

Certification Test Report

FCC ID: S85-DAS2400

IC: 10899A-DAS2400

FCC Rule Part: 15.247
IC Radio Standards Specification: RSS-210

ACS Report Number: 14-0393.W06.1A

Manufacturer: Channel D Solutions, Inc.

Model: DAS2400

Test Begin Date: October 20, 2014

Test End Date: November 20, 2014

Report Issue Date: November 24, 2014

FOR THE SCOPE OF ACCREDITATION UNDER LAB Code 200612-0

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

A handwritten signature in black ink, appearing to read "Kirby Munroe", is placed over a horizontal line.

Reviewed by:

Kirby Munroe
Director, Wireless Certifications
ACS, Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of ACS, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 26 pages

TABLE OF CONTENTS

1	GENERAL	3
1.1	PURPOSE.....	3
1.2	PRODUCT DESCRIPTION.....	3
1.3	TEST METHODOLOGY AND CONSIDERATIONS.....	3
2	TEST FACILITIES.....	4
2.1	LOCATION	4
2.2	LABORATORY ACCREDITATIONS/RECOGNITIONS/CERTIFICATIONS.....	4
2.3	RADIATED EMISSIONS TEST SITE DESCRIPTION	5
2.3.1	<i>Semi-Anechoic Chamber Test Site</i>	5
2.3.2	<i>Open Area Tests Site (OATS)</i>	6
2.4	CONDUCTED EMISSIONS TEST SITE DESCRIPTION	7
3	APPLICABLE STANDARD REFERENCES	7
4	LIST OF TEST EQUIPMENT.....	8
5	SUPPORT EQUIPMENT	9
6	EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM	9
7	SUMMARY OF TESTS.....	10
7.1	ANTENNA REQUIREMENT – FCC 15.203.....	10
7.2	POWER LINE CONDUCTED EMISSIONS – FCC 15.207, IC: RSS-GEN 8.8	10
7.2.1	<i>Measurement Procedure</i>	10
7.2.2	<i>Measurement Results.....</i>	10
7.3	6dB / 99% BANDWIDTH – FCC 15.247(A)(2), IC: RSS-210 A8.2(A)	12
7.3.1	<i>Measurement Procedure</i>	12
7.3.2	<i>Measurement Results.....</i>	12
7.4	FUNDAMENTAL EMISSION OUTPUT POWER – FCC 15.247(B)(3), IC: RSS-210 A8.4(4)	14
7.4.1	<i>Measurement Procedure</i>	14
7.4.2	<i>Measurement Results.....</i>	14
7.5	EMISSION LEVELS – FCC 15.247(D), 15.205, 15.209; IC RSS-210 2.2/A8.5, RSS-GEN 8.9	15
7.5.1	<i>Emissions into Non-restricted Frequency Bands</i>	15
7.5.1.1	Measurement Procedure	15
7.5.1.2	Measurement Results	15
7.5.2	<i>Emissions into Restricted Frequency Bands</i>	18
7.5.2.1	Measurement Procedure	18
7.5.2.2	Duty Cycle Correction	18
7.5.2.3	Measurement Results	18
7.5.2.4	Sample Calculation:.....	20
7.6	MAXIMUM POWER SPECTRAL DENSITY IN THE FUNDAMENTAL EMISSION – FCC 15.247(E) IC: RSS-210 A8.2(B)	21
7.6.1	<i>Measurement Procedure</i>	21
7.6.2	<i>Measurement Results.....</i>	21
8	CONCLUSION	26

1 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations and Industry Canada's Radio Standards Specification RSS-210 Certification for modular approval.

1.2 Product Description

The DAS2400 system provides wireless communications through the use of a 2402.6 – 2480.0 MHz frequency-hopping-spread-spectrum RF module, and transmits a digitally-encoded signal. It is used to expand communications coverage into areas that cannot be covered by a single antenna.

The complete system is designed for and sold only to commercial end-users, and is not available to the general public.

Technical Information:

Detail	Description
Frequency Range	2402.6 - 2480.0 MHz
Number of Channels	43
Modulation Format	GFSK
Data Rates	921.6 kbps
Operating Voltage	120 VAC
RF Inputs / Outputs	8
Antenna Type / Gain	Ceiling Omnidirectional Antenna, 2dBi gain Whip Omnidirectional Antenna, 3dBi gain

Applicant Information:

Channel D Solutions, Inc.
P.O. Box 1073
Brentwood, TN 37024

EUT Serial Numbers: ACS#1

Test Sample Condition: The test samples were provided in good working order with no visible defects.

1.3 Test Methodology and Considerations

The EUT consist of a combined 2.4 GHz radio module and external radio frequency power amplifier / 8 port antenna distribution system. The device was caused to transmit continuous at a 100% duty cycle for test purposes. All available RF ports were exercised and evaluated where applicable. For radiated emissions, all RF output ports where terminated with minimal length of cable and antennas. Multiple antenna types where evaluated. Multiple orientations were tested for radiated emissions and the data presented is worst case where applicable. For RF conducted measurements, each RF port was evaluated independently and the procedures of KDB 662911 D01 Multiple Transmitter Output v02r01 were applied where applicable.

Worst-case data is provided where applicable.

2 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following address:

Advanced Compliance Solutions
5015 B.U. Bowman Drive
Buford, GA 30518
Phone: (770) 831-8048
Fax: (770) 831-8598

2.2 Laboratory Accreditations/Recognitions/Certifications

ACS is accredited to ISO/IEC 17025 by the National Institute of Standards and Technology under their National Voluntary Laboratory Accreditation Program (NVLAP), Lab Code 200612-0. Unless otherwise specified, all tests methods described within this report are covered under the ISO/IEC 17025 scope of accreditation.

The Semi-Anechoic Chamber Test Site, Open Area Test Site (OATS) and Conducted Emissions Site have been fully described, submitted to, and accepted by the FCC, Industry Canada and the Japanese Voluntary Control Council for Interference by information technology equipment.

FCC Registration Number: 511277

Industry Canada Lab Code: IC 4175A

VCCI Member Number: 1831

- VCCI OATS Registration Number R-1526
- VCCI Conducted Emissions Site Registration Number: C-1608

2.3 Radiated Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site

The Semi-Anechoic Chamber Test Site consists of a 20' x 30' x 18' shielded enclosure. The chamber is lined with Toyo Ferrite Grid Absorber, model number FFG-1000. The ferrite tile grid is 101 x 101 x 19mm thick and weighs approximately 550 grams. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber.

The turntable is 150cm in diameter and is located 160cm from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is all steel, flush mounted table installed in an all steel frame. The table is remotely operated from inside the control room located 25' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Behind the turntable is a 3' x 6' x 4' deep shielded pit used for support equipment if necessary. The pit is equipped with 1 - 4" PVC chases from the turntable to the pit that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit.

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3-1 below:

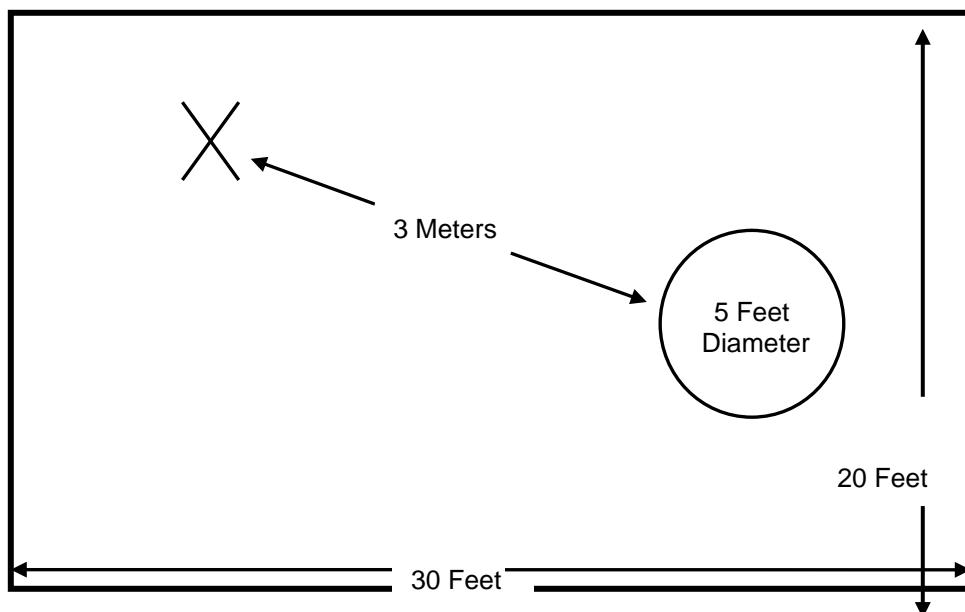


Figure 2.3-1: Semi-Anechoic Chamber Test Site

2.3.2 Open Area Tests Site (OATS)

The open area test site consists of a 40' x 66' concrete pad covered with a perforated electro-plated galvanized sheet metal. The perforations in the sheet metal are 1/8" holes that are staggered every 3/16". The individual sheets are placed to overlap each other by 1/4" and are riveted together to provide a continuous seam. Rivets are spaced every 3" in a 3 x 20 meter perimeter around the antenna mast and EUT area. Rivets in the remaining area are spaced as necessary to properly secure the ground plane and maintain the electrical continuity.

The entire ground plane extends 12' beyond the turntable edge and 16' beyond the antenna mast when set to a 10 meter measurement distance. The ground plane is grounded via 4 - 8' copper ground rods, each installed at a corner of the ground plane and bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is an all aluminum 10' flush mounted table installed in an all aluminum frame. The table is remotely operated from inside the control room located 40' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Adjacent to the turntable is a 7' x 7' square and 4' deep concrete pit used for support equipment if necessary. The pit is equipped with 5 - 4" PVC chases from the pit to the control room that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit. The pit is covered with 2 sheets of 1/4" diamond style re-enforced steel sheets. The sheets are painted to match the perforated steel ground plane; however the underside edges have been masked off to maintain the electrical continuity of the ground plane. All reflecting objects are located outside of the ellipse defined in ANSI C63.4.

A diagram of the Open Area Test Site is shown in Figure 2.3-2 below:

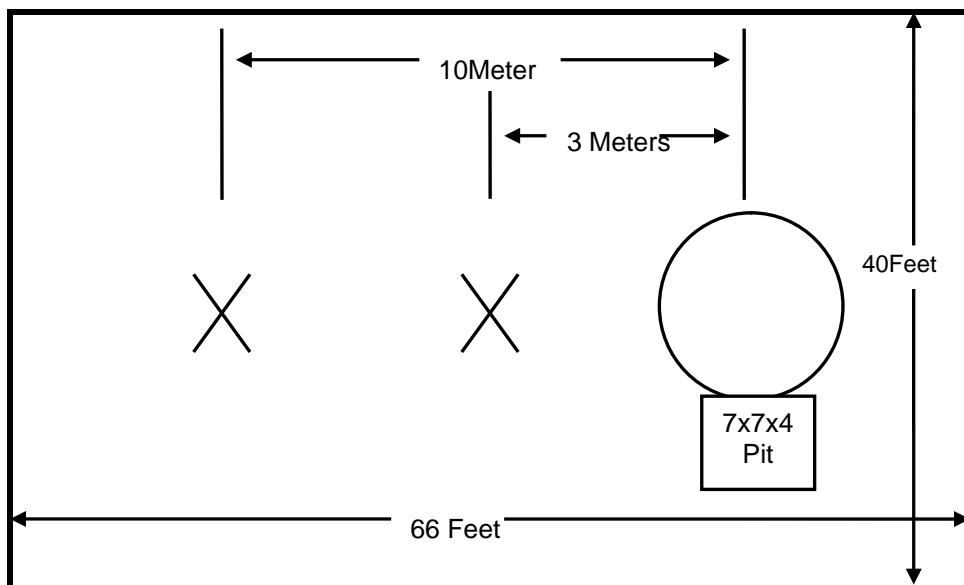


Figure 2.3-2: Open Area Test Site

2.4 Conducted Emissions Test Site Description

The AC mains conducted EMI site is located in the main EMC lab. It consists of an 8' x 8' solid aluminum horizontal ground reference plane (GRP) bonded every 3" to an 8' X 8' vertical ground plane.

The site is of sufficient size to test table top and floor standing equipment in accordance with section 6.1.4 of ANSI C63.4.

A diagram of the room is shown below in figure 4.1.3-1:

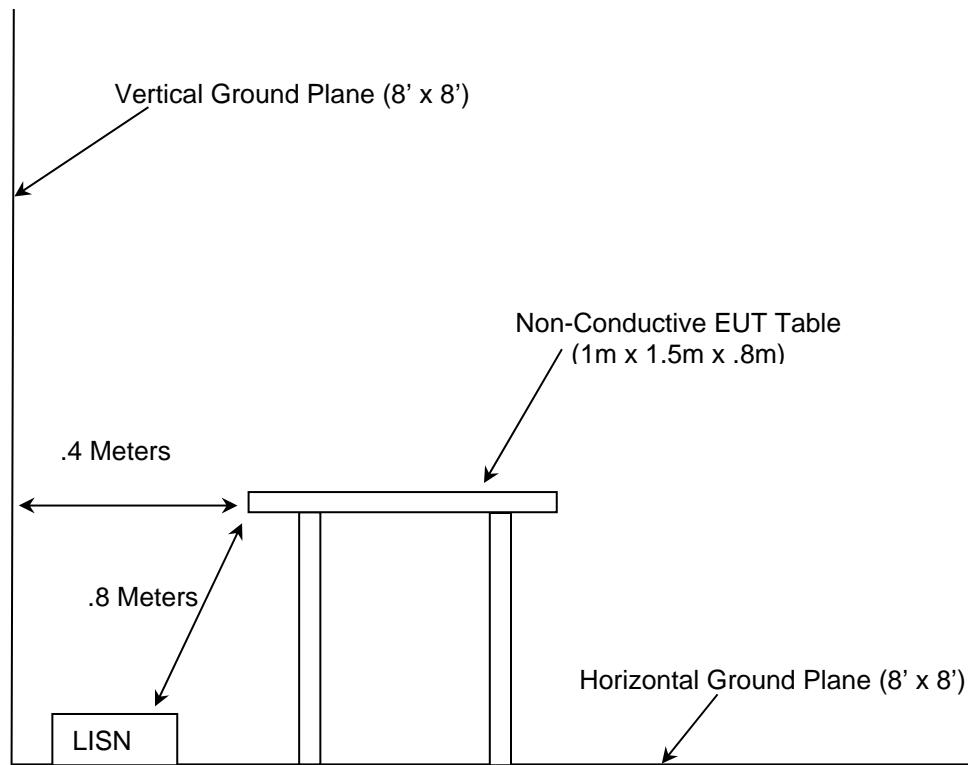


Figure 2.4-1: AC Mains Conducted EMI Site

3 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ❖ ANSI C63.4-2009: American National Standard for Methods of Measurement of Radio-Noise Emissions from low-voltage electrical and electronic equipment in the range of 9kHz to 40 GHz
- ❖ ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2014
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2014
- ❖ FCC KDB 558074 D01 DTS Meas Guidance v03r02 - Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, June 5, 2014
- ❖ FCC KDB 662911 D01 Multiple Transmitter Output v02r01 - Emissions Testing of Transmitters with Multiple Outputs in the Same Band, October 31, 2013
- ❖ Industry Canada Radio Standards Specification: RSS-210 - Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, Issue 8, Dec 2010
- ❖ Industry Canada Radio Standards Specification: RSS-GEN - General Requirements for Compliance of Radio Apparatus, Issue 4, Nov 2014.

4 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment

AssetID	Manufacturer	Model #	Equipment Type	Serial #	Last Calibration Date	Calibration Due Date
1	Rohde & Schwarz	ESMI - Display	Spectrum Analyzers	833771/007	7/11/2014	7/11/2015
2	Rohde & Schwarz	ESMI-Receiver	Spectrum Analyzers	839587/003	7/11/2014	7/11/2015
30	Spectrum Technologies	DRH-0118	Antennas	970102	4/23/2013	4/23/2015
40	EMCO	3104	Antennas	3211	2/14/2013	2/14/2015
73	Agilent	8447D	Amplifiers	2727A05624	7/15/2014	7/15/2015
152	EMCO	3825/2	LISN	9111-1905	7/12/2014	7/12/2016
167	ACS	Chamber EMI Cable Set	Cable Set	167	11/7/2013	11/7/2014
167	ACS	Chamber EMI Cable Set	Cable Set	167	10/28/2014	10/28/2015
168	Hewlett Packard	11947A	Attenuators	44829	1/27/2014	1/27/2015
267	Agilent	N1911A	Meters	MY45100129	7/30/2013	7/30/2015
268	Agilent	N1921A	Sensors	MY45240184	7/30/2013	7/30/2015
292	Florida RF Cables	SMR-290AW-480.0-SMR	Cables	None	3/17/2014	3/17/2015
316	Rohde Schwarz	ESH3-Z5	LISN	861189-010	8/15/2013	8/15/2015
316	Rohde Schwarz	ESH3-Z5	LISN	861189-010	10/30/2014	10/30/2015
324	ACS	Belden	Cables	8214	6/4/2014	6/4/2015
338	Hewlett Packard	8449B	Amplifiers	3008A01111	7/30/2013	7/30/2015
339	Aeroflex/Weinschel	AS-18	Attenuators	7142	6/2/2014	6/2/2015
412	Electro Metrics	LPA-25	Antennas	1241	7/24/2014	7/24/2016
422	Florida RF	SMS-200AW-72.0-SMR	Cables	805	11/7/2013	11/7/2014
422	Florida RF	SMS-200AW-72.0-SMR	Cables	805	11/5/2014	11/5/2015
432	Microwave Circuits	H3G020G4	Filters	264066	6/2/2014	6/2/2015
616	Florida RF Cables	SMRE-200W-12.0-SMRE	Cables	N/A	9/10/2014	9/10/2015
622	Rohde & Schwarz	FSV40	Analyzers	101338	7/12/2014	7/12/2015
RE361	Agilent	AT/E7405A	Analyzers	MY42000089	5/30/2014	5/30/2015

5 SUPPORT EQUIPMENT

Table 5-1: Support Equipment

Item	Equipment Type	Manufacturer	Model/Part Number	Serial Number
1	Power / Interface Board	Murata	800610	N/A
2	Power Supply	CUI Inc	EPAS-101W-05	N/A

6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

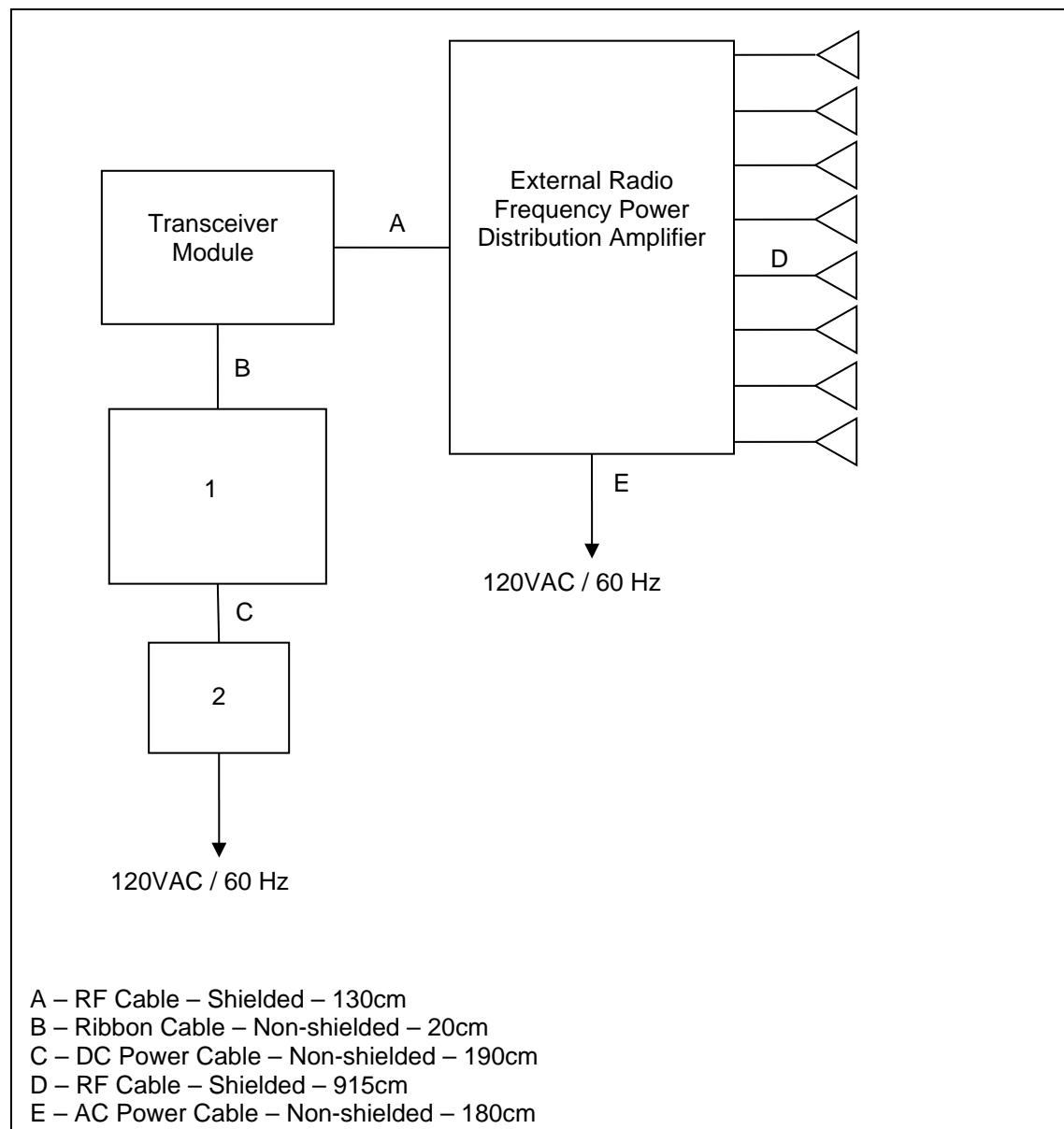


Figure 6-1: Test Setup Block Diagram

7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – FCC 15.203

The transceiver module utilizes an MMCX on board connector to the external radio frequency power distribution amplifier. The RF input to the external radio frequency power distribution amplifier utilizes a RP-TNC connector and RF outputs utilize RP-N-Type connectors. All antenna types utilize unique coupling via RP-N-Type connectors.

7.2 Power Line Conducted Emissions – FCC 15.207, IC: RSS-Gen 8.8

7.2.1 Measurement Procedure

ANSI C63.4 sections 6 and 7 were the guiding documents for this evaluation. Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

$$\begin{aligned} \text{Corrected Reading} &= \text{Analyzer Reading} + \text{LISN Loss} + \text{Cable Loss} \\ \text{Margin} &= \text{Applicable Limit} - \text{Corrected Reading} \end{aligned}$$

7.2.2 Measurement Results

Results of the test are shown below in Tables 7.2.2-1 and 7.2.2-2.

Table 7.2.2-1: Conducted EMI Results - Line 1 – Amplifier

Frequency (MHz)	Uncorrected Reading		Total Correction Factor (dB)	Corrected Level		Limit		Margin (dB)	
	Quasi-Peak	Average		Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average
17.654	36.83	34.05	11.23	48.06	45.28	60.00	50.00	11.9	4.7
17.4487	27.209	22.671	11.193	38.402	33.864	60	50	21.598	16.136
17.2779	31.066	25.645	11.187	42.252	36.831	60	50	17.748	13.169
16.912	36.4	34.27	11.12	47.52	45.39	60.00	50.00	12.5	4.6
8.457	28.76	25.98	10.49	39.25	36.47	60.00	50.00	20.7	13.5
8.37477	29.83	21.233	10.471	40.301	31.704	60	50	19.699	18.296

Table 7.2.2-2: Conducted EMI Results – Line 2 – Amplifier

Frequency (MHz)	Uncorrected Reading		Total Correction Factor (dB)	Corrected Level		Limit		Margin (dB)	
	Quasi-Peak	Average		Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average
17.647	36.45	33.2	11.23	47.68	44.43	60.00	50.00	12.3	5.6
17.277	32.89	31.44	11.20	44.09	42.64	60.00	50.00	15.9	7.4
16.912	36.19	34.74	11.12	47.31	45.86	60.00	50.00	12.7	4.1
8.454	35.04	33.41	10.49	45.53	43.90	60.00	50.00	14.5	6.1
8.14637	30.194	23.144	10.229	40.422	33.373	60	50	19.578	16.627
7.96587	27.474	19.848	10.23	37.704	30.079	60	50	22.296	19.921

Table 7.2.2-3: Conducted EMI Results - Line 1 – Transceiver

Frequency (MHz)	Uncorrected Reading		Total Correction Factor (dB)	Corrected Level		Limit		Margin (dB)	
	Quasi- Peak	Average		Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average
17.654	36.83	34.05	11.23	48.06	45.28	60.00	50.00	11.9	4.7
17.4487	27.209	22.671	11.193	38.402	33.864	60	50	21.598	16.136
17.2779	31.066	25.645	11.187	42.252	36.831	60	50	17.748	13.169
16.912	36.4	34.27	11.12	47.52	45.39	60.00	50.00	12.5	4.6
8.457	28.76	25.98	10.49	39.25	36.47	60.00	50.00	20.7	13.5
8.37477	29.83	21.233	10.471	40.301	31.704	60	50	19.699	18.296

Table 7.2.2-4: Conducted EMI Results – Line 2 – Transceiver

Frequency (MHz)	Uncorrected Reading		Total Correction Factor (dB)	Corrected Level		Limit		Margin (dB)	
	Quasi- Peak	Average		Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average
17.647	36.45	33.2	11.23	47.68	44.43	60.00	50.00	12.3	5.6
17.277	32.89	31.44	11.20	44.09	42.64	60.00	50.00	15.9	7.4
16.912	36.19	34.74	11.12	47.31	45.86	60.00	50.00	12.7	4.1
8.454	35.04	33.41	10.49	45.53	43.90	60.00	50.00	14.5	6.1
8.14637	30.194	23.144	10.229	40.422	33.373	60	50	19.578	16.627
7.96587	27.474	19.848	10.23	37.704	30.079	60	50	22.296	19.921

7.3 6dB / 99% Bandwidth – FCC 15.247(a)(2), IC: RSS-210 A8.2(a)

7.3.1 Measurement Procedure

The 6dB bandwidth was measured in accordance with the FCC KDB 558074 D01 DTS Meas Guidance v03r02. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 100 kHz. The Video Bandwidth (VBW) was set to \geq 3 times the RBW. The trace was set to max hold with a peak detector active. The marker-delta function of the spectrum analyzer was utilized to determine the 6 dB bandwidth of the emission.

The occupied bandwidth measurement function of the spectrum analyzer was used to measure the 99% bandwidth. The span of the analyzer was set to capture all products of the modulation process, including the emission sidebands. The resolution bandwidth was set to 1% to 5% of the occupied bandwidth. The video bandwidth was set to 3 times the resolution bandwidth. A sampling detector was used.

7.3.2 Measurement Results

Results are shown below in table 7.3.2-1 and figures 7.3.2-1 to 7.3.2-6:

Table 7.3.2-1: 6dB / 99% Bandwidth

Frequency [MHz]	6dB Bandwidth [MHz]	99% Bandwidth [MHz]
2402.6112	0.9858	1.250
2441.3184	1.043	1.415
2480.0256	1.086	1.488

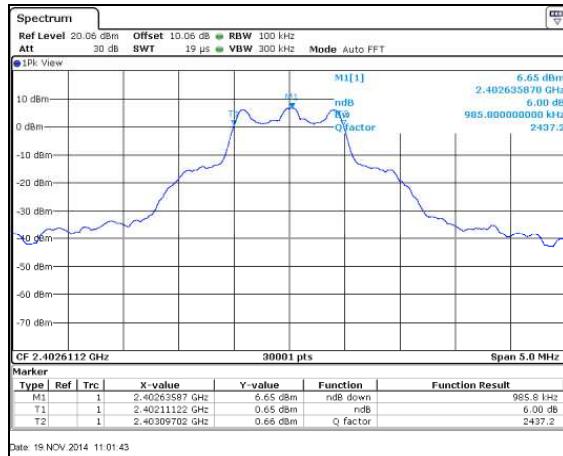


Figure 7.3.2-1: 6dB Bandwidth Plot – LCH

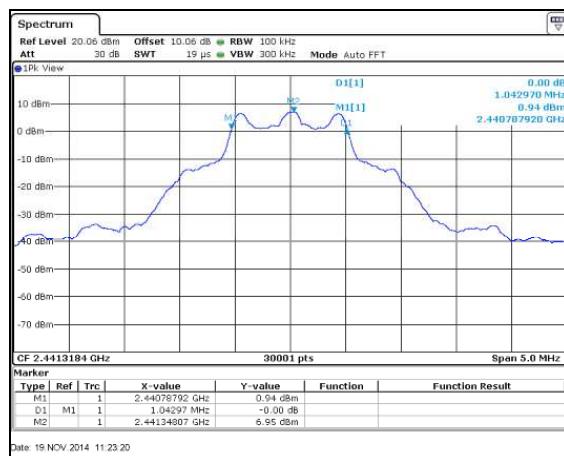


Figure 7.3.2-2: 6dB Bandwidth Plot – MCH

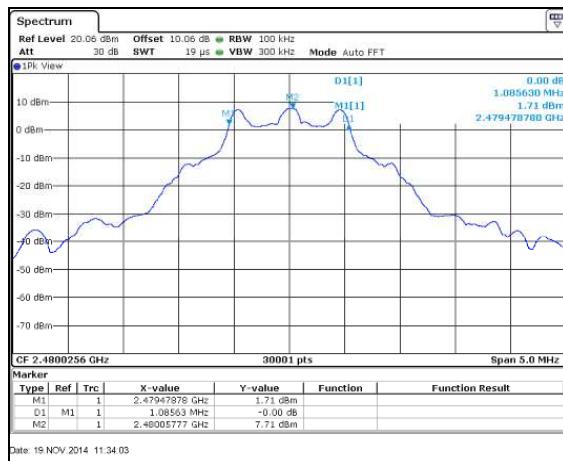


Figure 7.3.2-3: 6dB Bandwidth Plot – HCH

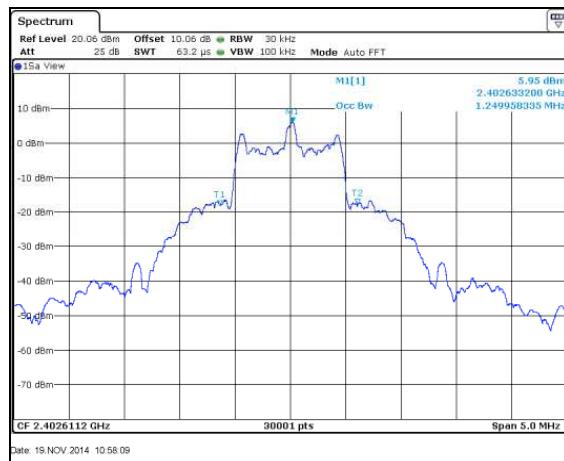


Figure 7.3.2-4: 99% Bandwidth Plot – LCH

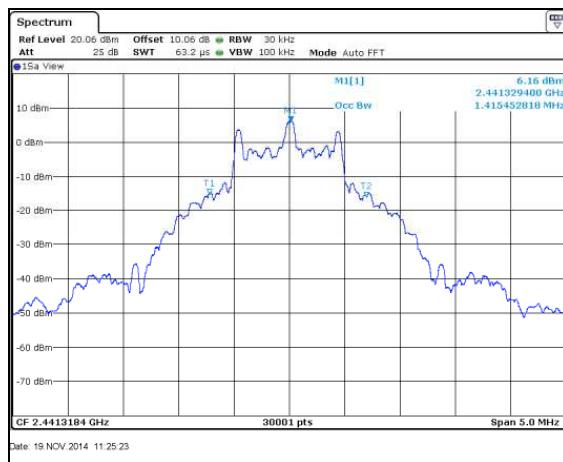


Figure 7.3.2-5: 99% Bandwidth Plot – MCH

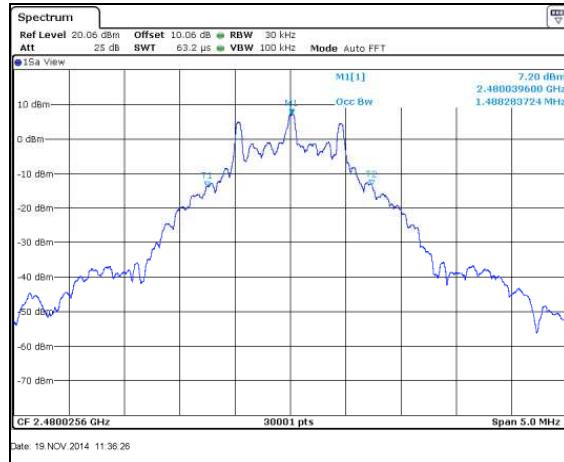


Figure 7.3.2-6: 99% Bandwidth Plot – HCH

7.4 Fundamental Emission Output Power – FCC 15.247(b)(3), IC: RSS-210 A8.4(4)**7.4.1 Measurement Procedure**

The maximum peak conducted output power was measured in accordance with FCC KDB 558074 D01 DTS Meas Guidance v03r02 utilizing the AVGPM Average power meter method. The RF output of the equipment under test was directly connected to the input of the power meter applying suitable attenuation.

Total power is determined using the measure and sum approach per KDB 662911 D01 Multiple Transmitter Output v02r01.

7.4.2 Measurement Results

Results are shown below in Table 7.4.2-1.

Table 7.4.2-1: Maximum Peak Conducted Output Power

Frequency (MHz)	Measured Peak Power (dBm)								Total Peak Power (dBm)	Total Peak Power (mW)
	Port 1	Port 2	Port 3	Port 4	Port 5	Port 6	Port 7	Port 8		
2402.6112	6.94	6.78	6.46	6.52	6.42	6.31	6.58	6.74	15.63	36.55
2441.3184	7.75	7.72	7.43	7.50	7.37	7.27	7.49	7.72	16.57	45.35
2480.0256	8.67	8.68	8.43	8.50	8.42	8.25	8.42	8.73	17.55	56.84

7.5 Emission Levels – FCC 15.247(d), 15.205, 15.209; IC RSS-210 2.2/A8.5, RSS-Gen 8.9

7.5.1 Emissions into Non-restricted Frequency Bands

7.5.1.1 Measurement Procedure

The unwanted emissions into non-restricted bands were measured conducted in accordance with FCC KDB 558074 D01 DTS Meas Guidance v03r02. The RF output of the equipment under test was directly connected to the input of the spectrum analyzer applying suitable attenuation. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 100 kHz. The Video Bandwidth (VBW) was set to \geq 300 kHz. Span was set to 1.5 times the DTS bandwidth. The trace was set to max hold with a peak detector active. The resulting spectrum analyzer peak level was used to determine the reference level with respect to the 20 dBc limit. The spectrum span was then adjusted for the measurement of spurious emissions from 30MHz to 25GHz, 10 times the highest fundamental frequency.

Band-edge compliance was determined using the conducted marker-delta method in which the radio frequency power that is produced by the EUT is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power.

7.5.1.2 Measurement Results

RF Conducted Emissions are displayed in Figures 7.5.1.2-1 through 7.5.1.2-11.

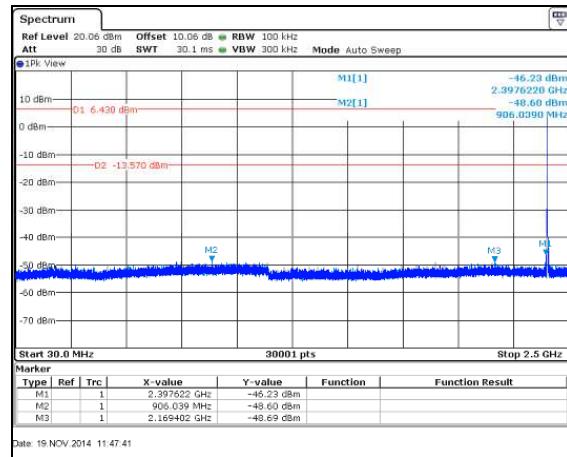


Figure 7.5.1.2-1: 30 MHz – 2.5 GHz – LCH

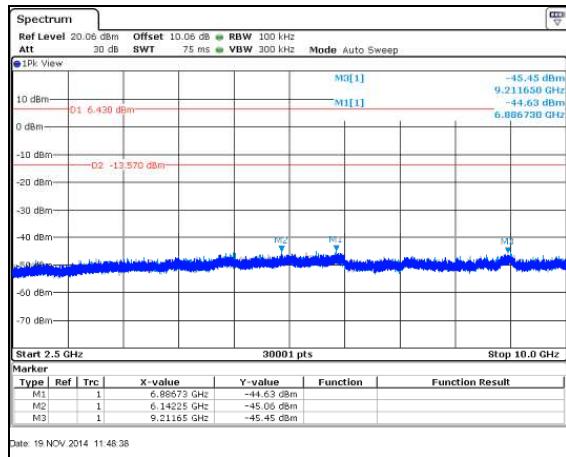


Figure 7.5.1.2-2: 2.5 GHz – 10 GHz – LCH

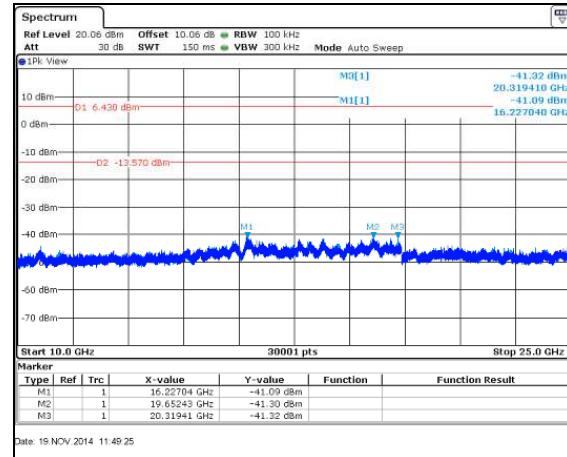


Figure 7.5.1.2-3: 10 GHz – 25 GHz – LCH

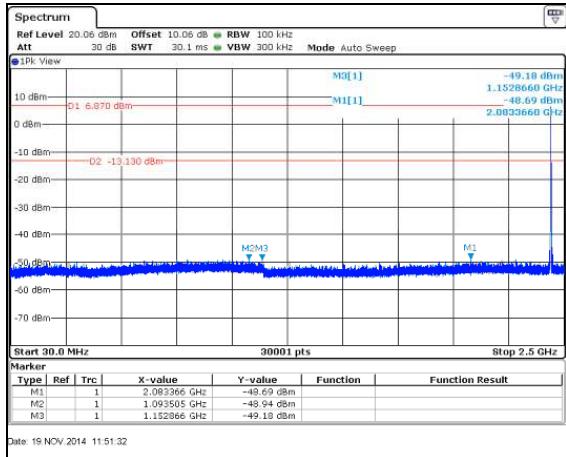


Figure 7.5.1.2-4: 30 MHz – 2.5 GHz – MCH

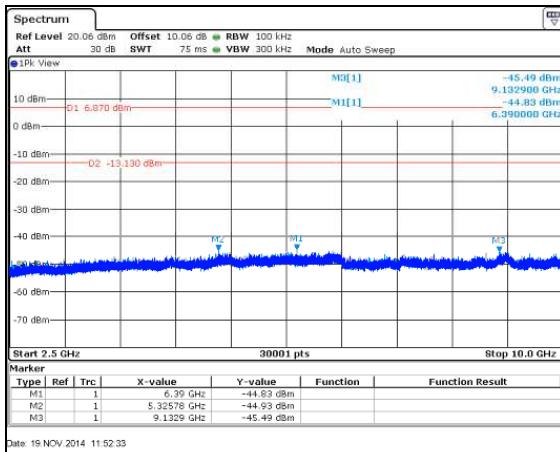


Figure 7.5.1.2-5: 2.5 GHz – 10 GHz – MCH

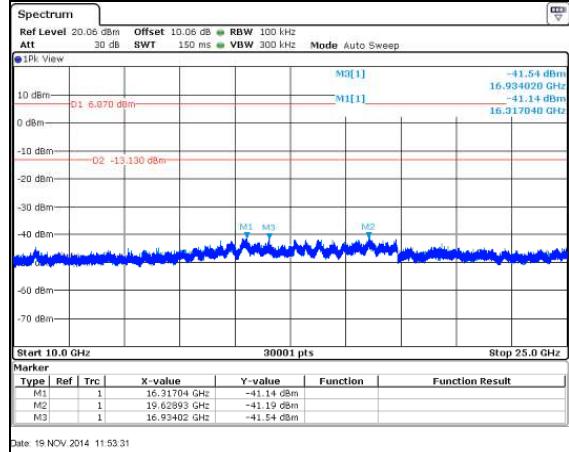


Figure 7.5.1.2-6: 10 GHz – 25 GHz – MCH

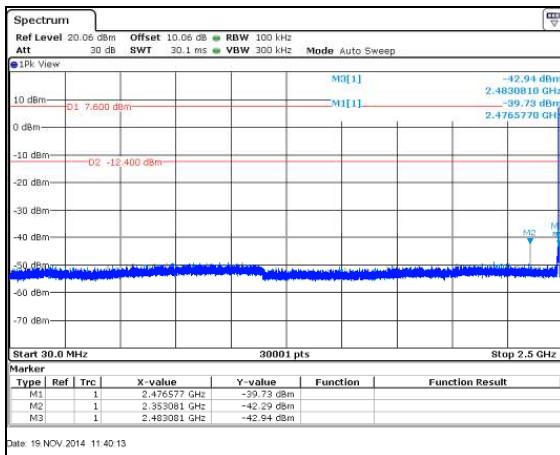


Figure 7.5.1.2-7: 30 MHz – 2.5 GHz – HCH

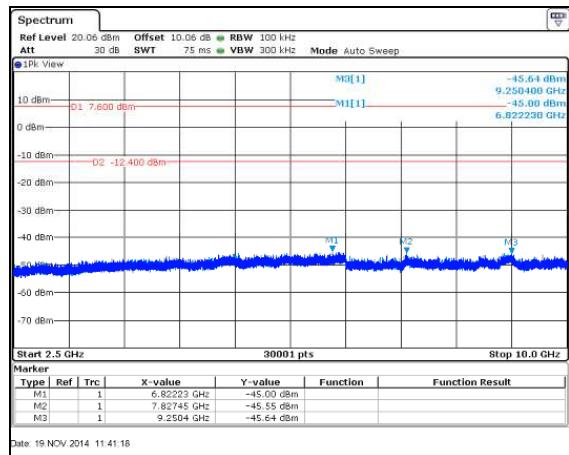


Figure 7.5.1.2-8: 2.5 GHz – 10 GHz – HCH

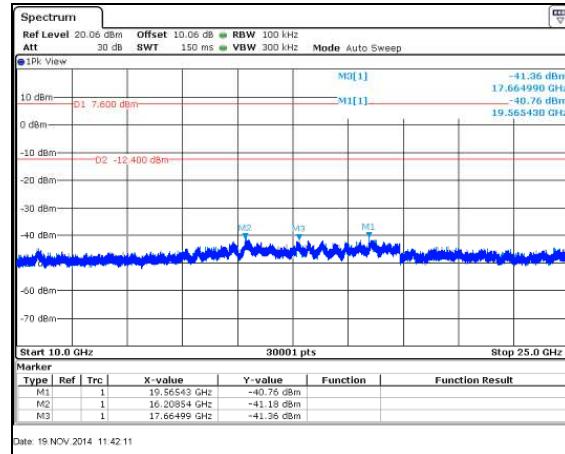


Figure 7.5.1.2-9: 10 GHz – 25 GHz – HCH

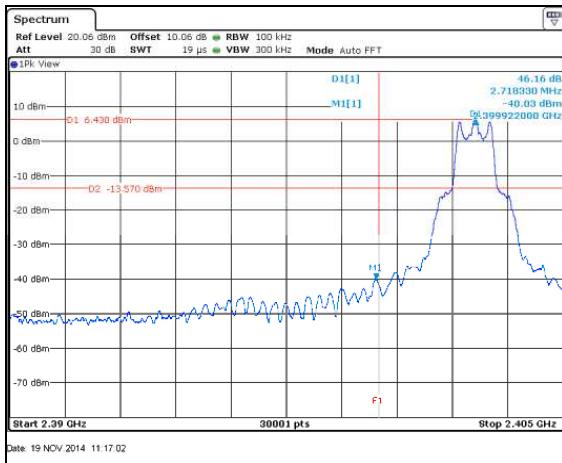


Figure 7.5.1.2-10: Lower Band-edge - LCH

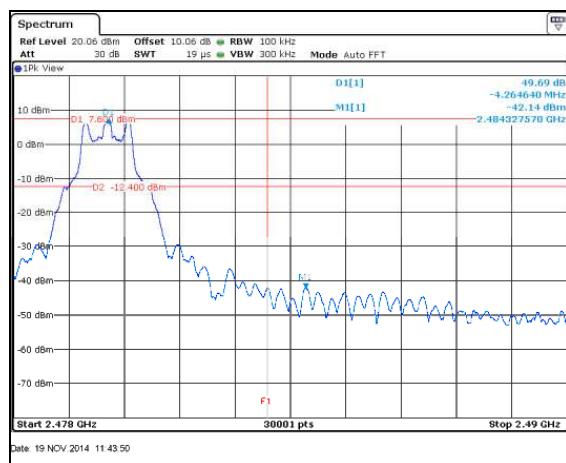


Figure 7.5.1.2-11: Upper Band-edge - HCH

7.5.2 Emissions into Restricted Frequency Bands

7.5.2.1 Measurement Procedure

The unwanted emissions into restricted bands were measured radiated over the frequency range of 30MHz to 25GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000MHz, peak and average measurements were made with RBW and VBW of 1 MHz and 3 MHz respectively. The average emissions were further corrected by applying the duty cycle correction of the EUT for comparison to the average limit.

Each emission found to be in a restricted band as defined by section 15.205, including any emission at the operational band-edge, was compared to the radiated emission limits as defined in section 15.209.

7.5.2.2 Duty Cycle Correction

For average radiated measurements, using a 0.833% duty cycle, the measured level was reduced by a factor -41.59dB. The duty cycle correction factor is determined using the formula: $20\log(0.833/100) = -41.59\text{dB}$.

A detailed analysis of the duty cycle timing is provided in the Theory of Operation accompanying the application for certification.

7.5.2.3 Measurement Results

Radiated spurious emissions found in the band of 30MHz to 25GHz are reported in the tables 7.5.2.3-1 and 7.5.2.3-2 below.

Table 7.5.2.3-1: Radiated Spurious Emissions Tabulated Data – Ceiling Mount Antenna

Frequency (MHz)	Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel										
1201.42	57.20	53.29	H	-12.61	44.59	-0.90	74.0	54.0	29.4	54.9
1201.42	58.60	54.79	V	-12.61	45.99	0.60	74.0	54.0	28.0	53.4
2390	48.16	34.02	H	-6.48	41.68	-14.05	74.0	54.0	32.3	68.1
2390	54.20	34.19	V	-6.48	47.72	-13.88	74.0	54.0	26.3	67.9
4805.2224	58.14	49.94	H	1.62	59.76	9.97	74.0	54.0	14.2	44.0
4805.2224	53.16	43.82	V	1.62	54.78	3.85	74.0	54.0	19.2	50.1
Middle Channel										
1220.59	58.47	54.46	H	-12.52	45.95	0.35	74.0	54.0	28.0	53.6
1220.59	60.07	56.77	V	-12.52	47.55	2.66	74.0	54.0	26.4	51.3
4882.6368	59.16	51.06	H	1.77	60.93	11.24	74.0	54.0	13.1	42.8
4882.6368	56.72	48.52	V	1.77	58.49	8.70	74.0	54.0	15.5	45.3
7323.9552	62.10	53.77	H	7.71	69.81	19.89	74.0	54.0	4.2	34.1
7323.9552	61.87	52.93	V	7.71	69.58	19.05	74.0	54.0	4.4	34.9
High Channel										
1239.91	60.20	56.69	H	-12.43	47.77	2.67	74.0	54.0	26.2	51.3
1239.91	61.08	57.51	V	-12.43	48.65	3.49	74.0	54.0	25.3	50.5
2483.5	55.06	34.63	H	-5.97	49.09	-12.93	74.0	54.0	24.9	66.9
2483.5	62.59	35.51	V	-5.97	56.62	-12.05	74.0	54.0	17.4	66.1
4960.0512	56.31	47.15	H	1.92	58.23	7.48	74.0	54.0	15.8	46.5
4960.0512	56.74	47.96	V	1.92	58.66	8.29	74.0	54.0	15.3	45.7
7440.0768	63.24	55.17	H	7.87	71.11	21.45	74.0	54.0	2.9	32.6
7440.0768	66.04	58.06	V	7.87	73.91	24.34	74.0	54.0	0.1	29.7

Table 7.5.2.3-2: Radiated Spurious Emissions Tabulated Data – Whip Antenna

Frequency (MHz)	Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel										
1201.25	59.36	55.40	H	-12.61	46.75	1.21	74.0	54.0	27.2	52.8
1201.25	56.72	52.33	V	-12.61	44.11	-1.86	74.0	54.0	29.9	55.9
2390	52.66	34.25	V	-6.48	46.18	-13.82	74.0	54.0	27.8	67.8
4805.2224	58.22	49.79	H	1.62	59.84	9.82	74.0	54.0	14.2	44.2
4805.2224	57.23	49.33	V	1.62	58.85	9.36	74.0	54.0	15.1	44.6
12013.056	47.37	36.00	H	14.12	61.49	8.53	83.5	63.5	22.0	55.0
Middle Channel										
1220.64	59.06	54.20	H	-12.52	46.54	0.10	74.0	54.0	27.5	53.9
1220.64	60.77	56.34	V	-12.52	48.25	2.24	74.0	54.0	25.7	51.8
4882.6368	59.03	50.37	H	1.77	60.80	10.55	74.0	54.0	13.2	43.4
4882.6368	54.86	46.05	V	1.77	56.63	6.23	74.0	54.0	17.4	47.8
7323.9552	60.86	52.50	H	7.71	68.57	18.62	74.0	54.0	5.4	35.4
7323.9552	62.41	54.43	V	7.71	70.12	20.55	74.0	54.0	3.9	33.4
12206.592	50.76	39.53	H	15.27	66.03	13.21	83.5	63.5	17.5	50.3
12206.592	49.26	38.71	V	15.27	64.53	12.39	83.5	63.5	19.0	51.2
High Channel										
1239.91	61.29	57.71	H	-12.43	48.86	3.69	74.0	54.0	25.1	50.3
1239.91	61.34	57.76	V	-12.43	48.91	3.74	74.0	54.0	25.1	50.3
2483.5	51.42	34.40	H	-5.97	45.45	-13.16	74.0	54.0	28.6	67.2
2483.5	68.38	37.82	V	-5.97	62.41	-9.74	74.0	54.0	11.6	63.7
4960.0512	57.53	49.35	H	1.92	59.45	9.68	74.0	54.0	14.6	44.3
4960.0512	57.40	49.10	V	1.92	59.32	9.43	74.0	54.0	14.7	44.6
7440.0768	63.22	55.02	H	7.87	71.09	21.30	74.0	54.0	2.9	32.7
7440.0768	64.34	55.98	V	7.87	72.21	22.26	74.0	54.0	1.8	31.7
12400.128	49.29	37.62	H	16.41	65.70	12.44	83.5	63.5	17.8	51.1
12400.128	48.54	36.91	V	16.41	64.95	11.73	83.5	63.5	18.5	51.8

7.5.2.4 Sample Calculation:

$$R_c = R_u + CF_T$$

Where:

CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

R_u = Uncorrected Reading

R_c = Corrected Level

AF = Antenna Factor

CA = Cable Attenuation

AG = Amplifier Gain

DC = Duty Cycle Correction Factor

Example Calculation: Peak (Ceiling Antenna)

Corrected Level: $58.14 + 1.62 = 59.76\text{dBuV/m}$

Margin: $74.0\text{dBuV/m} - 59.76\text{dBuV/m} = 14.2\text{dB}$

Example Calculation: Average (Ceiling Antenna)

Corrected Level: $49.94 + 1.62 - 41.59 = 9.97\text{dBuV}$

Margin: $54.0\text{dBuV} - 9.97\text{dBuV} = 44.0\text{dB}$

7.6 Maximum Power Spectral Density in the Fundamental Emission – FCC 15.247(e) IC: RSS-210 A8.2(b)

7.6.1 Measurement Procedure

The power spectral density was measured in accordance with the FCC KDB 558074 D01 DTS Meas Guidance v03r02 utilizing the AVGPSD-1 (trace averaging with EUT transmitting at full power throughout each sweep) method. The RF output of the equipment under test was directly connected to the input of the spectrum analyzer applying suitable attenuation. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 3 kHz. The Video Bandwidth (VBW) was set to 10 kHz. Span was set to 1.5 times the occupied bandwidth. Trace averaging was employed over a minimum of 100 sweeps with a RMS detector active.

Total power spectral density is determined using the measure and add $10 \log(N_{ANT})$ dB, where N_{ANT} is the number of outputs, per KDB 662911 D01 Multiple Transmitter Output v02r01.

7.6.2 Measurement Results

Results are shown below in table 7.6.2-1 and figures 7.6.2-1 to 7.6.2-24.

Table 7.6.2-1: Peak Power Spectral Density

Frequency (MHz)	Measured Power Spectral Density (dBm)								Correction Factor $10 \log(N)$, $N=8$ (dB)	Total Power Spectral Density (dBm)
	Port 1	Port 2	Port 3	Port 4	Port 5	Port 6	Port 7	Port 8		
2402.6112	-11.67	-11.43	-11.98	-12.28	-12.07	-12.05	-12.32	-11.61	9.03	-2.40
2441.3184	-5.86	-6.66	-6.67	-6.61	-6.22	-6.70	-6.83	-6.70	9.03	3.17
2480.0256	-2.00	-1.94	-2.47	-2.20	-2.22	-2.14	-1.82	-1.98	9.03	7.21

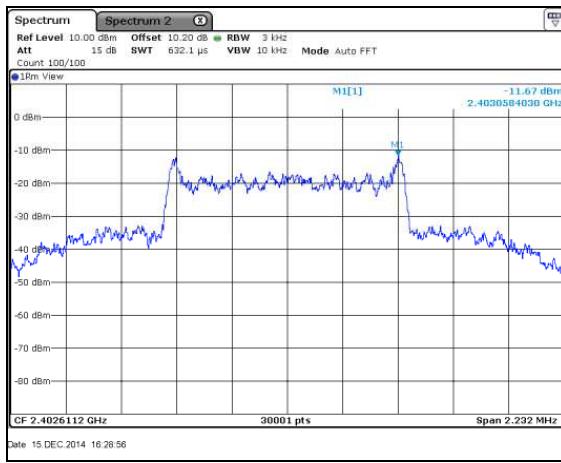


Figure 7.6.2-1: PSD Plot – LCH – Port 1

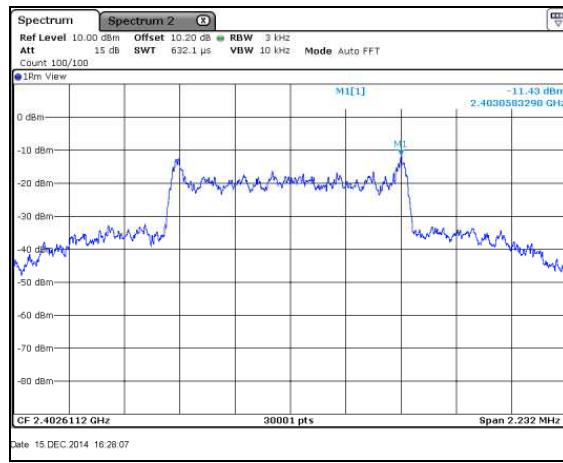


Figure 7.6.2-2: PSD Plot – LCH – Port 2

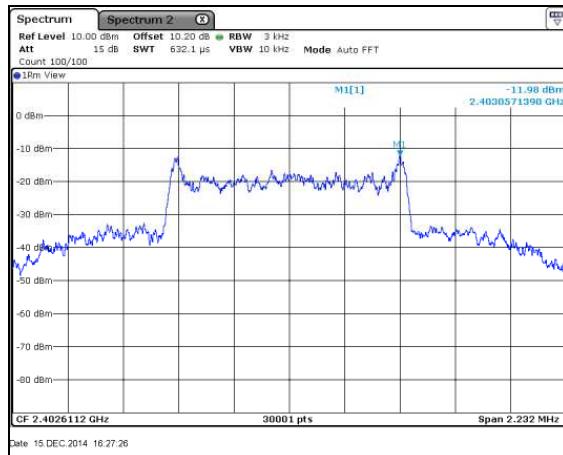


Figure 7.6.2-3: PSD Plot – LCH – Port 3

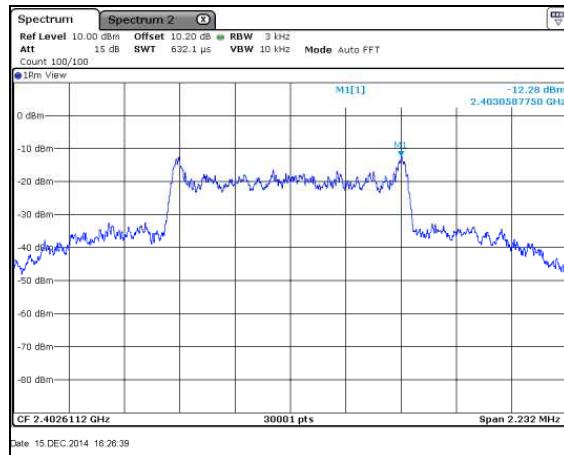


Figure 7.6.2-4: PSD Plot – LCH – Port 4

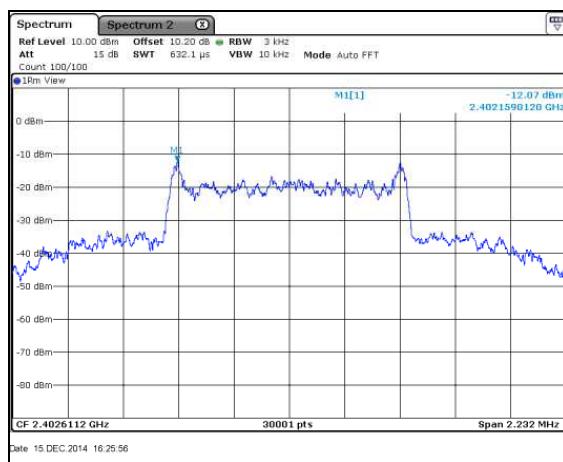


Figure 7.6.2-5: PSD Plot – LCH – Port 5

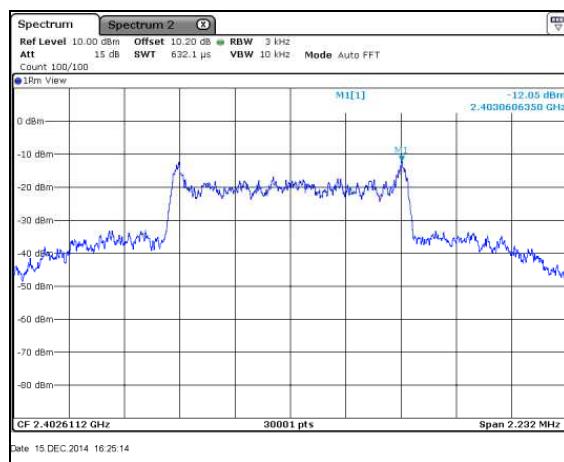


Figure 7.6.2-6: PSD Plot – LCH – Port 6

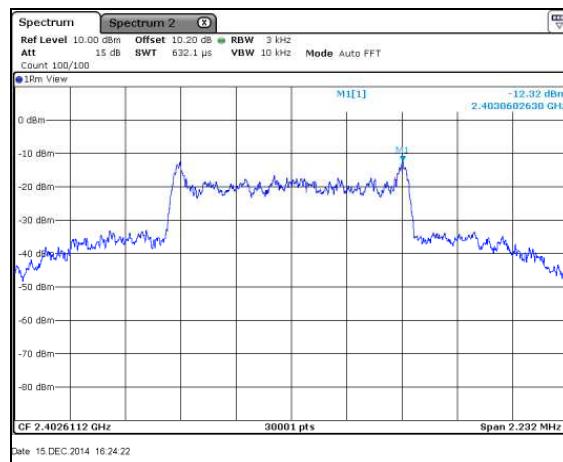


Figure 7.6.2-7: PSD Plot – LCH – Port 7

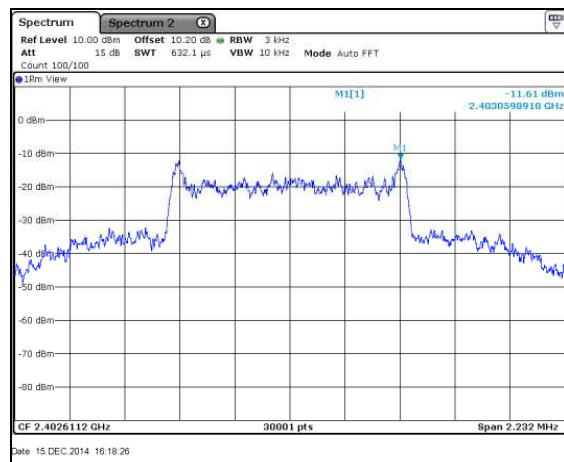


Figure 7.6.2-8: PSD Plot – LCH – Port 8

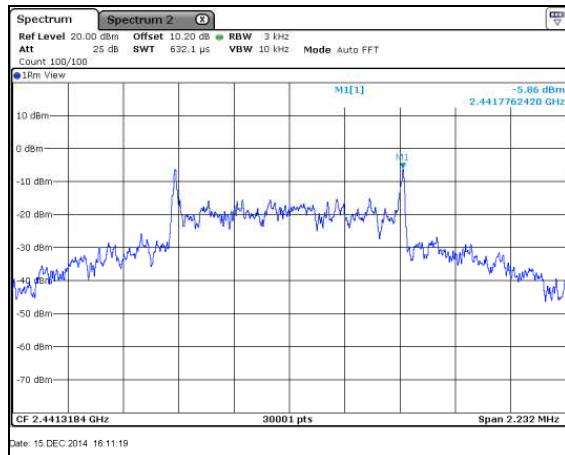


Figure 7.6.2-9: PSD Plot - MCH - Port 1

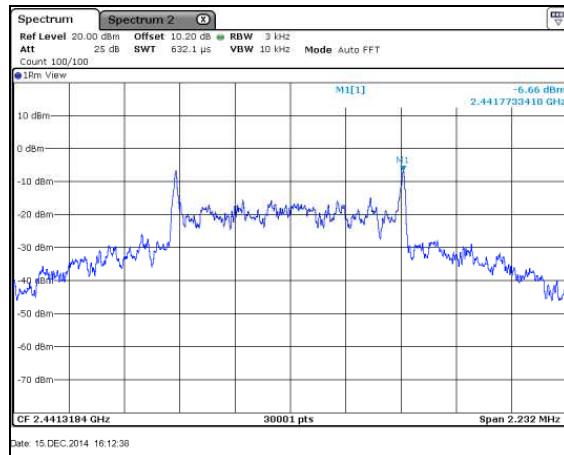


Figure 7.6.2-10: PSD Plot - MCH - Port 2

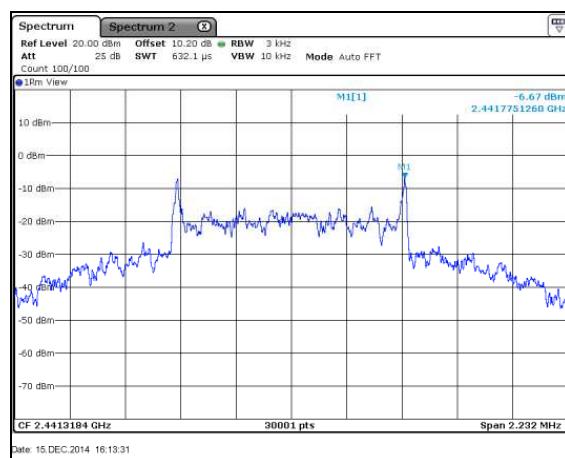


Figure 7.6.2-11: PSD Plot - MCH - Port 3

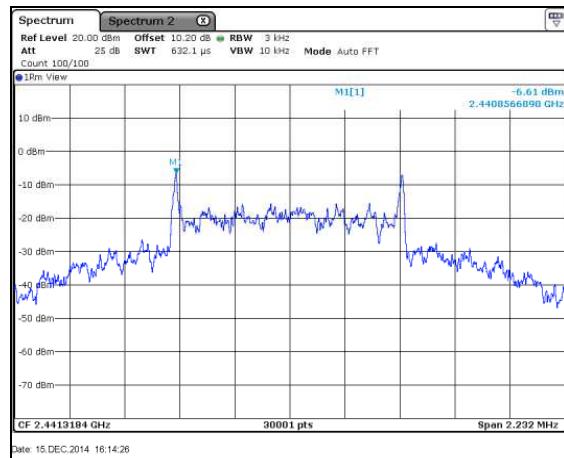


Figure 7.6.2-12: PSD Plot - MCH - Port 4

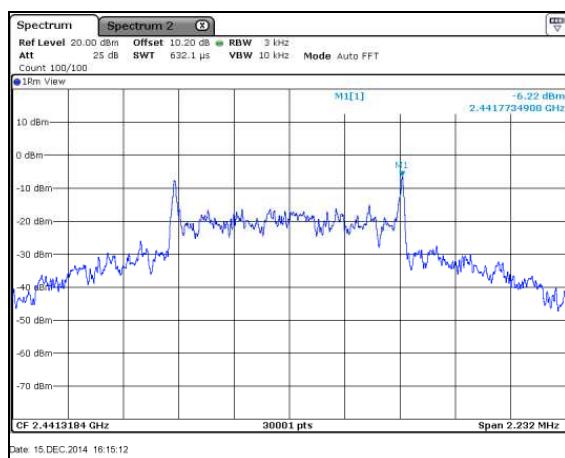


Figure 7.6.2-13: PSD Plot - MCH - Port 5

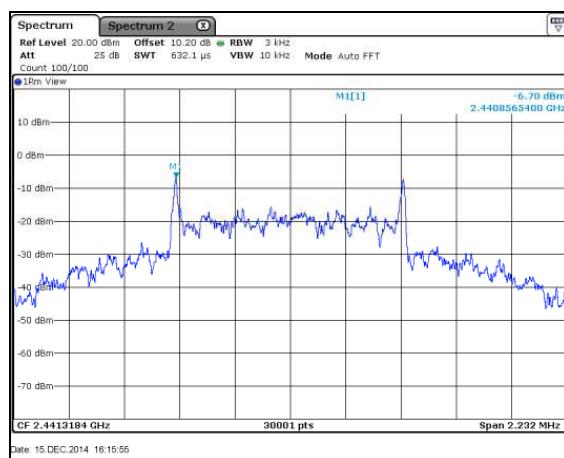


Figure 7.6.2-14: PSD Plot - MCH - Port 6

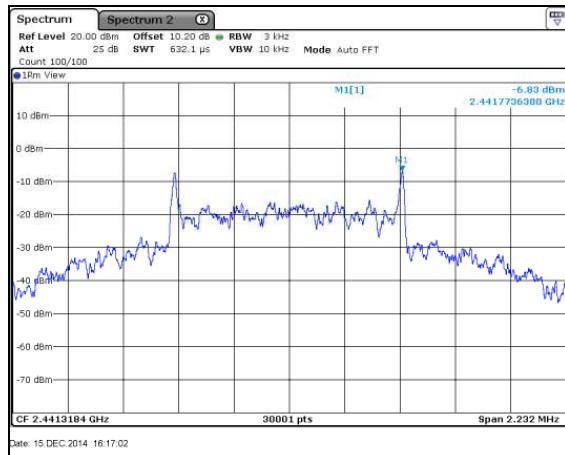


Figure 7.6.2-15: PSD Plot - MCH - Port 7

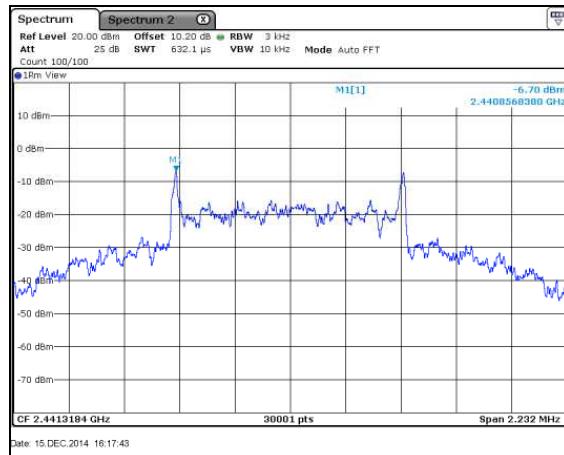


Figure 7.6.2-16: PSD Plot - MCH - Port 8

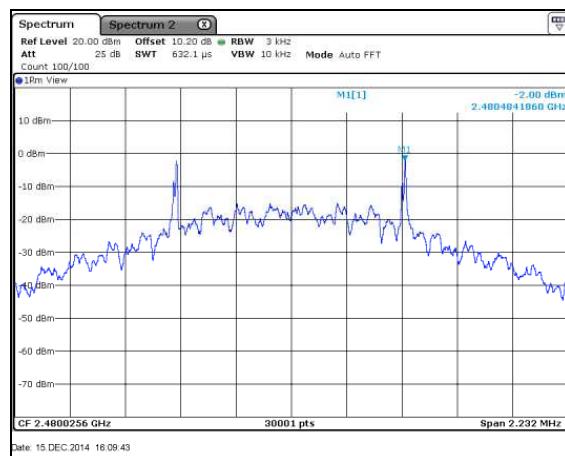


Figure 7.6.2-17: PSD Plot - HCH - Port 1

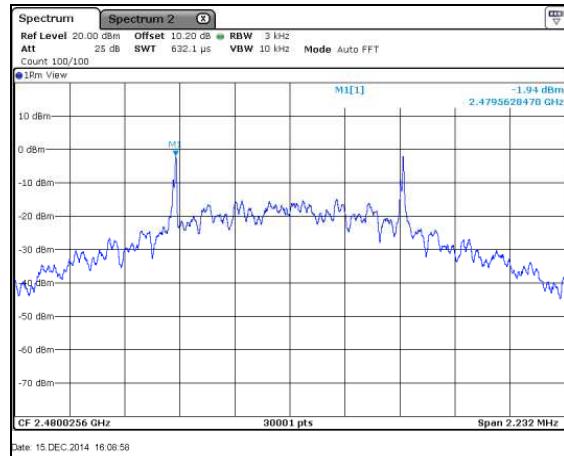


Figure 7.6.2-18: PSD Plot - HCH - Port 2

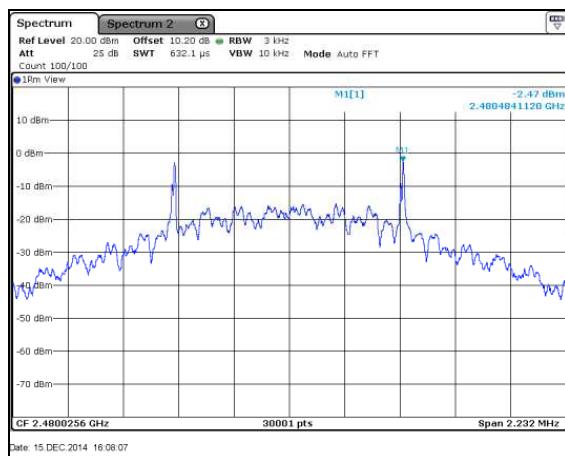


Figure 7.6.2-19: PSD Plot - HCH - Port 3

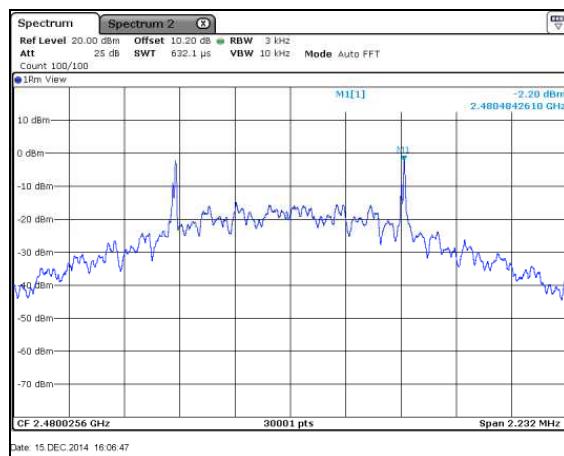


Figure 7.6.2-20: PSD Plot - HCH - Port 4

Figure 7.6.2-21: PSD Plot – HCH – Port 5

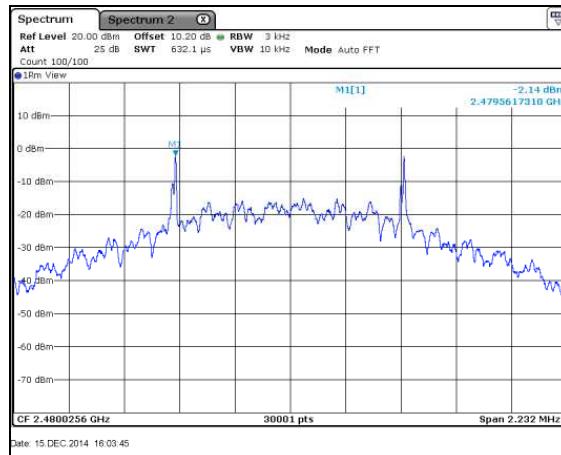


Figure 7.6.2-22: PSD Plot – HCH – Port 6

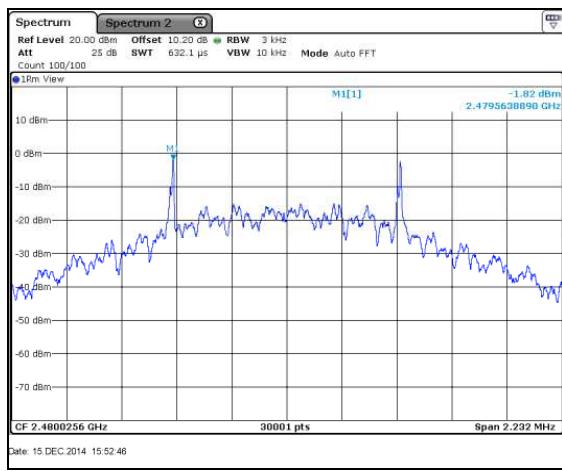


Figure 7.6.2-23: PSD Plot – HCH – Port 7

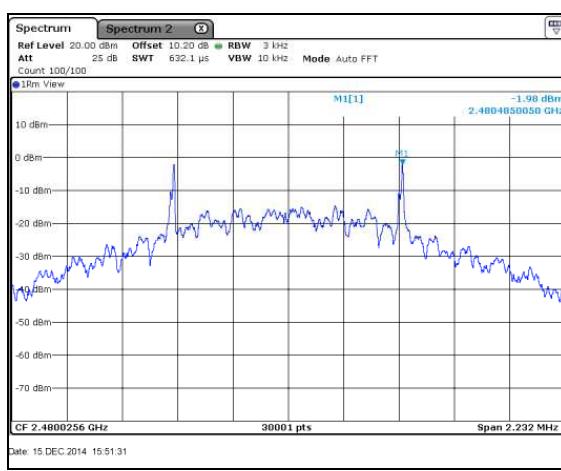


Figure 7.6.2-24: PSD Plot – HCH – Port 8

8 CONCLUSION

In the opinion of ACS, Inc. the DAS2400, provided by Channel D Solutions, Inc. meets the requirements of FCC Part 15 subpart C and Industry Canada's Radio Standards Specification RSS-210.

END REPORT