

Report on the Radio Testing

For

Navtech Radar Ltd

on

KTS350-X

Report no. TRA-041847-45-00B

2020-06-12

RF922 5.0

Report Number: TRA-041847-45-00B Issue: B

> REPORT ON THE RADIO TESTING OF A Navtech Radar Ltd KTS350-X WITH RESPECT TO SPECIFICATION FCC 47 CFR Part 90 Subpart F

TEST DATE: 2020-03-02 to 2020-04-01

Dearvey

Written by:

David Garvey Radio Test Engineer

John Charters

Lab Manager

Approved by:

Date:

2020-06-12

Disclaimers:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

RF922 5.0

Element Materials Technology Warwick Ltd. Registered in England and Wales. Registered Office: 5 Fleet Place, London, EC4M 7RD Company Reg No. 02536659

1 Revision Record

Issue Number	Issue Date	Revision History
A	2020-04-08	Original
В	2020-06-12	Updated after certification checking

2 Summary

TEST REPORT NUMBER:	TRA-041847-45-00B
WORKS ORDER NUMBER:	TRA-041847-02
PURPOSE OF TEST:	USA: Testing of radio frequency equipment per the relevant authorization procedure of chapter 47 of CFR (code of federal regulations) Part 2, subpart J.
TEST SPECIFICATION:	FCC 47 CFR Part 90 Subpart F
EQUIPMENT UNDER TEST (EUT):	KTS350-X
FCC IDENTIFIER:	S7Y-MV1K
EUT SERIAL NUMBER:	2017
MANUFACTURER/AGENT:	Navtech Radar Ltd
ADDRESS:	16 Home Farm Ardington Wantage Oxfordshire OX12 8PD United Kingdom
CLIENT CONTACT:	Rick Poulton ☎ 01235 433592 ⊠ richard.poulton@navtechradar.com
ORDER NUMBER:	20108
TEST DATE:	2020-03-02 to 2020-04-01
TESTED BY:	David Garvey Element

2.1 Test Summary

	Requirement Clause	Applicable	
Test Method and Description	47CFR90	to this equipment	Result / Note
Output power	2.1046 / §90.205 Power and antenna height limits.	\boxtimes	Pass
Occupied bandwidth	2.1049 / §90.209 Bandwidth limitations.	\boxtimes	Pass
Spurious emissions at antenna terminal	2.1051 / §90.207 Types of emissions.	\boxtimes	N/A Note 3
Field strength of spurious radiation	2.1053 / §90.207 Types of emissions.	\boxtimes	Pass Note 1 Note 2
Frequency stability	2.1055 / §90.213 Frequency stability.	\boxtimes	Pass
AC power line conducted emissions	15.207	\boxtimes	Pass

Notes:

Note 1: Emission only performed to 110 GHz. The radiated spurious emissions above 110 GHz was performed by RN Electronics. The report number by RN Electronics is 03-11750-1-20.

Note 2: The following product was tested against the 15.209 limits as these are stricter than the 13 dBm limit as per Part 90.

Note 3: The EUT was purely radiated sample.

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

3 Contents

1		ision Record	
2	2 Summary		
	2.1	Test Summary	
3		tents	
4		duction	
5		Specifications	
	5.1	Normative References	9
	5.2	Deviations from Test Standards	9
6		ssary of Terms	
7		ipment Under Test	
	7.1	EUT Identification	
	7.2	System Equipment	11
	7.3	EUT Mode of Operation	
	7.3.		
	7.3.2		
	7.4	EUT Radio Parameters	
	7.4.		
	7.4.2		
	7.5	EUT Description	
8		ifications	
9		Test Setup	
	9.1	Block Diagram	14
	9.2	General Set-up Photograph	15
	9.3	Measurement software	10
10		eneral Technical Parameters	
	10.1	Normal Conditions	10
44	10.2	Varying Test Conditions	10
11		utput power	
	11.1	Definition	
	11.2	Test Parameters	
	11.3	Test Limit	
	11.4	Test Method	
	11.5 11.6	Test Equipment Test Results	
12		ccupied Bandwidth	
12	12.1	Definitions	
	12.1	Test Parameters	
	12.2	Test Limit	
	12.3	Test Method	
	12.4	Test Equipment	
	12.5	Test Results	
13		adiated emissions	
10	13.1	Definitions	
	13.2	Test Parameters	
	13.3	Test Limit	
	13.4	Test Method	
	13.5	Test Set-up Photograph	
	13.6	Test Equipment	
	13.7	Test Results	
14		requency stability	
	14.1	Definition	
	14.2	Test Parameters	
	14.3	Test Limit	
	14.4	Test Method	
	14.5	Test Equipment	
	14.6	Test Results	
15		C power-line conducted emissions	35
-	15.1	Definition	
	15.2	Test Parameters	
	15.3	Test Limit	
	15.4	Test Method	36
	15.5	Test Set-up Photograph	36
	15.6	Test Equipment	36

15.7	Test Results	. 37
	Measurement Uncertainty	
17	MPE Calculation	.40

4 Introduction

This report TRA-041847-45-00B presents the results of the Radio testing on a Navtech Radar Ltd, KTS350-X to specification 47 CFR Part 90 Subpart F – Radiolocation Service.

The testing was carried out for Navtech Radar Ltd by Element, at the address detailed below.

Element Hull		Element North West
Unit E		Unit 1
South Orbital Trading Park		Pendle Place
Hedon Road		Skemersdale
Hull		West Lancashire
HU9 1NJ		WN8 9PN
UK		UK
	Unit E South Orbital Trading Park Hedon Road Hull HU9 1NJ	Unit E South Orbital Trading Park Hedon Road Hull HU9 1NJ

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

Element is accredited for the above sites under the US-EU MRA, Designation number UK0009.

The test site requirements of ANSI C63.4-2014 are met up to 1 GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Part 90 Subpart F Radiolocation Service.
- ANSI C63.26-2015 American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

5.2 Deviations from Test Standards

The temperature range over which the EUT performance was assessed was wider than that required by the specification at the client's request.

This test report only covers emission up to 110 GHz.

6 Glossary of Terms

§ AC ANSI BW C CFR CW dB dBm DC DSSS EIRP ERP EUT FCC FHSS Hz IC ITU LBT m max MIMO min MRA N/A PCB PDF Pt-mpt Pt-pt RF	denotes a section reference from the standard, not this document Alternating Current American National Standards Institute bandwidth Celsius Code of Federal Regulations Continuous Wave decibel dB relative to 1 milliwatt Direct Current Direct Sequence Spread Spectrum Equivalent Isotropically Radiated Power Effective Radiated Power Effective Radiated Power Equipment Under Test Federal Communications Commission Frequency Hopping Spread Spectrum hertz Industry Canada International Telecommunication Union Listen Before Talk metre maximum Multiple Input and Multiple Output minimum Mutual Recognition Agreement Not Applicable Printed Circuit Board Portable Document Format Point-to-point Radio Frequency
•	•
RF RH	Radio Frequency Relative Humidity
RMS	Root Mean Square
Rx	receiver
s SVSWR	second Site Voltage Standing Wave Ratio
Тх	transmitter
UKAS	United Kingdom Accreditation Service
V	volt
W Ω	watt ohm
32	UIIII

7 Equipment Under Test

7.1 EUT Identification

- Name: KTS350-X
- Serial Number: 02017
- Model Number: KTS350-X
- Software Revision: Not Applicable
- Build Level / Revision Number: Not Applicable

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Not Applicable – No support/monitoring equipment required.

7.3 EUT Mode of Operation

7.3.1 Transmission

The EUT was operating with a swept frequency transmission. For radiated spurious measurements, the EUT was operating in normal mode with a rotating antenna assembly. For all other tests, the EUT was operating in staring mode with a stationary antenna assembly lined up with the measurement antenna.

7.3.2 Reception

The EUT does not have a separate receive mode.

7.4 EUT Radio Parameters

7.4.1 General

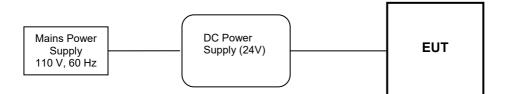
Frequency band:	33.4 GHz – 36 GHz
Modulation type:	FMCW
Channel spacing:	N/A (Swept RADAR signal)
ITU emission designator:	537MF0N
Declared output power:	47 dBm
Warning against use of alternative antennas in user manual:	N/A Not possible to use other antennas
Nominal Supply Voltage:	24 Vdc
Method of prevention of use on non-US / non- Canadian frequencies:	N/A
Duty cycle:	0.5% when rotating

7.4.2 Antennas

Туре:	Custom pseudo optical horn lens assembly
Frequency range:	34 GHz to 35 GHz
Impedance:	N/A
SWR:	N/A
Gain:	35 dBi
Polarisation:	Horizontal
Beam width:	1.8°
Environmental limits:	-30 °C to 60 °C
Mounting:	Internally mounted to a rotating assembly

7.5 EUT Description

The EUT is a Radar Unit for a variety of functions, including vehicle automation, localisation and Navigation as well as ground based applications for detecting ground targets such as vehicles, debris and pedestrians.


8 Modifications

No modifications were performed during this assessment.

9 EUT Test Setup

9.1 Block Diagram

The following diagram shows basic EUT interconnections:

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

Photo 1 removed at the request of the applicant. The photos can be found in Element document TRA-041847-45-00B_Photographs

9.3 Measurement software

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5 (See Note)

Note:

The version of the Element software used is recorded in the results sheets contained within this report.

10 General Technical Parameters

10.1 Normal Conditions

The EUT was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 24 Vdc from the provided adaptor which was powered from 110 Vac, 60 Hz, from the mains.

10.2 Varying Test Conditions

Variation of supply voltage is required to ensure stability of the declared output power. During frequency stability testing the following variations were made:

	Category	Nominal	Variation
	Mains	110 Vac +/-2 %	85 % and 115 %
	Battery	New battery	N/A
\square	Power Supply	24 Vdc	85 % and 115 %

11 Output power

11.1 Definition

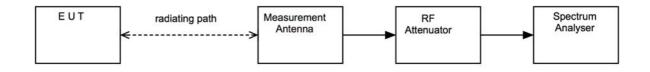
The RF power dissipated in the standard output termination when operating under the rated duty cycle selected by the applicant for approval.

11.2 Test Parameters

Test Location:	Element Hull
Test Chamber:	Wireless Lab 3
Test Standard and Clause:	ANSI C63.26-2015, Clause 5.2
EUT Frequencies Measured:	Swept Signal / 34 GHz - 35 GHz Radar
EUT Channel Bandwidths:	537 MHz
Deviations From Standard:	None
Measurement BW:	1 MHz
Spectrum Analyzer Video BW: (requirement at least 3x RBW)	3 MHz
Measurement Detector:	Peak

Environmental Conditions (Normal Environment)

Temperature: 20 °C	+15 °C to +35 °C (as declared)
Humidity: 42 % RH	20 % RH to 75 % RH (as declared)


11.3 Test Limit

For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations.

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

Figure iv Test Setup

11.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Ferrite Lined Chamber	Rainford	Chamber	REF2259	2020-08-03
EMI Test Receiver	R&S	ESW26	REF2235	2020-07-26
LB-180400-25-C-KF	A Info Inc	Horn Antenna	REF2245	2020-07-25
LB-180400-25-C-KF	A Info Inc	Horn Antenna	REF2246	2020-07-25
N9030A	Agilent	Spectrum Analyser	REF2167	2020-08-12
PSG E8257D	Agilent	Signal Generator	REF2168	2020-12-09

11.6 Test Results

Model	Radome	Detector	Freq. (GHz)	Peak EIRP (dBm)
KTS350-X	No	Peak	34.3	46.6
KTS350-X	Yes	Peak	34.3	45.8

Measurements were initially made with the Radome removed to facilitate maximising the Signal by lining up the EUT antenna with the measurement antenna.

Measurements were then carried out with the Radome fitted to represent actual conditions of use.

12 Occupied Bandwidth

12.1 Definitions

Occupied bandwidth

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to 0.5 % of the emitted power. This is also known as the *99 % emission bandwidth*. For transmitters in which there are multiple carriers, contiguous or non-contiguous in frequency, the occupied bandwidth is to be the sum of the occupied bandwidths of the individual carriers.

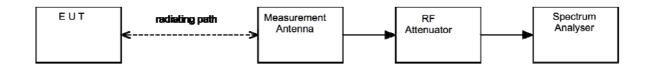
12.2 Test Parameters

Test Location:	Element Hull
Test Chamber:	Environmental Lab
Test Standard and Clause:	ANSI C63.26-2015, Clause 5.4
Frequency Band Measured:	33.4 GHz to 36 GHz
EUT Test Modulations:	FMCW
Deviations From Standard:	None
Measurement BW: (requirement: 1 % to 5 % OBW)	10 MHz
Spectrum Analyzer Video BW: (requirement at least 3x RBW)	30 MHz
Measurement Span: (requirement typically 1.5 times OBW)	1 GHz
Measurement Detector:	Peak

Environmental Conditions (Normal Environment)

Temperature: 21 °C	+15 °C to +35 °C (as declared)
Humidity: 42 % RH	20 % RH to 75 % RH (as declared)
Supply: 24 Vdc	as declared

12.3 Test Limit


Federal Communications Commission: Intentional radiators operating under the alternative provisions to the general emission limits, as contained in FCC 47 CFR Part 90 subpart F of this part, must be designed to ensure that the *99 %* bandwidth of the emission, is contained within the frequency band designated in the rule section under which the equipment is operated.

12.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set in its normal operating mode (FMCW).

Figure iii Test Setup

12.5 Test Equipment

Equipment	Manufashunan	Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
ESU40	R&S	Receiver	RFG701	2021-02-06
LB-180400-25-C-KF	A Info Inc	Horn Antenna	REF2246	2020-07-25
34405A	Agilent	Multimeter	REF887	2020-10-07
JTS/WIR/1/01	JTS	Walk in Environmental Chamber	RFG770	2021-03-20
PSU/THR/1/06	Thurlby	Power Supply	RFG113	Cal with REF887

12.6 Test Results

FCC 2.1049 Occupied bandwidth								
Fr	FrequencyFLFH99(GHz)(GHz)(GHz)				99% Bandwidth (MHz)	Result		
3	34.5678	34.301282051	34.8	338141026	536.858	PASS		
1 PK MAXH	Ref 10 dBm	* Att	10 dB	* RBW 1 MI * VBW 3 MI SWT 20 t	Hz ms 34.301 OBW5 6.858 Temp 1 [T1 34.301 Temp 2 [T1	-25.52 dBm 282051 GHz 974359 MHz 08W] -25.52 dBm A 282051 GHz		
	-20	r1		~~~~~~		PS		
	40							
	-50-	man hun				3DB AC		
	-70							
	-80					_		
	-90							

Date: 30.MAR.2020 15:27:14

13 Radiated emissions

13.1 Definitions

Out-of-band emissions

Emissions on a frequency or frequencies immediately outside the necessary bandwidth which result from the modulation process, but exclude spurious emissions.

Spurious emissions

Emissions on a frequency or frequencies which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

13.2 Test Parameters

Test Location:	Element Hull
Test Chamber:	Wireless Lab 3
Test Standard and Clause:	ANSI C63.26-2015, Clause 5.5 and 5.7
Frequencies Measured:	Swept Signal / 34 GHz - 35 GHz Radar
EUT Channel Bandwidth:	537 MHz
Deviations From Standard:	None
Measurement BW:	30 MHz to 1 GHz: 120 kHz Above 1 GHz: 1 MHz
Measurement Detector:	Up to 1 GHz: quasi-peak Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: 21 °C	+15 °C to +35 °C (as declared)
Humidity: 42 % RH	20 % RH to 75 % RH (as declared)
Supply: 24 Vdc	As declared

13.3 Test Limit

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required; with the measuring instrument antenna located in the far field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections, which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from half wave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:

(1) Those in which the spurious emissions are required to be 60 dB or more below the mean power of the transmitter.

(2) All equipment operating on frequencies higher than 25 MHz.

(3) All equipment where the antenna is an integral part of, and attached directly to the transmitter.

(4) Other types of equipment as required, when deemed necessary by the Commission.

13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in $dB\mu V/m$ at the regulatory distance, using:

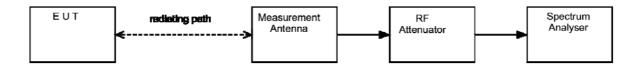
$$FS = PR + CL + AF - PA + DC - CF$$

Where,

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;


PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

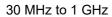
CF is the distance factor in dB (where measurement distance different to limit distance);

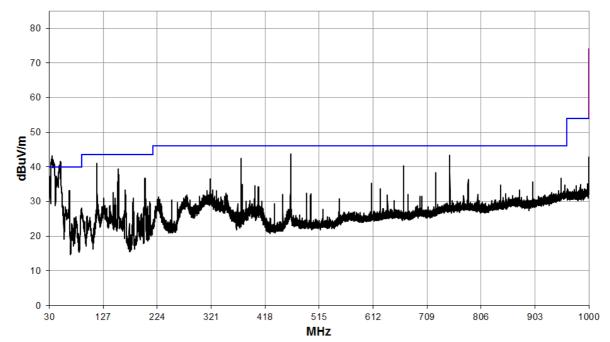
This field strength value is then compared with the regulatory limit.

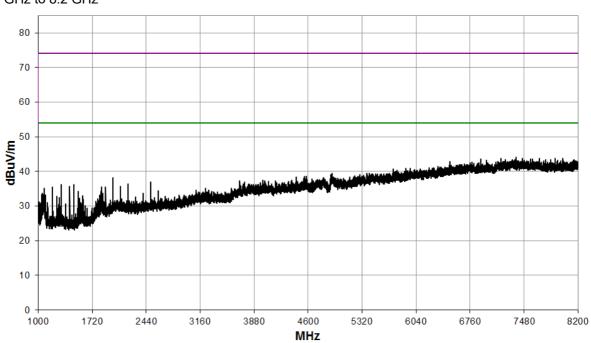
Figure i Test Setup

13.5 Test Set-up Photograph

Photo 2 removed at the request of the applicant. The photos can be found in Element document TRA-041847-45-00B_Photographs

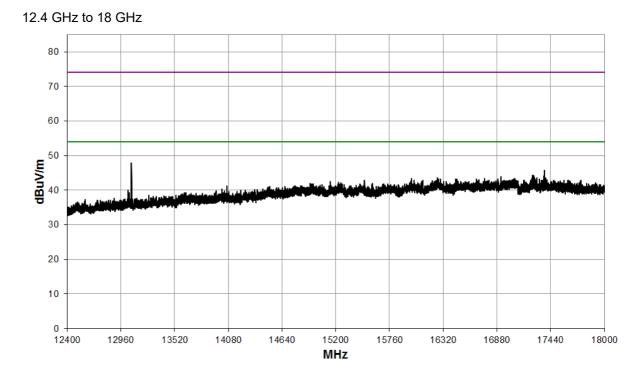

Photo 3 removed at the request of the applicant. The photos can be found in Element document TRA-041847-45-00B_Photographs

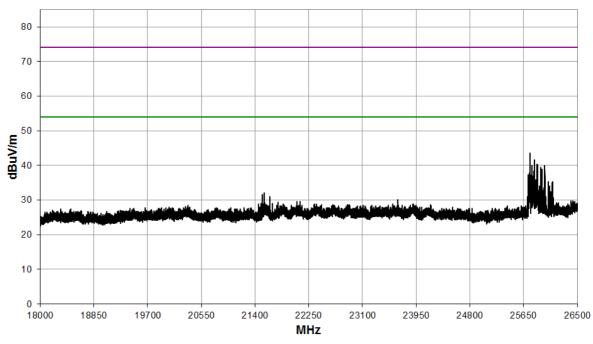

13.6 Test Equipment

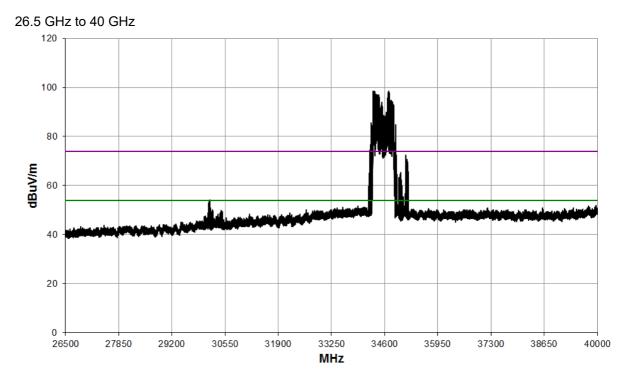

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
Ferrite Lined Chamber	Rainford	Chamber	REF2259	2020-08-03
N9030A	Agilent	Spectrum Analyser	REF2167	2020-08-12
Bilog Antenna	Chase	CBL6111B	REF2218	2021-10-23
Horn Antenna	A Info Inc	LB-10180-NF	REF2241	2020-07-13
LB-90-25-C2-SF	A Info Inc	Horn Antenna	REF2243	2020-07-16
LB-62-25-C-SF	A Info Inc	Horn Antenna	REF2244	2020-07-16
LB-180400-25-C-KF	A Info Inc	Horn Antenna	REF2246	2020-07-25
Pre-Amp (9kHz – 1GHz)	Sonoma	310	REF927	2020-05-29
Pre-Amp (1 – 26.5GHz)	Agilent	8449B	REF913	2021-02-05
11970Q	Agilent	Harmonic Mixer (33-50)	U365	2022-05-17
11970V	Agilent	Harmonic Mixer (50-75)	U366	2022-05-17
11970W	Agilent	Harmonic Mixer (75-110)	U367	2022-05-17
ESU40	R&S	Receiver	RFG701	2021-02-06

13.7 Test Results

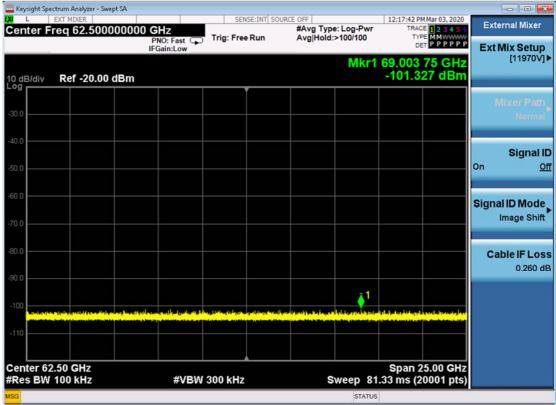

	34 GHz Radar; FMCW									
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (μV/m)	Limit (µV/m)
QP	33.637	41.6	0.6	22.5	32.6	0.0	0.0	32.1	40.3	100
QP	50.088	49.4	0.9	15.5	32.6	0.0	0.0	33.2	45.7	100
QP	116.012	47.5	1.4	17.4	32.5	0.0	0.0	33.8	49.0	150
QP	319.008	43.3	2.4	19.1	32.5	0.0	0.0	32.3	41.2	200
QP	375.013	47.2	2.7	20.7	32.5	0.0	0.0	38.1	80.4	200
QP	464.010	48.5	3.0	23.2	32.5	0.0	0.0	42.2	128.8	200
QP	500.010	34.3	3.1	23.7	32.6	0.0	0.0	28.5	26.6	200
QP	667.012	42.4	3.6	26.3	32.6	0.0	0.0	39.7	96.6	200
QP	725.018	40.2	3.8	27.1	32.5	0.0	0.0	38.6	85.1	200
QP	899.012	32.9	4.2	28.8	31.8	0.0	0.0	34.1	50.7	200
Peak	8582.0	71.6	7.5	26.9	34.8	0.0	0.0	71.2	3630.8	5000
Average	13067.5	27.7	9.5	30.4	33.5	0.0	0.0	34.1	50.7	500
Peak	13069.4	48.3	9.5	30.4	33.5	0.0	0.0	54.7	543.3	5000
Average	17372.5	28.4	11.7	33.1	33.9	0.0	0.0	39.3	92.3	500
Peak	17375.1	44.2	11.7	33.1	33.8	0.0	0.0	55.2	575.4	5000
Peak	25747.4	68.0	7.5	34.4	32.3	-9.5	0.0	68.1	2541.0	5000
Average	25750.4	47.0	7.6	34.4	32.3	-9.5	0.0	47.2	229.1	500
Peak	30483.9	44.0	9.8	35.2	0.0	-15.6	0.0	73.4	4677.4	5000
Peak	30162.5	42.9	9.7	35.2	0.0	-15.6	0.0	72.2	4073.8	5000
Average	30158.0	12.9	9.7	35.2	0.0	-15.6	0.0	42.2	128.8	500
Average	30484.4	13.0	9.8	35.2	0.0	-15.6	0.0	42.4	131.8	500





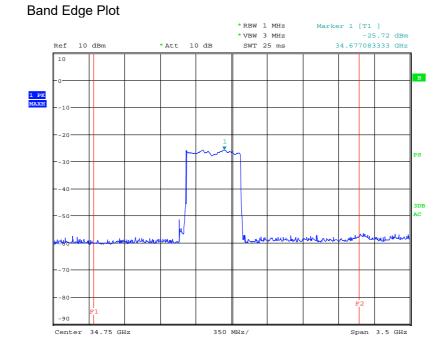

1 GHz to 8.2 GHz

8.2 GHz to 12.4 GHz



18 GHz to 26.5 GHz

Keysight Spectrum Analyzer - Swept SA					
L EXT MIXER SIG ID top Freq 50.000000000 (PNO: Fast C Tri		Avg Type: Log-Pv vg Hold:>100/100		Trace/Detector
dB/div Ref -20.00 dBm			М	kr1 42.940 5 GHz -43.899 dBm	Select Hac
0.0					Clear Wr
0.0	1				
					Trace Avera
.0					Max H
					Min H
0.0 de Louise Maria de confrant actual de la confrant	المرابعة والمراجع والمراجع	اد ، مطالبه فزن و دارن د معالل مع	ومعاطره ومراجع والمعار ومعاطر		
00 period a subject of the second sec					View Blan Trace O
					M
art 40.000 GHz Res BW 100 kHz				Stop 50.000 GHz 33.33 ms (20001 pts)	1 (


40 GHz to 50 GHz

50 GHz to 75 GHz

	ctrum Analyzer - Swept SA					
	ext mixer req 92.5000000	000 GHz PNO: Fast IFGain:Low	SENSE:INT SO	#Avg Type: Log-Pwr Avg Hold:>100/100	12:27:36 PM Mar 03, 2020 TRACE 1 2 3 4 5 6 TYPE MMWWWW DET P P P P P P	Trace/Detector
10 dB/div Log	Ref -20.00 dBm	n		Mkr1 1	08.383 00 GHz -101.097 dBm	
-30.0						Clear Write
-40.0						Trace Average
-60.0						Max Hold
-80.0						Min Hold
-100	a daariik da stablast ja bistakstere	effe af beelfe en stat († 22 state of 15 state state) An de state state state state state state state state state	and fan hward o yn fwystaffin fan Bran	a dita a publican tang ak pada si fasi sa	j Liter for some som to the south first south	View Blank Trace On
Center 92 #Res BW		#VBW	300 kHz	Sweep 11	Span 35.00 GHz 4.7 ms (20001 pts)	More 1 of 3
MSG				STATUS		

75 GHz to 110 GHz

Date: 30.MAR.2020 15:29:57

14 Frequency stability

14.1 Definition

Frequency stability is a measure of frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at an appropriate reference temperature and the rated supply voltage.

14.2 Test Parameters

Test Location:	Element Hull
Test Chamber:	Environmental Lab
Test Standard and Clause:	ANSI C63.26-2015, Clause 5.6
Frequency Measured:	34.568 GHz
Resolution Bandwidth:	50 Hz
Video Bandwidth:	200 Hz
Frequency Span:	5 kHz
Modulation:	Off
Detector Mode:	Peak
Deviations From Standard:	EUT was left ON for the duration of the test. The upper limit of the temperature range was increased to 60 $^\circ\text{C}$ from 50 $^\circ\text{C}$
Temperature Extreme Environment Test Range:	-30 °C to +60 °C
Voltage Extreme Environment Test Range:	24 Vdc = ±15% of Nominal;

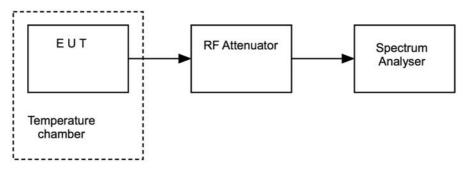
Environmental Conditions (Normal Environment)

Temperature: 21 °C	Standard Requirement: +20 °C
Humidity: 40 % RH	20 % RH to 75 % RH (as declared)
Supply: 24 Vdc	as declared

14.3 Test Limit

The worst-case frequency offset determined in the test shall be added or subtracted from the values of fL and fH and the resulting frequencies must remain within the band.

The frequency band is 33.4 GHz to 36 GHz.


14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the frequency was measured under varying conditions of temperature and supply voltage.

The measurements were performed with EUT set in a fixed frequency mode of operation.

Measurements were made once temperature stability was achieved at each temperature.

Figure v Test Setup

14.5 Test Equipment

Equipment	Manager	Equipment		Due For
Туре	Manufacturer	Description	No	Calibration
ESU40	R&S	Receiver	RFG701	2021-02-06
LB-180400-25-C-KF	A Info Inc	Horn Antenna	REF2246	2020-07-25
34405A	Agilent	Multimeter	REF887	2020-10-07
JTS/WIR/1/01	JTS	Walk in Environmental Chamber	RFG770	2021-03-20
PSU/THR/1/06	Thurlby	Power Supply	RFG113	Cal with REF887

14.6 Test Results

Frequency Drift Measurement Results							
Test Env	Measured Frequency Drift Test Environment Frequency (MHz) (kHz)				Result		
-30 °C	Vnominal	34568.306651	364.51	10.54	PASS		
-20 °C	Vnominal	34568.316410	374.27	10.83	PASS		
-10 °C	V _{nominal}	34568.263486	321.35	9.30	PASS		
0 °C	Vnominal	34568.164575	222.44	6.43	PASS		
+10 °C	Vnominal	34568.030321	88.18	2.55	PASS		
	Vminimum	34567.936835	-5.30	-0.15	PASS		
+20 °C	Vnominal	34567.942139	N/A	N/A	N/A		
	V _{maximum}	34567.931795	-10.34	-0.30	PASS		
+30 °C	V _{nominal}	34567.745449	-196.69	-5.69	PASS		
+40 °C	Vnominal	34567.651026	-291.11	-8.42	PASS		
+50 °C	Vnominal	34567.591178	-350.96	-10.15	PASS		
+60 °C	Vnominal	34567.583093	-359.05	-10.39	PASS		

15 AC power-line conducted emissions

15.1 Definition

Line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network.

15.2 Test Parameters

Test Location:	Element Hull
Test Chamber:	Lab 5
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.2
Frequencies Measured:	Swept Signal / 34 GHz - 35 GHz Radar
EUT Channel Bandwidths:	537 MHz
EUT Modulation:	FMCW
Deviations From Standard:	None
Measurement BW:	9 kHz
Measurement Detectors:	Quasi-Peak and Average, RMS

Environmental Conditions (Normal Environment)

Temperature: 21 °C	+15 °C to +35 °C (as declared)
Humidity: 40 % RH	20 % RH to 75 % RH (as declared)
Supply: 120 Vac	(as declared)

15.3 Test Limit

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in Table 3.

Table 3 – AC Power Line Conducted Emission Limits

Frequency (MHz)	Conducted limit (dBµV)				
(10112)	Quasi-Peak	Average**			
0.15 to 0.5	66 to 56 [*]	56 to 46*			
0.5 to 5	56	46			
5 to 30	60	50			

*The level decreases linearly with the logarithm of the frequency.

**A linear average detector is required.

15.4 Test Method

With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure ii, the power line emissions were measured on a spectrum analyzer / EMI receiver.

AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.

Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

AC internal LISN PSU Support EUT output OR Filtered Equipment Power line external RF output EMI Receiver

Figure ii Test Setup

15.5 Test Set-up Photograph

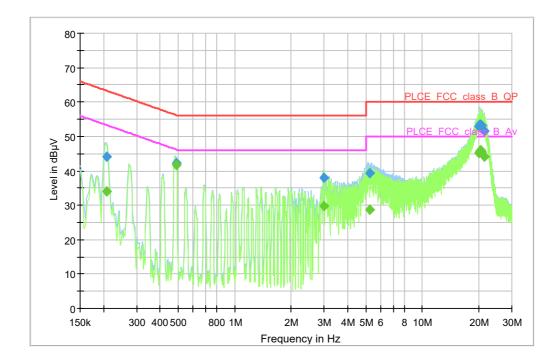

Photo 4 removed at the request of the applicant. The photos can be found in Element document TRA-041847-45-00B_Photographs

Photo 5 removed at the request of the applicant. The photos can be found in Element document TRA-041847-45-00B_Photographs

15.6 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
ESCI7	R&S	Measuring Receiver	RFG715	2021-11-10
ESH3-Z2	R&S	Pulse Limiter	RFG680	2020-06-01
ESH3-Z5	R&S	LISN	RFG189	2020-07-22

15.7 Test Results

Frequency (MHz)	Quasi Peak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.207275	44.2	15000.0	9.000	GND	L1	10.2	19.1	63.3
0.487725	42.4	15000.0	9.000	GND	L1	10.2	13.8	56.2
2.993475	38.1	15000.0	9.000	GND	L1	10.4	17.9	56.0
5.217500	39.4	15000.0	9.000	GND	L1	10.5	20.6	60.0
19.959000	52.8	15000.0	9.000	GND	L1	11.6	7.2	60.0
20.138500	53.1	15000.0	9.000	GND	N	11.4	6.9	60.0
20.340500	53.5	15000.0	9.000	GND	N	11.4	6.5	60.0
20.519500	53.5	15000.0	9.000	GND	N	11.4	6.5	60.0
20.795000	53.1	15000.0	9.000	GND	N	11.4	6.9	60.0
21.337500	51.6	15000.0	9.000	GND	N	11.5	8.4	60.0

15.207 Quasi Peak

15.207 Average

_						-		
Frequency	Average	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
()	((ms)	()			()	()	(
0.207275	34.1	15000.0	9.000	GND	L1	10.2	19.2	53.3
0.487725	41.8	15000.0	9.000	GND	L1	10.2	4.4	46.2
2.993475	29.8	15000.0	9.000	GND	L1	10.4	16.2	46.0
5.217500	28.7	15000.0	9.000	GND	L1	10.5	21.3	50.0
19.959000	45.1	15000.0	9.000	GND	L1	11.6	4.9	50.0
20.138500	45.6	15000.0	9.000	GND	Ν	11.4	4.4	50.0
20.340500	45.7	15000.0	9.000	GND	Ν	11.4	4.3	50.0
20.519500	45.9	15000.0	9.000	GND	Ν	11.4	4.1	50.0
20.795000	45.4	15000.0	9.000	GND	Ν	11.4	4.6	50.0
21.337500	44.0	15000.0	9.000	GND	Ν	11.5	6.0	50.0

16 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence:

[1] Carrier power

Uncertainty in test result (Spectrum Analyser) = 2.48 dB

[2] Spurious emissions

Uncertainty in test result (30 MHz to 1 GHz) = **4.6 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.7 dB**

[3] AC power line conducted emissions

Uncertainty in test result = **3.4 dB**

[4] Occupied bandwidth

Uncertainty in test result = 15.5 %

[5] Maximum frequency error

Uncertainty in test result (Spectrum Analyser) = 0.265 ppm

[6] Duty cycle

Uncertainty in test result = 7.98 %

17 MPE Calculation

RADIO FREQUENCY RADIATION EXPOSURE

KDB 447498

47 CFR §§1.1307 and 2.1091

Radio frequency radiation exposure evaluation.

Mobile devices that operate under CFR47 Part 90 are subject to routine environmental evaluation for RF exposure prior to equipment authorization or use if they operate at frequencies of 1.5 GHz or below and their effective radiated power (ERP) is 1.5 watts or more for FCC requirements.

Prediction of MPE limit at a given distance

$$S = \frac{EIRP}{4 \pi R^2}$$
 re - arranged $R = \sqrt{\frac{EIRP}{S 4 \pi}}$

where:

S = power density R = distance to the centre of radiation of the antenna EIRP = EUT Maximum power

Prediction Frequency (MHz)	Maximum EIRP (dBm)	Maximum EIRP (mW)	Power density limit (S) (mW/cm²)	Distance (R) cm required to be less than (S) mW/cm ²
34300	45.8	38018.9	1	56

LIMITS

FCC LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

(B) Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m2)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ₂)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz *Plane-wave equivalent power density

RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m₂)	Averaging Time (minutes)
0.003-1	280	2.19	-	6
1-10	280/f	2.19/ <i>f</i>	-	6
10-30	28	2.19/ <i>f</i>	-	6
30-300	28	0.073	2⁺	6
300-1500	1.585 <i>f</i> ^{0.5}	0.0042 f 0.5	<i>f</i> /150	6
1500-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/f 1.2
150000-300000	0.158 <i>f</i> ^{0.5}	4.21 x 10-4 <i>f</i>	6.67 x 10⁵ <i>f</i>	616000/ <i>f</i> ^{1.2}