

RADIO TESTREPORT

Report No:STS1904147W02

Į

Issued for

Shenzhen Yifang Digital Technology Co., Ltd.

YIFANG Building, No. 315, Shuang Ming Avenue, Guang Ming Street, Guang Ming District, Shenzhen, Guangdong, China

Product Name:	WiFi Door Sensor
Brand Name:	EFUN
Model Name:	SW82
Series Model:	SW82*("*"for 0-9,A-Z,-,or blank)
FCC ID:	S7JSW82
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced with permission from STS, All Test Data Presented in this report is only applicable to presented Test sample VAL

TEST RESULT CERTIFICATION

Applicant's Name:	Shenzhen Yifang Digital Technology Co., Ltd.
Address	YIFANG Building, No. 315, Shuang Ming Avenue, Guang Ming Street, Guang Ming District, Shenzhen, Guangdong, China
Manufacture's Name	Shenzhen Yifang Digital Technology Co., Ltd.
Address	YIFANG Building, No. 315, Shuang Ming Avenue, Guang Ming Street, Guang Ming District, Shenzhen, Guangdong, China
Product Description	
Product Name:	WiFi Door Sensor
Brand Name:	EFUN
Model Name:	SW82
Series Model:	SW82*("*"for 0-9,A-Z,-,or blank)
Test Standards	FCC Part15.247
Test Procedure	ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document only be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test.....

Date (s) of performance of tests:	10 Apr. 2019 ~ 24 Apr. 2019
Date of Issue:	06 May 2019

Test Result Pass

Testing Engineer

Technical Manager

(Chris Chen) (Sunday Hu)

Authorized Signatory :

(Vita Li)

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com **Table of Contents**

Page

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.6 EQUIPMENTS LISTS	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 RADIATED EMISSION MEASUREMENT	15
4.CONDUCTED SPURIOUS & BAND EDGE EMISSION	27
4.1 LIMIT	27
4.2 TEST PROCEDURE	27
4.3 DEVIATION FROM STANDARD	27
4.4 TEST SETUP	27
4.5 EUT OPERATION CONDITIONS	27
4.6 TEST RESULTS	28
5. POWER SPECTRAL DENSITY TEST	37
5.1 LIMIT	37
5.2 TEST PROCEDURE	37
5.3 DEVIATION FROM STANDARD	37
5.4 TEST SETUP	37
5.5 EUT OPERATION CONDITIONS	37
5.6 TEST RESULTS	38
6. BANDWIDTH TEST	44
6.1 LIMIT	44
6.2 TEST PROCEDURE	44
6.3 DEVIATION FROM STANDARD	44
6.4 TEST SETUP	44
6.5 EUT OPERATION CONDITIONS	44

54

Table of Contents Page 6.6 TEST RESULTS 45 7. PEAK OUTPUT POWER TEST 51 7.1 LIMIT 51 7.2 TEST PROCEDURE 51 7.3 DEVIATION FROM STANDARD 51 7.4 TEST SETUP 51 7.5 EUT OPERATION CONDITIONS 51

Page 4 of 54

7.6 TEST RESULTS	52
8. ANTENNA REQUIREMENT	53
8.1 STANDARD REQUIREMENT	53
8.2 EUT ANTENNA	53

APPENDIX-PHOTOS OF TEST SETUP

Page 5 of 54 Report No.:STS1904147W02

Revision History

Rev.	Issue Date Report No. Effect Page		Contents	
00	06 May 2019	STS1904147W02	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

FCC Part 15.247,Subpart C			
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	N/A	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)(3)	Output Power	PASS	
15.247 (c)	Radiated Spurious Emission	PASS	
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.205	Restricted Band Edge Emission	PASS	
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2)all tests are according to ANSI C63.10-2013.

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China FCC test Firm Registration Number: 625569

A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±0.63dB
3	All emissions, radiated 30-200MHz	±3.43dB
4	All emissions, radiated 200MHz-1GHz	±3.57dB
5	All emissions, radiated>1G	±4.13dB
6	Conducted Emission (9KHz-150KHz)	±3.18dB
7	Conducted Emission (150KHz-30MHz)	±2.70dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	WiFi Door Sensor		
Trade Name	EFUN		
Model Name	SW82		
Series Model	SW82*("*"for 0-9,A-	-Z,-,or blank)	
Model Difference	Different model nar	ne used in different sales markets and colors.	
Product Description	The EUT is a WiFi I Operation Frequency: Modulation Type: Bit Rate of Transmitter: Number of Channel: Antenna Designation: AntennaGain (dBi): Duty Cycle:	Door Sensor 802.11b/g/n 20: 2412~2462 MHz 802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11n(20MHz): 65/58.5/52/39/26/19.5/13/6.5Mbps 802.11b/g/n20: 11CH Please see Note 4. 3 dBi >98%	
Channel List	Please refer to the Note 2.		
Power Rating	Input: DC 3V from battery		
Hardware version number	V1.2		
Software versionnumber	V1.0.2		
Connecting I/O Port(s)	Please refer to the User's Manual		

Note:

1 For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page 9 of 54 Report No.:STS1904147W02

2

Operation Frequency of channel				
802.11b/g/n(20MHz)				
Channel	Frequency			
01	2412			
02	2417			
03	2422			
04	2427			
05	2432			
06	2437			
07	2442			
08	2447			
09	2452			
10	2457			
11	2462			

3 Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, themiddle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: Carrier Frequency Channel

2.4GHz Test Frequency:

For 802.11b/g/n (HT20)			
Channel Freq.(MHz)			
01	2412		
06	2437		
11	2462		

4

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	EFUN	SW82	PCB	N/A	3 dBi	WLAN Antenna

2.2 DESCRIPTION OF THE TEST MODES

Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate
Mode 1	TX IEEE 802.11b CH1	1 Mbps
Mode 2	TX IEEE 802.11b CH6	1 Mbps
Mode 3	TX IEEE 802.11 b CH11	1 Mbps
Mode 4	TX IEEE 802.11g CH1	6 Mbps
Mode 5	TX IEEE 802.11g CH6	6 Mbps
Mode 6	TX IEEE 802.11g CH11	6 Mbps
Mode 7	TX IEEE 802.11n HT20 CH1	MCS 0
Mode 8	TX IEEE 802.11n HT20 CH6	MCS 0
Mode 9	TX IEEE 802.11n HT20 CH11	MCS 0

Note:

The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

2.3 TEST SOFTWARE AND POWER LEVEL


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

RF Function	Туре	Mode Or Modulation type	Ant Gain(dBi)	Power Class	Software For Testing
	0.40	802.11b		16	
WIFI(2.4G)	2.4G WIFI	802.11g	3	16	ESP Series Modules FCC & CE Test Tool
	V V I I I	802.11n(HT20)		16	

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiation Test Set

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
N/A	N/A	N/A	N/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	Notebook	DELL	VOSTRO.3800	N/A	N/A
C-1	USB Cable	N/A	100cm	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.6 EQUIPMENTS LISTS

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2018.10.13	2019.10.12
Signal Analyzer	Agilent	N9020A	MY51110105	2019.03.02	2020.03.01
Active loop Antenna	ZHINAN	ZN30900C	16035	2018.03.11	2021.03.10
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2020.11.1
Horn Antenna	SCHWARZBECK	BBHA 9120D(1201)	9120D-1343	2018.10.19	2021.10.18
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2018.03.11	2021.03.10
Pre-Amplifier (0.1M-3GHz)	EM	EM330	060665	2018.10.13	2019.10.12
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK201808090 1	2018.10.13	2019.10.12
Pre-Amplifier (18G-40GHz)	SKET	LNPA-1840-50	SK201810180 1	2018.10.13	2019.10.12
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10
turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2018.10.13	2019.10.12
Signal Analyzer	Agilent	N9020A	MY49100060	2018.10.13	2019.10.12
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

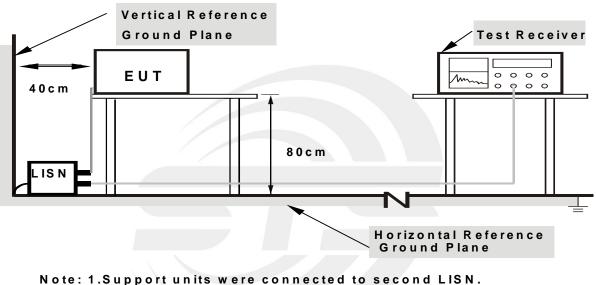
operating frequency band. In case the emission fall within the restricted band specified on Part 15. 207(a) limit in the table below has to be followed.

	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

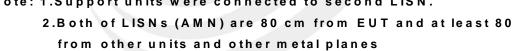
Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz



3.1.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 TEST SETUP

3.1.4 TEST RESULT

Temperature:	24.4 ℃	Relative Humidtity:	65%
Test Voltage:	N/A	Phase:	L/N
Test Mode:	N/A		

Note: EUT is only power by battery, So it is not applicable for this test.

Page 15 of 54 Report No.:STS1904147W02

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1000MHz-25GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector Peak/AV		
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)	
band)	1 MHz/1/T MHz(AVG)	

For Band edge

Spectrum Parameter	Setting					
Detector	Peak/AV					
Start/Stan Eraguanay	Lower Band Edge: 2300 to 2412 MHz					
Start/Stop Frequency	Lower Band Edge: 2300 to 2412 MHz Upper Band Edge: 2462to 2500 MHz					
PP()/P(amiasian in restricted hand)	1 MHz / 3 MHz(Peak)					
RB / VB (emission in restricted band)	1 MHz/1/T MHz(AVG)					

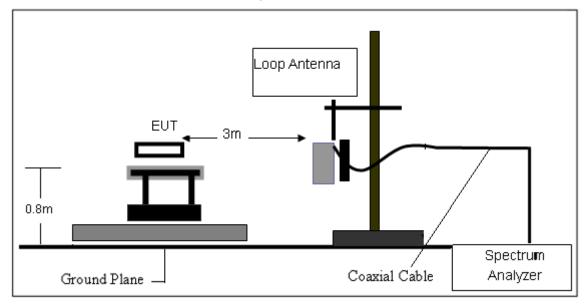
Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

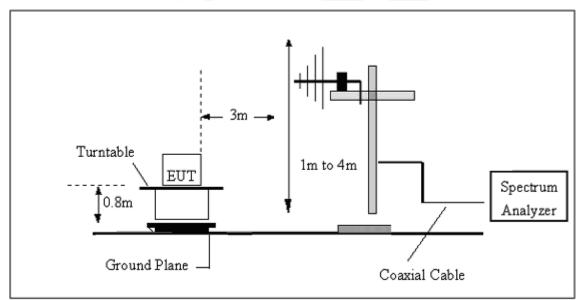
 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were testedand performed test to three orthogonal axis. The worst case emissions were reported



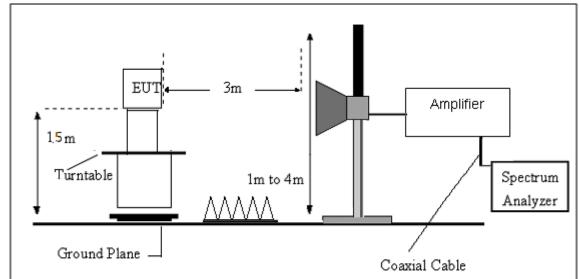
3.2.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China


 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 18 of 54

Report No.:STS1904147W02

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

AF - Antenna F

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

3.2.6 TEST RESULT

9KHz-30MHz

Temperature:	24.4℃	Relative Humidtity:	65%
Test Voltage:	DC 3V	Polarization:	
Test Mode:	TX Mode		

Freq.	Reading	Limit	Margin	State	Test
(MHz)	(dBuV/m)	(dBuV/m) (dB)		P/F	Result
					PASS
					PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

(30MHz - 1000MHz)

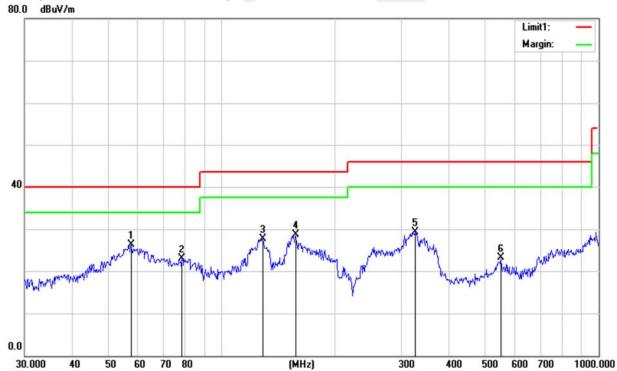
Temperature:	24 .4℃	Relative Humidtity:	65%
Test Voltage:	DC 3V	Polarization:	Horizontal
Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (Mode 6 worst r	node)	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	41.2764	41.29	-16.98	24.31	40.00	-15.69	QP
2	62.4313	53.74	-24.28	29.46	40.00	-10.54	QP
3	95.4270	40.63	-19.65	20.98	43.50	-22.52	QP
4	176.2684	52.35	-19.41	32.94	43.50	-10.56	QP
5	339.5887	38.67	-14.01	24.66	46.00	-21.34	QP
6	627.2738	39.43	-6.42	33.01	46.00	-12.99	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

80.0 dBuV/m



Temperature:	24.4℃	Relative Humidtity:	65%
Test Voltage:	DC 3V	Polarization:	Vertical
Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (Mode 6 worst r	node)	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	57.5938	49.91	-23.65	26.26	40.00	-13.74	QP
2	78.4133	45.86	-22.92	22.94	40.00	-17.06	QP
3	128.5630	45.26	-17.56	27.70	43.50	-15.80	QP
4	157.0072	47.11	-18.34	28.77	43.50	-14.73	QP
5	326.7395	43.41	-14.12	29.29	46.00	-16.71	QP
6	550.9480	29.77	-6.76	23.01	46.00	-22.99	QP

Remark:.

^{1.} Margin = Result (Result = Reading + Factor)-Limit

(1000MHz-25GHz) Restricted band and Spurious emission Requirements

Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Orrected Factor	Emission Level	Limits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment		
	Low Channel (2412 MHz)											
3264.87	62.27	44.70	6.70	28.20	-9.80	52.47	74.00	-21.53	PK	Vertical		
3264.87	49.91	44.70	6.70	28.20	-9.80	40.11	54.00	-13.89	AV	Vertical		
3264.62	60.93	44.70	6.70	28.20	-9.80	51.13	74.00	-22.87	PK	Horizontal		
3264.62	51.27	44.70	6.70	28.20	-9.80	41.47	54.00	-12.53	AV	Horizontal		
4824.57	58.67	44.20	9.04	31.60	-3.56	55.11	74.00	-18.89	PK	Vertical		
4824.57	49.87	44.20	9.04	31.60	-3.56	46.31	54.00	-7.69	AV	Vertical		
4824.49	58.47	44.20	9.04	31.60	-3.56	54.91	74.00	-19.09	PK	Horizontal		
4824.49	50.49	44.20	9.04	31.60	-3.56	46.93	54.00	-7.07	AV	Horizontal		
5359.81	48.54	44.20	9.86	32.00	-2.34	46.20	74.00	-27.80	PK	Vertical		
5359.81	39.25	44.20	9.86	32.00	-2.34	36.91	54.00	-17.09	AV	Vertical		
5359.69	48.39	44.20	9.86	32.00	-2.34	46.05	74.00	-27.95	PK	Horizontal		
5359.69	38.58	44.20	9.86	32.00	-2.34	36.24	54.00	-17.76	AV	Horizontal		
7235.80	53.55	43.50	11.40	35.50	3.40	56.95	74.00	-17.05	PK	Vertical		
7235.80	44.04	43.50	11.40	35.50	3.40	47.44	54.00	-6.56	AV	Vertical		
7235.92	54.28	43.50	11.40	35.50	3.40	57.68	74.00	-16.32	PK	Horizontal		
7235.90	43.82	43.50	11.40	35.50	3.40	47.22	54.00	-6.78	AV	Vertical		
				Middle	Channel (243	7 MHz)						
3264.64	61.72	44.70	6.70	28.20	-9.80	51.92	74.00	-22.08	PK	Vertical		
3264.64	51.23	44.70	6.70	28.20	-9.80	41.43	54.00	-12.57	AV	Vertical		
3264.80	61.95	44.70	6.70	28.20	-9.80	52.15	74.00	-21.85	PK	Horizontal		
3264.80	50.30	44.70	6.70	28.20	-9.80	40.50	54.00	-13.50	AV	Horizontal		
4874.38	58.76	44.20	9.04	31.60	-3.56	55.20	74.00	-18.80	PK	Vertical		
4874.38	49.73	44.20	9.04	31.60	-3.56	46.17	54.00	-7.83	AV	Vertical		
4874.56	58.43	44.20	9.04	31.60	-3.56	54.87	74.00	-19.13	PK	Horizontal		
4874.56	49.33	44.20	9.04	31.60	-3.56	45.77	54.00	-8.23	AV	Horizontal		
5359.85	48.17	44.20	9.86	32.00	-2.34	45.83	74.00	-28.17	PK	Vertical		
5359.85	39.06	44.20	9.86	32.00	-2.34	36.72	54.00	-17.28	AV	Vertical		
5359.69	47.18	44.20	9.86	32.00	-2.34	44.84	74.00	-29.16	PK	Horizontal		
5359.69	39.44	44.20	9.86	32.00	-2.34	37.10	54.00	-16.90	AV	Horizontal		
7310.72	54.23	43.50	11.40	35.50	3.40	57.63	74.00	-16.37	PK	Vertical		
7310.72	43.89	43.50	11.40	35.50	3.40	47.29	54.00	-6.71	AV	Vertical		
7310.73	54.08	43.50	11.40	35.50	3.40	57.48	74.00	-16.52	PK	Horizontal		
7310.73	44.65	43.50	11.40	35.50	3.40	48.05	54.00	-5.95	AV	Horizontal		

802.11g

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 24 of 54 Report No.:STS1904147W02

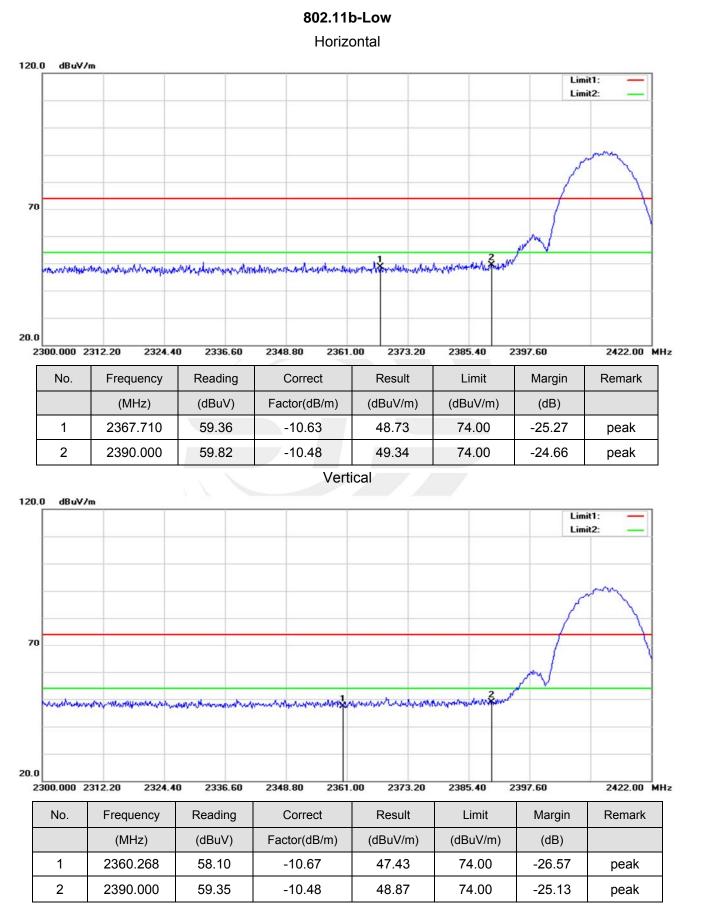
	High Channel (2462 MHz)										
3264.83	60.86	44.70	6.70	28.20	-9.80	51.06	74.00	-22.94	PK	Vertical	
3264.83	50.92	44.70	6.70	28.20	-9.80	41.12	54.00	-12.88	AV	Vertical	
3264.80	61.75	44.70	6.70	28.20	-9.80	51.95	74.00	-22.05	PK	Horizontal	
3264.80	49.87	44.70	6.70	28.20	-9.80	40.07	54.00	-13.93	AV	Horizontal	
4924.35	58.66	44.20	9.04	31.60	-3.56	55.10	74.00	-18.90	PK	Vertical	
4924.35	49.30	44.20	9.04	31.60	-3.56	45.74	54.00	-8.26	AV	Vertical	
4924.35	59.18	44.20	9.04	31.60	-3.56	55.62	74.00	-18.38	PK	Horizontal	
4924.35	49.16	44.20	9.04	31.60	-3.56	45.60	54.00	-8.40	AV	Horizontal	
5359.85	48.63	44.20	9.86	32.00	-2.34	46.29	74.00	-27.71	PK	Vertical	
5359.85	40.37	44.20	9.86	32.00	-2.34	38.03	54.00	-15.97	AV	Vertical	
5359.62	47.99	44.20	9.86	32.00	-2.34	45.65	74.00	-28.35	PK	Horizontal	
5359.62	39.36	44.20	9.86	32.00	-2.34	37.02	54.00	-16.98	AV	Horizontal	
7385.84	54.82	43.50	11.40	35.50	3.40	58.22	74.00	-15.78	PK	Vertical	
7385.84	43.51	43.50	11.40	35.50	3.40	46.91	54.00	-7.09	AV	Vertical	
7385.83	54.60	43.50	11.40	35.50	3.40	58.00	74.00	-16.00	PK	Horizontal	
7385.83	44.02	43.50	11.40	35.50	3.40	47.42	54.00	-6.58	AV	Horizontal	

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Scan with 802.11b, 802.11g, 802.11n (HT-20), the worst case is 802.11g. Emission Level = Reading + Factor

Margin = Limit - Emission Level

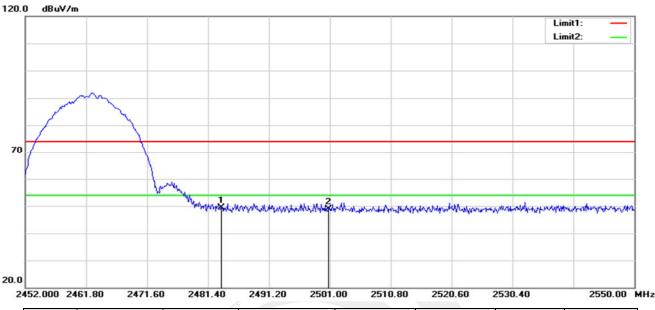

3. The frequency emission of peak points that did not show above the forms are at least 20dB below

thelimit, the frequency emission is mainly from the environment noise.

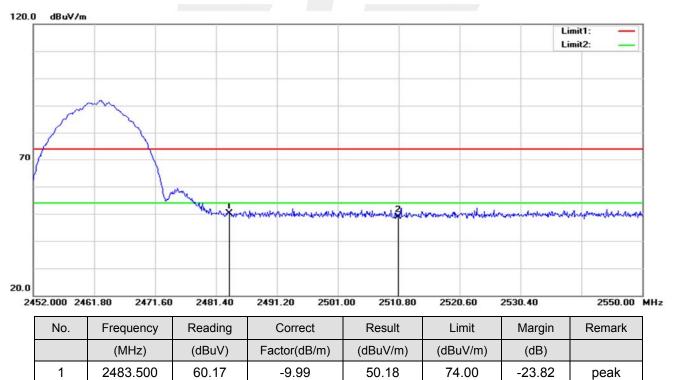
Shenzhen STS Test Services Co., Ltd.

3.2.6 TEST RESULTS(Band edge Requirements)

Shenzhen STS Test Services Co., Ltd.


 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com


Report No.:STS1904147W02

802.11b-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	59.37	-9.99	49.38	74.00	-24.62	peak
2	2500.804	58.84	-9.91	48.93	74.00	-25.07	peak

Vertical

Note: 802.11b, 802.11g, 802.11n (HT-20) mode all have been tested, the worst case is 802.11b, only show the worst case.

48.98

-9.88

Shenzhen STS Test Services Co., Ltd.

2510.702

58.86

2

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

-25.02

peak

74.00

4.CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting			
Detector	Peak			
Start/Stan Eraguanau	Lower Band Edge: 2300 to 2412 MHz			
Start/Stop Frequency	Upper Band Edge: 2462to 2500 MHz			
RB / VB (emission in restricted band)	100 KHz/300 KHz			
Trace-Mode:	Max hold			

4.3 DEVIATION FROM STANDARD

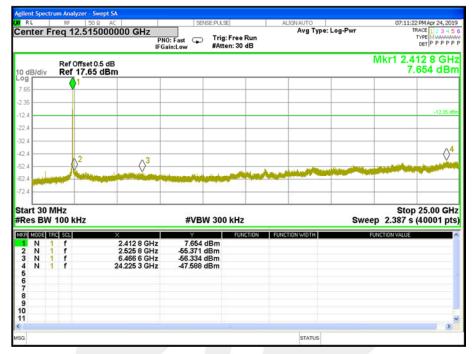
No deviation.

4.4 TEST SETUP

The EUT which is powered by the Battery, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

4.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX b Mode /CH01, CH06, CH11

CH 01

011	~~
('H	06
U	00

enter			AC	SENSE:PULS	Æ	ALIGNAUTO		07:13:59	PM Apr 24, 20:
	⁻ Frec	12.51500			: Free Run en: 30 dB	Avg Type:	Log-Pwr	T	ACE 1 2 3 4 1 YPE MWWW DET P P P P
dB/di		ef Offset 0.5 ef 15.87 d						Mkr1 2.43 5.8	87 7 GH 368 dB
87		1							
13		1							-14.13
.1 _1									
.1									∧4
1		2 ²	$\langle \rangle^3$			A CONTRACTOR OF STREET			Y
1	il and d	- Contraction		in the second	المساجلين				
1									
art 3	0 MH				kH7		Swee	Stop 2.387 s (25.00 GI 40001 p
	W 10	0 kHz		#VBW 300					
es B	W 10		×	Y		FUNCTION WIDTH		UNCTION VALUE	
es B Moos N N N	e tric s 1	EL f	× 2.437 7 GHz 2.511 4 GHz 5.901 1 GHz			FUNCTION WIDTH			
es B Molos N N N	E TRC 5 1 1 1	EL f	2.437 7 GHz 2.511 4 GHz	5.868 dBm -54.277 dBm		FUNCTION WIDTH			
N N N N N	E TRC 5 1 1 1	EEL f f f	2.437 7 GHz 2.511 4 GHz 5.901 1 GHz	5.868 dBm -54.277 dBm -56.057 dBm		FUNCTION WIDTH			
es B Moos N N	E TRC 5 1 1 1	EEL f f f	2.437 7 GHz 2.511 4 GHz 5.901 1 GHz	5.868 dBm -54.277 dBm -56.057 dBm		FUNCTION WIDTH			

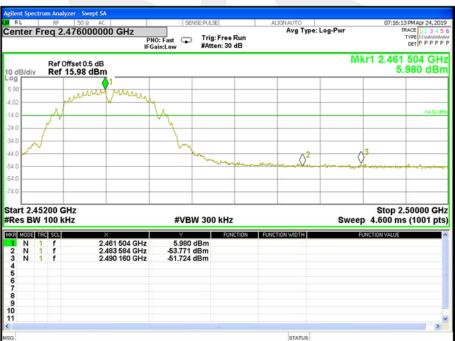
CH 11

gilen R I		ectru		lyzer - Swe										
		Fre	RF eq 1	50 x 2.5150	00000 G	PI	NO: Fast 🖵 Sain:Low	NSE:PULSE Trig: Fre #Atten: 3	e Run 0 dB	ALIO	Avg Type:	Log-Pwr	07:	IS:39 PM Apr 24, 20 TRACE 1 2 3 4 TYPE MWWWM DET P P P P
0 dl	B/div			Offset 0.5 14.21 d									Mkr1 2	.460 2 GH 4.206 dB
4.21			-	1										
.79 5.8														-15.79 d
5.8														
5.8	\vdash													
5.8 5.8				≥ ²	$\langle \rangle^3$									
5.8	-		1											
5.8														
	t 30 s Bi		Hz 00 I	Hz			#VB	W 300 kH	z			Sw	St eep 2.387	op 25.00 GH 's (40001 pt
KR	MODE	TRC	SCL		2,460 2	CH7	4,206		INCTION	FUNCTION	ON WIDTH		FUNCTION VAL	JE
234	ZZZ	1 1 1	fff		2.524 5 4.924 1 24.329 6	GHz	-54.710 -57.554 -48.785	dBm dBm						
5														
8 9 0														
1														>
3											STATUS			

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China


 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

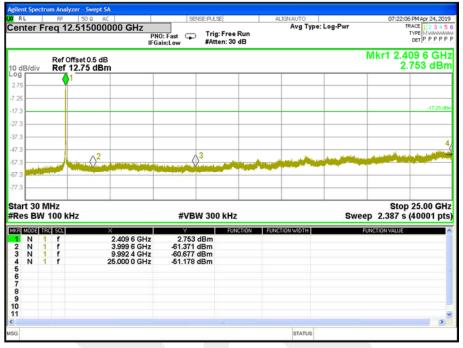


Band edge

CH 01

CH 11

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China


 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 31 of 54 Report No.:STS1904147W02

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX g Mode /CH01, CH06, CH11

CH 01

CH06

		RF	50 g AC	SENSE:PUL!	9E	ALIGNAUTO		07:20:10 PM Apr 24, 20
ente	er Fro	eq 1	2.515000000 GHz		: Free Run en: 30 dB	Avg Type: L	.og-Pwr	TRACE 1 2 3 4 TYPE MUMMU DET P P P P
) dB/d	liv		Offset 0.5 dB 13.58 dBm				Γ	/kr1 2.443 4 Gł 3.579 dB
.58			1					
42 -								-16.42
.4								
4		-	2 \wedge^3					
4			Contraction of the local distances of the loc		and the second	Contraction of the local distance		
.4								
	30 M BW 1		(Hz	#VBW 300) kHz		Sweep	Stop 25.00 G 2.387 s (40001 p
	DE TRO	SCL	× 2.443 4 GH	z 3.579 dBm	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE
	4	r (
ZZZZ	1	f f	2.533 2 GH 5.853 0 GH 24.702 9 GH	z -57.538 dBm				
ZZZZ	1	f	5.853 0 GH	z -57.538 dBm				
NNNN	1	f	5.853 0 GH	z -57.538 dBm				
NNN	1	f	5.853 0 GH	z -57.538 dBm				

CH 11

		ctru		alyzer - Swept SA								
R		-	RF	50 Q AC		SE	NSE:PULSE		ALIGNAUTO	: Log-Pwr		6 PM Apr 24, 2019 RACE 1 2 3 4 5 6
Cer	iter	Fre	eq 1	12.5150000	P	NO: Fast 🖵 Gain:Low	Trig: Free #Atten: 30		Avg Type	: Log-Pwr		TYPE MWWWWWW DET P P P P P P
	B/div			Offset 0.5 dB 9.94 dBm								55 8 GHz 065 dBm
-0.06				1								
-10.1												
-20.1												-20.07 dBm
-30.1												
-40.1												1
-50.1	\vdash			2	3				a literation of the second	and without	And the party of t	
-60.1		1999 C		New York Street	ANY CAR			Mary and Party	and the second second		A DE CARA A PARTA PARTA A	
-70.1	-											
-80,1				-					-			
	rt 30 Is Bi			kHz		#VB	W 300 kH	z		Swe	Stop eep 2.387 s	25.00 GHz (40001 pts)
MKR	MODE	TRC		×		Y		NCTION	FUNCTION WIDTH		FUNCTION VALUE	^
234	ZZZZ	1 1 1	f f f		2.455 8 GHz 2.508 9 GHz 5.948 5 GHz 4.525 6 GHz	-0.065 -54.061 -56.716 -47.707	dBm dBm					
2 3 4 5 6 7 8 9 1 0												
9 10												
11												~
MSG									STATUS			

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Band edge

CH 01

CH11

Page 34 of 54 Report No.:STS1904147W02

Temperature:	25 °C	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX n Mode(20M) /CH01, CH06, CH11

CH 01

С	Н	06

		RF 50 Q		SENSE:PULS	Æ	ALIGNAUTO		07:26:45 PM Apr 24, 2
enter	Free	q 12.5150			: Free Run en: 30 dB	Avg Type:	Log-Pwr	TRACE 1 2 3 4 TYPE MWWW DET P P P F
dB/di		Ref Offset 0.5 Ref_13.40 (Mkr1 2.430 9 G 3.404 dE
40		1						
		_						
.6								-16.60
6		_						
.6		-						
6		2 ²	3					
6 	فالتحم وحل	A strength		a transmission and the state	And Property lies	New York Street		
6								
6								
art 3		z 00 kHz		#VBW 300) kHz	1.0 	Swee	Stop 25.00 G p 2.387 s (40001 p
es B	44 10							INCTION VALUE
R MODE		SCL.	×	Y	FUNCTION	FUNCTION WIDTH	FL	ALC: NOT THESE
N N		f	2.430 9 GHz 2.564 5 GHz	3.404 dBm -55.204 dBm	FUNCTION	FUNCTION WIDTH	FL	
N	1 1 1	f	2.430 9 GHz	3.404 dBm	FUNCTION	FUNCTION WIDTH	FL.	
N N N N N	1 1 1	f f f	2.430 9 GHz 2.564 5 GHz 5.438 5 GHz	3.404 dBm -55.204 dBm -57.529 dBm	FUNCTION	FUNCTION WIDTH	FL.	
N N N N N N	1 1 1	f f f	2.430 9 GHz 2.564 5 GHz 5.438 5 GHz	3.404 dBm -55.204 dBm -57.529 dBm	FUNCTION	FUNCTION WIDTH	FL	
N N N N	1 1 1	f f f	2.430 9 GHz 2.564 5 GHz 5.438 5 GHz	3.404 dBm -55.204 dBm -57.529 dBm	FUNCTION	FUNCTION WIDTH	FL	
N N	1 1 1	f f f	2.430 9 GHz 2.564 5 GHz 5.438 5 GHz	3.404 dBm -55.204 dBm -57.529 dBm	FUNCTION	FUNCTION WIDTH	FL	

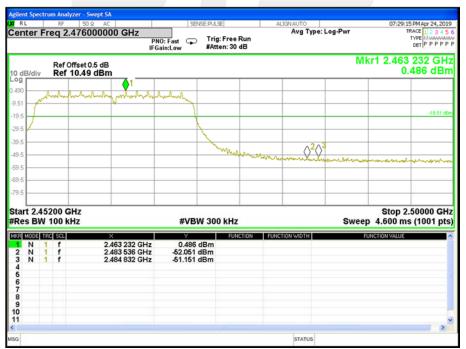
CH 11

RL	Analyzer - Swe RF 50 ม	AC	SENSE:PU	SE	ALIGNAUTO		07:28:41 PM Apr 24, 2
nter Fre	q 12.5150		0:Fast 😱 Tri ain:Low #At	g: Free Run ten: 30 dB	Аvg Туре:	Log-Pwr	TRACE 1 2 3 4 TYPE MWWW DET P P P F
dB/div	Ref Offset 0.5 Ref_10.13 d					М	kr1 2.455 8 GI 0.134 dB
9							-19.87
9							
9	2						
9	X				and the second second	and the second	الغلقاني والأقليل
					•		
3							
es BW 10			#VBW 30	0 kHz		Sweep	Stop 25.00 G 2.387 s (40001 p
MODE TRC	sci. f	× 2.455 8 GHz	V 0.134 dBm	FUNCTION	FUNCTION WIDTH	FUNC	TION VALUE
N 1 N 1	f f f	2.455 8 GHZ 2.535 7 GHz 5.882 3 GHz 24.238 4 GHz	-54.552 dBm -56.364 dBm -47.316 dBm				

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



Band edge

CH 01

CH 11

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

5. POWER SPECTRAL DENSITY TEST

5.1 LIMIT

FCC Part15.247 , Subpart C				
Section	Section Test Item Limit Frequency Range (MHz)			
15.247(e)	Power Spectral Density	≤8 dBm (RBW ≥3KHz)	2400-2483.5	PASS

5.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the 100 kHz \geq RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 DEVIATION FROM STANDARD No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

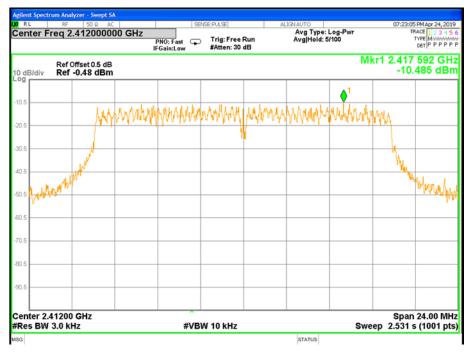
Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX b Mode /CH01, CH06, CH11

Fraguanay	Power Density	Limit (dPm/2KHz)	Result	
Frequency	(dBm/3kHz)	Limit (dBm/3KHz)		
2412 MHz	-6.821	≤8	PASS	
2437 MHz	-8.291	≤8	PASS	
2462 MHz	-8.809	≤8	PASS	

TX CH01

TX CH11

Shenzhen STS Test Services Co., Ltd.

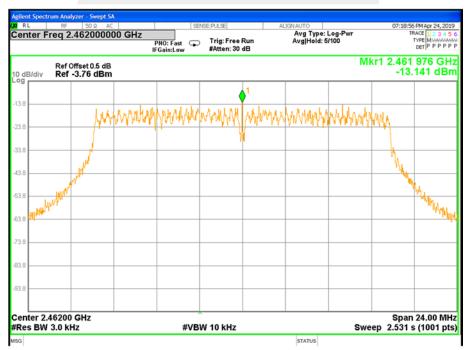


Page 40 of 54 Report No.:STS1904147W02

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX g Mode /CH01, CH06, CH11

Fraguanay	Power Density	Limit (dBm/3KHz)	Result	
Frequency	(dBm/3kHz)		Result	
2412 MHz -10.485		≤8	PASS	
2437 MHz	-10.304	≤8	PASS	
2462 MHz	-13.141	≤8	PASS	

TX CH01


П

Shenzhen STS Test Services Co., Ltd.

TX CH11

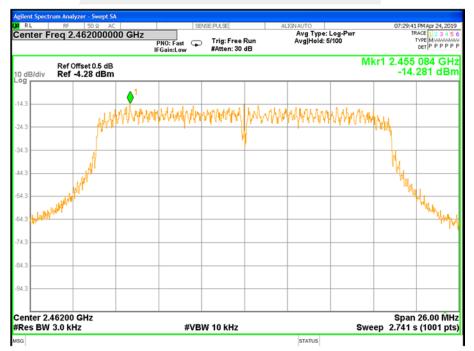
Shenzhen STS Test Services Co., Ltd.

Page 42 of 54 Report No.:STS1904147W02

Temperature:	25 °C	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX n Mode(20M) /CH01, CH06, CH11

Fraguanay	Power Density	Limit (dPm/2KHz)	Result	
Frequency	(dBm/3kHz)	Limit (dBm/3KHz)		
2412 MHz	-10.855	≤8	PASS	
2437 MHz	-10.74	≤8	PASS	
2462 MHz	-14.281	≤8	PASS	


TX CH01


Shenzhen STS Test Services Co., Ltd.

=

TX CH11

Shenzhen STS Test Services Co., Ltd.

6. BANDWIDTH TEST

6.1 LIMIT

FCC Part15.247,Subpart C				
Section	Test Item	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	≥500KHz (6dB bandwidth)	2400-2483.5	PASS

6.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

6.3 DEVIATION FROM STANDARD No deviation.

6.4 TEST SETUP

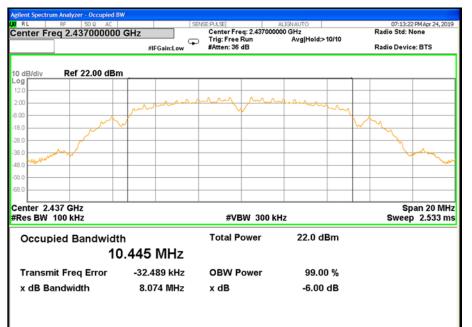
6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX b Mode /CH01, CH06, CH11

Remark: PEAK DETECTOR IS USED


Frequency	6dB Bandwidth	6dB Bandwidth Limit	Result
requeries	(MHz)	(KHz)	rtesuit
2412 MHz	9.015	≥500KHz	PASS
2437 MHz	8.074	≥500KHz	PASS
2462 MHz	8.083	≥500KHz	PASS

TX CH 01

Shenzhen STS Test Services Co., Ltd.

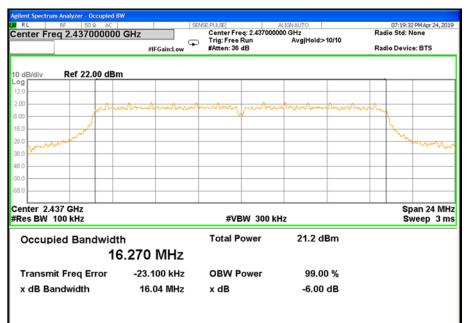
TX CH 11

STATUS

Page 47 of 54 Report No.:STS1904147W02

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX g Mode /CH01, CH06, CH11

Frequency	6dB Bandwidth	6dB Bandwidth Limit	Result	
i requeriey	(MHz)	(KHz)	rtoourt	
2412 MHz	16.04	≥500KHz	PASS	
2437 MHz	16.04	≥500KHz	PASS	
2462 MHz	16.29	≥500KHz	PASS	


TX CH 01

ilent Spectrum Analyzer - Occupied E RL RF 50 Q AC enter Freq 2.412000000	9	Center Freq: 2.4120000	ALIGNAUTO 000 GHz Avg Hold:>10/10	07:21:26 PM Apr 24, 2019 Radio Std: None Radio Device: BTS
dB/div Ref 22.00 dBr	n			
2.0				
	mmmmmmm	monter	man hand have h	moly
0				- M
				mm
0				
0	80			
0				
enter 2.412 GHz Res BW 100 kHz		#VBW 300 kl	Hz	Span 24 MH Sweep 3 m
Occupied Bandwidt	^h 6.269 MHz	Total Power	20.8 dBm	
Transmit Freq Error	-20.457 kHz	OBW Power	99.00 %	
x dB Bandwidth	16.04 MHz	x dB	-6.00 dB	
			STATUS	

Shenzhen STS Test Services Co., Ltd.

╡

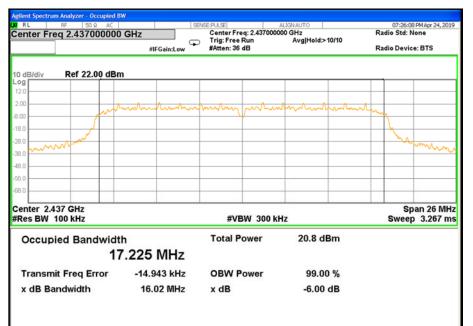
TX CH 11

STATUS

Page 49 of 54 Report No.:STS1904147W02

Temperature:	25 °C	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX n Mode(20M) /CH01, CH06, CH11

Frequency	6dB Bandwidth	6dB Bandwidth Limit	Result
rioquonoy	(MHz)	(KHz)	rtoourt
2412 MHz	16.03	≥500KHz	PASS
2437 MHz	16.02	≥500KHz	PASS
2462 MHz	16.02	≥500KHz	PASS


TX CH 01

RL RF SO Ω AC enter Freq 2.412000000	GHz	Center Freq: 2.4120000 Trig: Free Run	ALIGNAUTO 100 GHz Avg Hold:>10/10	07:23:56 PM Apr 24, 2019 Radio Std: None
	#IFGain:Low	#Atten: 36 dB		Radio Device: BTS
dB/div Ref 22.00 dBm	I			
2.0				
	mmmmm		Aman	
no man		and the second second		~~~
omm				mannen
0				
0				
0				
enter 2.412 GHz				Span 26 MH
tes BW 100 kHz		#VBW 300 kl	Hz	Sweep 3.267 m
Occupied Bandwidth	ו	Total Power	20.7 dBm	
	.231 MHz			
Transmit Freq Error	-9.236 kHz	OBW Power	99.00 %	
x dB Bandwidth	16.03 MHz	x dB	-6.00 dB	
			STATUS	

Shenzhen STS Test Services Co., Ltd.

╡

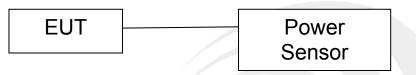
TX CH 11

STATUS

7. PEAK OUTPUT POWER TEST

7.1 LIMIT

FCC Part15.247,Subpart C				
Section Test Item Limit Frequency Range (MHz) Res				Result
15.247(b)(3) Output Power 1 watt or 30dBm 2400-2483.5 PASS				


7.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Sensor&PC

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V		

TX 802.11b Mode				
Test Channe	Frequency	Peak Conducted Output Power	Average Conducted Output Power	LIMIT
	(MHz)	(dBm)	(dBm)	dBm
CH01	2412	20.16	16.46	30
CH06	2437	19.64	15.39	30
CH11	2462	18.94	14.88	30

TX 802.11g Mode				
Test Channe	Frequency	Peak Conducted Output Power	Average Conducted Output Power	LIMIT
	(MHz)	(dBm)	(dBm)	dBm
CH01	2412	20.24	12.36	30
CH06	2437	20.33	12.11	30
CH11	2462	20.52	12.28	30

TX 802.11n20 Mode					
Test Channe	Frequency	Peak Conducted Output Power	Average Conducted Output Power	LIMIT	
	(MHz)	(dBm)	(dBm)	dBm	
CH01	2412	20.16	12.44	30	
CH06	2437	20.11	12.31	30	
CH11	2462	20.03	12.28	30	

8. ANTENNA REQUIREMENT

8.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

8.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

APPENDIX-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * * *

Shenzhen STS Test Services Co., Ltd.