 15.84 |                        |      |       | 19.07         | <30dBm   | Pass   |

Note: Peak Power Output Value = Reading value on power meter + cable loss



| Product   | : | 23.1 inches Bar type Digital Signage |
|-----------|---|--------------------------------------|
| Test Item | : | Peak Power Output Data               |
| Test Site | : | No.3 OATS                            |
| Test Date | : | 2019/11/04                           |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps)     |

|            | Enggyongy               | Average PowerPeakFor different Data Rate (Mbps)Power |       |       |       |       |       |       |       | Paguirad |                   |        |
|------------|-------------------------|------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|----------|-------------------|--------|
| Channel No | Frequency<br>(MHz)      | 6                                                    | 9     | 12    | 18    | 24    | 36    | 48    | 54    | 6        | Required<br>Limit | Result |
|            | Measurement Level (dBm) |                                                      |       |       |       |       |       |       |       |          |                   |        |
| 01         | 2412                    | 12.52                                                |       |       |       |       |       |       |       | 22.13    | <30dBm            | Pass   |
| 06         | 2437                    | 12.64                                                | 12.56 | 12.48 | 12.39 | 12.31 | 12.23 | 12.16 | 12.09 | 22.08    | <30dBm            | Pass   |
| 11         | 2462                    | 12.95                                                |       |       |       |       |       |       |       | 22.36    | <30dBm            | Pass   |

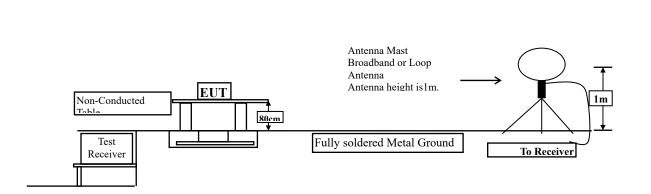
Note: Peak Power Output Value =Reading value on power meter + cable loss



| Product   | : | 23.1 inches Bar type Digital Signage |
|-----------|---|--------------------------------------|
| Test Item | : | Peak Power Output Data               |
| Test Site | : | No.3 OATS                            |
| Test Date | : | 2019/11/04                           |

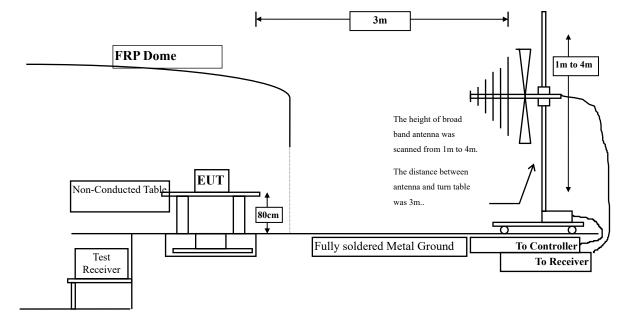
Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

|            | Enggyongy               | Average PowerPeakFor different Data Rate (Mbps)Power |       |      |      |       |       |       |       | Dequired |                   |        |
|------------|-------------------------|------------------------------------------------------|-------|------|------|-------|-------|-------|-------|----------|-------------------|--------|
| Channel No | Frequency<br>(MHz)      | HT0                                                  | HT1   | HT2  | HT3  | HT4   | HT5   | HT6   | HT7   | HT0      | Required<br>Limit | Result |
|            | Measurement Level (dBm) |                                                      |       |      |      |       |       |       |       |          |                   |        |
| 01         | 2412                    | 12.5                                                 | -     |      |      |       | -     | -     |       | 22.15    | <30dBm            | Pass   |
| 06         | 2437                    | 12.76                                                | 12.64 | 12.5 | 12.4 | 12.27 | 12.19 | 12.05 | 11.96 | 22.43    | <30dBm            | Pass   |
| 11         | 2462                    | 12.82                                                |       |      |      |       |       |       |       | 22.59    | <30dBm            | Pass   |


Note: Peak Power Output Value =Reading value on power meter + cable loss

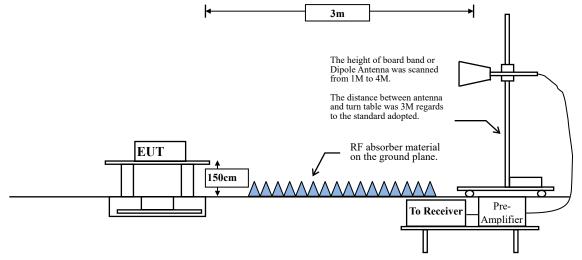


# 4. Radiated Emission


4.1. Test Setup

Radiated Emission Under 30MHz




3m

Radiated Emission Below 1GHz





#### Radiated Emission Above 1GHz



# 4.2. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

| FCC Part 15 Subpart C Paragraph 15.209(a) Limits |                    |                      |  |  |  |  |  |
|--------------------------------------------------|--------------------|----------------------|--|--|--|--|--|
| Frequency<br>MHz                                 | Field strength     | Measurement distance |  |  |  |  |  |
| 11112                                            | (microvolts/meter) | (meter)              |  |  |  |  |  |
| 0.009-0.490                                      | 2400/F(kHz)        | 300                  |  |  |  |  |  |
| 0.490-1.705                                      | 24000/F(kHz)       | 30                   |  |  |  |  |  |
| 1.705-30                                         | 30                 | 30                   |  |  |  |  |  |
| 30-88                                            | 100                | 3                    |  |  |  |  |  |
| 88-216                                           | 150                | 3                    |  |  |  |  |  |
| 216-960                                          | 200                | 3                    |  |  |  |  |  |
| Above 960                                        | 500                | 3                    |  |  |  |  |  |

Remarks: E field strength  $(dB\mu V/m) = 20 \log E$  field strength (uV/m)

# 4.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

## **RBW and VBW Parameter setting:**

According to C63.10 Section 11.12.2.4 Peak measurement procedure

RBW = as specified in Table 1.

VBW  $\geq$  3 x RBW.

| Frequency   | RBW         |
|-------------|-------------|
| 9-150 kHz   | 200-300 Hz  |
| 0.15-30 MHz | 9-10 kHz    |
| 30-1000 MHz | 100-120 kHz |
| > 1000 MHz  | 1 MHz       |

According to C63.10 Section 11.12.2.5 Average measurement procedure

RBW = 1MHz.

VBW = 10Hz, when duty cycle  $\ge$  98 %

VBW  $\geq$  1/T, when duty cycle < 98 %

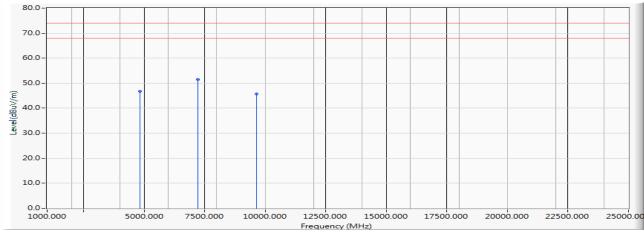
( T refers to the minimum transmission duration over which the transmitter is on and is

| transmitting at its maximum power control level for the tested mode of operation.) |            |                 |      |      |  |  |  |  |
|------------------------------------------------------------------------------------|------------|-----------------|------|------|--|--|--|--|
| 2.4GHz band                                                                        | Duty Cycle | Duty Cycle T 1/ |      | VBW  |  |  |  |  |
|                                                                                    | (%)        | (ms)            | (Hz) | (Hz) |  |  |  |  |
| 802.11b                                                                            | 99.28      | 8.4000          | 119  | 10   |  |  |  |  |
| 802.11g                                                                            | 96.97      | 1.3959          | 716  | 1000 |  |  |  |  |
| 802.11n20                                                                          | 96.43      | 1.3023          | 768  | 1000 |  |  |  |  |

Note: Duty Cycle Refer to Section 9.

## 4.4. Uncertainty

± 4.08 dB above 1GHz

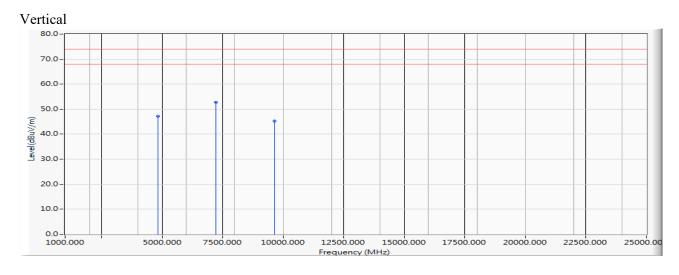

± 4.22 dB below 1GHz



# 4.5. Test Result of Radiated Emission

| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data            |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/29                                 |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2412MHz) |

#### Horizontal




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4824.000  | -11.989        | 58.770        | 46.781        | -27.219 | 74.000   | PEAK          |
| 2 | * | 7236.000  | -12.957        | 64.460        | 51.503        | -22.497 | 74.000   | PEAK          |
| 3 |   | 9648.000  | -13.106        | 58.760        | 45.654        | -28.346 | 74.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data            |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/29                                 |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2412MHz) |



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4824.000  | -11.989        | 59.120        | 47.131        | -26.869 | 74.000   | PEAK          |
| 2 | * | 7236.000  | -12.957        | 65.790        | 52.833        | -21.167 | 74.000   | PEAK          |
| 3 |   | 9648.000  | -13.106        | 58.410        | 45.304        | -28.696 | 74.000   | PEAK          |

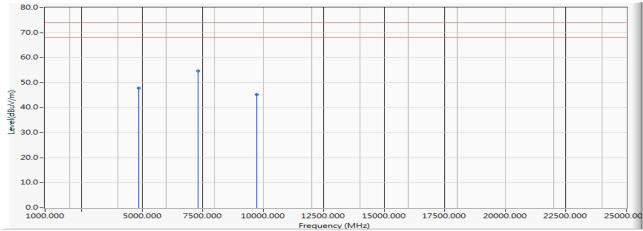
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| Product   | : | 23.1 inches Bar type Digital Signage        |
|-----------|---|---------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data             |
| Test Site | : | No.3 OATS                                   |
| Test Date | : | 2019/10/29                                  |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2437 MHz) |

# Horizontal




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4874.000  | -11.637        | 59.680        | 48.043        | -25.957 | 74.000   | PEAK          |
| 2 | * | 7311.000  | -13.474        | 65.110        | 51.636        | -22.364 | 74.000   | PEAK          |
| 3 |   | 9748.000  | -12.439        | 57.020        | 44.581        | -29.419 | 74.000   | PEAK          |

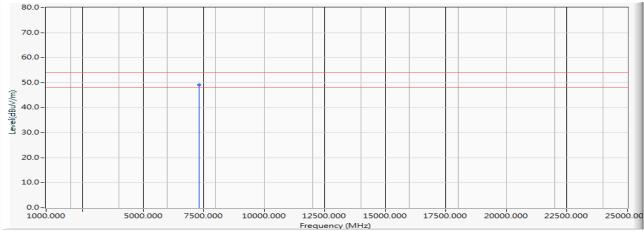
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| Product   | : | 23.1 inches Bar type Digital Signage        |
|-----------|---|---------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data             |
| Test Site | : | No.3 OATS                                   |
| Test Date | : | 2019/10/29                                  |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2437 MHz) |

#### Vertical




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4874.000  | -11.637        | 59.510        | 47.873        | -26.127 | 74.000   | PEAK          |
| 2 | * | 7311.000  | -13.474        | 68.240        | 54.766        | -19.234 | 74.000   | PEAK          |
| 3 |   | 9748.000  | -12.439        | 57.720        | 45.281        | -28.719 | 74.000   | PEAK          |

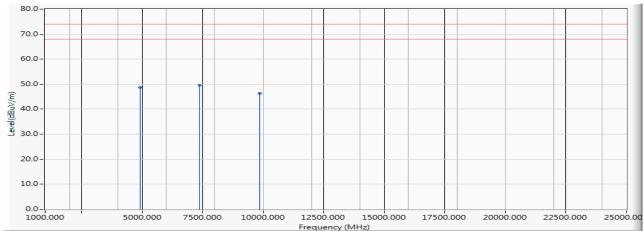
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| Product   | : | 23.1 inches Bar type Digital Signage        |
|-----------|---|---------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data             |
| Test Site | : | No.3 OATS                                   |
| Test Date | : | 2019/10/29                                  |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2437 MHz) |

#### Vertical



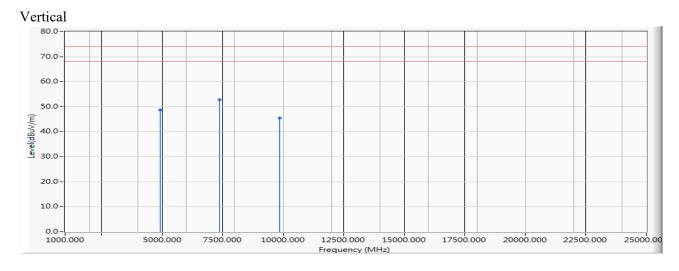

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 | * | 7311.000  | -13.474        | 62.590        | 49.116        | -4.884 | 54.000   | AVERAGE       |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| Product   | : | 23.1 inches Bar type Digital Signage        |
|-----------|---|---------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data             |
| Test Site | : | No.3 OATS                                   |
| Test Date | : | 2019/10/29                                  |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2462 MHz) |

## Horizontal



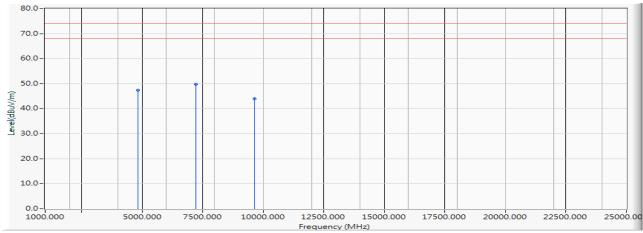

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4924.000  | -11.241        | 59.940        | 48.699        | -25.301 | 74.000   | PEAK          |
| 2 | * | 7386.000  | -14.095        | 63.720        | 49.625        | -24.375 | 74.000   | PEAK          |
| 3 |   | 9848.000  | -13.445        | 59.850        | 46.404        | -27.596 | 74.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | 23.1 inches Bar type Digital Signage        |
|-----------|---|---------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data             |
| Test Site | : | No.3 OATS                                   |
| Test Date | : | 2019/10/29                                  |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2462 MHz) |




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4924.000  | -11.241        | 60.020        | 48.779        | -25.221 | 74.000   | PEAK          |
| 2 | * | 7386.000  | -14.095        | 66.820        | 52.725        | -21.275 | 74.000   | PEAK          |
| 3 |   | 9848.000  | -13.445        | 58.970        | 45.524        | -28.476 | 74.000   | PEAK          |

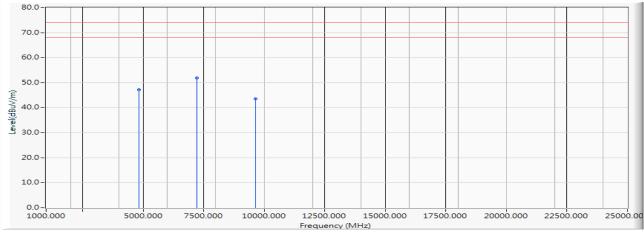
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| : | 23.1 inches Bar type Digital Signage       |
|---|--------------------------------------------|
| : | Harmonic Radiated Emission Data            |
| : | No.3 OATS                                  |
| : | 2019/10/29                                 |
| : | Mode 2: Transmit (802.11g 6Mbps) (2412MHz) |
|   | :                                          |

## Horizontal




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4824.000  | -11.989        | 59.481        | 47.492        | -26.508 | 74.000   | PEAK          |
| 2 | * | 7236.000  | -12.957        | 62.805        | 49.848        | -24.152 | 74.000   | PEAK          |
| 3 |   | 9648.000  | -13.106        | 57.157        | 44.051        | -29.949 | 74.000   | PEAK          |

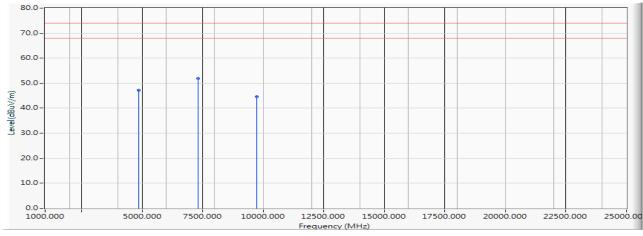
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| : | 23.1 inches Bar type Digital Signage       |
|---|--------------------------------------------|
| : | Harmonic Radiated Emission Data            |
| : | No.3 OATS                                  |
| : | 2019/10/29                                 |
| : | Mode 2: Transmit (802.11g 6Mbps) (2412MHz) |
|   | :                                          |

# Vertical




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4824.000  | -11.989        | 59.122        | 47.133        | -26.867 | 74.000   | PEAK          |
| 2 | * | 7236.000  | -12.957        | 64.888        | 51.931        | -22.069 | 74.000   | PEAK          |
| 3 |   | 9648.000  | -13.106        | 56.672        | 43.566        | -30.434 | 74.000   | PEAK          |

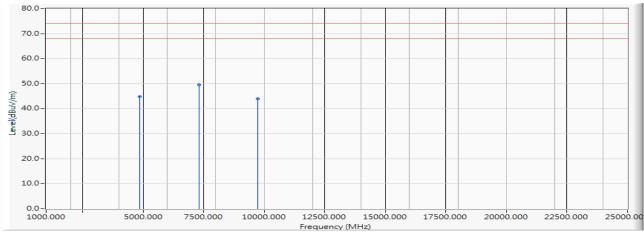
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| Product   | : | 23.1 inches Bar type Digital Signage        |
|-----------|---|---------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data             |
| Test Site | : | No.3 OATS                                   |
| Test Date | : | 2019/10/29                                  |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2437 MHz) |

## Horizontal



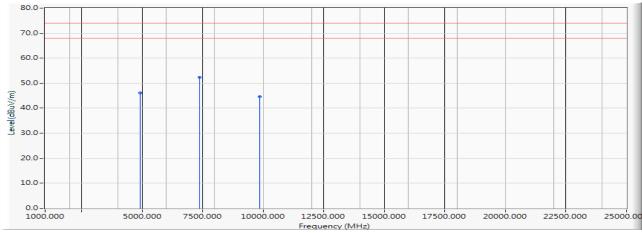

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4874.000  | -11.637        | 58.907        | 47.270        | -26.730 | 74.000   | PEAK          |
| 2 | * | 7311.000  | -13.474        | 65.479        | 52.005        | -21.995 | 74.000   | PEAK          |
| 3 |   | 9748.000  | -12.439        | 57.139        | 44.700        | -29.300 | 74.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| Product   | : | 23.1 inches Bar type Digital Signage        |
|-----------|---|---------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data             |
| Test Site | : | No.3 OATS                                   |
| Test Date | : | 2019/10/29                                  |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2437 MHz) |

# Vertical

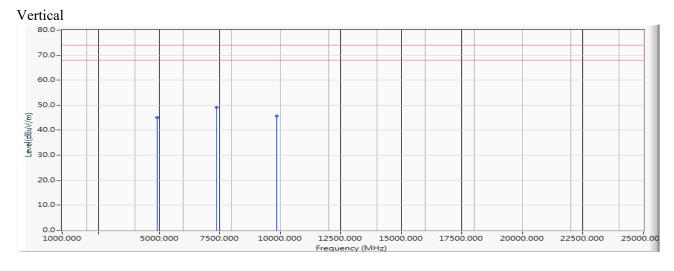



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4874.000  | -11.637        | 56.379        | 44.742        | -29.258 | 74.000   | PEAK          |
| 2 | * | 7311.000  | -13.474        | 63.024        | 49.550        | -24.450 | 74.000   | PEAK          |
| 3 |   | 9748.000  | -12.439        | 56.383        | 43.944        | -30.056 | 74.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| Product   | : | 23.1 inches Bar type Digital Signage        |
|-----------|---|---------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data             |
| Test Site | : | No.3 OATS                                   |
| Test Date | : | 2019/10/29                                  |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2462 MHz) |

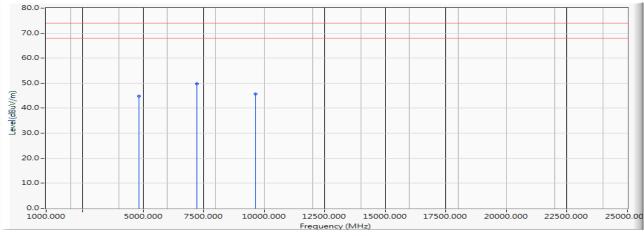



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4924.000  | -11.241        | 57.421        | 46.180        | -27.820 | 74.000   | PEAK          |
| 2 | * | 7386.000  | -14.095        | 66.468        | 52.373        | -21.627 | 74.000   | PEAK          |
| 3 |   | 9848.000  | -13.445        | 58.020        | 44.574        | -29.426 | 74.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| Product   | : | 23.1 inches Bar type Digital Signage        |
|-----------|---|---------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data             |
| Test Site | : | No.3 OATS                                   |
| Test Date | : | 2019/10/29                                  |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2462 MHz) |

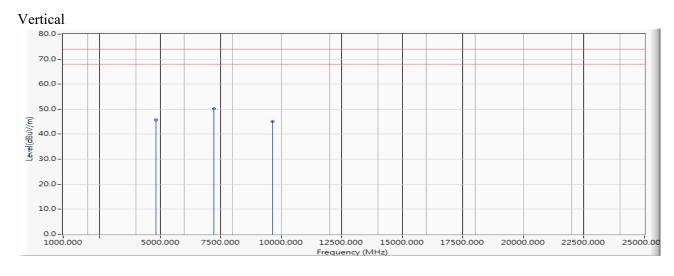



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4924.000  | -11.241        | 56.179        | 44.938        | -29.062 | 74.000   | PEAK          |
| 2 | * | 7386.000  | -14.095        | 63.262        | 49.167        | -24.833 | 74.000   | PEAK          |
| 3 |   | 9848.000  | -13.445        | 59.101        | 45.655        | -28.345 | 74.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| Product   | : | 23.1 inches Bar type Digital Signage                    |
|-----------|---|---------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                         |
| Test Site | : | No.3 OATS                                               |
| Test Date | : | 2019/10/29                                              |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2412MHz) |




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4824.000  | -11.989        | 56.858        | 44.869        | -29.131 | 74.000   | PEAK          |
| 2 | * | 7236.000  | -12.957        | 62.717        | 49.760        | -24.240 | 74.000   | PEAK          |
| 3 |   | 9648.000  | -13.106        | 58.816        | 45.710        | -28.290 | 74.000   | PEAK          |

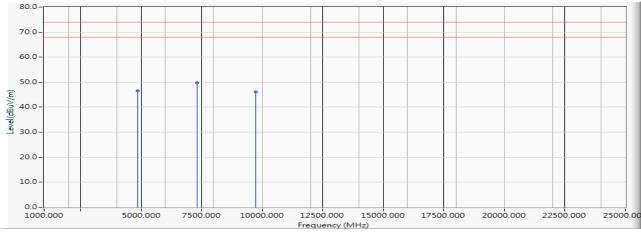
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..



| Product   | : | 23.1 inches Bar type Digital Signage                    |
|-----------|---|---------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                         |
| Test Site | : | No.3 OATS                                               |
| Test Date | : | 2019/10/29                                              |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2412MHz) |



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4824.000  | -11.989        | 57.634        | 45.645        | -28.355 | 74.000   | PEAK          |
| 2 | * | 7236.000  | -12.957        | 63.158        | 50.201        | -23.799 | 74.000   | PEAK          |
| 3 |   | 9648.000  | -13.106        | 58.152        | 45.046        | -28.954 | 74.000   | PEAK          |


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..

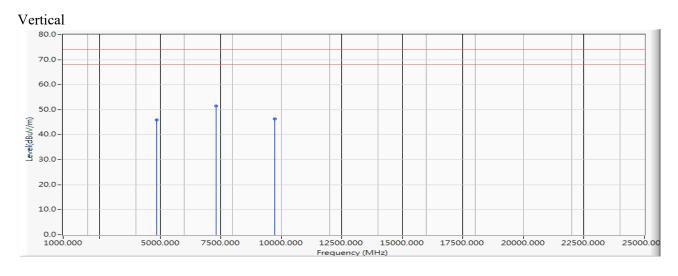


- Product : 23.1 inches Bar type Digital Signage
- Test Item : Harmonic Radiated Emission Data
- Test Site : No.3 OATS
- Test Date : 2019/10/29

Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437 MHz)

## Horizontal




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4874.000  | -11.637        | 58.135        | 46.498        | -27.502 | 74.000   | PEAK          |
| 2 | * | 7311.000  | -13.474        | 63.178        | 49.704        | -24.296 | 74.000   | PEAK          |
| 3 |   | 9748.000  | -12.439        | 58.476        | 46.037        | -27.963 | 74.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..

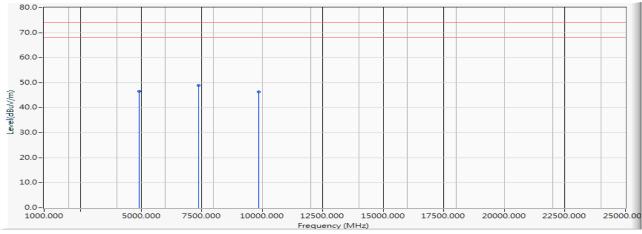


- Product : 23.1 inches Bar type Digital Signage
- Test Item : Harmonic Radiated Emission Data
- Test Site : No.3 OATS
- Test Date : 2019/10/29

Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437 MHz)



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4874.000  | -11.637        | 57.499        | 45.862        | -28.138 | 74.000   | PEAK          |
| 2 | * | 7311.000  | -13.474        | 64.884        | 51.410        | -22.590 | 74.000   | PEAK          |
| 3 |   | 9748.000  | -12.439        | 58.855        | 46.416        | -27.584 | 74.000   | PEAK          |


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..

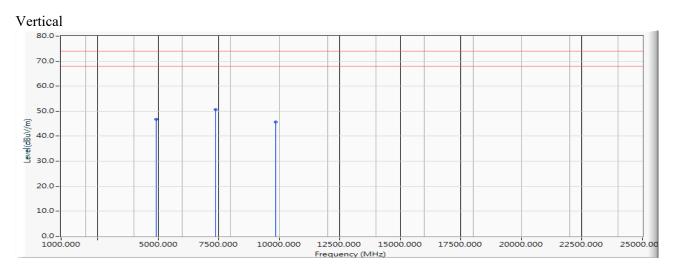


- Product : 23.1 inches Bar type Digital Signage
- Test Item : Harmonic Radiated Emission Data
- Test Site : No.3 OATS
- Test Date : 2019/10/29

Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462 MHz)

## Horizontal




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4924.000  | -11.241        | 57.790        | 46.549        | -27.451 | 74.000   | PEAK          |
| 2 | * | 7386.000  | -14.095        | 63.067        | 48.972        | -25.028 | 74.000   | PEAK          |
| 3 |   | 9848.000  | -13.445        | 59.859        | 46.413        | -27.587 | 74.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..

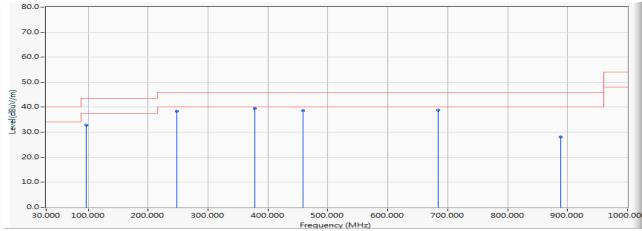


- Product : 23.1 inches Bar type Digital Signage
- Test Item : Harmonic Radiated Emission Data
- Test Site : No.3 OATS
- Test Date : 2019/10/29

Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462 MHz)



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 4924.000  | -11.241        | 57.964        | 46.723        | -27.277 | 74.000   | PEAK          |
| 2 | * | 7386.000  | -14.095        | 64.656        | 50.561        | -23.439 | 74.000   | PEAK          |
| 3 |   | 9848.000  | -13.445        | 59.115        | 45.669        | -28.331 | 74.000   | PEAK          |


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report..

.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | General Radiated Emission Data             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/11/01                                 |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps)(2437 MHz) |

### Horizontal



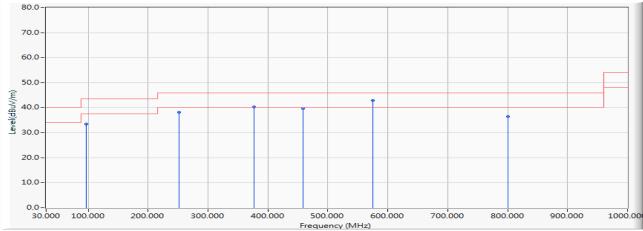

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 97.478    | -16.559        | 49.382        | 32.823        | -10.677 | 43.500   | PEAK          |
| 2 |   | 247.899   | -18.059        | 56.439        | 38.379        | -7.621  | 46.000   | PEAK          |
| 3 | * | 378.638   | -12.074        | 51.643        | 39.569        | -6.431  | 46.000   | PEAK          |
| 4 |   | 458.768   | -10.460        | 49.041        | 38.581        | -7.419  | 46.000   | PEAK          |
| 5 |   | 683.696   | -9.263         | 48.177        | 38.914        | -7.086  | 46.000   | PEAK          |
| 6 |   | 888.942   | -9.028         | 37.062        | 28.034        | -17.966 | 46.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | General Radiated Emission Data             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/11/01                                 |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps)(2437 MHz) |

Vertical



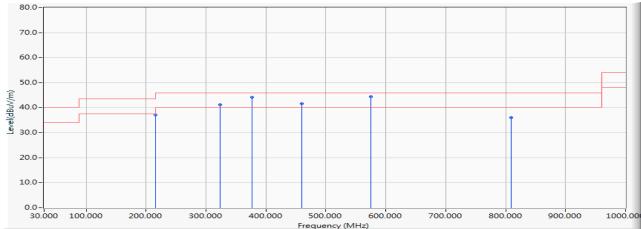

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 80.609    | -19.163        | 56.576        | 37.413        | -2.587  | 40.000   | PEAK          |
| 2 |   | 351.928   | -13.196        | 54.157        | 40.961        | -5.039  | 46.000   | PEAK          |
| 3 |   | 405.348   | -13.330        | 56.810        | 43.480        | -2.520  | 46.000   | PEAK          |
| 4 | * | 458.768   | -10.460        | 54.470        | 44.010        | -1.990  | 46.000   | PEAK          |
| 5 |   | 593.725   | -6.884         | 41.327        | 34.443        | -11.557 | 46.000   | PEAK          |
| 6 |   | 810.217   | -8.944         | 44.235        | 35.291        | -10.709 | 46.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | General Radiated Emission Data             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/11/01                                 |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps)(2437 MHz) |



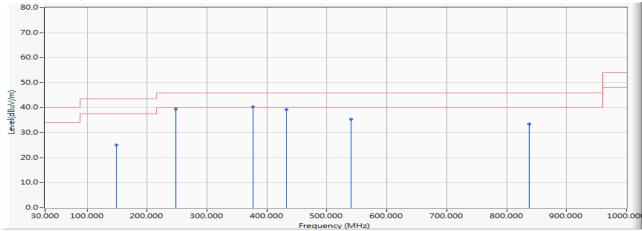

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 97.478    | -16.559        | 50.013        | 33.454        | -10.046 | 43.500   | PEAK          |
| 2 |   | 252.116   | -17.982        | 56.167        | 38.185        | -7.815  | 46.000   | PEAK          |
| 3 |   | 377.232   | -12.123        | 52.411        | 40.288        | -5.712  | 46.000   | PEAK          |
| 4 |   | 458.768   | -10.460        | 50.125        | 39.665        | -6.335  | 46.000   | PEAK          |
| 5 | * | 575.449   | -8.191         | 51.026        | 42.835        | -3.165  | 46.000   | PEAK          |
| 6 |   | 800.377   | -8.930         | 45.406        | 36.476        | -9.524  | 46.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | General Radiated Emission Data             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/11/01                                 |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps)(2437 MHz) |






|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 215.565   | -18.132        | 55.255        | 37.123        | -6.377  | 43.500   | PEAK          |
| 2 |   | 323.812   | -14.026        | 55.205        | 41.179        | -4.821  | 46.000   | PEAK          |
| 3 |   | 377.232   | -12.123        | 56.346        | 44.223        | -1.777  | 46.000   | PEAK          |
| 4 |   | 460.174   | -10.529        | 52.107        | 41.579        | -4.421  | 46.000   | PEAK          |
| 5 | * | 575.449   | -8.191         | 52.584        | 44.393        | -1.607  | 46.000   | PEAK          |
| 6 |   | 808.812   | -8.946         | 44.907        | 35.961        | -10.039 | 46.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.



| Product   | : | 23.1 inches Bar type Digital Signage                     |
|-----------|---|----------------------------------------------------------|
| Test Item | : | General Radiated Emission Data                           |
| Test Site | : | No.3 OATS                                                |
| Test Date | : | 2019/11/01                                               |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2437 MHz) |



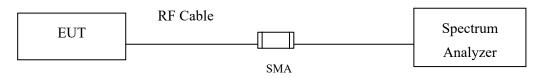
|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 149.493   | -19.726        | 44.817        | 25.091        | -18.409 | 43.500   | PEAK          |
| 2 |   | 247.899   | -18.059        | 57.595        | 39.535        | -6.465  | 46.000   | PEAK          |
| 3 | * | 377.232   | -12.123        | 52.460        | 40.337        | -5.663  | 46.000   | PEAK          |
| 4 |   | 432.058   | -10.761        | 49.915        | 39.154        | -6.846  | 46.000   | PEAK          |
| 5 |   | 540.304   | -11.395        | 46.849        | 35.454        | -10.546 | 46.000   | PEAK          |
| 6 |   | 838.333   | -8.439         | 41.993        | 33.554        | -12.446 | 46.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.



| Product   | : | 23.1 inches Bar type Digital Signage                     |
|-----------|---|----------------------------------------------------------|
| Test Item | : | General Radiated Emission Data                           |
| Test Site | : | No.3 OATS                                                |
| Test Date | : | 2019/11/01                                               |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2437 MHz) |




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 |   | 97.478    | -16.559        | 50.891        | 34.332        | -9.168 | 43.500   | PEAK          |
| 2 |   | 215.565   | -18.132        | 55.429        | 37.297        | -6.203 | 43.500   | PEAK          |
| 3 | * | 350.522   | -13.279        | 57.299        | 44.019        | -1.981 | 46.000   | PEAK          |
| 4 |   | 432.058   | -10.761        | 53.048        | 42.287        | -3.713 | 46.000   | PEAK          |
| 5 |   | 485.478   | -11.794        | 52.445        | 40.650        | -5.350 | 46.000   | PEAK          |
| 6 |   | 810.217   | -8.944         | 45.991        | 37.047        | -8.953 | 46.000   | PEAK          |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

# 5. **RF** antenna conducted test

# 5.1. Test Setup

## **RF** antenna Conducted Measurement:

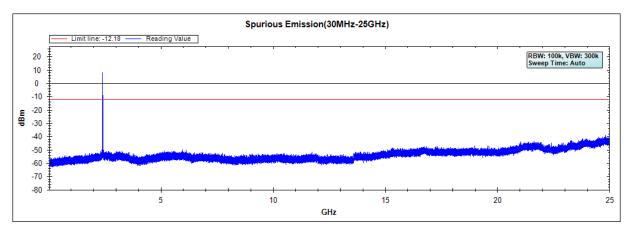


# 5.2. Limits

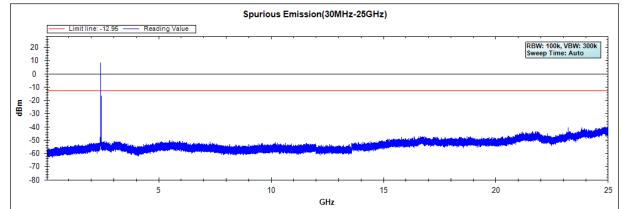
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

## 5.3. Test Procedure

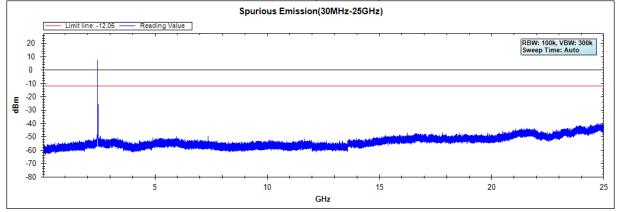
The EUT was tested according to C63.10:2013 Section 11.11 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.


## 5.4. Uncertainty

The measurement uncertainty Conducted is defined as  $\pm 1.20$ dB


# 5.5. Test Result of RF antenna conducted test

| Product   | : | 23.1 inches Bar type Digital Signage |
|-----------|---|--------------------------------------|
| Test Item | : | RF antenna conducted test            |
| Test Site | : | No.3 OATS                            |
| Test Date | : | 2019/11/04                           |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps)     |

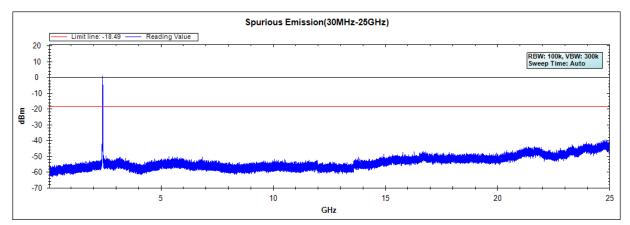

### Channel 01 (2412MHz)



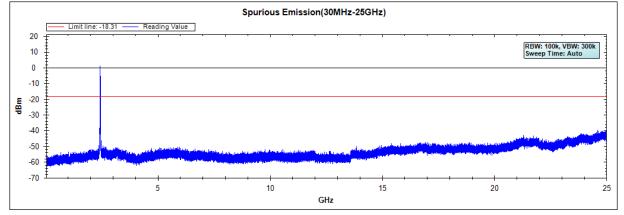
#### Channel 06 (2437MHz)



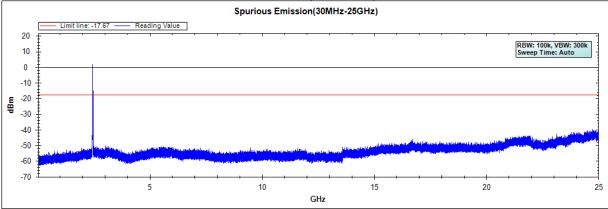
### Channel 11 (2462MHz)




Note: The above test pattern is synthesized by multiple of the frequency range.




| Product   | : | 23.1 inches Bar type Digital Signage |
|-----------|---|--------------------------------------|
| Test Item | : | RF Antenna Conducted Spurious        |
| Test Site | : | No.3 OATS                            |
| Test Date | : | 2019/11/04                           |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps)     |

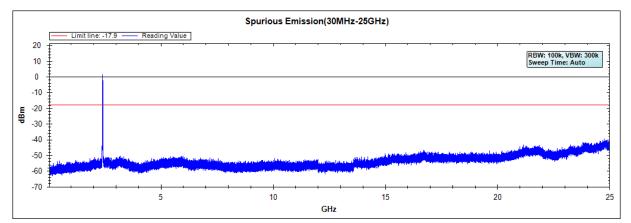

# Channel 01 (2412MHz)



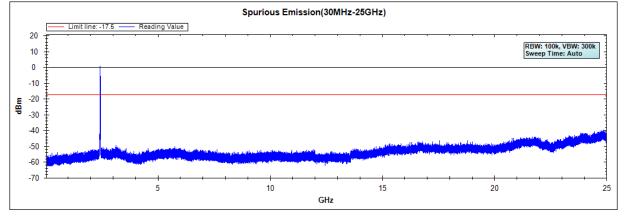
## Channel 06 (2437MHz)



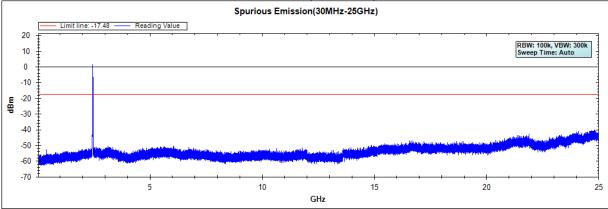
### Channel 11 (2462MHz)




Note: The above test pattern is synthesized by multiple of the frequency range.




| Product   | : | 23.1 inches Bar type Digital Signage           |
|-----------|---|------------------------------------------------|
| Test Item | : | RF Antenna Conducted Spurious                  |
| Test Site | : | No.3 OATS                                      |
| Test Date | : | 2019/11/04                                     |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) |


# Channel 01 (2412MHz)

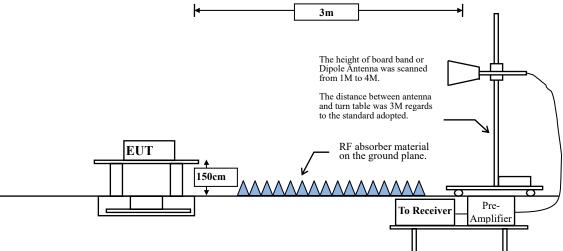


## Channel 06 (2437MHz)



### Channel 11 (2462MHz)




Note: The above test pattern is synthesized by multiple of the frequency range.



# 6. Band Edge

# 6.1. Test Setup





## 6.2. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

# 6.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to ANSI C63.10, 2013 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

## **RBW and VBW Parameter setting:**

According to C63.10 Section 11.12.2.4 Peak measurement procedure

RBW = as specified in Table 1.

VBW  $\geq$  3 x RBW.

| Frequency   | RBW         |
|-------------|-------------|
| 9-150 kHz   | 200-300 Hz  |
| 0.15-30 MHz | 9-10 kHz    |
| 30-1000 MHz | 100-120 kHz |
| > 1000 MHz  | 1 MHz       |

According to C63.10 Section 11.12.2.5 Average measurement procedure

RBW = 1MHz.

VBW = 10Hz, when duty cycle  $\ge$  98 %

VBW  $\geq$  1/T, when duty cycle < 98 %

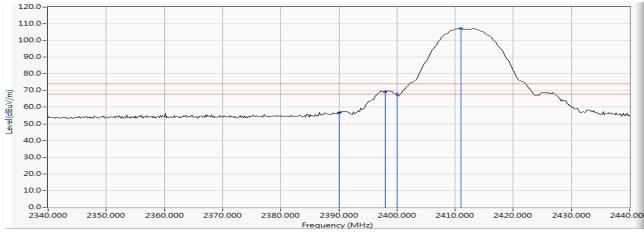
( T refers to the minimum transmission duration over which the transmitter is on and is

| transmitting at its maximum power control level for the tested mode of operation.) |            |        |      |      |  |  |  |
|------------------------------------------------------------------------------------|------------|--------|------|------|--|--|--|
| 2.4GHz band                                                                        | Duty Cycle | Т      | 1/T  | VBW  |  |  |  |
|                                                                                    | (%)        | (ms)   | (Hz) | (Hz) |  |  |  |
| 802.11b                                                                            | 99.28      | 8.4000 | 119  | 10   |  |  |  |
| 802.11g                                                                            | 96.97      | 1.3959 | 716  | 1000 |  |  |  |
| 802.11n20                                                                          | 96.43      | 1.3023 | 768  | 1000 |  |  |  |

Note: Duty Cycle Refer to Section 9.

## 6.4. Uncertainty

± 4.08 dB above 1GHz

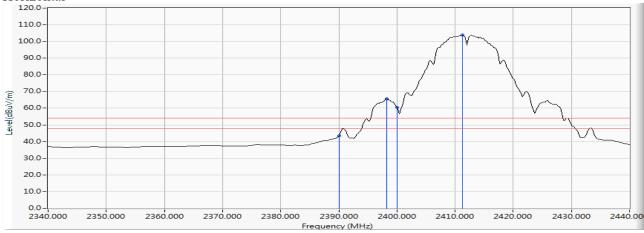

± 4.22 dB below 1GHz



# 6.5. Test Result of Band Edge

| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2412MHz) |

### Horizontal



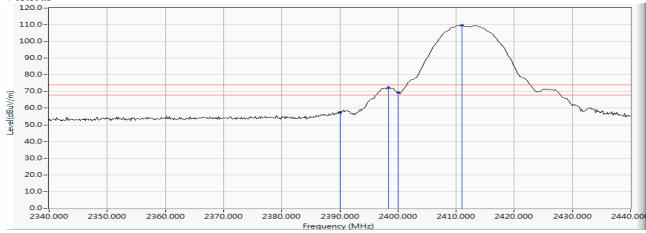

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 2390.000  | 12.899         | 43.643        | 56.542        | -17.458 | 74.000   | PEAK          |
| 2 |   | 2397.971  | 12.947         | 56.317        | 69.264        | -4.736  | 74.000   | PEAK          |
| 3 |   | 2400.000  | 12.961         | 54.917        | 67.878        |         |          | PEAK          |
| 4 | * | 2411.014  | 13.035         | 94.253        | 107.288       |         |          | PEAK          |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2412MHz) |




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 2390.000  | 12.899         | 30.678        | 43.577        | -10.423 | 54.000   | AVERAGE       |
| 2 |   | 2398.261  | 12.950         | 52.816        | 65.765        | 11.765  | 54.000   | AVERAGE       |
| 3 |   | 2400.000  | 12.961         | 47.378        | 60.339        |         |          | AVERAGE       |
| 4 | * | 2411.304  | 13.038         | 90.894        | 103.931       |         |          | AVERAGE       |

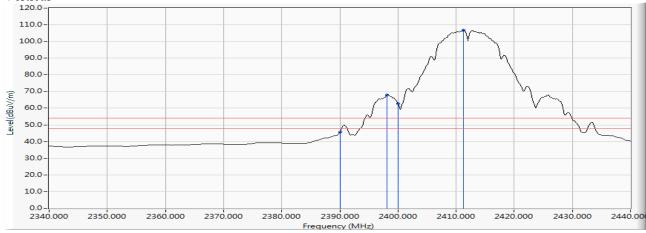
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2412MHz) |

### Vertical



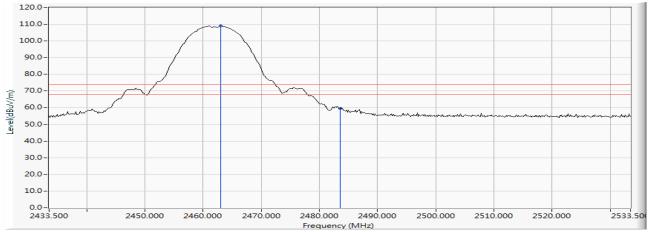

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 2390.000  | 12.899         | 44.248        | 57.147        | -16.853 | 74.000   | PEAK          |
| 2 |   | 2398.406  | 12.951         | 59.304        | 72.254        | -1.746  | 74.000   | PEAK          |
| 3 |   | 2400.000  | 12.961         | 56.463        | 69.424        |         |          | PEAK          |
| 4 | * | 2411.014  | 13.035         | 96.819        | 109.854       |         |          | PEAK          |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2412MHz) |

#### Vertical

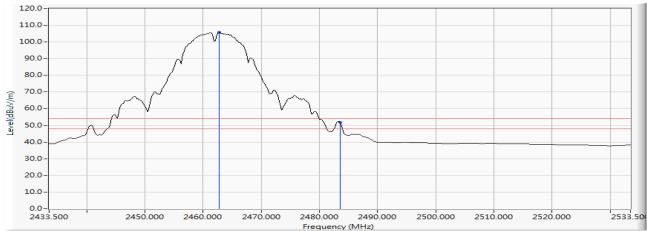



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 |   | 2390.000  | 12.899         | 32.678        | 45.577        | -8.423 | 54.000   | AVERAGE       |
| 2 |   | 2398.116  | 12.947         | 55.091        | 68.039        | 14.039 | 54.000   | AVERAGE       |
| 3 |   | 2400.000  | 12.961         | 49.814        | 62.775        |        |          | AVERAGE       |
| 4 | * | 2411.304  | 13.038         | 93.652        | 106.689       |        |          | AVERAGE       |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2462MHz) |



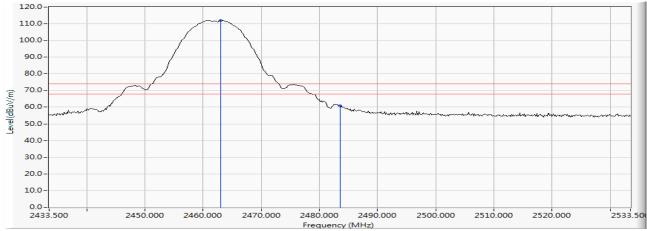

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 | * | 2463.065  | 13.345         | 95.651        | 108.995       |         |          | PEAK          |
| 2 |   | 2483.500  | 13.375         | 46.091        | 59.465        | -14.535 | 74.000   | PEAK          |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2462MHz) |



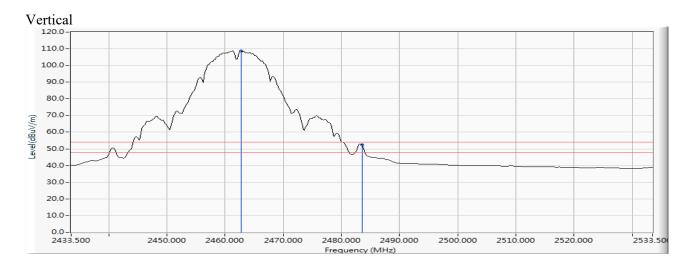

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 | * | 2462.775  | 13.344         | 92.437        | 105.781       |        |          | AVERAGE       |
| 2 |   | 2483.500  | 13.375         | 38.516        | 51.890        | -2.110 | 54.000   | AVERAGE       |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps) (2462MHz) |

## Vertical

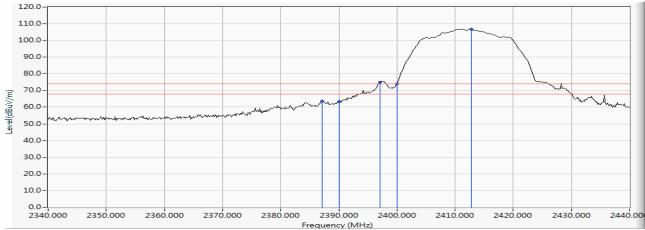



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 | * | 2463.065  | 13.345         | 98.739        | 112.083       |         |          | PEAK          |
| 2 |   | 2483.500  | 13.375         | 47.541        | 60.915        | -13.085 | 74.000   | PEAK          |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| : | 23.1 inches Bar type Digital Signage       |
|---|--------------------------------------------|
| : | Band Edge Data                             |
| : | No.3 OATS                                  |
| : | 2019/10/23                                 |
| : | Mode 1: Transmit (802.11b 1Mbps) (2462MHz) |
|   | :<br>:<br>:<br>:                           |

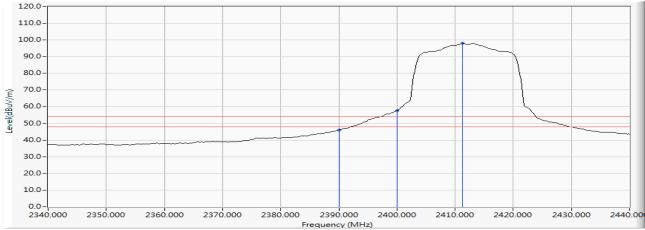



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 | * | 2462.775  | 13.344         | 95.467        | 108.811       |        |          | AVERAGE       |
| 2 |   | 2483.500  | 13.375         | 38.966        | 52.340        | -1.660 | 54.000   | AVERAGE       |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2412MHz) |



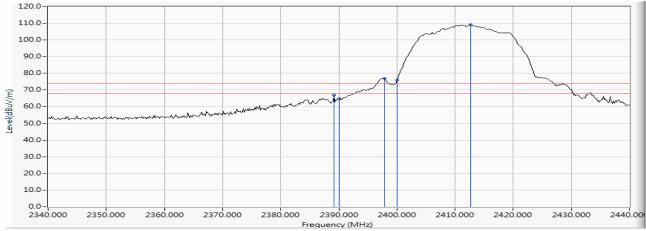

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin  | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|---------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)    | (dBuV/m) |               |
| 1 |   | 2387.101  | 12.883         | 50.883        | 63.766        | -10.234 | 74.000   | PEAK          |
| 2 |   | 2390.000  | 12.899         | 50.520        | 63.419        | -10.581 | 74.000   | PEAK          |
| 3 |   | 2397.101  | 12.941         | 61.894        | 74.835        |         |          | PEAK          |
| 4 |   | 2400.000  | 12.961         | 61.115        | 74.076        |         |          | PEAK          |
| 5 | * | 2412.754  | 13.048         | 93.820        | 106.868       |         |          | PEAK          |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2412MHz) |




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 |   | 2390.000  | 12.899         | 33.213        | 46.112        | -7.888 | 54.000   | AVERAGE       |
| 2 |   | 2400.000  | 12.961         | 44.680        | 57.641        | 3.641  | 54.000   | AVERAGE       |
| 3 | * | 2411.304  | 13.038         | 84.987        | 98.024        |        |          | AVERAGE       |

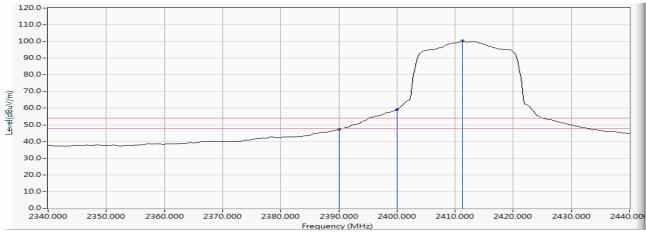
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2412MHz) |

## Vertical



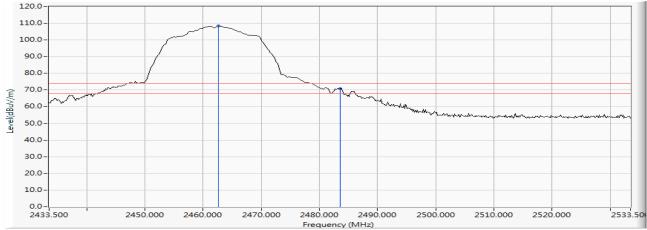

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 |   | 2389.130  | 12.894         | 53.887        | 66.781        | -7.219 | 74.000   | PEAK          |
| 2 |   | 2390.000  | 12.899         | 51.779        | 64.678        | -9.322 | 74.000   | PEAK          |
| 3 |   | 2397.826  | 12.946         | 63.862        | 76.808        |        |          | PEAK          |
| 4 |   | 2400.000  | 12.961         | 63.024        | 75.985        |        |          | PEAK          |
| 5 | * | 2412.609  | 13.046         | 96.058        | 109.104       |        |          | PEAK          |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2412MHz) |

### Vertical

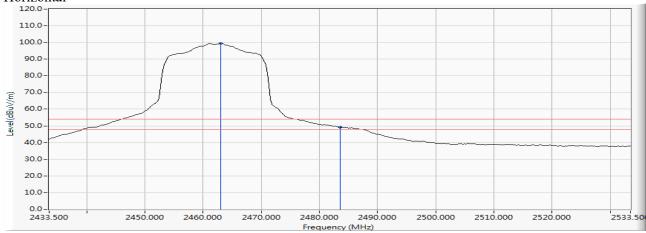



|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 |   | 2390.000  | 12.899         | 34.474        | 47.373        | -6.627 | 54.000   | AVERAGE       |
| 2 |   | 2400.000  | 12.961         | 46.111        | 59.072        |        |          | AVERAGE       |
| 3 | * | 2411.304  | 13.038         | 87.199        | 100.236       |        |          | AVERAGE       |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2462MHz) |



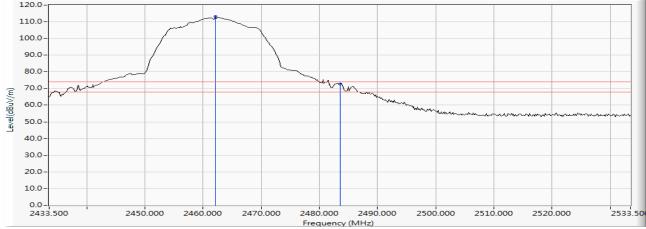

|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 | * | 2462.630  | 13.343         | 95.063        | 108.407       |        |          | PEAK          |
| 2 |   | 2483.500  | 13.375         | 57.343        | 70.717        | -3.283 | 74.000   | PEAK          |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2462MHz) |




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 | * | 2463.065  | 13.345         | 86.130        | 99.474        |        |          | AVERAGE       |
| 2 |   | 2483.500  | 13.375         | 35.712        | 49.086        | -4.914 | 54.000   | AVERAGE       |

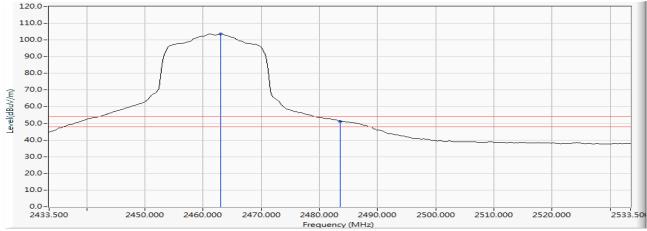
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2462MHz) |

### Vertical




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 | * | 2462.051  | 13.343         | 99.772        | 113.115       |        |          | PEAK          |
| 2 |   | 2483.500  | 13.375         | 59.479        | 72.853        | -1.147 | 74.000   | PEAK          |

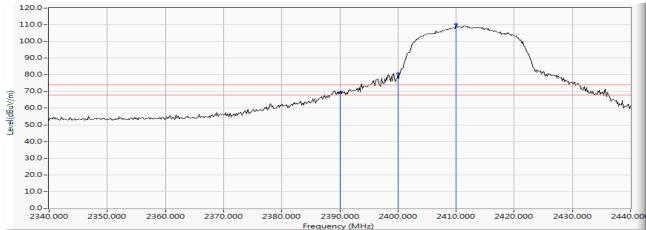
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage       |
|-----------|---|--------------------------------------------|
| Test Item | : | Band Edge Data                             |
| Test Site | : | No.3 OATS                                  |
| Test Date | : | 2019/10/23                                 |
| Test Mode | : | Mode 2: Transmit (802.11g 6Mbps) (2462MHz) |

## Vertical




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 | * | 2463.065  | 13.345         | 90.280        | 103.624       |        |          | AVERAGE       |
| 2 |   | 2483.500  | 13.375         | 37.892        | 51.266        | -2.734 | 54.000   | AVERAGE       |

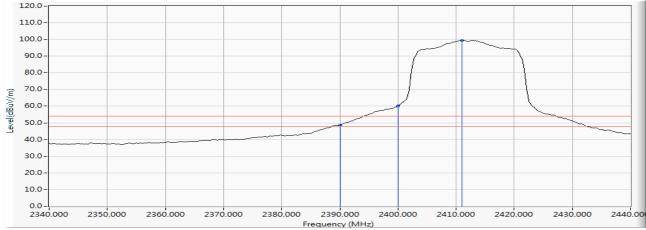
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage                     |
|-----------|---|----------------------------------------------------------|
| Test Item | : | Band Edge Data                                           |
| Test Site | : | No.3 OATS                                                |
| Test Date | : | 2019/10/23                                               |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz) |

### Horizontal




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 |   | 2390.000  | 12.899         | 56.681        | 69.580        | -4.420 | 74.000   | PEAK          |
| 2 |   | 2400.000  | 12.961         | 67.679        | 80.640        |        |          | PEAK          |
| 3 | * | 2410.000  | 13.028         | 97.352        | 110.380       |        |          | PEAK          |

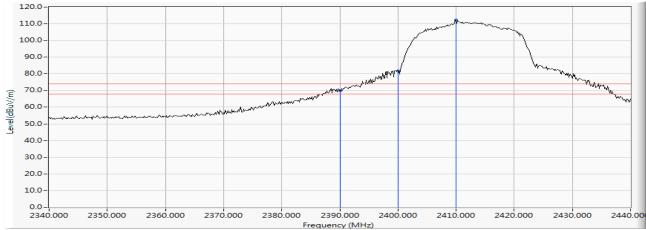
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage                     |
|-----------|---|----------------------------------------------------------|
| Test Item | : | Band Edge Data                                           |
| Test Site | : | No.3 OATS                                                |
| Test Date | : | 2019/10/23                                               |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz) |

### Horizontal




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 |   | 2390.000  | 12.899         | 35.819        | 48.718        | -5.282 | 54.000   | AVERAGE       |
| 2 |   | 2400.000  | 12.961         | 47.256        | 60.217        |        |          | AVERAGE       |
| 3 | * | 2411.014  | 13.035         | 86.414        | 99.449        |        |          | AVERAGE       |

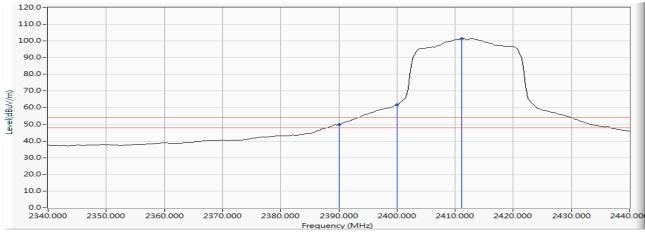
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage                     |
|-----------|---|----------------------------------------------------------|
| Test Item | : | Band Edge Data                                           |
| Test Site | : | No.3 OATS                                                |
| Test Date | : | 2019/10/23                                               |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz) |

## Vertical




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 |   | 2390.000  | 12.899         | 56.940        | 69.839        | -4.161 | 74.000   | PEAK          |
| 2 |   | 2400.000  | 12.961         | 68.813        | 81.774        |        |          | PEAK          |
| 3 | * | 2410.000  | 13.028         | 99.157        | 112.185       |        |          | PEAK          |

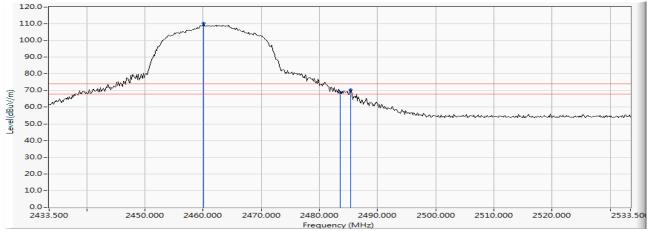
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage                     |
|-----------|---|----------------------------------------------------------|
| Test Item | : | Band Edge Data                                           |
| Test Site | : | No.3 OATS                                                |
| Test Date | : | 2019/10/23                                               |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz) |

## Vertical




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 |   | 2390.000  | 12.899         | 36.998        | 49.897        | -4.103 | 54.000   | AVERAGE       |
| 2 |   | 2400.000  | 12.961         | 48.789        | 61.750        |        |          | AVERAGE       |
| 3 | * | 2411.159  | 13.036         | 88.400        | 101.436       |        |          | AVERAGE       |

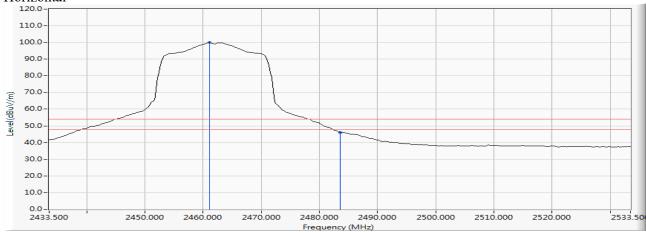
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage                     |
|-----------|---|----------------------------------------------------------|
| Test Item | : | Band Edge Data                                           |
| Test Site | : | No.3 OATS                                                |
| Test Date | : | 2019/10/23                                               |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz) |

## Horizontal




|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 | * | 2460.022  | 13.336         | 96.975        | 110.311       |        |          | PEAK          |
| 2 |   | 2483.500  | 13.375         | 55.599        | 68.973        | -5.027 | 74.000   | PEAK          |
| 3 |   | 2485.384  | 13.376         | 57.086        | 70.463        | -3.537 | 74.000   | PEAK          |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage                     |
|-----------|---|----------------------------------------------------------|
| Test Item | : | Band Edge Data                                           |
| Test Site | : | No.3 OATS                                                |
| Test Date | : | 2019/10/23                                               |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz) |

## Horizontal



|   |   | Frequency Correct Factor |        | Frequency Correct Factor Reading Level Measure Level |          | Margin | Limit    | Detector Type |
|---|---|--------------------------|--------|------------------------------------------------------|----------|--------|----------|---------------|
|   |   | (MHz)                    | (dB)   | (dBuV)                                               | (dBuV/m) | (dB)   | (dBuV/m) |               |
| 1 | * | 2461.036                 | 13.339 | 86.633                                               | 99.973   |        |          | AVERAGE       |
| 2 |   | 2483.500                 | 13.375 | 32.782                                               | 46.156   | -7.844 | 54.000   | AVERAGE       |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| Product   | : | 23.1 inches Bar type Digital Signage                     |
|-----------|---|----------------------------------------------------------|
| Test Item | : | Band Edge Data                                           |
| Test Site | : | No.3 OATS                                                |
| Test Date | : | 2019/10/23                                               |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz) |

#### Vertical 120.0 110.0 100.0 90.0 80.0 70.0 Level(dBu//m) 60.0 50.0 40.0 30.0 20.0 10.0 0.0-2433.500 2450.000 2460.000 2470.000 2480.000 2490.000 2500.000 2510.000 2520.000 2533.50 Frequency (MHz)

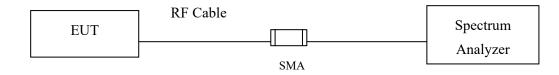
|   |   | Frequency | Correct Factor | Reading Level | Measure Level | Margin | Limit    | Detector Type |
|---|---|-----------|----------------|---------------|---------------|--------|----------|---------------|
|   |   | (MHz)     | (dB)           | (dBuV)        | (dBuV/m)      | (dB)   | (dBuV/m) |               |
| 1 | * | 2460.312  | 13.337         | 99.274        | 112.611       |        |          | PEAK          |
| 2 |   | 2483.500  | 13.375         | 59.576        | 72.950        | -1.050 | 74.000   | PEAK          |
| 3 |   | 2485.384  | 13.376         | 59.932        | 73.309        | -0.691 | 74.000   | PEAK          |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



| : | 23.1 inches Bar type Digital Signage                     |
|---|----------------------------------------------------------|
| : | Band Edge Data                                           |
| : | No.3 OATS                                                |
| : | 2019/10/23                                               |
| : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz) |
|   | :<br>:<br>:                                              |




|   |   | Frequency Correct Factor |        | Frequency Correct Factor Reading Level Measure Level |          | Margin | Limit    | Detector Type |
|---|---|--------------------------|--------|------------------------------------------------------|----------|--------|----------|---------------|
|   |   | (MHz)                    | (dB)   | (dBuV)                                               | (dBuV/m) | (dB)   | (dBuV/m) |               |
| 1 | * | 2461.181                 | 13.340 | 89.120                                               | 102.460  |        |          | AVERAGE       |
| 2 |   | 2483.500                 | 13.375 | 34.894                                               | 48.268   | -5.732 | 54.000   | AVERAGE       |

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.



# 7. 6dB Bandwidth

# 7.1. Test Setup



# 7.2. Limits

The minimum bandwidth shall be at least 500 kHz.

# 7.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013; tested according to ANSI C63.10 Section 11.8 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1-5% of the emission bandwidth, VBW $\geq$ 3\*RBW

# 7.4. Uncertainty

± 283Hz

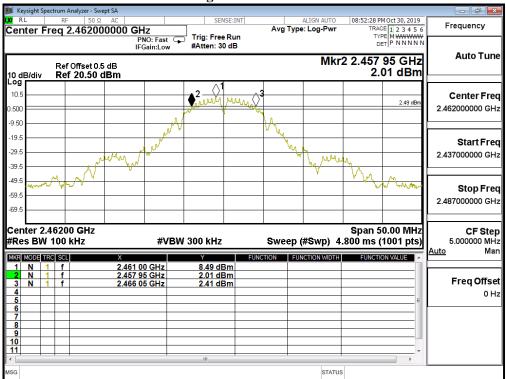


# 7.5. Test Result of 6dB Bandwidth

| Product   | : | 23.1 inches Bar type Digital Signage |
|-----------|---|--------------------------------------|
| Test Item | : | 6dB Bandwidth Data                   |
| Test Site | : | No.3 OATS                            |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps)     |

| Channel No. | Frequency<br>(MHz) | Measurement Level<br>(kHz) | Required Limit<br>(kHz) | Result |
|-------------|--------------------|----------------------------|-------------------------|--------|
| 01          | 2412               | 8100                       | >500                    | Pass   |
| 06          | 2437               | 8100                       | >500                    | Pass   |
| 11          | 2462               | 8100                       | >500                    | Pass   |

# Figure Channel 01:


|               | ght Spe    | ctrum | Analyzer - Sv         | vept SA      |                          |                         |         |           |               |        |                        |                              |
|---------------|------------|-------|-----------------------|--------------|--------------------------|-------------------------|---------|-----------|---------------|--------|------------------------|------------------------------|
| LXI RL        | <b>F</b> = | RF    |                       | 2 AC 00000 G | <u>U-</u>                | SEI                     | NSE:INT |           | ALIGN AUTO    |        | M Oct 30, 2019         | Frequency                    |
| Cente         |            | eq    | 2.4120                |              | PNO: Fast (<br>FGain:Low | Trig: Free<br>#Atten: 3 |         |           | e. Log-i wi   | TY     | PE MWWWW<br>ET P NNNNN |                              |
| 10 dB/        | div        |       | f Offset 0<br>f 20.50 |              |                          |                         |         |           | Mkr           |        | 95 GHz<br>58 dBm       | Auto Tune                    |
| Log<br>10.5 - |            |       |                       |              |                          | 2                       | 1       | 3         |               |        |                        | Center Fred                  |
| 0.500 =       |            | _     |                       |              |                          | manni                   | manag   | /<br>^    |               |        | 2.06 dBm               | 2.412000000 GHz              |
| -9.50 -       |            |       |                       |              | - North                  | V                       |         | M         |               |        |                        |                              |
| -19.5         |            |       |                       |              | A M                      |                         |         | - Vu      | <u>h</u>      |        |                        | Start Free<br>2.387000000 GH |
| -39.5 -       |            |       | . /                   | phone of     | / **                     |                         |         |           | " hyruru      | 1      |                        | 2.387000000 GH               |
| -49.5         | -          | a la  | wh                    |              |                          |                         |         |           |               | -M     | man                    | Stop Free                    |
| -59.5 -       |            |       |                       |              |                          |                         |         |           |               |        |                        | 2.437000000 GH               |
|               |            | 1400  |                       |              |                          |                         |         |           |               |        |                        |                              |
| Cente<br>#Res |            |       | 0 GHz<br>kHz          |              | #VB                      | W 300 kHz               |         | Sweep     | (#Swp) 4      |        | 0.00 MHz<br>(1001 pts) | CF Step<br>5.000000 MH       |
| MKR MC        | DDE TR     | C SCI |                       | X<br>2.444   | 50 GHz                   | Y<br>8.06 dl            |         | ICTION FL | INCTION WIDTH | FUNCTI | ON VALUE               | <u>Auto</u> Mar              |
|               | N 1        | f     |                       | 2.407        | 95 GHz<br>05 GHz         | 1.58 dl<br>1.98 dl      | 3m      |           |               |        |                        | Freq Offse                   |
| 4 5           |            | -     |                       | 2.410        |                          | 1.00 01                 |         |           |               |        | =                      | 0 Н:                         |
| 6<br>7        |            |       |                       |              |                          |                         |         |           |               |        |                        |                              |
| 8<br>9        |            |       |                       |              |                          |                         |         |           |               |        |                        |                              |
| 10            |            |       |                       |              |                          |                         |         |           |               |        |                        |                              |
| MSG           |            |       |                       |              |                          |                         |         |           | STATUS        | 3      | , P                    |                              |



| 💓 Keysight Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| IX    RL    RF    50 Ω    AC      Center Freq 2.437000000 GHz    RC    RC    RC    RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SENSE:INT Avg T                       | ALIGN AUTO 08:43:13 PM Oct 30, 2019<br>Type: Log-Pwr TRACE 1 2 3 4 5 6<br>TYPE M WWWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Frequency                            |
| Ref Offset 0.5 dB<br>10 dB/div Ref 20.50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | Det P NNNN<br>Mkr2 2.432 95 GHz<br>2.06 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Auto Tune                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2.46 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Center Freq<br>2.437000000 GHz       |
| -19.5<br>-29.5<br>-39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | hyperter and a second s | <b>Start Freq</b><br>2.412000000 GHz |
| -49.5<br>-59.5<br>-69.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | - Vor Marine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Stop Freq</b><br>2.462000000 GHz  |
| Center 2.43700 GHz<br>#Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | Span 50.00 MHz<br>ep (#Swp) 4.800 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| I    N    I    F    2.436 00 G    Q      I    N    I    f    2.436 00 G    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q    Q | Hz 8.46 dBm<br>Hz 2.06 dBm            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq Offset<br>0 Hz                  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 L                                  |

## **Figure Channel 06:**

## Figure Channel 11:





| ıge |
|-----|
| ıge |

- Test Item : 6dB Bandwidth Data
- Test Site : No.3 OATS
- Test Mode : Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

| Channel No. | Frequency<br>(MHz) | Measurement Level<br>(kHz) | Required Limit<br>(kHz) | Result |
|-------------|--------------------|----------------------------|-------------------------|--------|
| 01          | 2412               | 15550                      | >500                    | Pass   |
| 06          | 2437               | 15300                      | >500                    | Pass   |
| 11          | 2462               | 15300                      | >500                    | Pass   |

# Figure Channel 01:

|                                |             | Spect |           | Analyzer  |              |     |                            |                    |     |         |                                       |        |        |     |             |           |      |                           |                                                                                                                 |          |   |                                       |
|--------------------------------|-------------|-------|-----------|-----------|--------------|-----|----------------------------|--------------------|-----|---------|---------------------------------------|--------|--------|-----|-------------|-----------|------|---------------------------|-----------------------------------------------------------------------------------------------------------------|----------|---|---------------------------------------|
| Cen                            |             | Fre   | RF<br>Pq2 | 2.412     | 50 Ω<br>2000 | AC  | ) GH                       | z                  |     |         | SEN                                   | NSE:II |        | Avg |             | LIGN AUTO | C    |                           | MOct3<br>CE12<br>PEM₩                                                                                           | 345      | 6 | Frequency                             |
|                                |             |       |           | Offse     |              |     |                            | IO: Fas<br>Sain:Lo |     |         | tten: 3                               |        |        |     |             | Mki       | r2 2 | ء<br>2.404                | et P N                                                                                                          | GHz      |   | Auto Tune                             |
| 10 d<br>10.5<br>0.500<br>-9.50 | B/div       | /     | Rei       | f 20.5    | 50 d         | Bm  |                            |                    | 2   | المرسول |                                       | Q      | 1.<br> |     | 3           |           |      | -4.                       |                                                                                                                 | 4.47 dBm |   | <b>Center Freq</b><br>2.412000000 GHz |
| -19.5<br>-29.5<br>-39.5        |             | ward  | Ww        | ndocopyin | photo        | wy  | have                       |                    |     |         |                                       |        |        |     | ۲<br>۲<br>۲ | M. Mere   | -    | NI mail new Judge         |                                                                                                                 |          |   | <b>Start Freq</b><br>2.387000000 GHz  |
| -49.5<br>-59.5<br>-69.5        | _           |       |           |           |              |     |                            |                    |     |         |                                       |        |        |     |             |           |      |                           | free contractions of the second se | PU YAU   |   | <b>Stop Freq</b><br>2.437000000 GHz   |
| #Re                            |             | W 1   | 00        |           | z            | ×   |                            | #                  | VBW | / 30    | 0 kHz                                 |        | FUNC   |     |             | #Swp) 4   | 1.80 | Span 5<br>0 ms  <br>FUNCT | (1001                                                                                                           | pts)     |   | CF Step<br>5.000000 MHz<br>Auto Man   |
| 1<br>2<br>3<br>4<br>5<br>6     | N<br>N<br>N | 1     | f<br>f    |           |              | 2.4 | 413 2(<br>404 1(<br>419 6( | ) GHz              | 2   | -       | 1. <u>53 de</u><br>4.83 de<br>5.74 de | 3m     |        |     |             |           |      |                           |                                                                                                                 |          |   | <b>Freq Offset</b><br>0 Hz            |
| 0<br>7<br>8<br>9<br>10<br>11   |             |       |           |           |              |     |                            |                    |     |         |                                       |        |        |     |             |           |      |                           |                                                                                                                 |          |   |                                       |
| ۲ 📄                            |             |       | -         |           |              |     |                            |                    |     |         | III                                   |        |        |     |             | STATU     | JS   |                           |                                                                                                                 | •        |   |                                       |

| Ш. К                          | evsight                   | Spect  | rum /       | Analyzer - S               | went S      | Δ                       |                  |                       | 8                            |          |            |             |          |                                   | - <b>- - X</b>                             |
|-------------------------------|---------------------------|--------|-------------|----------------------------|-------------|-------------------------|------------------|-----------------------|------------------------------|----------|------------|-------------|----------|-----------------------------------|--------------------------------------------|
| <b>LXI</b> F                  | RL                        | Ť.     | RF          | 50<br>2.4370               | Ω Α         | c  <br>00 G             | Hz               |                       |                              | NSE:INT  | Avg T      | ALIGN AUTO  | r TRA    | PM Oct 30, 2019<br>CE 1 2 3 4 5 6 | Frequency                                  |
|                               | B/div                     |        |             | Offset 0<br>7 <b>20.50</b> |             | 3                       | PNO: F<br>FGain: | ast 🕞<br>Low          | Trig: Fre<br>#Atten: 3       |          |            | Mk          | r2 2.429 | 35 GHz<br>15 dBm                  | Auto Tune                                  |
| Log<br>10.(<br>0.500<br>-9.50 | 5<br>                     |        |             |                            |             |                         |                  | <b>★</b> <sup>2</sup> | L of Longiture and an        | 1        | M Aughor R |             |          | -3.82 dBm                         | Center Freq<br>2.437000000 GHz             |
| -19.6<br>-29.6<br>-39.6       |                           | mdre   | wfores      | utryal party               | enter terre | www                     | R                | r<br>                 |                              |          | Y          | an harrow a |          | J. Mummmy                         | Start Freq<br>2.412000000 GHz              |
| -49.5<br>-59.6<br>-69.6       | 5                         |        |             |                            |             |                         |                  |                       |                              |          |            |             |          |                                   | <b>Stop Fred</b><br>2.462000000 GHz        |
| #Re                           | nter<br>es B <sup>1</sup> | W 1    | 00          |                            |             | X                       |                  | #VBW                  | 300 kHz                      | -        |            | p (#Swp)    | 4.800 ms | 50.00 MHz<br>(1001 pts)           | CF Step<br>5.000000 MHz<br><u>Auto</u> Mar |
| 1<br>2<br>3<br>4<br>5<br>6    | N<br>N<br>N               | 1<br>1 | f<br>f<br>f |                            |             | 2.438<br>2.429<br>2.444 | 35 GI            | ١z                    | 2.18 d<br>-5.15 d<br>-5.56 d | Bm<br>Bm |            |             |          |                                   | Freq Offset<br>0 Hz                        |
| 7<br>8<br>9<br>10<br>11       |                           |        |             |                            |             |                         |                  |                       |                              |          |            |             |          |                                   |                                            |
| MSG                           |                           |        |             |                            |             |                         |                  |                       |                              |          |            | STAT        | US       |                                   | L                                          |

# Figure Channel 06:

# Figure Channel 11:

| 🍺 Keysight Spectrum Analyzer - Sw           | vept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                                 |                                                             |                                                |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|
| RL RF 50 G                                  | 2 AC 00000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SENSE:INT                          | ALIGN AUTO<br>Avg Type: Log-Pwr                                                                                 | 09:04:02 PM Oct 30, 2019<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWW | Frequency                                      |
| Ref Offset 0.<br>10 dB/div <b>Ref 20.50</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #Atten: 30 dB                      | Mkr                                                                                                             | 2 2.454 35 GHz<br>-5.29 dBm                                 | Auto Tune                                      |
| 10.5<br>-9.50                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 million and and and and          | had a start and a start | -3.74 dBm                                                   | <b>Center Fre</b><br>2.462000000 GH            |
| -19.5<br>-29.5<br>-39.5                     | and the second s |                                    | Monocoon                                                                                                        | winner with                                                 | <b>Start Fre</b><br>2.437000000 GH             |
| -49.5<br>-59.5<br>-69.5                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                 |                                                             | <b>Stop Fre</b><br>2.487000000 GH              |
| Center 2.46200 GHz<br>#Res BW 100 kHz       | #VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / 300 kHz                          | Sweep (#Swp) 4                                                                                                  | Span 50.00 MHz<br>.800 ms (1001 pts)                        | <b>CF Ste</b><br>5.000000 M⊦<br><u>Auto</u> Ma |
| 1 N 1 f<br>2 N 1 f<br>3 N 1 f<br>4 5<br>6   | 2.461 00 GHz<br>2.454 35 GHz<br>2.469 65 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.26 dBm<br>-5.29 dBm<br>-6.01 dBm |                                                                                                                 |                                                             | Freq Offse<br>0 ⊢                              |
| 7<br>8<br>9<br>10<br>11                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                 |                                                             |                                                |
| <<br>MSG                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                                  | STATUS                                                                                                          | 4                                                           |                                                |



| Product   | : | 23.1 inches Bar type Digital Signage           |
|-----------|---|------------------------------------------------|
| Test Item | : | 6dB Bandwidth Data                             |
| Test Site | : | No.3 OATS                                      |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) |
|           |   |                                                |

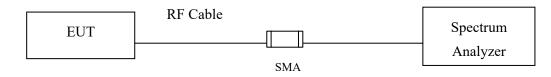
| Channel No. | Frequency<br>(MHz) | Measurement Level<br>(kHz) | Required Limit<br>(kHz) | Result |
|-------------|--------------------|----------------------------|-------------------------|--------|
| 01          | 2412               | 15300                      | >500                    | Pass   |
| 06          | 2437               | 15300                      | >500                    | Pass   |
| 11          | 2462               | 15300                      | >500                    | Pass   |

# Figure Channel 01:

|                               |                         | nalyzer - Swe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                 |                                 |                |          |                          |                        |                                            |                                            |
|-------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|---------------------------------|----------------|----------|--------------------------|------------------------|--------------------------------------------|--------------------------------------------|
| Center F                      | <sub>R</sub> ⊧<br>req 2 | 50 Ω<br>2.41200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Z<br>IO: Fast 🔾 |                                 |                | Avg Typ  | align auto<br>e: Log-Pwr | TRAC                   | MOct 30, 2019<br>E 1 2 3 4 5 6<br>E M WWWW | Frequency                                  |
| 10 dB/div                     |                         | Offset 0.5<br>20.50 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dB                            | Sain:Low        | #Atten: 3                       |                |          | Mkr                      | 2 2.404                | 35 GHz<br>95 dBm                           | Auto Tune                                  |
| Log<br>10.5<br>0.500<br>-9.50 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | <b>2</b>        | han the start as an             | 1<br>martine A | 3        |                          |                        | -4.13 dBm                                  | Center Freq<br>2.412000000 GHz             |
| -19.5<br>-29.5<br>-39.5       | hter                    | 2 And the output of the output | monohamet the                 | /               |                                 |                |          | W. W. Where says         | - Anton and the second |                                            | Start Fred<br>2.387000000 GHz              |
| -49.5<br>-59.5<br>-69.5       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                                 |                |          |                          |                        | ann ha chachlata                           | Stop Fred<br>2.437000000 GHz               |
| Center 2<br>#Res BW           | 100                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                             | #VBW            | / 300 kHz                       |                | <u> </u> | (#Swp) 4                 | .800 ms (              | 0.00 MHz<br>1001 pts)                      | CF Step<br>5.000000 MH2<br><u>Auto</u> Mar |
| 1 N                           | 1 f<br>1 f<br>1 f       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.413 3<br>2.404 3<br>2.419 6 | 5 GHz           | 1.87 dE<br>-5.95 dE<br>-5.62 dE | 3m<br>3m       |          |                          | PONCTION               |                                            | Freq Offset<br>0 Hz                        |
| 0<br>7<br>8<br>9<br>10<br>11  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                                 |                |          |                          |                        |                                            |                                            |
| ≺                             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 | m                               |                |          | STATUS                   | ;                      | × ×                                        |                                            |

| 🎉 Keysight Spectrum Analyzer - S      | wept SA                      |                            |                       |                                     |                        |
|---------------------------------------|------------------------------|----------------------------|-----------------------|-------------------------------------|------------------------|
|                                       | Ω AC                         | SENSE:INT                  | ALIGN AUTO            | 09:10:36 PM Oct 30, 2019            | Frequency              |
| Center Freq 2.4370                    |                              | Trig: Free Run             | Avg Type: Log-Pwr     | TRACE 1 2 3 4 5 6<br>TYPE M WWWWW   | ricquericy             |
|                                       | PNO: Fast G                  | #Atten: 30 dB              |                       | DET P NNNN                          |                        |
|                                       | I Guilleon                   |                            | Mire                  | 0.0.400.05.011-                     | Auto Tun               |
| Ref Offset 0                          |                              |                            | IVIKE                 | 2 2.429 35 GHz                      |                        |
| 10 dB/div Ref 20.50                   | dBm                          |                            |                       | -4.85 dBm                           |                        |
| Log                                   |                              |                            |                       |                                     |                        |
| 10.5                                  | ▲2.                          |                            | 3                     |                                     | Center Fre             |
| 1.500                                 |                              | - have proved we have have |                       | -3.64 dBm                           | 2.437000000 GH         |
| -9.50                                 | property and a               |                            | an Annal              |                                     |                        |
| -19.5                                 |                              |                            |                       |                                     |                        |
|                                       | 1                            |                            | 1                     |                                     | Start Fre              |
| -29.5                                 |                              |                            | Mand N                | and physical and the physical and   | 2.412000000 GH         |
| -39.5                                 | WARNING .                    |                            | - MANANA N            | Man Manager                         |                        |
| -49.5 -                               |                              |                            |                       | When the work was and               |                        |
|                                       |                              |                            |                       |                                     | Stop Fre               |
| -59.5                                 |                              |                            |                       |                                     | 2.462000000 GI         |
| -69.5                                 |                              |                            |                       |                                     |                        |
|                                       |                              |                            |                       |                                     |                        |
| Center 2.43700 GHz<br>#Res BW 100 kHz | 40 (B)4                      | 000 1.11-                  | O                     | Span 50.00 MHz<br>800 ms (1001 pts) | CF Ste                 |
| Res DW 100 KHZ                        | #VDV                         | / 300 kHz                  | Sweep (#Swp) 4        |                                     | 5.000000 MH<br>Auto Ma |
| MKR MODE TRC SCL                      | X                            |                            | NCTION FUNCTION WIDTH | FUNCTION VALUE                      |                        |
| 1 N 1 f                               | 2.438 25 GHz                 | 2.36 dBm                   |                       |                                     |                        |
| 2 N 1 f<br>3 N 1 f                    | 2.429 35 GHz<br>2.444 65 GHz | -4.85 dBm<br>-5.21 dBm     |                       |                                     | Freq Offs              |
| 4                                     |                              |                            |                       |                                     | - 01                   |
| 5<br>6                                |                              |                            |                       | E                                   |                        |
| 7                                     |                              |                            |                       |                                     |                        |
| 8                                     |                              |                            |                       |                                     |                        |
| 9                                     |                              |                            |                       |                                     |                        |
| 11                                    |                              |                            |                       |                                     |                        |
| < [                                   | 1                            |                            | 1                     | •                                   |                        |
| ISG                                   |                              |                            | STATUS                |                                     |                        |
|                                       |                              |                            |                       |                                     |                        |

# Figure Channel 06:


Figure Channel 11:

|                                        | rum Analyzer - Swe            | ept SA                           |                        | 8                               |               |           |                          |                  |                                               |                                            |
|----------------------------------------|-------------------------------|----------------------------------|------------------------|---------------------------------|---------------|-----------|--------------------------|------------------|-----------------------------------------------|--------------------------------------------|
| Center Fre                             | RF 50 Ω<br>cq 2.46200         | AC 0000 GH                       | Z                      | <b>_</b>                        |               | Avg Typ   | ALIGN AUTO<br>e: Log-Pwr | TRAC             | M Oct 30, 2019<br>DE 1 2 3 4 5 6<br>PE M WWWW | Frequency                                  |
|                                        | Ref Offset 0.5<br>Ref 20.50 ( | iFG<br>6 dB                      | IO: Fast 🕞<br>Gain:Low | #Atten: 3                       |               |           | Mkr                      | DE<br>2 2.454    | 35 GHz<br>53 dBm                              | Auto Tune                                  |
|                                        |                               |                                  | 2<br>martine           | and free or state               | production to | - And way |                          |                  | -3.53 abm                                     | Center Freq<br>2.462000000 GHz             |
| -19.5                                  | April - Marine -              | manuf                            | d                      |                                 |               |           | M. J. WWWWWW             | Helphamppulphend | wh-draffigue                                  | <b>Start Fred</b><br>2.437000000 GHz       |
| -49.5<br>-59.5<br>-69.5                |                               |                                  |                        |                                 |               |           |                          |                  | an contraction                                | <b>Stop Fred</b><br>2.487000000 GHz        |
| Center 2.46<br>#Res BW 1               | 00 kHz                        | X                                | #VBW                   | / 300 kHz<br>Y                  | FUI           | <u> </u>  | (#Swp) 4                 | .800 ms (        | 0.00 MHz<br>1001 pts)                         | CF Step<br>5.000000 MH:<br><u>Auto</u> Mar |
| 1 N 1<br>2 N 1<br>3 N 1<br>4<br>5<br>6 | f<br>f<br>f                   | 2.463 30<br>2.454 35<br>2.469 65 | 5 GHz                  | 2.47 df<br>-5.53 df<br>-5.70 df | 3m            |           |                          |                  |                                               | Freq Offse<br>0 Hz                         |
| 8<br>9<br>10<br>11                     |                               |                                  |                        |                                 |               |           |                          |                  |                                               |                                            |
| MSG                                    |                               |                                  |                        | III                             |               |           | STATUS                   | 6                | Þ                                             |                                            |



# 8. **Power Density**

# 8.1. Test Setup



# 8.2. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

# 8.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013; tested according to DTS test procedure of C63.10 Section 11.10.2 for compliance to FCC 47CFR 15.247 requirements. The maximum power spectral density using C63.10 Section 11.10.2 Method PKPSD (peak PSD).

## 8.4. Uncertainty

± 1.20 dB

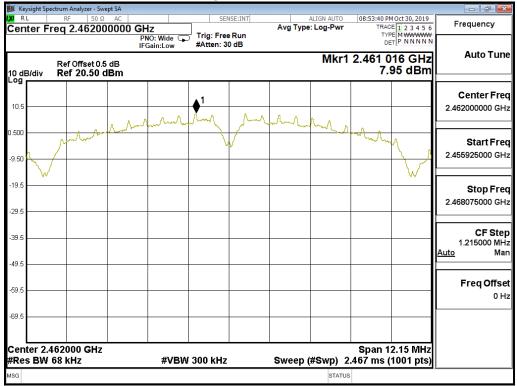


# 8.5. Test Result of Power Density

| Product   | : | 23.1 inches Bar type Digital Signage |
|-----------|---|--------------------------------------|
| Test Item | : | Power Density Data                   |
| Test Site | : | No.3 OATS                            |
| Test Mode | : | Mode 1: Transmit (802.11b 1Mbps)     |

| Channel No. | Frequency<br>(MHz) | Measure Level<br>(dBm) | Limit<br>(dBm) | Result |
|-------------|--------------------|------------------------|----------------|--------|
| 01          | 2412               | 7.82                   | $\leq$ 8dBm    | Pass   |
| 06          | 2437               | 7.05                   | $\leq$ 8dBm    | Pass   |
| 11          | 2462               | 7.95                   | $\leq$ 8dBm    | Pass   |

#### 🔰 Keysight Spectrum Analyzer - Swept SA d X ALIGN AUTO 08:39:24 PM Oct 30, 2019 Avg Type: Log-Pwr TRACE [1 2 3 4 5 6 TYPE [M WWWW DET P NNNN RI Center Freq 2.412000000 GHz PN0: Wide C IFGain:Low Frequency Trig: Free Run #Atten: 30 dB Auto Tune Mkr1 2.412 498 GHz Ref Offset 0.5 dB Ref 20.50 dBm 7.82 dBm 10 dB/div Log **Center Freq** 1 10.5 2.412000000 GHz ~^ ٨ .500 ..... $\sim$ Start Freq 2.405925000 GHz 9.50 -19.5 Stop Freq 2.418075000 GHz -29.5 CF Step -39.5 1.215000 MHz Man Auto 49.5 Freq Offset -59.5 0 Hz -69.5 Span 12.15 MHz Sweep (#Swp) 2.467 ms (1001 pts) Center 2.412000 GHz #Res BW 68 kHz #VBW 300 kHz STATUS ŝ


### Figure Channel 01:



|                   |               |                  |             |            | 8                       |         | anner     | 001        |           |                |                       |
|-------------------|---------------|------------------|-------------|------------|-------------------------|---------|-----------|------------|-----------|----------------|-----------------------|
|                   | ight Spectru  | ım Analyzer - Sw |             |            |                         |         |           |            |           |                |                       |
| <mark>o</mark> RL |               | RF 50 Ω          |             |            | SE                      | NSE:INT |           | ALIGN AUTO |           | 1 Oct 30, 2019 | Frequency             |
| Cente             | er Fred       | q 2.43700        | 00000 GH    | lz         | Taken Free              |         | Avg Type  | : Log-Pwr  |           | E123456        | riequency             |
|                   |               |                  |             | NO: Wide 🖵 | Trig: Free<br>#Atten: 3 |         |           |            | DE        |                |                       |
|                   |               |                  | IF          | Gain:Low   | #Atten. 5               | UUD     |           |            | Auto Tun  |                |                       |
|                   | R             | ef Offset 0.     | 5 dB        |            |                         |         |           | Mkr1       |           | 02 GHz         | Autorun               |
| 10 dB/            |               | lef 20.50 (      |             |            |                         |         |           |            | 7.        | 05 dBm         |                       |
| - <sup>од</sup> Г |               | 1                |             |            |                         |         | 1         |            |           |                |                       |
|                   |               |                  |             |            |                         |         |           |            |           |                | Center Fre            |
| 10.5              |               |                  |             |            | <b></b> 1_              |         |           |            |           |                | 2.437000000 GH        |
|                   |               |                  |             |            |                         |         |           |            |           |                | 2.407000000 01        |
|                   |               |                  | 1. and      | howard     | how                     | housely | mahamahan | Sen 1 .    |           |                |                       |
| .500 —            |               | hand             | allowed the |            | <u> </u>                | 1       |           |            | unal a    |                |                       |
|                   | 1             | And and          |             |            |                         | V       |           |            | warm      | A.             | Start Fre             |
| 9.50 4            | مم ا          |                  |             |            |                         | 4       |           |            |           | N D            | 2.430925000 GH        |
| 0.00              | Υ. /          |                  |             |            |                         |         |           |            |           | ۲ <u>۲</u>     |                       |
|                   | $\mathcal{M}$ |                  |             |            |                         |         |           |            |           | W.             |                       |
| 19.5              |               | _                |             |            |                         |         |           |            |           | · · ·          | Stop Fre              |
|                   |               |                  |             |            |                         |         |           |            |           |                |                       |
| -29.5             |               |                  |             |            |                         |         |           |            |           |                | 2.443075000 GH        |
| -29.5             |               |                  |             |            |                         |         |           |            |           |                |                       |
|                   |               |                  |             |            |                         |         |           |            |           |                | 05.0%                 |
| 39.5 -            |               |                  |             |            |                         |         |           |            |           |                | CF Ste<br>1.215000 MH |
|                   |               |                  |             |            |                         |         |           |            |           |                | Auto Ma               |
|                   |               |                  |             |            |                         |         |           |            |           |                | <u>Auto</u> Ma        |
| 49.5 -            |               |                  |             |            |                         |         |           |            |           |                |                       |
|                   |               |                  |             |            |                         |         |           |            |           |                | Freq Offs             |
| 59.5              |               |                  |             |            |                         |         |           |            |           |                |                       |
|                   |               |                  |             |            |                         |         |           |            |           |                | 0 H                   |
|                   |               |                  |             |            |                         |         |           |            |           |                |                       |
| 69.5 —            |               | 1                |             |            |                         |         |           |            |           |                |                       |
|                   |               |                  |             |            |                         |         |           |            |           |                |                       |
|                   |               |                  |             |            |                         |         |           |            |           |                |                       |
|                   |               | 7000 GHz         |             |            |                         |         |           |            |           | 2.15 MHz       |                       |
| #Res              | BW 51         | kHz              |             | #VBW       | / 300 kHz               |         | Sweep (   | #Swp) 4    | .400 ms ( | 1001 pts)      |                       |
| ISG               |               |                  |             |            |                         |         |           | STATU      | 5         |                | <u>t</u>              |
|                   |               |                  |             |            |                         |         |           |            |           |                |                       |

Figure Channel 06:

## Figure Channel 11:





| Product : 23.1 inches Bar t | type Digital Signage |
|-----------------------------|----------------------|
|-----------------------------|----------------------|

- Test Item : Power Density Data
- Test Site : No.3 OATS
- Test Mode : Mode 2: Transmit (802.11g 6Mbps)

| Channel No. | Frequency<br>(MHz) | Measure Level<br>(dBm) | Limit<br>(dBm) | Result |
|-------------|--------------------|------------------------|----------------|--------|
| 01          | 2412               | 1.51                   | $\leq$ 8dBm    | Pass   |
| 06          | 2437               | 1.69                   | $\leq$ 8dBm    | Pass   |
| 11          | 2462               | 2.33                   | $\leq$ 8dBm    | Pass   |

# Figure Channel 01:

| 🚺 Keysight Spectrum Analyzer - Swept SA 👘    |                                                      |                                   |                                              |                                         |
|----------------------------------------------|------------------------------------------------------|-----------------------------------|----------------------------------------------|-----------------------------------------|
| Center Freq 2.412000000                      | GHz                                                  | ALIGN AUTO 0<br>Avg Type: Log-Pwr | 8:57:26 PM Oct 30, 2019<br>TRACE 1 2 3 4 5 6 | Frequency                               |
| Ref Offset 0.5 dB<br>10 dB/div Ref 20.50 dBm | PNO: Fast Trig: Free Run<br>IFGain:Low #Atten: 30 dB | Mkr1 2.                           | 413 283 GHz<br>1.51 dBm                      | Auto Tune                               |
| 10.5                                         |                                                      | 1                                 |                                              | Center Fred<br>2.412000000 GH;          |
| .500<br>.9.50                                | Murdun warang part                                   | material marken and               | w                                            | Start Free<br>2.400337500 GH:           |
| -19.5                                        |                                                      |                                   | han      | <b>Stop Fre</b><br>2.423662500 GH       |
| -39.5                                        |                                                      |                                   | ່ັງທ                                         | CF Ste<br>2.332500 MH<br><u>Auto</u> Ma |
| 59.5                                         |                                                      |                                   |                                              | Freq Offse<br>0 ⊢                       |
| 69.5                                         | #VBW 300 kHz                                         | Sweep (#Swp) 2.26                 | pan 23.33 MHz                                |                                         |
| ISG                                          | #VBVV JUU KHZ                                        | STATUS                            | 7 ms (1001 pts)                              |                                         |



|           |                           |                         | 8              | nannei 00.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|-----------|---------------------------|-------------------------|----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|           | ectrum Analyzer - Swept S |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| RL        | RF 50 Ω A                 |                         | SENSE:INT      | ALIGN AUTO        | 09:00:19 PM Oct 30, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency             |
| Center F  | req 2.4370000             | 000 GHz                 | Trig: Free Run | Avg Type: Log-Pwr | TRACE 1 2 3 4 5 6<br>TYPE M WWWWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|           |                           | PNO: Fast<br>IFGain:Low | #Atten: 30 dB  |                   | DET P NNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
|           |                           |                         |                | Mkr1              | 2.438 285 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Auto Tun              |
|           | Ref Offset 0.5 dE         |                         |                |                   | 1.69 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 10 dB/div | Ref 20.50 dBr             | n                       |                |                   | 1.03 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| -         |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center Fre            |
| 40.5      |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 10.5      |                           |                         | <b>A</b> 1     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.437000000 GH        |
|           |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| .500      | 8                         | multinant               | warrang prover | merontindunal     | Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|           | when                      | myn brown               | l V            | when when when he | and ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Start Fre             |
| 9.50      |                           |                         | 1              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.425525000 GH        |
|           |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 19.5      | and a start               |                         |                |                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| -19.5     | www                       |                         |                |                   | "The second seco | Stop Fre              |
| N         |                           |                         |                |                   | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.448475000 GH        |
| -29.5     |                           |                         |                |                   | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
|           |                           |                         |                |                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| 39.5      |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CF Ste<br>2.295000 MH |
|           |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auto Ma               |
| 49.5      |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 40.0      |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq Offs             |
| -59.5     |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 H                   |
|           |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 69.5      |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           | 43700 GHz                 |                         |                |                   | Span 22.95 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| #Res BW   | 100 kHz                   | #VBW                    | 300 kHz        | Sweep (#Swp) 2    | .200 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| ISG       |                           |                         |                | STATU             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|           |                           |                         |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |

Figure Channel 06:

# Figure Channel 11:

| Keysight Spectrum Analyzer - Swept SA      |                                            |            |             |                     |               |                  | - 6 -                                   |
|--------------------------------------------|--------------------------------------------|------------|-------------|---------------------|---------------|------------------|-----------------------------------------|
| RL RF 50 Ω AC<br>enter Freq 2.462000000 GI | Hz                                         | NSE:INT    | Avg Type: L | IGN AUTO<br>.og-Pwr | TRAC          | E 1 2 3 4 5 6    | Frequency                               |
|                                            | NO: Fast 🖵 Trig: Fre<br>Gain:Low #Atten: 3 |            |             | Mkr1                | DE<br>2.463 2 | 85 GHz<br>33 dBm | Auto Tun                                |
| .5                                         |                                            | <b>▲</b> 1 |             |                     |               |                  | Center Fre<br>2.462000000 GH            |
| 00 Manhonn                                 | - Ammilton and                             | menhand    | maland      | monthy              | Mm            |                  | <b>Start Fre</b><br>2.450525000 GH      |
| 5                                          |                                            |            |             |                     | - Vort        | ann be           | <b>Stop Fr</b><br>2.473475000 Gi        |
| 5                                          |                                            |            |             |                     |               | <u>ት</u>         | CF Ste<br>2.295000 Mi<br><u>Auto</u> Mi |
| 5                                          |                                            |            |             |                     |               |                  | Freq Offs<br>0                          |
| 5                                          |                                            |            |             |                     | Span 2        | 2.95 MHz         |                                         |
| es BW 100 kHz                              | #VBW 300 kHz                               |            | Sweep (#    | Swp) 2.             | 200 ms (      | 1001 pts)        |                                         |



| Product   | : | 23.1 inches Bar type Digital Signage           |
|-----------|---|------------------------------------------------|
| Test Item | : | Power Density Data                             |
| Test Site | : | No.3 OATS                                      |
| Test Mode | : | Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) |
|           |   |                                                |

| Channel No. | Frequency<br>(MHz) | Measure Level<br>(dBm) | Limit<br>(dBm) | Result |
|-------------|--------------------|------------------------|----------------|--------|
| 01          | 2412               | 2.10                   | $\leq$ 8dBm    | Pass   |
| 06          | 2437               | 2.50                   | $\leq$ 8dBm    | Pass   |
| 11          | 2462               | 2.52                   | $\leq$ 8dBm    | Pass   |

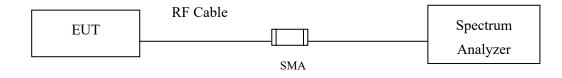
| Figure Channel 01: |
|--------------------|
|--------------------|

|                               | ectrum Analyzer - Swe         |       |               |             |        |          |                         |             |                                             |                                           |
|-------------------------------|-------------------------------|-------|---------------|-------------|--------|----------|-------------------------|-------------|---------------------------------------------|-------------------------------------------|
| Center F                      | RF 50 Ω<br>Freq 2.41200       | AC    | Z<br>NO: Fast | 1           |        |          | ALIGN AUTO<br>: Log-Pwr | TRAC<br>TYP | 1 Oct 30, 2019<br>E 1 2 3 4 5 6<br>E M WWWW | Frequency                                 |
| 10 dB/div                     | Ref Offset 0.5<br>Ref 20.50 d | dB    | Sain:Low      | #Atten: 3   |        |          | Mkr1                    | 2.413 2     | 85 GHz<br>10 dBm                            | Auto Tuno                                 |
| 10.5                          |                               |       |               |             | ▲1     |          |                         |             |                                             | Center Freq<br>2.412000000 GHz            |
| -9.50                         | pmanh                         | March | ambaryht      | are all and | Janner | mmmm     | h hand ha               | mlung       |                                             | Start Freq<br>2.400525000 GHz             |
| -19.5                         | port .                        |       |               |             |        |          |                         | V           | March 1                                     | Stop Fred<br>2.423475000 GHz              |
| -39.5                         |                               |       |               |             |        |          |                         |             |                                             | CF Step<br>2.295000 MH<br><u>Auto</u> Mar |
| -59.5                         |                               |       |               |             |        |          |                         |             |                                             | Freq Offse                                |
| -69.5<br>Center 2.<br>#Res BW | 41200 GHz                     |       | #1/0141       | 200 kH-     |        | Surger ( | (# <b>C</b> um) 0       |             | 2.95 MHz                                    |                                           |
| #Res BW                       |                               |       | #VBW          | 300 kHz     |        | Sweep    | STATUS                  |             | 1001 pts)                                   |                                           |



| 🍯 Keysight Sp | ectrum Analyzer - Swe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pt SA   |                      |           |         | numer   |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|-----------|---------|---------|----------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| enter F       | RF 50 Ω<br>req 2.43700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000 GH | Z                    | SEN       | ISE:INT |         | ALIGN AUTO<br>: Log-Pwr    | TRAC      | Oct 30, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Frequency                              |
| 10 dB/div     | Ref Offset 0.5<br>Ref 20.50 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dB      | 0: Fast 😱<br>ain:Low | #Atten: 3 |         |         | Mkr1                       | 2.438 2   | 85 GHz<br>50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
| 10.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                      |           | ▲1      |         |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center Fre<br>2.437000000 GH           |
| 500<br>9.50   | much                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | when    | mmnt                 | www.an    | mandra  | Manday  | when                       | mm        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start Fre<br>2.425525000 GH            |
| 19.5          | when the second se |         |                      |           |         |         |                            |           | hall and the second sec | <b>Stop Fre</b><br>2.448475000 GH      |
| 9.5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                      |           |         |         |                            |           | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CF Ste<br>2.295000 Mi<br><u>Auto</u> M |
| 9.5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                      |           |         |         |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq Offs                              |
| ienter 2.4    | 43700 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                      |           |         |         |                            | Span 2    | 2.95 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| Res BW        | 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | #VBW                 | 300 kHz   |         | Sweep ( | ( <b>#Swp) 2</b><br>status | .200 ms ( | 1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |

Figure Channel 06:


# Figure Channel 11:

|                       | ectrum Analyzer - Swe         | pt SA |             |           |                       |         |                         |            |                                            |                                     |
|-----------------------|-------------------------------|-------|-------------|-----------|-----------------------|---------|-------------------------|------------|--------------------------------------------|-------------------------------------|
| Center Fi             | RF 50 Ω<br>req 2.46200        | AC    | :<br>Fast 🔾 | SET       |                       |         | ALIGN AUTO<br>: Log-Pwr | TRAC       | MOct 30, 2019<br>E 1 2 3 4 5 6<br>E M WWWW | Frequency                           |
| 10 dB/div             | Ref Offset 0.5<br>Ref 20.50 d | lFGa  | in:Low      | #Atten: 3 |                       |         | Mkr1                    | 2.463 2    | 62 GHz<br>52 dBm                           | <b>.</b>                            |
| 10.5                  |                               |       |             |           | <b>▲</b> <sup>1</sup> |         |                         |            |                                            | <b>Center Fre</b><br>2.462000000 GH |
| 9.50                  | mah                           | Monto | Mart        | wasang 1  | J                     | mounder | when when               | mhy        |                                            | Start Fre<br>2.450525000 GH         |
| 19.5                  | Jer W                         |       |             |           |                       |         |                         | 4          | Minney Market                              | <b>Stop Fre</b><br>2.473475000 GH   |
| ₩<br>39.5             |                               |       |             |           |                       |         |                         |            | 4<br>4                                     | CF Ste<br>2.295000 MH<br>Auto Ma    |
| 19.5 ——<br>59.5 ——    |                               |       |             |           |                       |         |                         |            |                                            | Freq Offs<br>0 F                    |
| 69.5                  |                               |       |             |           |                       |         |                         |            |                                            |                                     |
| Center 2.4<br>#Res BW | 46200 GHz<br>100 kHz          |       | #VBW        | 300 kHz   |                       | Sweep   | (#Swp) 2                | 2.200 ms ( | 2.95 MHz<br>1001 pts)                      |                                     |



# 9. Duty Cycle

# 9.1. Test Setup



# 9.2. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to ANSI C63.10 2013 for compliance to FCC 47CFR 15.247 requirements.

# 9.3. Uncertainty

± 2.31msec



# 9.4. Test Result of Duty Cycle

| Product   | : | 23.1 inches Bar type Digital Signage |
|-----------|---|--------------------------------------|
| Test Item | : | Duty Cycle                           |
| Test Mode | : | Transmit                             |

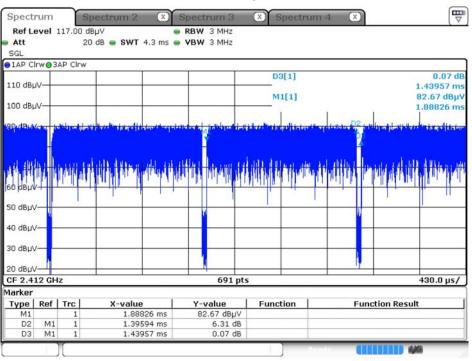
Duty Cycle Formula:

Duty Cycle = Ton / (Ton + Toff)

Duty Factor = 10 Log (1/Duty Cycle)

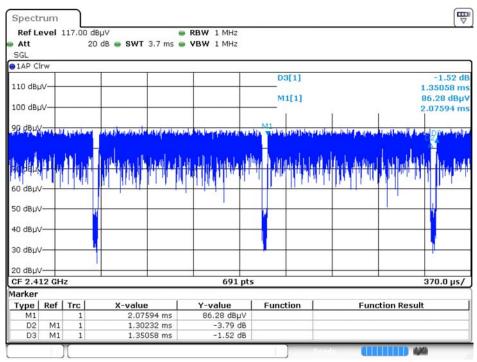
Results:

| 2.4GHz band | Ton    | Ton + Toff | Duty Cycle | Duty Factor |
|-------------|--------|------------|------------|-------------|
|             | (ms)   | (ms)       | (%)        | (dB)        |
| 802.11b     | 8.4000 | 8.4609     | 99.28      | 0.03        |
| 802.11g     | 1.3959 | 1.4396     | 96.97      | 0.13        |
| 802.11n20   | 1.3023 | 1.3506     | 96.43      | 0.16        |


802.11b

| Spectr   |          | 97.00 dBL |                      | Spectrum 3<br>RBW 1 MHz | X        |          |                           |  |
|----------|----------|-----------|----------------------|-------------------------|----------|----------|---------------------------|--|
| Att      |          |           | IB . SWT 21 ms .     |                         |          |          |                           |  |
| SGL      |          |           |                      |                         |          |          |                           |  |
| 1Pk Clr  | w        |           | 2 %                  | 10 10                   |          |          |                           |  |
|          |          |           |                      |                         | D3[1]    |          | -0.10 dE<br>8.4609 m:     |  |
| 90 dBµV  | -        |           |                      |                         |          |          |                           |  |
| 80 dBµV  |          |           |                      | MI                      | M1[1]    |          | 77.34 dBμV<br>Φ£0.3478 ms |  |
|          |          |           |                      | 1 I                     |          |          | 4                         |  |
| 70 dBµV  |          |           |                      |                         |          |          |                           |  |
|          |          |           |                      |                         |          |          |                           |  |
| 50 dBµV  |          |           |                      |                         |          |          |                           |  |
| 50 dBµV  |          |           |                      |                         |          |          |                           |  |
|          |          |           |                      |                         |          |          |                           |  |
| 40 dBµV  |          |           |                      |                         |          |          |                           |  |
| 30 dBµV  |          |           |                      |                         |          |          |                           |  |
|          |          |           |                      |                         |          |          | 1.1                       |  |
| 20 dBµV  |          |           |                      |                         |          |          |                           |  |
|          | 8        |           |                      |                         |          |          |                           |  |
| 10 dBµV  |          |           |                      |                         |          |          |                           |  |
| D dBµV-  | _        |           |                      |                         |          |          |                           |  |
| CF 2.41  | 12 GH    | z         |                      | 691 pts                 | 5        |          | 2.1 ms/                   |  |
| 1arker   |          |           |                      |                         |          |          |                           |  |
|          | Ref      | Trc       | X-value              | Y-value                 | Function | Function | Function Result           |  |
| M1<br>D2 | M1       | 1         | 10.3478 ms<br>8.4 ms | 77.34 dBµV<br>0.03 dB   |          |          |                           |  |
| D2       | M1<br>M1 | 1         | 8.4609 ms            | -0.10 dB                |          |          |                           |  |

Date: 2.OCT.2019 11:18:02








Date: 3.OCT.2019 11:46:31

802.11n20



Date: 3.OCT.2019 13:14:58



| Agilent Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                             |                                        |                                                              |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------|----------------------------------------|--------------------------------------------------------------|-------------------------------------|
| ⊠ RF 50 Ω AC<br>Center Freq 2.422000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GHz<br>PN0: Fast ↔                                | INT REF                                     | ALIGN AUTO<br>Avg Type: Log-Pwr        | 01:56:52 PM Jan 29, 2019<br>TRACE 1 2 3 4 5 6<br>TYPE WWWWWW | Frequency                           |
| 10 dB/div Ref 116.99 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IFGain:Low                                        | #Atten: 20 dB                               |                                        | Det P NNNNN<br>Mkr1 13.70 ms<br>88.35 dBμV                   | Auto Tune                           |
| Log<br>107<br>97.0 パルパル以本、加速点<br>87.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                             | 2Δ1                                    |                                                              | Center Freq<br>2.422000000 GHz      |
| 77.0<br>67.0<br>57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                             |                                        |                                                              | Start Freq<br>2.422000000 GHz       |
| 47.0 <b>at the set of th</b> | And And Andrews                                   | ~apa# 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ₩###¥¥################################ | ₩ <b>₩</b> ₩ <u>₩₩₩₩₩₩₩₩₩</u> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩       | <b>Stop Freq</b><br>2.422000000 GHz |
| Center 2.422000000 GHz<br>Res BW 1.0 MHz<br>MKR MODE TRO SCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>CF Step</b><br>1.000000 MHz<br><u>Auto</u> Man |                                             |                                        |                                                              |                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.70 ms<br>4.178 ms (Δ)<br>10.85 ms (Δ)          | 88.35 dBµ∨<br>13.47 dB<br>1.06 dB           |                                        |                                                              | Freq Offset<br>0 Hz                 |
| 7<br>8<br>9<br>10<br>11<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                             |                                        |                                                              |                                     |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                                             | STATUS                                 | 5                                                            | <u>[</u>                            |



# **10.** EMI Reduction Method During Compliance Testing

No modification was made during testing.