FCC TEST REPORT

CATEGORY: Fixed

PRODUCT NAME: Wireless Outdoor Access Point/Ethernet Bridge

FCC ID. : S7X24005G01

FILING TYPE: Certification

BRAND NAME: ALCON, PLANET, OvisLink

MODEL NAME: AAP-24005g; AAP-2405g (ALCON); WAP-6000 (PLANET);

WH-5410G (OvisLink)

APPLICANT: ALCON Telecommunications Co., Ltd.

2F, No.480-5, Sec. 6, Yen-Ping N. Rd., Shih-Lin 111, Taipei,

Taiwan, R.O.C.

MANUFACTURER: Same as above

ISSUED BY: SPORTON INTERNATIONAL INC.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., His Chih, Taipei Hsien,

Taiwan, R.O.C.

Statements:

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by CNLA and any agency of U.S. government.

The test equipment used to perform the test is calibrated and traceable to NML/ROC or NIST/USA.

Table of Contents

HISTORY OF THIS TEST REPORT	II
CERTIFICATE OF COMPLIANCE	
1. GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST	1
1.1. Applicant	
1.2. Manufacturer	
1.3. Basic Description of Equipment under Test	1
1.4. Features of Equipment under Test	1
1.5. Technical Specifications	1
1.6. Antenna Description	2
1.7. Table for Carrier Frequencies	2
2. TEST CONFIGURATION OF THE EQUIPMENT UNDER TEST	3
2.1. Connection Diagram of Test System	
2.2. The Test Mode Description	
2.3. Description of Test Supporting Units	3
3. GENERAL INFORMATION OF TEST	4
3.1. Test Facility	
3.2. Standards for Methods of Measurement	
3.3. DoC Statement	4
3.4. Frequency Range Investigated	4
3.5. Test Distance	4
3.6. Test Software	5
4. LIST OF MEASUREMENTS	6
4.1. Summary of the Test Results	6
5. TEST RESULT	7
5.1. Test of 6dB Spectrum Bandwidth	7
5.2. Test of Maximum Peak Conducted Output Power	13
5.3. Test of Peak Power Spectral Density	14
5.4. Test of Band Edges Emission	20
5.5. Test of AC Power Line Conducted Emission	25
5.6. Test of Spurious Radiated Emission	
5.7. Antenna Requirements	
5.8. RF Exposure	41
6. LIST OF MEASURING EQUIPMENTS USED	43
7. COMPANY PROFILE	45
7.1. Certificate of Accreditation	45
7.2. Test Location	45
8. CNLA CERTIFICATE OF ACCREDITATION	46
ADDENDIY A DUOTOCDADUS OF FUT	A4 A45

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255:

HISTORY OF THIS TEST REPORT

Received Date: Apr. 15, 2009	5
Test Date: Apr. 6, 2005	

Original Report Issue Date: Apr. 14, 2005

Report No.: FR521501

■ No additional attachment.

☐ Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255: Report No.: FR521501

Issued Date : Apr. 14, 2005

CERTIFICATE OF COMPLIANCE

with

47 CFR FCC Part 15 Subpart C

PRODUCT NAME: Wireless Outdoor Access Point/Ethernet Bridge

BRAND NAME: ALCON, PLANET, OvisLink

MODEL NAME: AAP-24005g; AAP-2405g (ALCON); WAP-6000 (PLANET);

WH-5410G (OvisLink)

APPLICANT: ALCON Telecommunications Co., Ltd.

2F, No.480-5, Sec. 6, Yen-Ping N. Rd., Shih-Lin 111, Taipei,

Taiwan, R.O.C.

MANUFACTURER : Same as above

I HEREBY CERTIFY THAT:

Wayne Hsu

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.4-2003 and all test are performed according to 47 CFR FCC Part 15 Subpart C. Testing was carried out on Apr. 6, 2005 at SPORTON International Inc. LAB.

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255: Page No. : iii

Report No.: FR521501

Issued Date : Apr. 14, 2005

Report No.: FR521501

1. General Description of Equipment under Test

1.1. Applicant

ALCON Telecommunications Co., Ltd.

2F, No.480-5, Sec. 6, Yen-Ping N. Rd., Shih-Lin 111, Taipei, Taiwan, R.O.C.

1.2. Manufacturer

Same as above

1.3. Basic Description of Equipment under Test

This product is a wireless outdoor access point and Ethernet bridge with 802.11b/g wireless solution. The technical data has been listed on section "Features of Equipment under Test".

1.4. Features of Equipment under Test

Interface Type : RJ-45, ODU

Eut Voltage : 48Vdc from POE

Equipment Type : Intentional Radiator (Transceiver)

AC Adaptor Brand : Pre-production Sample

AC Adapter Model : SA07H1217

AC Adapter Rating : 100~240Vac to 12Vdc / 0.8A / 24W / 2 pin plug

(The EUT is powered by POE, and the POE by adapter.)

1.5. Technical Specifications

Transmitter Specifications

Modulation Type : Direct Sequence Spread Spectrum (DSSS for 802.11b)

Orthogonal Frequency Division Multiplexing (OFDM for

802.11g)

: BPSK - 6Mbps, 9Mbps IEEE 802.11g

> QPSK - 12Mbps, 18Mbps 16QAM - 24Mbps, 36Mbps 64QAM - 48Mbps, 54Mbps

IEEE 802.11b : DBPSK - 1Mbps

DQPSK - 2Mbps

CCK - 5.5Mbps, 11Mbps

Maximum Data Rate : 802.11b = 11Mbps, 802.11g = 54Mbps

: 2.4 -2483.5 GHz for 11b/g Frequency Range Number of Channels : 11 maximum (for 11b/11g)

Antenna Type : Patch

Max. Output Power : 802.11b = 15.62 dBm

802.11g = 18.20 dBm

Power Supply : 12 VDC from AC adapter

SPORTON International Inc.

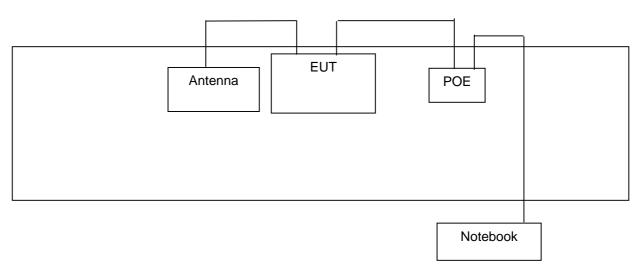
Page No. : 1 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005

FAX: 886-2-2696-2255

1.6. Antenna Description

No.	Antenna Type	Gain (dBi)
1	Patch Antenna	8.00

1.7. Table for Carrier Frequencies


Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	05	2432 MHz	09	2452 MHz	-	-
02	2417 MHz	06	2437 MHz	10	2457 MHz	-	-
03	2422 MHz	07	2442 MHz	11	2462 MHz	-	-
04	2427 MHz	08	2447 MHz	-	-	-	-

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 2 of 46
Issued Date : Apr. 14, 2005

2. Test Configuration of the Equipment under Test

2.1. Connection Diagram of Test System

2.2. The Test Mode Description

- 1. For DSSS modulation, CCK (11 Mbps) is the worst case on all test items.
- 2. For OFDM modulation, BPSK (6 Mbps) is the worst case on all test items.
- 3. According to ANSI C63.4-2003: If frequency range of EUT is more than 10 MHz, lowest, middle and highest channels of EUT has to be tested.
- 4. Spurious emission below 1GHz is independent of channel selection and modulation types. So only channel 11 with OFDM modulation was tested.
- 5. AC conduction emission is independent of channel selection and modulation types. So only channel 11 with OFDM modulation was tested.

2.3. Description of Test Supporting Units

Support unit	Brand	Model No.	FCC ID	Data cable (m)
Notebook	DELL	D505	DoC	10
POE	POE ALCON		DoC	

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 3 of 46 Issued Date : Apr. 14, 2005

Report No.: FR521501

3. General Information of Test

3.1. Test Facility

Test Site Location : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiag, Tao

Yuan Hsien, Taiwan, R.O.C.

: TEL 886-3-327-3456

: FAX 886-3-318-0055

Test Site No : 03CH03-HY / TH01-HY / CO01-HY

3.2. Standards for Methods of Measurement

Here is the list of the standards followed in this test report.

ANSI C63.4-2003

47 CFR FCC Part 15 Subpart C

3.3. DoC Statement

This EUT is also classified as a device of computer peripheral Class B which DoC has to be followed. It has been verified according to the rule of 47 CFR part 15 Subpart B, and found that all the requirements has been fulfilled.

3.4. Frequency Range Investigated

Radiated emission test: from 30 MHz to 10th carrier harmonic

3.5. Test Distance

The test distance of radiated emission (30MHz~1GHz) test from antenna to EUT is 3 M.

The test distance of radiated emission (1GHz~10th carrier harmonic) test from antenna to EUT is 3 M.

Page No. : 4 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005

FAX: 886-2-2696-2255

Report No.: FR521501

3.6. Test Software

An executive program, EMITEST.EXE under WIN XP, which generates a complete line of continuously repeating "H" pattern was used as the test software.

The program was executed as follows:

Turn on the power of all equipment.

The PC reads the test program from the hard disk drive and runs it.

The PC sends "H" messages to the monitor, and the monitor displays "H" patterns on the screen.

The PC sends "H" messages to the printer, then the printer prints them on the paper.

The PC sends "H" messages to the modem.

The PC sends "H" messages to the internal Hard Disk, and the Hard Disk reads and writes the message. Repeat the steps from c to f.

Executed "Internet Explorer" to link to EUT to keep transmitting signals at fixed frequency.

Power Parameter Table

Test Software	ART			
Test Channel	CH 01 CH 06 CH 11			
Test Frequency	2412MHz	2442MHz	2472MHz	
TX Power of DSSS	16.5	16.5	16.5	
TX Power of OFDM	13.5	18.0	14.5	

Page No. : 5 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

Issued on Apr. 14, 2005 Report No.: FR521501

4. List of Measurements

4.1. Summary of the Test Results

	Applied Standard: 47 CFR FCC Part 15 Subpart C						
Paragraph	FCC Section	Description of Test	Result				
5.1	15.247(a)(2)	6dB Spectrum Bandwidth	Pass				
5.2	15.247(b)(3)	Maximum Peak Conducted Output Power	Pass				
5.3	15.247(e)	Peak Power Spectral Density	Pass				
5.4	15.247(d)	Band Edges Emission	Pass				
5.5	15.207	AC Power Line Conducted Emission	Pass				
5.6	15.247(d)	Spurious Radiated Emission	Pass				
5.7	15.203/15.247(b)/(c)	Antenna Requirement	Pass				

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 6 of 46
Issued Date : Apr. 14, 2005

Report No.: FR521501

: 7 of 46

5. Test Result

5.1. Test of 6dB Spectrum Bandwidth

5.1.1. Applicable Standard

Section 15.247(a)(2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

5.1.2. Measuring Instruments

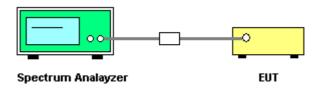
Refer to Section 6 in this report.

5.1.3. Description of Major Test Instruments Setting

 Spectrum Analyzer R&S FSP30

Attenuation Auto

Center Frequency : 2412 MHz / 2437 MHz / 2462 MHz


Span Frequency > 6dB Bandwidth

RB 100 kHz VΒ 100 kHz Detector Peak Trace Max Hold Sweep Time Auto

5.1.4. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz. Trace to Max hold and Detector PK.
- 3. The 6dB spectrum width is the spectrum range with level higher than 6dB below the peak.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

5.1.5. Test Setup Layout

5.1.6. Test Criteria

All test results complied with the requirements of 15.247(a)(2). Measurement Uncertainty is 1x10⁻⁵.

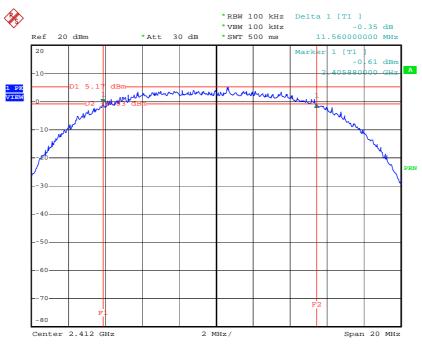
SPORTON International Inc.

Page No. TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

5.1.7. Test Result

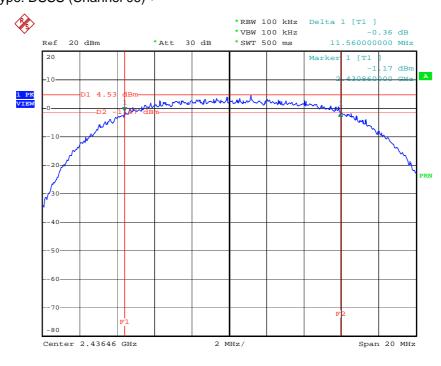
Temperature: 26°CRelative Humidity: 64%

• Duty Cycle of the Equipment During the Test: 100%


Test Engineer: Wayne Hsu

Modulation Type	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	Min. Limit (MHz)
DSSS	01	2412 MHz	11.56	0.5
DSSS	06	2437 MHz	11.56	0.5
DSSS	11	2462 MHz	11.64	0.5
OFDM	01	2412 MHz	16.40	0.5
OFDM	06	2437 MHz	16.36	0.5
OFDM	11	2462 MHz	16.40	0.5

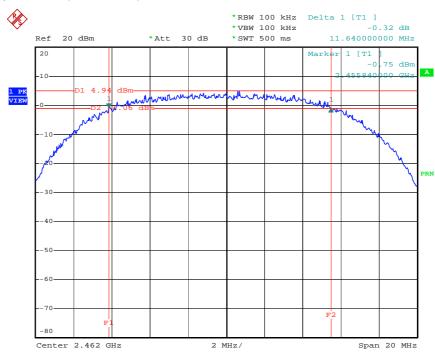
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 8 of 46 Issued Date : Apr. 14, 2005


Issued on Apr. 14, 2005 Report No.: FR521501

Modulation Type: DSSS (Channel 01):

Date: 9.MAR.2005 10:49:32

Modulation Type: DSSS (Channel 06):

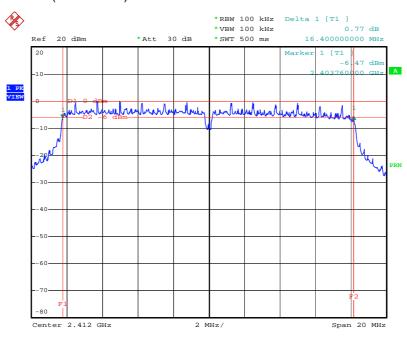

Date: 9.MAR.2005 10:55:18

TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

Page No. : 9 of 46

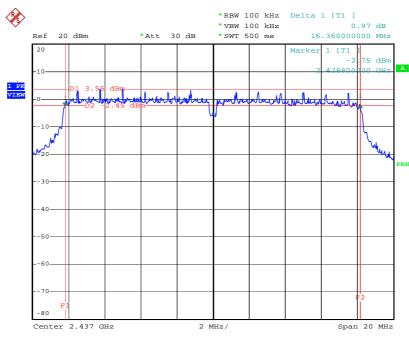
Issued on Apr. 14, 2005 Report No.: FR521501

Modulation Type: DSSS (Channel 11):



Date: 9.MAR.2005 10:57:18

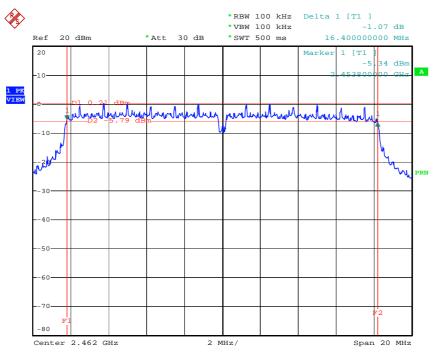
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 10 of 46 Issued Date : Apr. 14, 2005


Issued on Apr. 14, 2005 Report No.: FR521501

Modulation Type: OFDM (Channel 01):

9.MAR.2005 11:03:57 Date:

Modulation Type: OFDM (Channel 06):



9.MAR.2005 11:09:21 Date:

Page No. : 11 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

Issued on Apr. 14, 2005 Report No.: FR521501

Modulation Type: OFDM (Channel 11):

Date: 9.MAR.2005 11:10:25

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 12 of 46 Issued Date : Apr. 14, 2005

Report No.: FR521501

5.2. Test of Maximum Peak Conducted Output Power

5.2.1. Applicable Standard

Section 15.247(b)(3): The maximum peak output power shall not exceed 1 watt (30dBm). Except as shown below, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the above stated values by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2.2. Measuring Instruments

Refer to Section 6 in this report

5.2.3. Test Procedures and Test Instruments Setting

- 1. The transmitter output was connected to the peak power meter through an attenuator.
- 2. Repeated the 1 for the middle and highest channel of the EUT.

5.2.4. Test Setup Layout

5.2.5. Test Criteria

All test results complied with the requirements of 15.247(b)(3). Measurement Uncertainty is 1.5dB.

5.2.6. Test Result of Conducted Power

Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100%

Test Engineer: Wayne Hsu

Modulation Type	Channel No.	Frequency (MHz)		
DSSS	01	2412 MHz	15.62	28
DSSS	06	2437 MHz	14.50	28
DSSS	11	2462 MHz	2462 MHz 15.51	
OFDM	01	2412 MHz	14.00	28
OFDM	06	2437 MHz	18.20	28
OFDM	11	2462 MHz	14.50	28

SPORTON International Inc.

Page No. : 13 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005

FAX: 886-2-2696-2255

Report No.: FR521501

5.3. Test of Peak Power Spectral Density

5.3.1. Applicable Standard

Section 15.247(e): For digital modulation systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

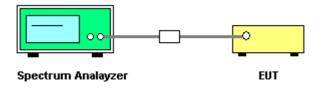
5.3.2. Measuring Instruments

Refer to Section 6 in this report.

5.3.3. Description of Major Test Instruments Setting

 Spectrum Analyzer R&S FSP30

Attenuation Auto


Center Frequency 2412 MHz / 2437 MHz / 2462 MHz

Span Frequency 1.5MHz RΒ 3 kHz VΒ 30 kHz Detector Peak Trace Max Hold Sweep Time 500s

5.3.4. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 3kHz and VBW to 30kHz. Set Detector to Peak, Trace to Max Hold.
- 3. Mark the frequency with maximum peak power as the center of the display of the spectrum.
- 4. Set the span to 1.5MHz and the sweep time to 500s and record the maximum peak value.
- 5. Repeated the 1~4 for the middle and highest channel of the EUT.

5.3.5. Test Setup Layout

5.3.6. Test Criteria

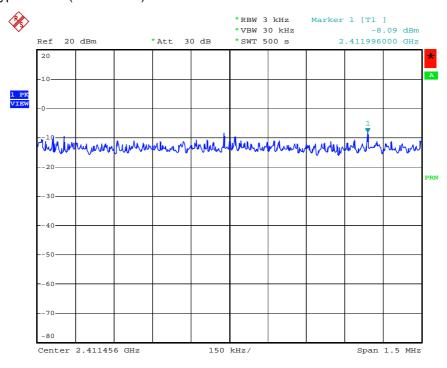
All test results complied with the requirements of 15.247(e). Measurement Uncertainty is 1.5dB.

Page No. : 14 of 46 Issued Date: Apr. 14, 2005 TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

5.3.7. Test Result

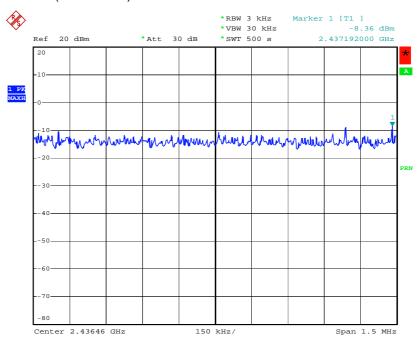
Temperature: 26°CRelative Humidity: 64%

• Duty Cycle of the Equipment During the Test: 100%


Test Engineer: Wayne Hsu

Modulation Type	Channel No.	Frequency (MHz)		
DSSS	01	2412 MHz	2412 MHz -8.09	
DSSS	06	2437 MHz	-8.36	8
DSSS	11	2462 MHz	-8.48	8
OFDM	01	2412 MHz	-14.58	8
OFDM	06	2437 MHz	-10.69	8
OFDM	11	2462 MHz	-12.63	8

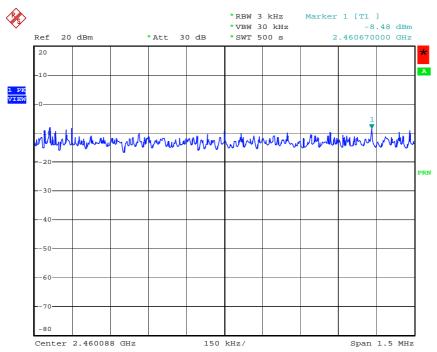
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 15 of 46 Issued Date : Apr. 14, 2005


Issued on Apr. 14, 2005 Report No.: FR521501

Modulation Type: DSSS (Channel 01):

9.MAR.2005 10:51:21

Modulation Type: DSSS (Channel 06):

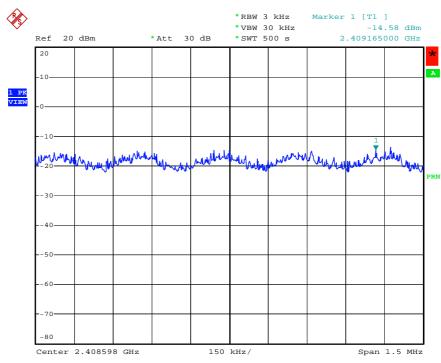


9.MAR.2005 10:53:24

Page No. : 16 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

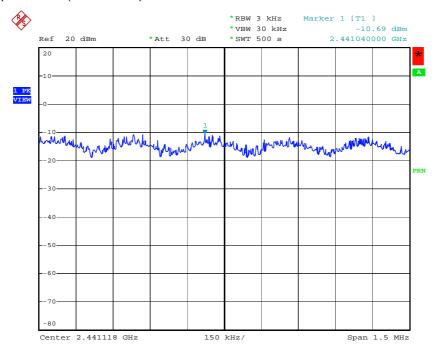
Issued on Apr. 14, 2005 Report No.: FR521501

Modulation Type: DSSS (Channel 11):



Date: 9.MAR.2005 11:00:25

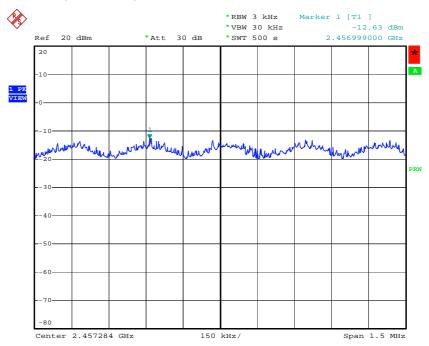
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 17 of 46 Issued Date : Apr. 14, 2005


Issued on Apr. 14, 2005 Report No.: FR521501

Modulation Type: OFDM (Channel 01):

9.MAR.2005 11:06:50 Date:

Modulation Type: OFDM (Channel 06):



9.MAR.2005 11:08:11

Page No. : 18 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

Issued on Apr. 14, 2005 Report No.: FR521501

Modulation Type: OFDM (Channel 11):

Date: 9.MAR.2005 11:13:54

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 19 of 46 Issued Date : Apr. 14, 2005

Report No.: FR521501

5.4. Test of Band Edges Emission

5.4.1. Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

5.4.2. Measuring Instruments

Item 6~17 of the table is on section 6 for radiated measurement. Refer to Section 6 in this report for conducted measurement.

5.4.3. Description of Major Test Instruments Setting

 Spectrum Analyzer R&S FSP30 (Conducted Measurement)

Attenuation Auto

Center Frequency 2412 MHz / 2462 MHz

Span Frequency 100MHz RΒ 100 kHz VΒ 100 kHz Detector Peak Trace Max Hold Sweep Time Auto

Spectrum Analyzer R&S FSP40 (Radiated Measurement)

Attenuation Auto

Center Frequency : 2412 MHz / 2462 MHz

Span Frequency 100MHz

RΒ 1 MHz for PK value / 1 MHz for AV value **VB** 1 MHz for PK value / 10 Hz for AV value

Detector Peak Trace Max Hold Sweep Time Auto

5.4.4. Test Procedures and Test Instruments Setting

Conducted Measurement

1. The transmitter is set to the lowest channel.

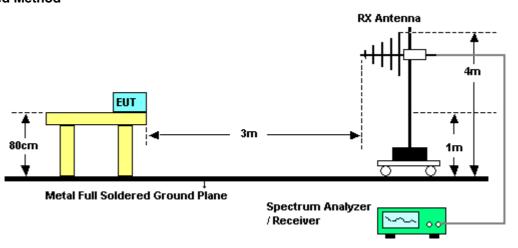
- 2. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge. Then detector set to peak and max hold this trace.

SPORTON International Inc.

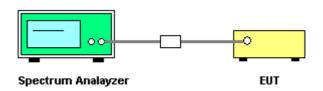
Page No. : 20 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005

FAX: 886-2-2696-2255

Report No.: FR521501


- 4. The lowest band edges emission was measured and recorded.
- 5. The transmitter set to the highest channel and repeated 2~4.

Radiated Measurement


- 1. Configure the EUT according to ANSI C63.4.
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For band edge emission in restriction bands, use 10Hz VBW and 1MHz RBW for reading under AV and use 1MHz VBW and 1 MHz RBW for reading under PK.

5.4.5. Test Setup

Radiated Method

Conducted Method

5.4.6. Test Criteria

All test results complied with the requirements of 15.247(d). Measurement Uncertainty is 1x10⁻⁵.

Page No. : 21 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

5.4.7. Test Result of Radiated Emission

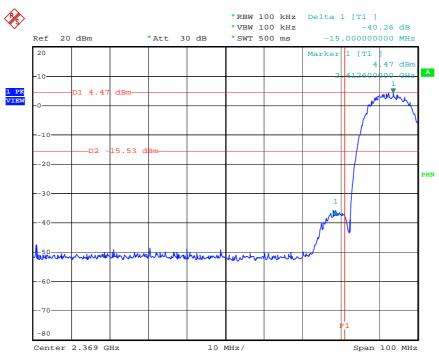
Temperature: 26°CRelative Humidity: 64%

• Duty Cycle of the Equipment During the Test: 100%

Test Engineer: Wayne Hsu

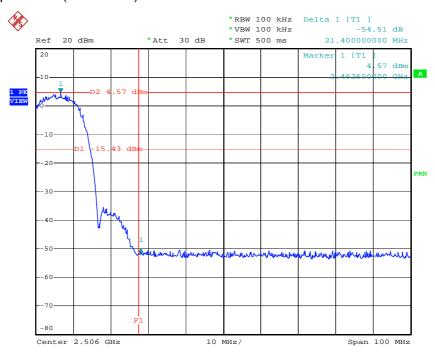
Modulation Type	Test Channel	Freq. (MHz)	Level* (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Trace (PK/AV)
DSSS	01	2390.00	71.83	-2.17	74	PK
DSSS	01	2390.00	50.99	-3.01	54	AV
DSSS	11	2487.50	70.59	-3.41	74	PK
DSSS	11	2487.50	47.57	-6.43	54	AV
OFDM	01	2390.00	71.36	-2.64	74	PK
OFDM	01	2390.00	51.27	-2.73	54	AV
OFDM	11	2483.50	69.68	-4.32	74	PK
OFDM	11	2390.00	52.81	-1.19	54	AV

Level*: The max field strength in the restricted bands.


Modulation Type	Test Channel	Freq. (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Trace (PK/AV)
DSSS	01	2390.00	-35.79	-20.26	-15.53	PK
DSSS	11	2487.50	-49.94	-34.51	-15.43	PK
OFDM	01	2390.00	-29.73	-9.42	-20.31	PK
OFDM	11	2483.50	-47.76	-27.67	-20.09	PK

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 22 of 46 Issued Date : Apr. 14, 2005

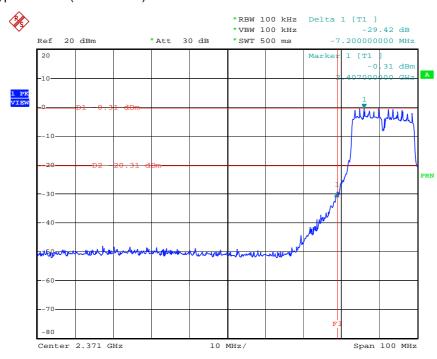
Issued on Apr. 14, 2005 Report No.: FR521501


Test Result of Conducted Emission

Modulation Type: DSSS (Channel 01):

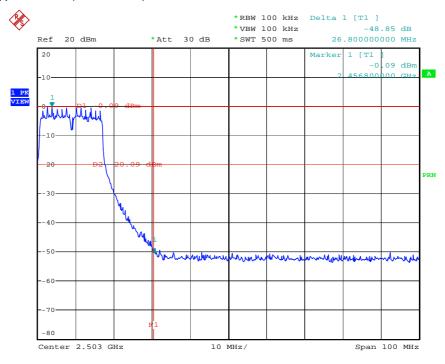
Date: 9.MAR.2005 10:48:06

Modulation Type: DSSS (Channel 11):


Date: 9.MAR.2005 10:58:39

TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

Page No. : 23 of 46


Issued on Apr. 14, 2005 Report No.: FR521501

Modulation Type: OFDM (Channel 01):

9.MAR.2005 11:05:14

Modulation Type: OFDM (Channel 11):

Date: 9.MAR.2005 11:11:39

Page No. : 24 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

Report No.: FR521501

5.5. Test of AC Power Line Conducted Emission

5.5.1. Applicable Standard

Section 15.207: For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)		
0.15~0.5	66~56	56~46		
0.5~5	56	46		
5~30	60	50		

5.5.2. Measuring Instruments

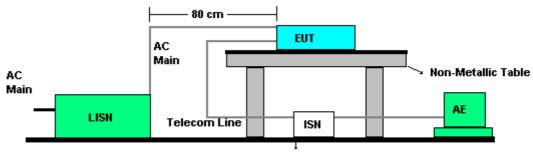
Refer to Section 6 in this report

5.5.3. Description of Major Test Instruments Setting

 Test Receiver : R&S ESCS 30

Attenuation : 10 dB

Start Frequency : 0.15 MHz Stop Frequency : 30 MHz IF Bandwidth : 9 KHz


5.5.4. Test Procedures

- 1. Configure the EUT according to ANSI C63.4.
- 2. The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN)
- 4. All the support units are connected to the other LISNs. The LISN should provide 50uH/ 50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Use the Channel & Power Controlling software to make the EUT working on selected channel and expected output power, then use the "H" Patter Generator software to make the supporting equipments stay on working condition.
- 7. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 8. The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.

Page No. : 25 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

Issued on Apr. 14, 2005 Report No.: FR521501

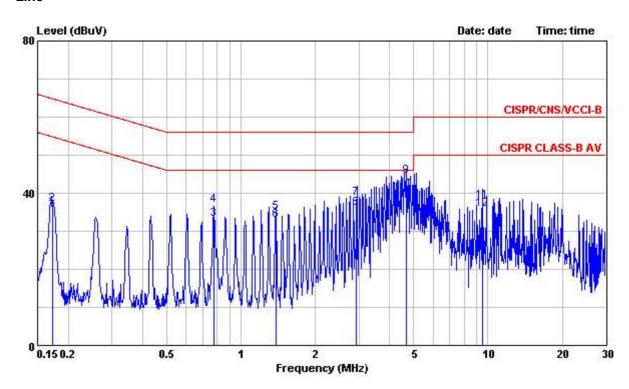
5.5.5. Test Setup Layout

Metal Full Soldered Ground Plane

5.5.6. Test Criteria

All test results complied with the requirements of 15.207. Measurement Uncertainty is 2.54dB.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 26 of 46 Issued Date : Apr. 14, 2005

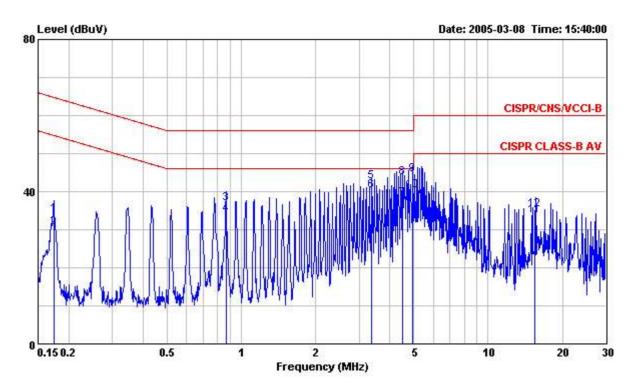


5.5.7. Test Result of Conducted Emission for CH 11 / 2462 MHz

Modulation Type: OFDM
 Temperature: 26°C
 Relative Humidity: 64%
 Test Engineer: Wayne Hsu
 Test Mode: Normal Function

Frequency Range of Test: from 0.15 MHz to 30 MHz

Line



	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	фВ	į.
1	0.1730690	36.44	-18.37	54.81	36.01	0.06	0.37	Average
2	0.1730690	37.08	-27.73	64.81	36.65	0.06	0.37	QP
3	0.7780320	33.13	-12.87	46.00	32.32	0.11	0.70	Average
4	0.7780320	36.96	-19.04	56.00	36.15	0.11	0.70	QP
5	1.382	35.01	-20.99	56.00	34.46	0.11	0.44	QP
6	1.382	32.87	-13.13	46.00	32.32	0.11	0.44	Average
7	2.940	38.64	-17.36	56.00	38.21	0.17	0.26	QP
8	2.940	36.01	-9.99	46.00	35.58	0.17	0.26	Average
9	4.669	44.45	-11.55	56.00	43.96	0.21	0.28	QP
LO	@ 4.669	40.85	-5.15	46.00	40.36	0.21	0.28	Average
11	9.514	37.93	-22.07	60.00	37.23	0.21	0.49	QP
L2	9.514	35.91	-14.09	50.00	35.21	0.21	0.49	Average

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 27 of 46 Issued Date : Apr. 14, 2005

Issued on Apr. 14, 2005 Report No.: FR521501

Neutral

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	10
1	0.1739880	33.94	-30.83	64.77	33.47	0.11	0.36	QP
2	0.1739880	30.56	-24.21	54.77	30.09	0.11	0.36	Average
3	0.8651470	36.86	-19.14	56.00	35.95	0.23	0.68	QP
4	0.8651470	34.01	-11.99	46.00	33.10	0.23	0.68	Average
5	3.375	42.55	-13.45	56.00	42.04	0.23	0.28	QP
6	@ 3.375	40.28	-5.72	46.00	39.77	0.23	0.28	Average
7	4.500	38.13	-7.87	46.00	37.61	0.24	0.28	Average
8	4.500	43.58	-12.42	56.00	43.06	0.24	0.28	QP
9	4.931	44.48	-11.52	56.00	43.96	0.25	0.27	QP
10	4.931	40.14	-5.86	46.00	39.62	0.25	0.27	Average
11	15.491	33.78	-16.22	50.00	32.68	0.34	0.76	Average
12	15.491	35.25	-24.75	60.00	34.15	0.34	0.76	QP

Note:

Corrected Reading: Probe (LISN / ISN) Factor + Cable Loss + Read Level = Level.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 28 of 46 Issued Date : Apr. 14, 2005

5.5.8. Photographs of Conducted Emission Test Configuration (AC Line)

FRONT VIEW

REAR VIEW

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 29 of 46 Issued Date : Apr. 14, 2005

Report No.: FR521501

5.6. Test of Spurious Radiated Emission

5.6.1. Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

5.6.2. Measuring Instruments

Please reference item 1~17 in chapter 6 for the instruments used for testing.

5.6.3. Description of Major Test Instruments Setting

 Spectrum Analyzer R&S FSP40

Attenuation Auto

Start Frequency 1000 MHz

Stop Frequency 10th carrier harmonic RB/VB : 1 MHz / 1MHz for Peak RB/VB 1 MHz / 10Hz for Average

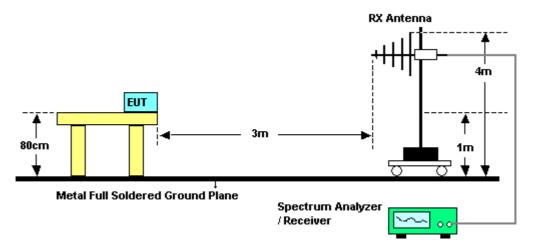
Test Receiver R&S ESCS 30

Attenuation Auto Start Frequency 30 MHz : 1000 MHz Stop Frequency

RB 120 KHz for QP or PK

5.6.4. Test Procedures

- 1. Configure the EUT according to ANSI C63.4.
- 2. The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 4. Power on the EUT and all the supporting units.
- 5. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 6. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 8. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 9. For emission above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.


SPORTON International Inc.

Page No. : 30 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

- 10. If the emission level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz and average method for above the 1GHz. the reported.
- 11. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB higher than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.6.5. Test Setup Layout

5.6.6. Test Criteria

All test results complied with the requirements of 15.247(d). Measurement Uncertainty is 2.26dB.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 31 of 46 Issued Date : Apr. 14, 2005

5.6.7. Test Results for CH 11 / 2462 MHz (for emission below 1GHz)

Modulation Type: OFDMTemperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100%

Test Engineer: Wayne Hsu

(A) Polarization: Horizontal

		Freq	Level	Over Limit	Read Level	3000	Factor	Remark
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	
1	- į	86.100	36.89	-3.11	54.28	40.00	-17.39	QP
2	1	94.260	38.76	-4.74	56.60	43.50	-17.84	Peak
3	0	141.180	42.70	-0.80	55.46	43.50	-12.76	QP
				Over	Read	Limit		
		Freq	Level	Limit	Level	Line	Factor	Remark
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	
1 2 3		249.600	39.50	-6.50	51.92	46.00	-12.42	Peak
2		448.800	34.75	-11.25	43.56	46.00	-8.81	Peak
3		538.400	36.39	-9.61	43.81	46.00	-7.42	Peak

(B) Polarization: Vertical

		Freq	Level	Over Limit	Read Level	- 1333	Factor	Remark
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	
1	0	37.140	39.12	-0.88	53.28	40.00	-14.16	QP
2	1	50.910	36.26	-3.74	51.33	40.00	-15.07	Peak
3	1	101.740	39.88	-3.62	57.41	43.50	-17.53	Peak
				Over	Read	Limit		
		Freq	Level	Limit	Level	Line	Factor	Remark
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	
1 2 3		249.600	33.46	-12.54	45.88	46.00	-12.42	Peak
2		499.200	34.87	-11.13	43.21	46.00	-8.34	Peak
3		538.400	35.99	-10.01	43.41	46.00	-7.42	Peak

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level All emissions are peak value.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 32 of 46 Issued Date : Apr. 14, 2005

5.6.8. Test Results for CH 01 / 2412 MHz (for emission above 1GHz)

Modulation Type: DSSSTemperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100%

Test Engineer: Wayne Hsu

(A) Polarization: Horizontal

	Freq	Level		Limit Line		Factor	Remark
	MHz	$\overline{\mathbf{d}BuY/m}$	d B	$\overline{dBuV/m}$	dB u∛	d B	
1 2 @ 3 4	2014.00 4824.00 4824.00 7232.00	51.73 64.03	-2. 27 -9. 97	54. 00 74. 00	56.04 68.34	-4. 31 -4. 31	Average Peak

(B) Polarization: Vertical

	Freq	Level		Limit Line		Factor	Remark
	MHz	$\overline{\mathbf{d}BuV/m}$		$\overline{dBuV/m}$	dB u∛	dB	
1 2 3 @ 4	2014.00 4824.00 4824.00 7228.00	55. 71 45. 55	-18. 29 -8. 45	54.00	60.02 49.86	-4. 31 -4. 31	Peak Average

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 33 of 46 Issued Date : Apr. 14, 2005

Modulation Type: OFDM

Temperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100%

Test Engineer: Wayne Hsu

(A) Polarization: Horizontal

	Freq	Level		Limit Line		Factor	Remark
-	MHz	$\overline{dBuV/m}$		$\overline{dBuV/m}$	dB u∛	d B	
1 2 3 4	2014.00 4820.00 4820.00 7224.00	58.50 44.97	-15.50 -9.03	74.00 54.00	62. 81 49. 28	-4. 31 -4. 31	Peak Average

(B) Polarization: Vertical

	Freq	Level		Limit Line		Factor	Remark
8	MHz	$\overline{\mathbf{d}BuV/m}$		$\overline{\mathbf{d}BuV/m}$	dB u∛	<u>dB</u>	
1 2 3 4	2014.00 4816.00 4816.00 7172.00	51.88 38.29	-22.12 -15.71	74. 00 54. 00	56. 22 42. 63	-4. 34 -4. 34	Peak Average

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 34 of 46 Issued Date : Apr. 14, 2005

5.6.9. Test Results for CH 06 / 2437 MHz (for emission above 1GHz)

Modulation Type: DSSSTemperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100%

Test Engineer: Wayne Hsu

(A) Polarization: Horizontal

	Freq	Level		Limit Line		Factor	Remark
	MHz	$\overline{dBuV/m}$		$\overline{dBuV/m}$	dB u∛	<u>dB</u>	
1 2 @ 3 4	2014.00 4876.00 4876.00 7308.00	52.10 63.86	-1.90 -10.14	54.00 74.00	56. 29 68. 05	-4.19 -4.19	Average Peak

(B) Polarization: Vertical

		Freq	Level		Limit Line	Read Level	Factor	Remark
		MHz	$\overline{\mathbf{d}BuV/m}$		$\overline{dBuV/m}$	dB u¥	dB	
1 2	@	2014.00 4876.00				77.66 67.37	-10.48 -4.19	
3 4	@	4876.00 7312.00	51.32	-2.68		55.51		Average
5	@	7312.00	49. 92			49.69		Average

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 35 of 46 Issued Date : Apr. 14, 2005

Modulation Type: OFDM

Temperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100%

Test Engineer: Wayne Hsu

(A) Polarization: Horizontal

	Freq	Level		Limit Line		Factor	Remark
	MHz	$\overline{dBuV/m}$	dB	$\overline{dBuV/m}$	dB u∛	d B	
1 2 3 4	4884. 00 7308. 00	50.56 57.66	-23. 44 -16. 34	74.00	54. 75 57. 43	-4.19 0.23	Peak

(B) Polarization: Vertical

		Freq	Level		Limit Line	Kead Level	Factor	Remark
		MHz	$\overline{\mathbf{d}BuV/m}$	<u>dB</u>	$\overline{\text{dBuV/m}}$	dB u∛	d B	
12	@	2014.00 4880.00	67.99 60.00	40000000000000000000000000000000000000	74.00 74.00	78. 47 64. 19	-10.48 -4.19	
3	@	4880.00 7308.00		-7. 26 -14. 77			-4.19 0.23	Average Posk
	@	7308.00		-7.14		46.63		Average

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 36 of 46 Issued Date : Apr. 14, 2005

5.6.10. Test Results for CH 11 / 2462 MHz (for emission above 1GHz)

Modulation Type: DSSSTemperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100%

Test Engineer: Wayne Hsu

(A) Polarization: Horizontal

	92	Level	Limit	Limit Line dBuV/m	Read Level	Factor dB	Remark
1 2 @ 3 4 5	2014.00 4928.00 4928.00 7376.00 7376.00	51.87 64.16 51.74	-2.13 -9.84 -22.26	54.00 74.00	55. 95 68. 24	-4. 08 0. 48	Average Peak

(B) Polarization: Vertical

	Freq	Level		Limit Line	Read Level	Factor	Remark
	MHz	$\overline{\mathbf{d}Bu\text{V/m}}$	dB	$\overline{dBuV/m}$	dB u∛	dB	
1 @ 2 @ 3 4 5	2014.00 4924.00 4924.00 7384.00 7384.00	59. 46 53. 03	-5. 70 -14. 54 -20. 97	54.00 74.00	52. 38 63. 54 52. 50	-4. 08 0. 53	Average Peak

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 37 of 46 Issued Date : Apr. 14, 2005

Modulation Type: OFDM

Temperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100%

Test Engineer: Wayne Hsu

(A) Polarization: Horizontal

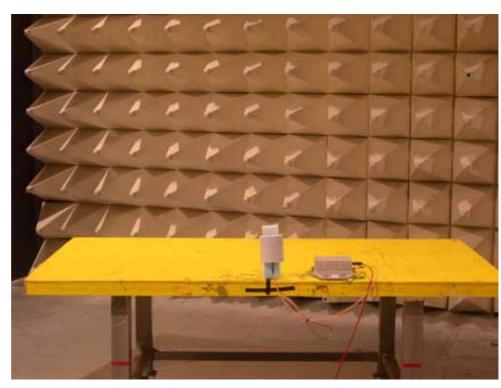
	Freq	- Level		Limit Line	Read Level	Factor	Remark
	MHz	$\overline{dBuV/m}$	dB	$\overline{dBuV/m}$	dB u₹	<u>dB</u>	
1 2 3 @ 4 5	2014.00 4916.00 4916.00 7608.00 7608.00	60.68 46.09 51.07	-13.32 -7.91 -22.93	74.00	64. 79 50. 20 49. 96	-4.11 -4.11 1.11	Peak Average

(B) Polarization: Vertical

	92	Level	Limit	Limit Line dBuV/m	Read Level dBuY	Factor dB	Remark
1 2 3 4 5	2014.00 4924.00 4924.00 7376.00 7376.00	41. 43 55. 65 53. 10	-12.57 -18.35 -20.90	54.00 74.00 74.00	45. 51 59. 73 52. 62	-4. 08 0. 48	Average Peak

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)


Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 38 of 46 Issued Date : Apr. 14, 2005

5.6.11. Photographs of Radiated Emission Test Configuration

FRONT VIEW

REAR VIEW

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 39 of 46 Issued Date : Apr. 14, 2005

5.7. Antenna Requirements

5.7.1. Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

5.7.2. Antenna Connected Construction

Reversed N-Type antenna connector is used for patch antenna.

5.7.3. Antenna Gain

Antenna gain of EUT is more than 6dBi. Therefore peak conducted power limit shall be degraded by 2dB. Antenna report of manufacturer will have more detail antenna gain or antenna pattern.

5.7.4. Test Criteria

All test results complied with the requirements of 15.203/15.247(b)/(c).

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 40 of 46 Issued Date : Apr. 14, 2005

Report No.: FR521501

5.8. RF Exposure

5.8.1. Limit For Maximum Permissible Exposure (MPE)

This product can be classified as mobile device, so the 20cm separation distance warning is required. In this section, the power density at 20cm location is calculated to examine if it is lower than the limit.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

F = frequency in MHz

5.8.2. MPE Calculation Method

 $\mathbf{E} = \text{Electric field}$ (V/m)

P = Peak RF output power (mW)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

SPORTON International Inc.

Page No. : 41 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005

FAX: 886-2-2696-2255

^{*}Plane-wave equivalent power density

FCC ID: S7X24005G01

Issued on Apr. 14, 2005 Report No.: FR521501

From the peak EUT RF output power, the minimum mobile separation distance, d=20cm, as well as the gain of the used antenna, the RF power density can be obtained.

5.8.3. Calculated Result and Limit

Modulation Type: DSSSTemperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100%

Test Engineer: Wayne Hsu

Channel No.	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)
01	8.00	6.31	15.62	36.48	0.0458	1
06	8.00	6.31	14.50	28.18	0.0354	1
11	8.00	6.31	15.51	35.56	0.0447	1

Modulation Type: OFDMTemperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100%

Test Engineer: Wayne Hsu

Channel No.	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)
01	8.00	6.31	14.00	25.12	0.0316	1
06	8.00	6.31	18.20	66.07	0.0830	1
11	8.00	6.31	14.50	28.18	0.0354	1

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 42 of 46 Issued Date : Apr. 14, 2005

6. List of Measuring Equipments Used

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
1	EMC Receiver	R&S	ESCS 30	100132	9 KHz – 2.75 GHz	Jun. 23, 2004	Conduction (CO01-HY)
2	LISN	MessTec	NNB-2/16Z	2001/008	9 KHz – 30 MHz	May 03, 2004	Conduction (CO01-HY)
3	LISN (Support Unit)	MessTec	NNB-2/16Z	2001/009	9 KHz – 30 MHz	Apr. 19, 2004	Conduction (CO01-HY)
4	EMI Filter	LINDGREN	LRE-2060	1004	< 450 Hz	N/A	Conduction (CO01-HY)
5	EMI Filter	LINDGREN	N6006	201052	0 ~ 60 Hz	N/A	Conduction (CO01-HY)
6	RF Cable-CON	Suhner Switzerland	RG223/U	CB029	9KHz~30MHz	Dec. 23, 2004	Conduction (CO01-HY)
7	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz~1GHz 3m	Jun. 21, 2004	Radiation (03CH03-HY)
8	Spectrum analyzer	R&S	FSP40	100004	9KHZ~40GHz	Aug. 31, 2004	Radiation (03CH03-HY)
9	Amplifier	HP	8447D	2944A09072	100KHz – 1.3GHz	Nov. 04, 2004	Radiation (03CH03-HY)
10	Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30MHz –200MHz	Jul. 28, 2004	Radiation (03CH03-HY)
11	Log Antenna	SCHWARZBECK	VUSLP 9111	221	200MHz -1GHz	Jul. 28, 2004	Radiation (03CH03-HY)
12	RF Cable-R03m	Jye Bao	RG142	CB021	30MHz~1GHz	Dec. 02, 2004	Radiation (03CH03-HY)
13	Amplifier	MITEQ	AFS44	849984	100MHz~26.5GHz	Mar. 26, 2004	Radiation (03CH03-HY)
14	Horn Antenna	EMCO	3115	6741	1GHz – 18GHz	Apr. 07, 2004	Radiation (03CH03-HY)
15	Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
16	Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
17	Horn Antenna	Schwarzbeck	BBHA9170	154	18GHz~40GHz	Jun. 09, 2004	Radiation (03CH03-HY)
18	RF Cable-HIGH	Jye Bao	RG142	CB030-HIGH	1GHz~29.5GHz	Dec. 04, 2004	Radiation (03CH03-HY)

[%] Calibration Interval of instruments listed above is one year.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 43 of 46 Issued Date : Apr. 14, 2005

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
19	Spectrum analyzer	R&S	FSP7	838858/014	9KHZ~7GHZ	Sep. 02, 2004	Conducted (TH01-HY)
20	Power meter	R&S	NRVS	100444	DC~40GHz	Jun. 15, 2004	Conducted (TH01-HY)
21	Power sensor	R&S	NRV-Z55	100049	DC~40GHz	Jun. 15, 2004	Conducted (TH01-HY)
22	Power Sensor	R&S	NRV-Z32	100057	30MHz-6GHz	Jun. 15, 2004	Conducted (TH01-HY)
23	AC power source	HPC	HPA-500W	HPA-9100024	AC 0~300V	Jun. 16, 2004	Conducted (TH01-HY)
24	AC power source	G.W.	GPC-6030D	C671845	DC 1V~60V	Nov. 05, 2004	Conducted (TH01-HY)
25	Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Sep. 30, 2004	Conducted (TH01-HY)
26	RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz~7GHz	Jan. 01, 2005	Conducted (TH01-HY)
27	RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz~1GHz	Jan. 01, 2005	Conducted (TH01-HY)

Calibration Interval of instruments listed above is one year.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 44 of 46 Issued Date : Apr. 14, 2005

Report No.: FR521501

7. Company Profile

SPORTON Lab. was established in 1986 with one shielded room: the first private EMI test facility, offering local manufacturers an alternative EMI test familial apart from ERSO. In 1988, one 3M and 10M/3M open area test site were setup and also obtained official accreditation from FCC, VCCI and NEMKO. In 1993, a Safety laboratory was founded and obtained accreditation from UL of USA, CSA of Canada and TUV (Rhineland & PS) of Germany. In 1995, one EMC lab, including EMI and EMS test facilities was setup. In 1997, SPORTON Group has provided financial expense to relocate the headquarter to Orient Scientific Park in Taipei Hsien to offer more comprehensive, more qualified and better service to local suppliers and manufactures. In 1999, Safety Group and Component Group were setup. In 2001, SPORTON has established 3M/10M chamber in Hwa Ya Technology Park.

7.1. Certificate of Accreditation

Taiwan	BSMI, CNLA, DGT
USA	FCC, NVLAP, UL
EU	Nemko, TUV
Japan	VCCI
Canada	Industry Canada

7.2. Test Location

SHIJR	ADD:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL:	02-2696-2468
	FAX:	02-2696-2255
HWA YA	ADD:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL:	03-327-3456
	FAX:	03-318-0055
LINKOU	ADD:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL:	02-2601-1640
	FAX:	02-2601-1695
DUNGHU	ADD:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL:	02-2631-4739
	FAX:	02-2631-9740
JUNGHE	ADD:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL:	02-8227-2020
	FAX:	02-8227-2626
NEIHU	ADD:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL:	02-2794-8886

Page No. : 45 of 46 TEL: 886-2-2696-2468 Issued Date: Apr. 14, 2005 FAX: 886-2-2696-2255

8. CNLA Certificate of Accreditation

Test Lab. : Sporton International Inc.

Accreditation Number : 1190

Originally Accredited : 2003/12/15

Effective Period : 2003/12/15~2006/12/14

Accredited Scope : 47 CFR FCC Part 15 Subpart C (9kHz~40GHz)

Talwan Accreditation Foundation
Chinese National Laboratory Accreditation
Certificate of Accreditation

Accreditation Criteria: ISO 17025 Accreditation Number: 1190

Organization/Laboratory: EMC & Wireless Communications Laboratory, Sporton International Inc.

Originally Accredited: December 15, 2003

Effective Period: December 15, 2003 To December 14, 2006

Accredited Scope: Electrical Testing Field, 7 items, details shown in the following pages.

Specific Accreditation Recognition and Approval of Designated Laboratory for Commodities

Program: Inspection

President, Taiwan Accreditation Foundation

Date: July 19, 2004

(This document is invalid unless accompanied by all 4 pages)

CNLA-ZL03191E Page 1 of 4

Report No.: FR521501

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 46 of 46 Issued Date : Apr. 14, 2005