

REGULATORY COMPLIANCE TEST REPORT

**FCC CFR 47 15.247,
ISED RSS-247 Issue 2**

Report No.: TAGG05-U2 Rev A

Company: Taggle Systems Pty Ltd

Report No.: TAGG05-U2 Draft Parakeet

COMPLETE TEST REPORT

Company: Taggle Systems Pty Ltd

Model: Parakeet

Standard: FCC CFR 47 15.247, RSS-247 Issue 2

Test Report Serial No.: TAGG05-U2 Rev A

This report supersedes: NONE

Applicant: Taggle Systems Pty Ltd
Level 1, 101 Sussex Street
Sydney, New South Wales 2000
Australia

Issue Date: 14th October 2019

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.
575 Boulder Court
Pleasanton California 94566
USA
Phone: +1 (925) 462-0304
Fax: +1 (925) 462-0306
www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	4
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	5
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	9
4.1. Normative References	9
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	11
5.1. Technical Details	11
5.2. Scope Of Test Program	12
5.3. Equipment Model(s) and Serial Number(s)	13
5.4. Antenna Details	13
5.5. Cabling and I/O Ports	13
5.6. Test Configurations	13
5.7. Equipment Modifications	14
5.8. Deviations from the Test Standard	14
6. TEST SUMMARY	15
7. TEST EQUIPMENT CONFIGURATION(S)	16
7.1. Conducted Test Setup	16
7.2. Radiated Emissions - 3m Chamber	17
8. MEASUREMENT AND PRESENTATION OF TEST DATA	19
9. TEST RESULTS	20
9.1. 6 dB & 99% Bandwidth	20
9.2. Conducted Output Power	22
9.3. Power Spectral Density	25
9.4. Emissions	27
9.4.1. <i>Conducted Emissions</i>	27
9.4.1.1. Conducted Spurious Emissions	27
9.4.1.2. Conducted Band-Edge Emissions	29
9.4.2. <i>Radiated Emissions</i>	31
9.4.2.3. TX Spurious & Restricted Band Emissions	33
9.4.3. <i>Digital Emissions</i> (0.03 - 1 GHz)	34
A. APPENDIX - GRAPHICAL IMAGES	36
A.1. 6 dB & 99% Bandwidth	37
A.2. Power Spectral Density	38
A.3. Emissions	39
A.3.1. <i>Conducted Emissions</i>	39
A.3.1.1. Conducted Spurious Emissions	39
A.3.1.2. Conducted Band-Edge Emissions	40

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI	--	--	A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	US0159
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-02.pdf>

United States of America – Telecommunication Certification Body (TCB)
Industry Canada – Certification Body, CAB Identifier – US0159
Europe – Notified Body (NB), NB Identifier - 2280
Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft	11 th October 2019	Draft for Comment
Rev A	14 th October 2019	Initial Release

In the above table the latest report revision will replace all earlier versions.

3. TEST RESULT CERTIFICATE

Manufacturer: Taggle Systems Pty Ltd
Level 1, 101 Sussex Street
Sydney New South Wales 2000
Australia

Tested By: MiCOM Labs, Inc.
575 Boulder Court
Pleasanton California 94566
USA

Model: Parakeet

Telephone: +1 925 462 0304

Equipment Type: Wireless remote sensor reading

Fax: +1 925 462 0306

S/N's: Radiated: 405258
Conducted: 405261

Test Date(s): 9th July – 9th October 2019

Website: www.micomlabs.com

STANDARD(S)

**FCC CFR 47 Part 15 Subpart C 15.247
ISED RSS-247 Issue 2**

TEST RESULTS

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve
Quality Manager MiCOM Labs, Inc.

Gordon Hurst
President & CEO MiCOM Labs, Inc.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
II	KDB 558074 D01 v05	24th August 2018	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices operating under section 15.247 of the FCC Rules.
III	A2LA	August 2018	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
V	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15.247	2019	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	ICES-003	Issue 6 Jan 2016; Updated April 2019	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
X	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XI	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 5	March 2019 Amendment 1	General Requirements for Compliance of Radio Apparatus
XIII	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.
XIV	KDB 789033 D02 V02r01	14th December, 2017	Guidelines For Compliance Testing Of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Taggle Systems Pty Ltd Parakeet to FCC CFR 47 Part 15 Subpart C 15.247 & ISED RSS-247
Applicant:	Taggle Systems Pty Ltd Level 1, 101 Sussex Street Sydney New South Wales 2000 Australia
Manufacturer:	Taggle Systems Pty Ltd
Laboratory performing the tests:	MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA
Test report reference number:	TAGG05-U2
Date EUT received:	9 th July 2019, 9 th October 2019
Standard(s) applied:	FCC CFR 47 Part 15 Subpart C 15.247, ISED RSS-247
Dates of test (from - to):	9 th July – 10 th October 2019
No of Units Tested:	2
Product Family Name:	Parakeet
Model(s):	Parakeet Sensus
Location for use:	Both
Declared Frequency Range(s):	902 - 928 MHz;
Type of Modulation:	Parakeet
EUT Modes of Operation:	902 - 928 MHz: BPSK;
Declared Nominal Output Power (dBm):	902 - 928 MHz: BPSK: 14 dBm
Transmit/Receive Operation:	Transmitter
Rated Input Voltage and Current:	3.6 VDC, 0.1A (Battery Powered)
Operating Temperature Range:	-20 - 70
ITU Emission Designator:	9M60G1D
Equipment Dimensions:	45 / 45 / 215 mm
Weight:	0.210 Kg
Hardware Rev:	Issue 1
Software Rev:	1.5.5
Description:	Wireless remote sensor reading

5.2. Scope Of Test Program

Taggle Systems Pty Ltd Parakeet Sensus

The scope of the test program was to test the Taggle Systems Pty Ltd Parakeet Sensus configurations in the frequency ranges 902 - 928 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Radio Frequency Devices; Subpart C – Intentional Radiators

ISED RSS-247 Issue 2

Digital Transmission Systems

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description	Manufacturer	Model No.	Serial No.
EUT Conducted	Wireless remote sensor reading	Taggle Systems. Pty Ltd	Parakeet Sensus	405261
EUT Radiated	Wireless remote sensor reading	Taggle Systems. Pty Ltd	Parakeet Sensus	405258

5.4. Antenna Details

Type	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	Taggle		OMNI	0.0	-	360	-	902 - 928

BF Gain - Beamforming Gain
 Dir BW - Directional BeamWidth
 X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# of Ports	Screened	Conn Type	Data Type	Bit Rate	Environment
UART	Unknown			Nicor AMR-3	Digital	1000	End-User

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power MBit/s	Channel Frequency (MHz)		
		Low	Mid	High
902 - 928 MHz				
BPSK	-	-	922.00	-

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

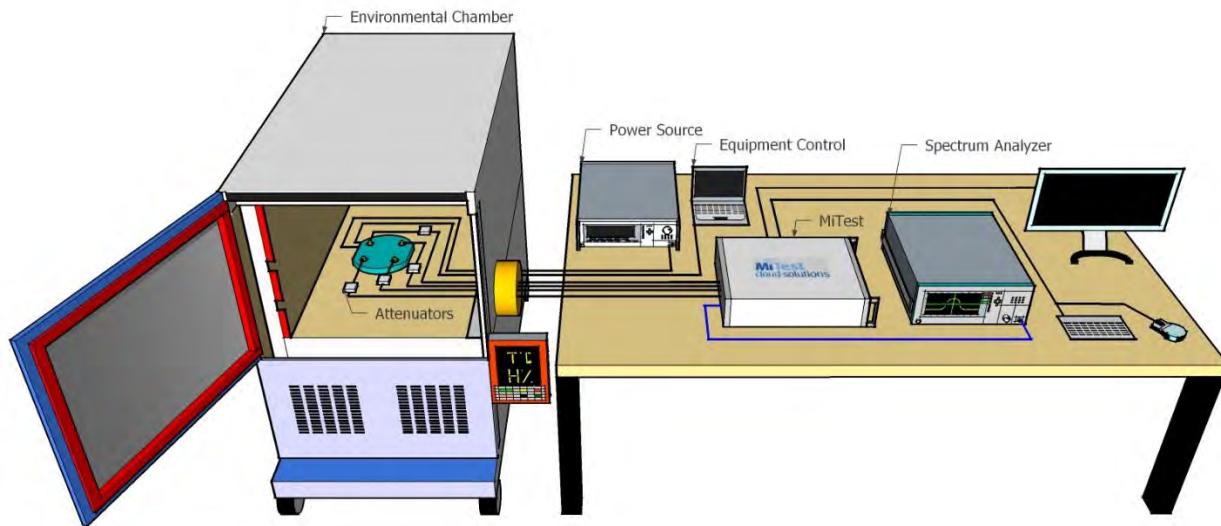
5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

6. TEST SUMMARY

List of Measurements

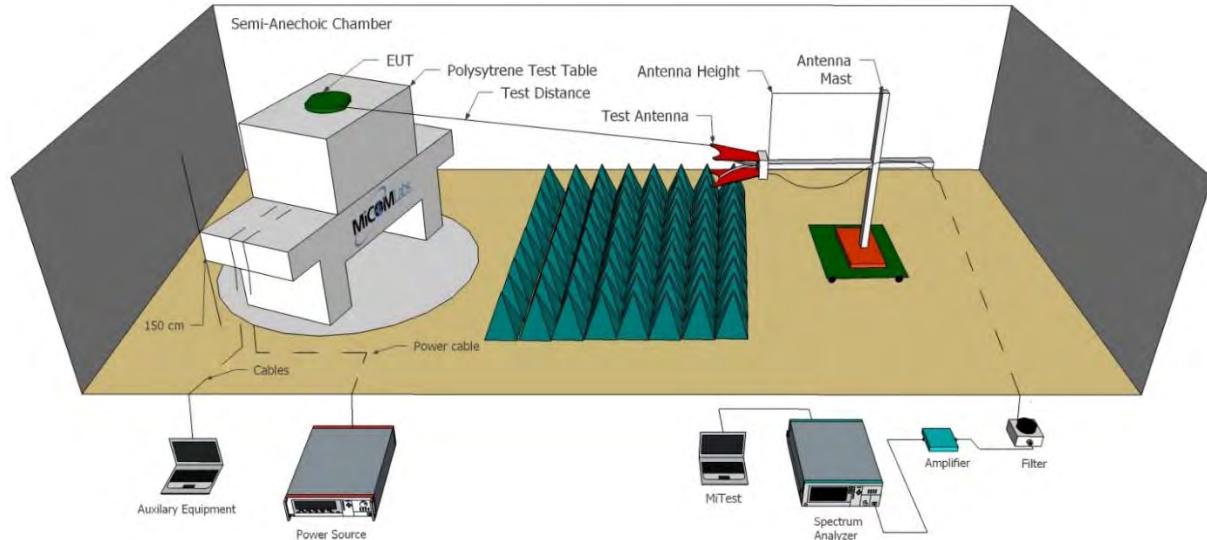

Test Header	Result	Data Link
6 dB & 99% Bandwidth	Complies	View Data
Conducted Output Power	Complies	View Data
Power Spectral Density	Complies	View Data
Emissions	Complies	-
(1) Conducted Emissions	Complies	-
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	-
(i) TX Spurious & Restricted Band Emissions	Complies	View Data
(3) Digital Emissions (0.03 - 1 GHz)	Complies	View Data

A spot check was performed on Digital Emissions and Conducted RF Output Power to ensure no changes were observed after an update to the product was made.

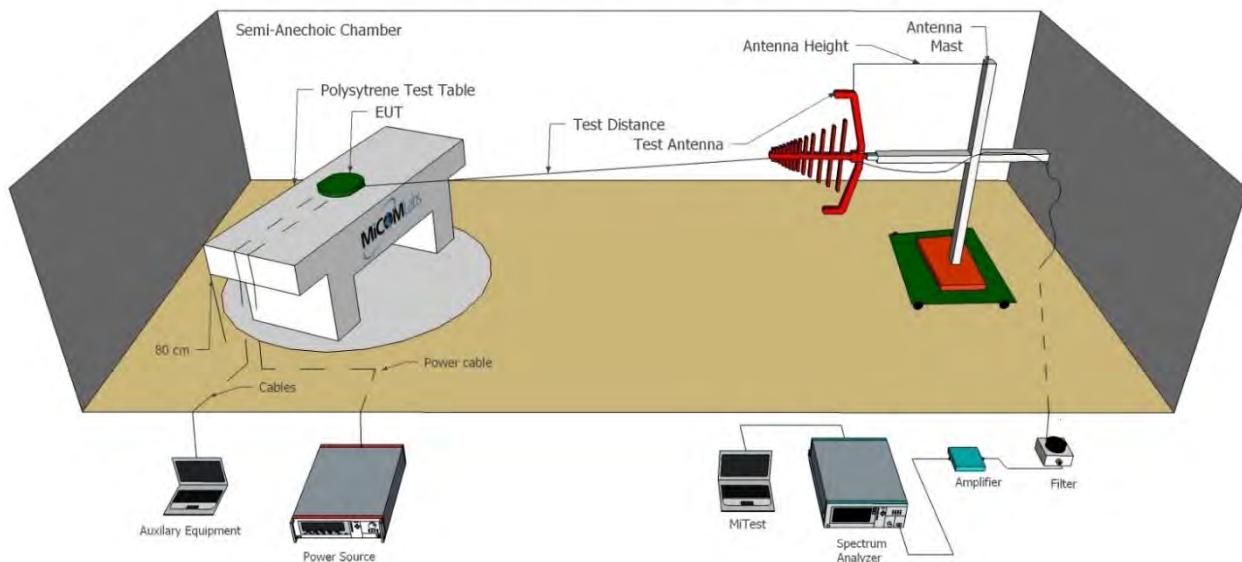
7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted Test Setup

MiTest Automated Test System


A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2019
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
75	Environmental Chamber	ThermaTron	SE-300-2-2	27946	24 Feb 2020


7.2. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above and below 1GHz.

Radiated Emissions Above 1GHz Test Setup

Radiated Emissions Below 1GHz Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.


Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
107	26–40 GHz Horn Antenna	Millimeter Products	261A	None	15 Jan 2020
145	18–26 GHz Horn Antenna	Millimeter Products	261K	None	15 Jan 2020
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	21 Apr 2020
336	Active Loop Antenna	Emco	6502	00060498	29 Nov 2019
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2020
378	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	12 Apr 2020
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2019
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	12 Apr 2020
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	9 Oct 2019
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	9 Oct 2019
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	9 Oct 2019
465	Low Pass Filter DC-1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	9 Oct 2019
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	24 Sep 2020
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	24 Sep 2020
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	15 Jan 2019

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by [MiTest](#). [MiTest](#) is an automated test system developed by MiCOM Labs. [MiTest](#) is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "[MiTest](#)" Automated Test System" (Patent Pending)

9. TEST RESULTS

9.1. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth			
Standard:	FCC CFR 47:15.247 ISED RSS-247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (a)(2) RSS-247 5.2 a	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for 6 dB and 99% Bandwidth Measurement
The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	Parakeet	Duty Cycle (%):	99.0
Data Rate:	1000 bp/s	Antenna Gain (dBi):	0.00
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 6 dB Bandwidth (MHz)				6 dB Bandwidth (MHz)		Limit	Lowest Margin
	Port(s)				Highest	Lowest		
MHz	a	b	c	d			KHz	MHz
922.0	4.850	--	--	--	4.850	4.850	≥500.0	-4.35

Test Frequency	Measured 99% Bandwidth (MHz)				Maximum 99% Bandwidth (MHz)		
	Port(s)						
MHz	a	b	c	d			
922.0	7.335	--	--	--	7.335		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

9.2. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power			
Standard:	FCC CFR 47:15.247 ISED RSS-247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (b) & (c) 11.9.2.3.1, RSS-247 5.4 (d)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Fundamental Emission Output Power Measurement

In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) \text{ dBm}$

A = Total Power $[10^{\text{a}/10} + 10^{\text{b}/10} + 10^{\text{c}/10} + 10^{\text{d}/10}]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:

(3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of $10 \log$ (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Title: Taggle Systems Pty Ltd, Parakeet
To: FCC Part 15 Subpart C 15.247 & ISED RSS-247
Serial #: TAGG05-U2 Rev A

Equipment Configuration for Peak Output Power

Variant:	Parakeet	Duty Cycle (%):	99.0
Data Rate:	1000 bp/s	Antenna Gain (dBi):	0.00
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm)				Total Power	Limit	Margin	EUT Power Setting
	Port(s)							
MHz	a	b	c	d	dBm	dBm	dB	
922.0	17.23	--	--	--	17.23	30.00	-12.77	Max

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

9.3. Power Spectral Density

Conducted Test Conditions for Power Spectral Density			
Standard:	FCC CFR 47:15.247 ISED RSS-247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (e) RSS-247 5.2 b	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE:

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = $A + 10 \log (1/x) \text{ dBm}$
 $A = \text{Total Power Spectral Density } [10 \log_{10} (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$
 $x = \text{Duty Cycle}$

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Equipment Configuration for Power Spectral Density - Peak

Variant:	Parakeet	Duty Cycle (%):	99.0
Data Rate:	1000 bp/s	Antenna Gain (dBi):	0.00
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density				Amplitude Summation	Limit	Margin
	Port(s) (dBm/3KHz)						
MHz	a	b	c	d	dBm/3KHz	dBm/3KHz	dB
922.0	-10.601	--	--	--	-10.601	8.0	-18.6

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	

Note: click the links in the above matrix to view the graphical image (plot).

9.4. Emissions

9.4.1. Conducted Emissions

9.4.1.1. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions			
Standard:	FCC CFR 47:15.247 ISED RSS-247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (d) RSS-247 Section 5.5	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Equipment Configuration for Conducted Spurious Emissions - Peak

Variant:	Parakeet	Duty Cycle (%):	99.0
Data Rate:	1000 bp/s	Antenna Gain (dBi):	0.00
Modulation:	BPSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Frequency Range	Conducted Spurious Emissions - Peak (dBm)							
		Port a		Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
922.0	30.0 - 10000.0	-39.763	-15.12	--	--	--	--	--	--

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	

Note: click the links in the above matrix to view the graphical image (plot).

9.4.1.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak

Variant:	Parakeet	Duty Cycle (%):	99.0
Data Rate:	1000 bp/s	Antenna Gain (dBi):	0.00
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	922.0 MHz				
Band-Edge Frequency:	902.0 MHz				
Test Frequency Range:	850.0 - 925.0 MHz				
Port(s)	Band-Edge Markers and Limit			Revised Limit	
	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	-40.12	-12.85	918.10	--	--
					-16.100

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title: Taggle Systems Pty Ltd, Parakeet
To: FCC Part 15 Subpart C 15.247 & ISED RSS-247
Serial #: TAGG05-U2 Rev A

Equipment Configuration for Conducted High Band-Edge Emissions - Peak

Variant:	Parakeet	Duty Cycle (%):	99.0
Data Rate:	1000 bp/s	Antenna Gain (dBi):	0.00
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	922.0 MHz				
Band-Edge Frequency:	928.0 MHz				
Test Frequency Range:	915.0 - 978.0 MHz				
Port(s)	Band-Edge Markers and Limit			Revised Limit	Margin
	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	-20.02	-12.92	925.90	--	--
					-2.100

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

9.4.2. Radiated Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)			
Standard:	FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ISED RSS-247	Ambient Temp. (°C):	20.0 - 24.5
Test Heading:	Radiated Spurious and Band-Edge Emissions	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.205, 15.209	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands

Peak emission: 74 dBuV/m

Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Example:

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dBmV/m}$$

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows:

$$\text{Level (dBmV/m)} = 20 * \text{Log}(\text{level (mV/m)})$$

$$40 \text{ dBmV/m} = 100 \text{ mV/m}$$

$$48 \text{ dBmV/m} = 250 \text{ mV/m}$$

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Frequency Band			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46

2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

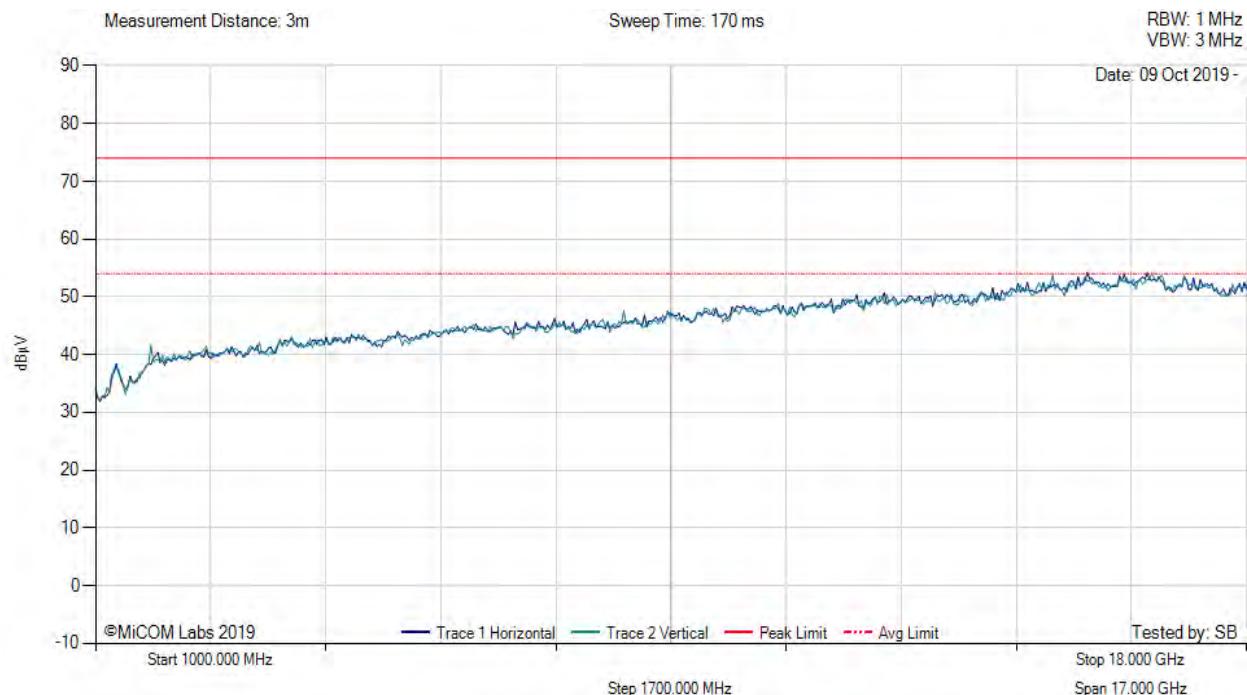
(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

9.4.2.3. TX Spurious & Restricted Band Emissions


Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	Integral	Variant:	Parakeet
Antenna Gain (dBi):	0.00	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99.0
Channel Frequency (MHz):	922.00	Data Rate:	1000 bp/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

Variant: BPSK, Test Freq: 922.00 MHz, Power Setting: Max, Duty Cycle (%): 99

There are no emissions found within 6dB of the limit line.

9.4.3. Digital Emissions (0.03 - 1 GHz)

FCC, Part 15 Subpart B §15.109
Industry Canada ICES-003 Section 6.2

Test Procedure

Testing 30 – 1,000 MHz was performed in a anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Only the highest emissions relative to the limit are listed.

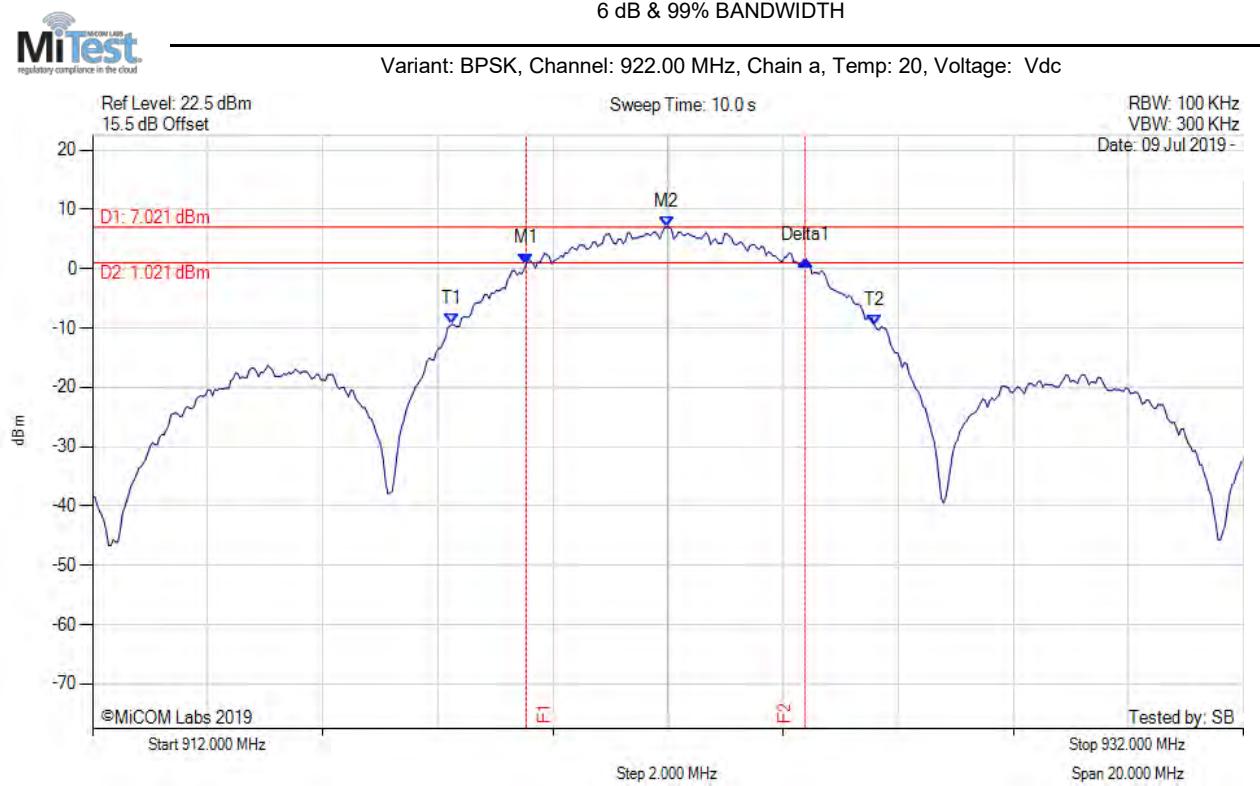

Equipment Configuration for Radiated Digital Emissions

Antenna:	Integral	Variant:	Parakeet
Antenna Gain (dBi):	0.00	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	922.00	Data Rate:	1000 bp/s
Power Setting:	Max.	Tested By:	SB

Test Measurement Results

Variant: BPSK, Test Freq: 922.00 MHz

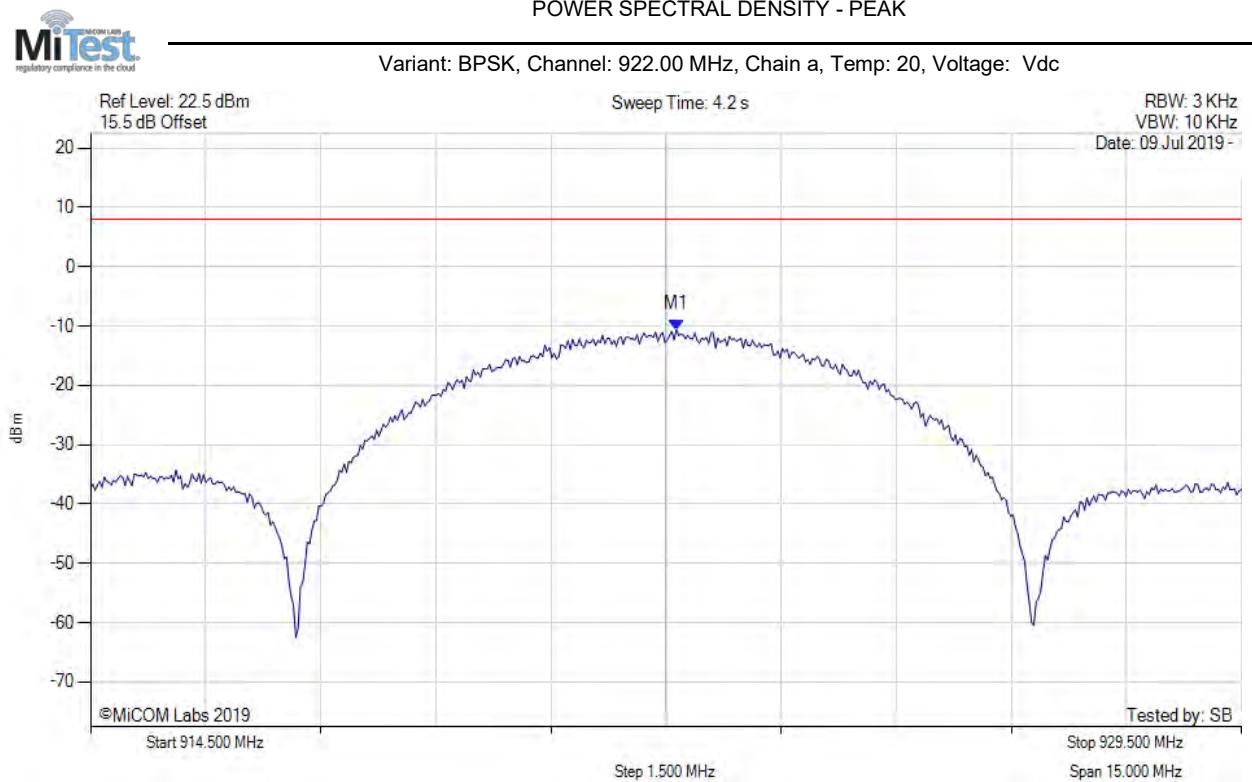
30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	804.60	34.07	6.40	-6.00	34.47	Peak (NRB)	Vertical	100	0	--	--	Pass	
2	808.91	52.96	6.41	-5.90	53.47	Peak (NRB)	Horizontal	100	0	--	--	Pass	
3	863.38	49.21	6.54	-5.30	50.45	Peak (NRB)	Horizontal	100	0	--	--	Pass	
4	952.93	56.03	6.81	-4.30	58.54	Peak (NRB)	Horizontal	100	0	--	--	Pass	
5	953.00	51.45	6.82	-4.30	53.97	Peak (NRB)	Vertical	100	0	--	--	Pass	


In the above graphic all emissions shown to be above the limit line were associated with the transmitter and therefore have an NRB limit
 NRB: Non-Restricted (frequency) Band where the limit is as follows;

Peak detector: limit is 20dB below the fundamental frequency peak value

Average detector: limit is 30dB below the fundamental frequency average value

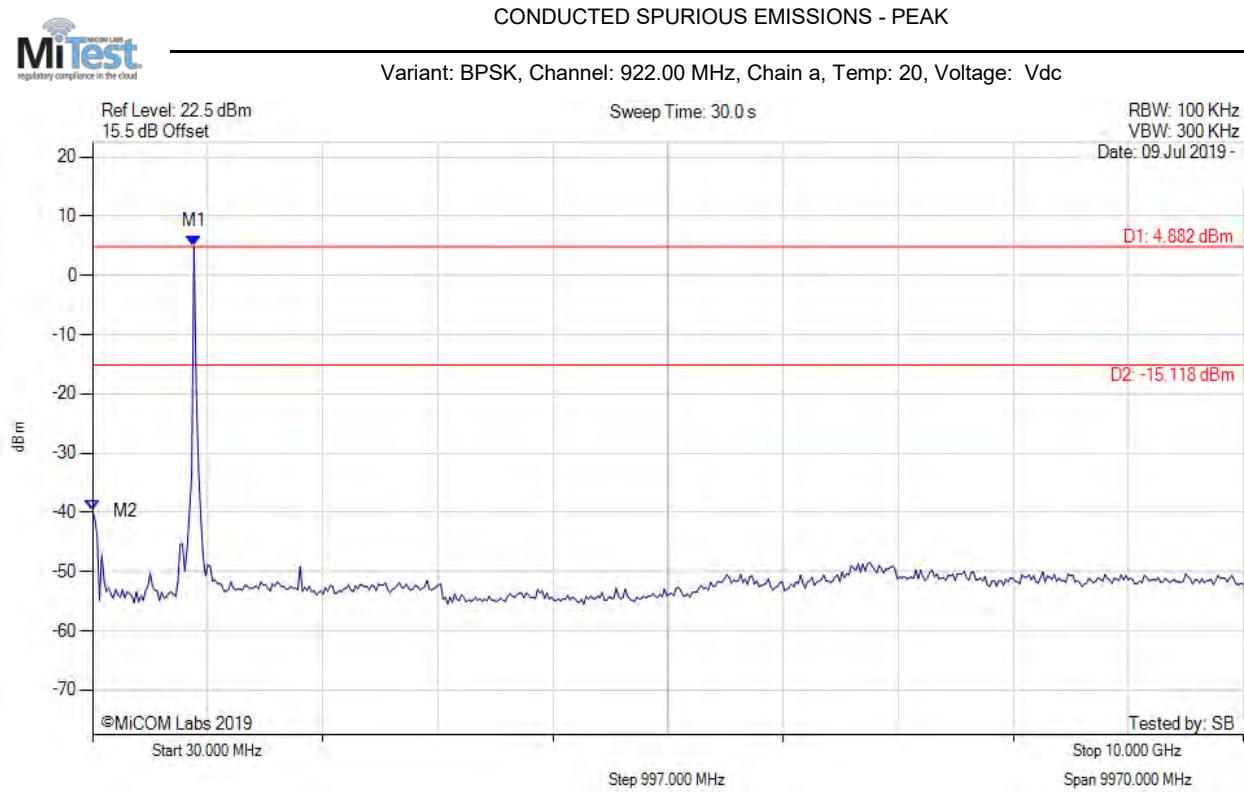
A. APPENDIX - GRAPHICAL IMAGES


A.1. 6 dB & 99% Bandwidth

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 919.535 MHz : 0.851 dBm M2 : 921.980 MHz : 7.021 dBm Delta1 : 4.850 MHz : 0.574 dB T1 : 918.253 MHz : -9.363 dBm T2 : 925.587 MHz : -9.468 dBm OBW : 7.335 MHz	Measured 6 dB Bandwidth: 4.850 MHz Limit: ≥ 500.0 kHz Margin: -4.35 MHz

[back to matrix](#)

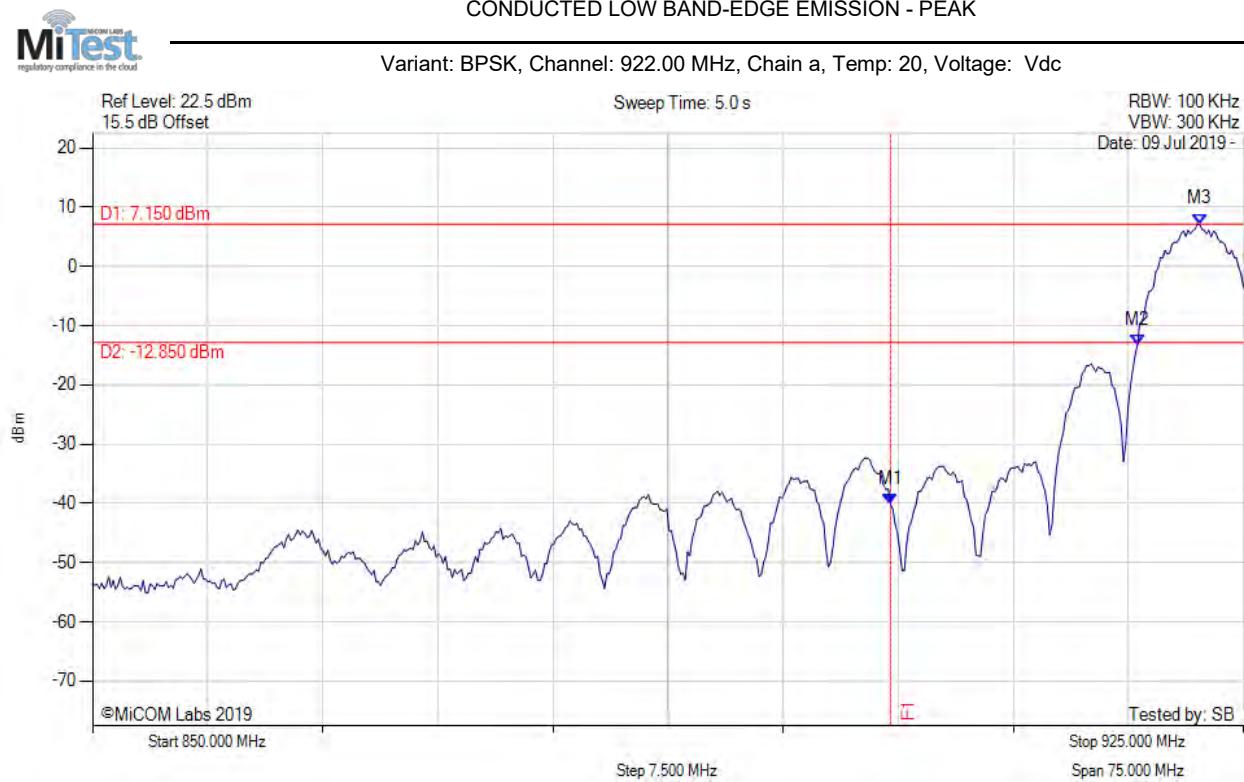
A.2. Power Spectral Density


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 922.135 MHz : -10.601 dBm	Limit: ≤ 8.000 dBm Margin: 18.60 dB

[back to matrix](#)

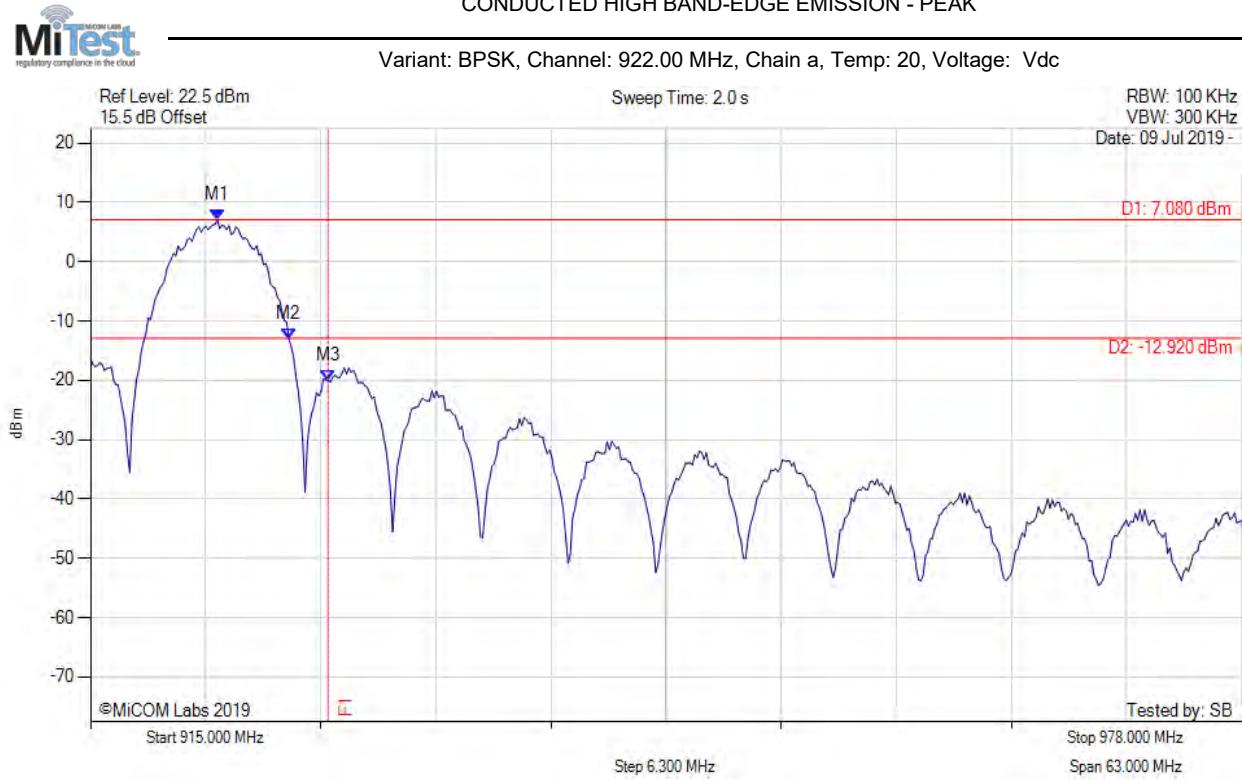
A.3. Emissions

A.3.1. Conducted Emissions


A.3.1.1. Conducted Spurious Emissions

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 909.118 MHz : 4.882 dBm M2 : 30.000 MHz : -39.763 dBm	Limit: -15.12 dBm Margin: -24.64 dB

[back to matrix](#)


A.3.1.2. Conducted Band-Edge Emissions

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 902.000 MHz : -40.115 dBm M2 : 918.086 MHz : -13.249 dBm M3 : 922.144 MHz : 7.149 dBm	Channel Frequency: 922.00 MHz

[back to matrix](#)

CONDUCTED HIGH BAND-EDGE EMISSION - PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 921.944 MHz : 7.044 dBm M2 : 925.858 MHz : -12.999 dBm M3 : 928.000 MHz : -20.024 dBm	Channel Frequency: 922.00 MHz

[back to matrix](#)

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com