

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

Tablet PC, nextbook

MODEL No.: M961BCP, M962BCP, NXW9QC132, NXW9QC132B, NXW9QC132P

FCC ID: S7JNXW9QC132

Trade Mark: N/A

REPORT NO: ES150803007E1

ISSUE DATE: August 27, 2015

Prepared for

SHENZHEN YIFANG DIGITAL TECHNOLOGY CO.,LTD. Building NO.22,23,Fifth Region, Baiwangxin Industrial Park, Songbai Rd., Nanshan, Shenzhen 518108, China

Prepared by

SHENZHEN EMTEK CO., LTD

Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280 FAX: 86-755-26954282

TABLE OF CONTENTS

1	TES	T RESULT CERTIFICATION	3
2	EUT	TECHNICAL DESCRIPTION	4
3	SUN	IMARY OF TEST RESULT	5
4	TES	T METHODOLOGY	6
	4.1 4.2 4.3	GENERAL DESCRIPTION OF APPLIED STANDARDS MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES	6
5	FAC	ILITIES AND ACCREDITATIONS	8
	5.1 5.2	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	8 8
6	TES	T SYSTEM UNCERTAINTY	9
7	SET	UP OF EQUIPMENT UNDER TEST	10
	7.1 7.2 7.3 7.4 7.5	RADIO FREQUENCY TEST SETUP 1 RADIO FREQUENCY TEST SETUP 2 CONDUCTED EMISSION TEST SETUP BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT	
8	TES	T REQUIREMENTS	
	8.1 8.2 8.3 8.4 8.5 8.6	DTS (6DB) BANDWIDTH MAXIMUM PEAK CONDUCTED OUTPUT POWER MAXIMUM POWER SPECTRAL DENSITY UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS RADIATED SPURIOUS EMISSION CONDUCTED EMISSIONS TEST	

1 TEST RESULT CERTIFICATION

Applicant:	SHENZHEN YIFANG DIGITAL TECHNOLOGY CO., LTD.
	Building NO.22,23, Fifth Region, Baiwangxin Industrial Park, Songbai Rd., Nanshan,
	Shenzhen 518108, China
Manufacturer:	SHENZHEN YIFANG DIGITAL TECHNOLOGY CO., LTD.
	Building NO.22,23, Fifth Region, Baiwangxin Industrial Park, Songbai Rd., Nanshan,
	Shenzhen 518108, China
EUT Description:	Tablet PC, nextbook
Model Number:	M961BCP, M962BCP, NXW9QC132, NXW9QC132B, NXW9QC132P
	(Note: These models are identical in circuitry and electrical, mechanical and physical
	construction; the only differences are the appearance, trade name and model no. for
	trading purpose. We prepare M961BCP for test, and the worst result recorded in the
	report.)
Trade Mark:	N/A
File Number:	ES150803007E1
Date of Test:	August 03, 2015 to August 27, 2015

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 2, Subpart J	PASS			
FCC 47 CFR Part 15, Subpart C	FA33			

The above equipment was tested by SHENZHEN EMTEK CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247 The test results of this report relate only to the tested sample identified in this report.

Date of Test :

tested by :

king kond

King Kong/Tester

Yaping Shen

Yaping Shen/Editor

August 03, 2015 to August 27, 2015

Prepared by :

Approve & Authorized Signer :

Lisa Wang/Manager

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description
IEEE 802.11 WLAN Mode Supported	 ⊠802.11b ⊠802.11g ⊠802.11n(20MHz channel bandwidth) ⊠802.11n(40MHz channel bandwidth)
Data Rate	WIFI: 802.11 b:1,2,5.5,11Mbps; 802.11 g:6,9,12,18,24,36,48,54Mbps; 802.11n(HT20):MCS0-MCS7; 802.11n(HT40:MCS8-MCS15; Bluetooth DSS: 1Mbps for GFSK modulation 2Mbps for pi/4-DQPSK modulation 3Mbps for 8DPSK modulation Bluetooth DTS: 1Mbps for GFSK modulation
Modulation	WIFI: DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n; BT DSS: GFSK modulation (1Mbps) pi/4-DQPSK modulation (2Mbps) 8DPSK modulation (3Mbps) BT DTS: GFSK modulation (1Mbps)
Operating Frequency Range	WIFI:2412-2462MHz for 802.11b/g; 2412-2462MHz for 802.11n(HT20); 2422-2452MHz for 802.11n(HT40); Bluetooth: 2402-2480MHz
Number of Channels	WIFI: 11 channels for 802.11b/g; 11 channels for 802.11n(HT20); 7 channels for 802.11n(HT40); Bluetooth DSS: 79 channels Bluetooth DTS: 40 channels
Transmit Power Max	WIFI: 9.57 dBm for 802.11b; 9.72 dBm for 802.11g; 9.67 dBm for 802.11/n(HT20); 8.69 dBm for 802.11n(HT40); Bluetooth: 3.56 dBm for BT DSS; 3.52 dBm for BT DTS;
Antenna Type /Gain	PCB antenna/2dBi
	DC supply: DC 3.7V by lithium battery or DC 5V by adapter
Power supply	Adapter supply: Model: HB13-0502504SPA Input: AC 100-240V 50/60Hz 0.4A Max Output: DC 5V 2500mA
Temperature Range	-20°C ~ +55°C

Remark

Verdict

PASS PASS PASS PASS

PASS

PASS

PASS

PASS

FCC Part Clause	Test Parameter
15.247(a)(2)	DTS (6dB) Bandwidth
15.247(b)(3)	Maximum Peak Conducted Output Power
15.247(e)	Maximum Power Spectral Density Level
15.247(d)	Unwanted Emission Into Non-Restricted

Radiated Spurious Emission

NOTE1: N/A (Not Applicable)

Conducted Emission Test

Unwanted Emission Into Restricted Frequency

cabinet also comply with the applicable limits.

Frequency Bands

Bands (conducted)

Antenna Application

3 SUMMARY OF TEST RESULT

15.247(d)

15.247(d)

15.247(b)

15.209

15.209 15.207

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: S7JNXW9QC132 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C FCC KDB 558074 D01 DTS Meas Guidance v03r02 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 FCC KDB 662911 D02 MIMO With Cross Polarized Antenna V01

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT	MFR	MODEL	SERIAL	LAST CAL.	DUE CAL.
TYPE Test Receiver	Rohde & Schwarz	NUMBER ESCS30	NUMBER 828985/018	05/16/2015	05/15/2016
L.I.S.N.	Schwarzbeck	NNLK8129	8129203	05/16/2015	05/15/2016
50Ω Coaxial Switch	Anritsu	MP59B	M20531	N/A	05/15/2016
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100006	05/16/2015	05/15/2016
Voltage Probe	Rohde & Schwarz	TK9416	N/A	05/16/2015	05/15/2016
I.S.N	Rohde & Schwarz	ENY22	1109.9508.02	05/16/2015	05/15/2016

4.2.2 Radiated Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	DUE CAL.
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	05/16/2015	05/15/2016
Pre-Amplifier	HP	8447D	2944A07999	05/16/2015	05/15/2016
Bilog Antenna	Schwarzbeck	VULB9163	142	05/16/2015	05/15/2016
Loop Antenna	ARA	PLA-1030/B	1029	05/16/2015	05/15/2016
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170399	05/16/2015	05/15/2016
Horn Antenna	Schwarzbeck	BBHA 9120	D143	05/16/2015	05/15/2016
Cable	Schwarzbeck	AK9513	ACRX1	05/16/2015	05/15/2016
Cable	Rosenberger	N/A	FP2RX2	05/16/2015	05/15/2016
Cable	Schwarzbeck	AK9513	CRPX1	05/16/2015	05/15/2016
Cable	Schwarzbeck	AK9513	CRRX2	05/16/2015	05/15/2016

4.2.3 Radio Frequency Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	DUE CAL.
Spectrum Analyzer	Agilent	E4407B	88156318	05/16/2015	05/15/2016
Signal Analyzer	Agilent	N9010A	My53470879	05/16/2015	05/15/2016
Power meter	Anritsu	ML2495A	0824006	05/16/2015	05/15/2016
Power sensor	Anritsu	MA2411B	0738172	05/16/2015	05/15/2016

Remark: Each piece of equipment is scheduled for calibration once a year.

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
1	2412	5	2432	9	2452			
2	2417	6	2437	10	2457			
3	2422	7	2442	11	2462			
4	2427	8	2447					

Frequency and Channel list for 802.11 b/g/n (HT20):

Frequency and Channel list for 802.11 n (HT40):

	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	3	2422	5	2432	8	2447
Γ	4	2427	6	2437	9	2452
Γ			7	2442		

Test Frequency and Channel for 802.11 b/g/n (HT20):

Lowest F	Lowest Frequency		Middle Frequency		st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	6	2437	11	2462

Test Frequency and channel for 802.11 n (HT40):

Lowest F	Lowest Frequency		Middle Frequency		st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	6	2437	9	2452

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description EMC Lab.

- : Accredited by CNAS, 2013.10.28 The certificate is valid until 2016.10.29 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01: 2006(identical to ISO/IEC17025: 2005) The Certificate Registration Number is L229
 - : Accredited by TUV Rheinland Shenzhen, 2010.5.25 The Laboratory has been assessed according to the requirements ISO/IEC 17025.
 - : Accredited by FCC, April 17, 2014 The Certificate Registration Number is 406365.
 - : Accredited by FCC, February 28, 2013 The Certificate Registration Number is 709623.
 - : Accredited by Industry Canada, May 24, 2008 The Certificate Registration Number is 4480A-2.

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

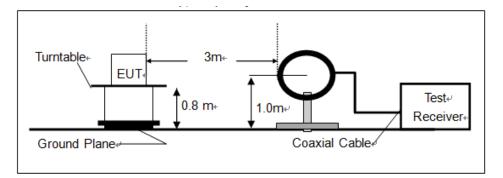
The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

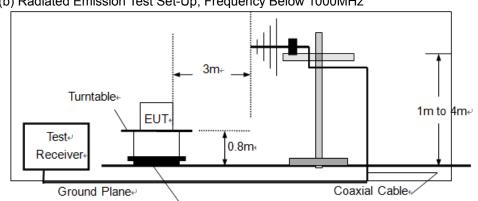
The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

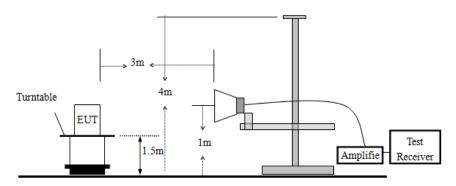

30GHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


Above 1GHz:

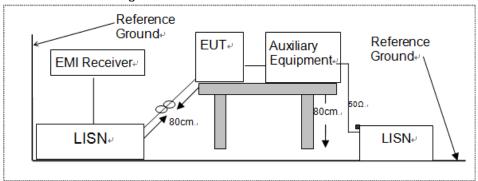
The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz



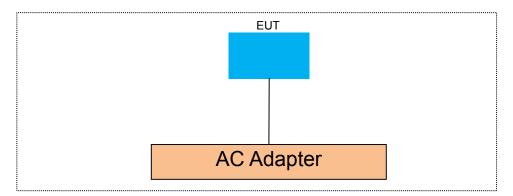
(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



CONDUCTED EMISSION TEST SETUP 7.3

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
1.						

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 TEST REQUIREMENTS

8.1 DTS (6DB) BANDWIDTH

8.1.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r02

8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in IEEE 802.11b/g/n mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300 kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Measure and record the results in the test report.

8.1.5 Test Results

Temperature : Humidity :		26℃ Test Date : 60 % Test By:		August 13, 2015 King Kong	
Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Bandwidth (MHz)	Limit (kHz)	Verdict
	1	2412	15.014	500	PASS
802.11b	6	2437	15.011	500	PASS
	11	2462	15.015	500	PASS
	1	2412	16.528	500	PASS
802.11g	6	2437	16.556	500	PASS
	11	2462	16.556	500	PASS
900 11 m	1	2412	17.751	500	PASS
802.11n	6	2437	17.739	500	PASS
(HT20)	11	2462	17.755	500	PASS
902 11n	3	2422	35.991	500	PASS
802.11n (HT40)	6	2437	35.991	500	PASS
	9	2452	35.992	500	PASS

GHz Center Freq: 2.41200000) GHz #IFGain:Low FAtten: 20 dB 09:55:18 PM Aug 12, 2015 Radio Std: None Frequency Center Freq 2.412000000 GHz Radio Device: BTS Ref 10.00 dBm 0 dB/di Center Freq 2.412000000 GHz *U*) Span 40 MHz Sweep 3.867 ms Center 2.412 GHz #Res BW 100 kHz CF Step 4.000000 MHz #VBW 300 kHz Man Auto Occupied Bandwidth Total Power 14.2 dBm 15.014 MHz Freq Offset 0 Hz Transmit Freq Error -4.808 kHz **OBW Power** 99.00 % 10.08 MHz x dB Bandwidth x dB -6.00 dB STATUS

Test Model

Test Model

DTS (6dB) Bandwidth 802.11b Channel 6: 2437MHz

DTS (6dB) Bandwidth

802.11b Channel 1: 2412MHz

TRF No: FCC 15.247/A

Man

0 Hz

Channel 11: 2462MHz GHz SENSE:INT ALIGN AUTO Center Freq: 2.46200000) GHz #IFGain:Low FAtten: 20 dB 09:57:12 PM Aug 12, 2015 Radio Std: None Frequency Center Freq 2.462000000 GHz Radio Device: BTS Ref 10.00 dBm Center Freq 2.462000000 GHz MI Span 40 MHz Sweep 3.867 ms Center 2.462 GHz #Res BW 100 kHz CF Step 4.000000 MHz #VBW 300 kHz Auto Occupied Bandwidth Total Power 13.8 dBm 15.015 MHz Freq Offset

OBW Power

x dB

DTS (6dB) Bandwidth

802.11b

Test Model

DTS (6dB) Bandwidth 802.11g Channel 1: 2412MHz

99.00 %

-6.00 dB

STATUS

Test Model

0 dBidi

Transmit Freq Error

x dB Bandwidth

8.376 kHz

10.08 MHz

DTS (6dB) Bandwidth 802.11g Channel 6: 2437MHz

Test Model

DTS (6dB) Bandwidth 802.11g Channel 11: 2462MHz

Test Model

DTS (6dB) Bandwidth 802.11n (HT20) Channel 1: 2412MHz

Test Model

DTS (6dB) Bandwidth 802.11n (HT20) Channel 6: 2437MHz

DTS (6dB) Bandwidth 802.11n (HT20) Channel 11: 2462MHz

Test Model

DTS (6dB) Bandwidth 802.11n (HT40) Channel 3: 2422MHz



DTS (6dB) Bandwidth 802.11n (HT40) Channel 6: 2437MHz

Test Model

DTS (6dB) Bandwidth 802.11n (HT40) Channel 9: 2452MHz

8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.2.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v03r02

8.2.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.2.4 Test Procedure

■ According to FCC Part15.247(b)(3)

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The testing follows FCC public Notice DA 00-705 Measurement Guidelines.

The RF output of EUT was connected to the power meter by RF cable and attnuator. The path loss was compensated to the results for each measurement.

Set to the maximum output power setting and enable the EUT transmit continuously.

Measure the conducted output power with cable loss and record the results in the test report.

Measure and record the results in the report.

According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note: If antenna Gain exceeds 6 dBi, then Output power Limit=30-(Gain - 6)

8.2.5 Test Results

Temperature : Humidity :		26℃ Test Date : 60 % Test By:		August 27, 2015 King Kong		
Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict	
	1	2412	9.28	30	PASS	
802.11b	6	2437	9.57	30	PASS	
	11	2462	9.40	30	PASS	
	1	2412	9.72	30	PASS	
802.11g	6	2437	9.70	30	PASS	
	11	2462	9.65	30	PASS	
802.11n	1	2412	9.67	30	PASS	
	6	2437	9.61	30	PASS	
(HT20)	11	2462	9.64	30	PASS	
902 11p	3	2422	8.66	30	PASS	
802.11n (HT40)	6	2437	8.60	30	PASS	
	9	2452	8.69	30	PASS	

8.3 MAXIMUM POWER SPECTRAL DENSITY

8.3.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v03r02

8.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.3.4 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance The transmitter output (antenna port) was connected to the spectrum analyzer Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz

Set the VBW to: 10 kHz.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW. Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain - 6)

8.3.5 Test Results

Temperature : Humidity :		26℃ Test Date : 60 % Test By:		August 26, 2015 King Kong		
Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict	
	1	2412	-17.220	8	PASS	
802.11b	6	2437	-17.457	8	PASS	
	11	2462	-19.426	8	PASS	
	1	2412	-26.393	8	PASS	
802.11g	6	2437	-26.312	8	PASS	
	11	2462	-26.208	8	PASS	
802.11n	1	2412	-24.162	8	PASS	
(HT20)	6	2437	-23.232	8	PASS	
(1120)	11	2462	-25.288	8	PASS	
902 11p	3	2422	-27.897	8	PASS	
802.11n	6	2437	-25.124	8	PASS	
(HT40)	9	2452	-21.039	8	PASS	

Peak Search Marker 1 2.413620000000 GHz PNO: Fast IFGain:Low Atten: 10 dB TYPE NNNN DET PNNNN Avg Type: Log-Pwr Avg|Hold: 24/100 Next Peak Mkr1 2.413 620 0 GHz -17.220 dBm 10 dB/div Log Ref 0.00 dBm Next Pk Right ¢1 Next Pk Left 14mm Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Center 2.41200 GHz #Res BW 3.0 kHz \$pan 22.50 MHz Sweep 2.372 s (1001 pts) #VBW 10 kHz

Test Model

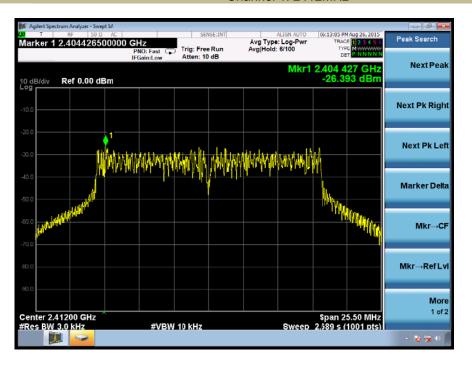
Test Model

Power Spectral Density 802.11b Channel 6: 2437MHz

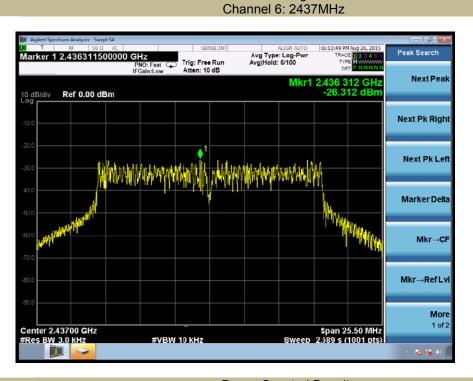
Power Spectral Density

802.11b Channel 1: 2412MHz

:SS PM Aug 26, 2015 TRACE 12345 (TYPE MUNICIPAL DET PNNNN Marker 1 2.462787500000 GHz PNO: Fast IFGain:Low Peak Search Avg Type: Log-Pw Avg|Hold: 11/100 Next Peak Mkr1 2.462 787 5 GHz -19.426 dBm Ref 0.00 dBm 10 dB/div Log Next Pk Right **♦**¹ in a silve Next Pk Left N., Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Center 2.46200 GHz #Res BW 3.0 kHz \$pan 22.50 MHz 2.372 s (1001 pts) #VBW 10 kHz Sweep J -- 18 18 0

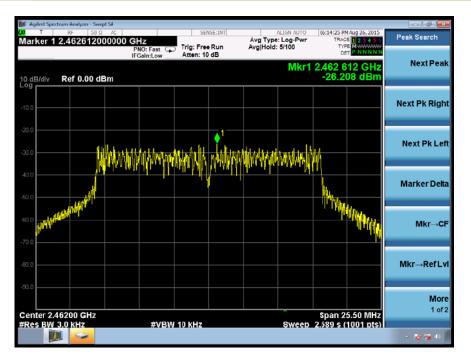

Test Model

Test Model

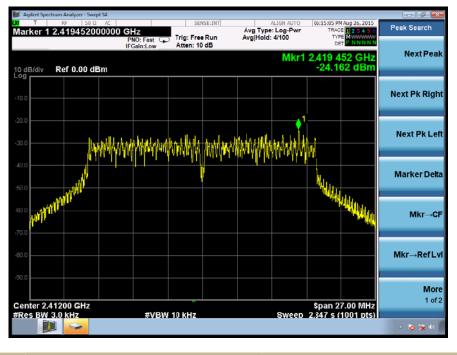

Power Spectral Density 802.11g Channel 1: 2412MHz

Power Spectral Density 802.11b

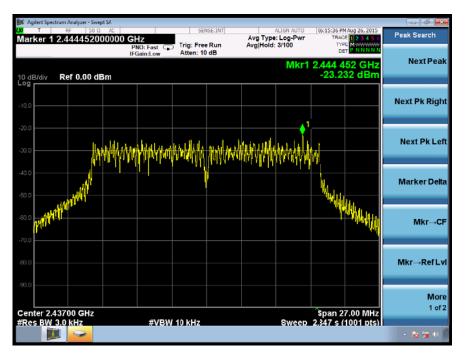
Channel 11: 2462MHz



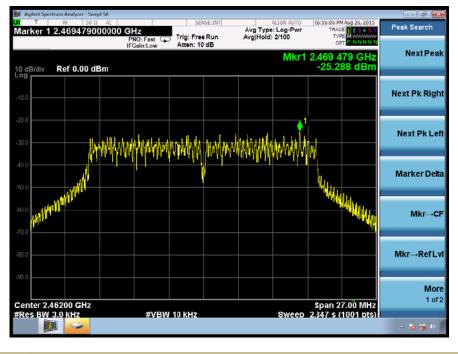
Test Model


Power Spectral Density 802.11g Channel 11: 2462MHz

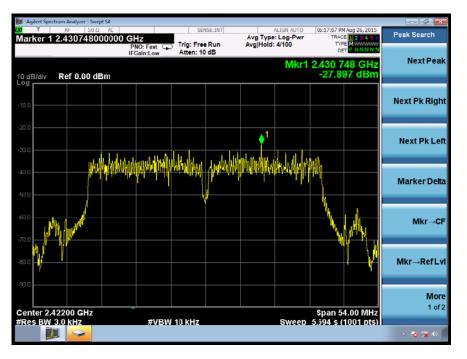
Power Spectral Density 802.11g


Power Spectral Density 802.11n (HT20) Channel 1: 2412MHz

Test Model


Test Model

Power Spectral Density 802.11n (HT20) Channel 6: 2437MHz


Power Spectral Density 802.11n (HT20) Channel 11: 2462MHz

Test Model

Test Model

Power Spectral Density 802.11n (HT40) Channel 3: 2422MHz

Power Spectral Density 802.11n (HT40) Channel 6: 2437MHz

Test Model

Test Model

Power Spectral Density 802.11n (HT40) Channel 9: 2452MHz

8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.4.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v03r02

8.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

■ Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \ge 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW =300 kHz.

Set Detector = peak

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

8.4.5 Test Results

802.11n(HT40)

All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below: PSD(Power Spectral Density) RBW=100kHz

Test Model

⊠802.11b

802.11g 802.11n(HT20) Channel 1: 2412MHz

Channel 3: 2422MHz

Test Model

Unwanted Emissions in non-restricted frequency bands

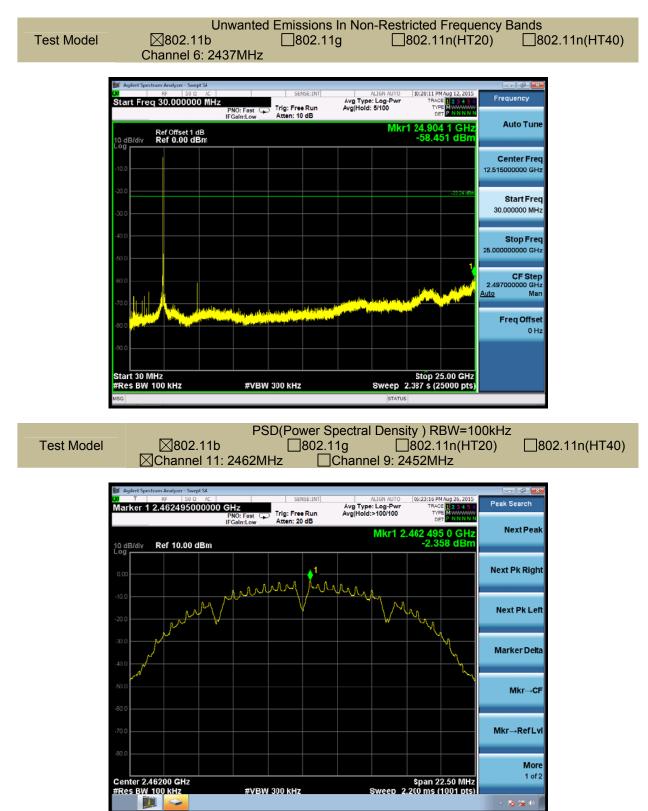
⊠802.11b Channel 1: 2412MHz

802.11g

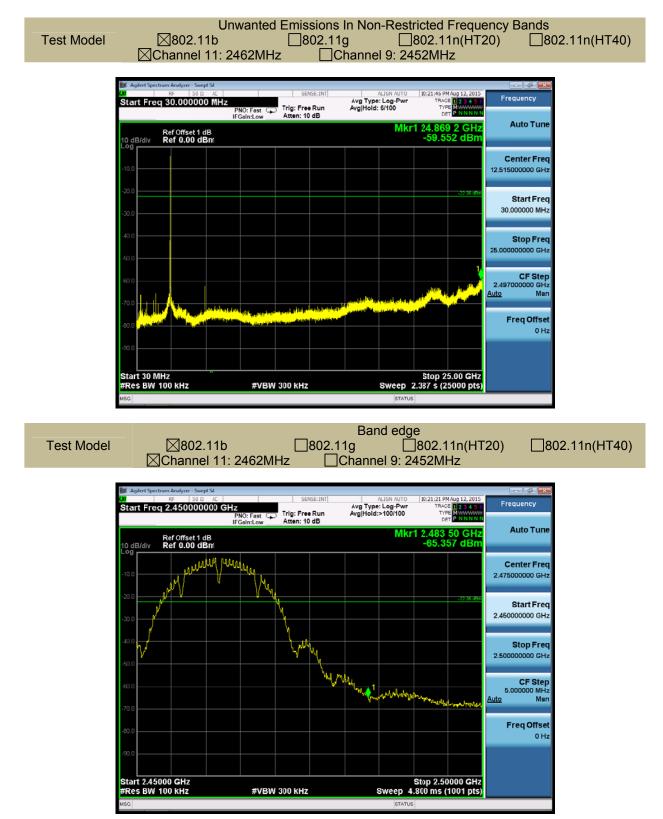
802.11n(HT40)

More 1 of 3

- 10 19 0


\$pan 22.50 MHz Sweep 2.200 ms (1001 pts)

Center 2.41200 GHz #Res BW 100 kHz


9

#VBW 300 kHz

8.5 RADIATED SPURIOUS EMISSION

8.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 DTS 01 Meas. Guidance v03r02

8.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz MHz		GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.5.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

 $\label{eq:RBW} \texttt{RBW} \texttt{=} 1 \ \texttt{MHz} \ \texttt{for} \ \texttt{f} \ge 1 \ \texttt{GHz}(\texttt{1}\texttt{GHz} \ \texttt{to} \ \texttt{2}\texttt{5}\texttt{GHz}), \ \texttt{100} \ \texttt{kHz} \ \texttt{for} \ \texttt{f} < \texttt{1} \ \texttt{GHz}(\texttt{3}\texttt{0}\texttt{MHz} \ \texttt{to} \ \texttt{1}\texttt{GHz}), \ \texttt{200Hz} \ \texttt{for} \ \texttt{f} < \texttt{15}\texttt{0}\texttt{KHz}(\texttt{9}\texttt{KHz} \ \texttt{to} \ \texttt{15}\texttt{0}\texttt{KHz}), \ \texttt{9}\texttt{KHz} \ \texttt{for} \ \texttt{f} < \texttt{30}\texttt{MHz}(\texttt{15}\texttt{0}\texttt{KHz} \ \texttt{to} \ \texttt{30}\texttt{KHz})$

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the

measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.5.5 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

Temperature:	24 °C	Test Date:	August 13, 2015
Humidity:	53 %	Test By:	King Kong
Test mode:	TX Mode		0

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission Above 1GHz (1GHz to 25GHz)

All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below:

Temperature :	26 ℃	Test Date :	August 13, 2015
Humidity :	60 %	Test By:	King Kong
Test mode:	802.11b	Frequency:	Channel 1: 2412MHz

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
3722.12	V	51.18	35.97	74.00	54.00	-22.82	-18.03
4893.59	V	51.38	36.39	74.00	54.00	-22.62	-17.61
7018.59	V	56.11	40.32	74.00	54.00	-17.89	-13.68
4158.02	Н	52.59	38.86	74.00	54.00	-21.41	-15.14
5629.17	Н	54.11	40.07	74.00	54.00	-19.89	-13.93
6310.26	Н	56.41	41.25	74.00	54.00	-17.59	-12.75

Temperatu Humidity : Test mode:	60		Test D Test B Frequ	y:	King Ko	13, 2015 ng I 6: 2437MHz	Z
Freq.	Ant.Pol.	Emission Lev	/el(dBuV/m)	Limit 3m	(dBuV/m)	Ove	er(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	ÁV
5288.16	V	57.20	39.55	74.00	54.00	-16.80	-14.45
5914.76	V	57.02	38.74	74.00	54.00	-16.98	-15.26
6841.04	V	57.30	40.68	74.00	54.00	-16.70	-13.32
4700.02	Н	51.97	35.37	74.00	54.00	-22.03	-18.63
5560.60	Н	56.90	39.61	74.00	54.00	-17.10	-14.39
5996.49	Н	57.90	40.92	74.00	54.00	-16.10	-13.08
Temperature :		26 ℃	Test Date :		August 13, 2015		
Humidity :		60 %	Test B	y:		King Kong	
Test mode:		802.11b	Frequ	ency:	С	hannel 11: 2462MHz	
Freq.	Ant.Pol.	Emission Lev	vel(dBuV/m)	Limit 3m	(dBuV/m)	Ove	er(dB)
(MHz)	H/V	PK	ÀV Í	PK	AV	PK	ÁV
4192.69	V	52.14	35.74	74.00	54.00	-21.86	-18.26
5473.14	V	55.05	38.36	74.00	54.00	-18.95	-15.64
6862.56	V	57.90	41.02	74.00	54.00	-16.10	-12.98
5473.14	Н	53.90	36.97	74.00	54.00	-20.10	-17.03
6154.23	Н	56.20	39.15	74.00	54.00	-17.80	-14.85
6780.83	Η	56.02	39.04	74.00	54.00	-17.98	-14.96

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz). (2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

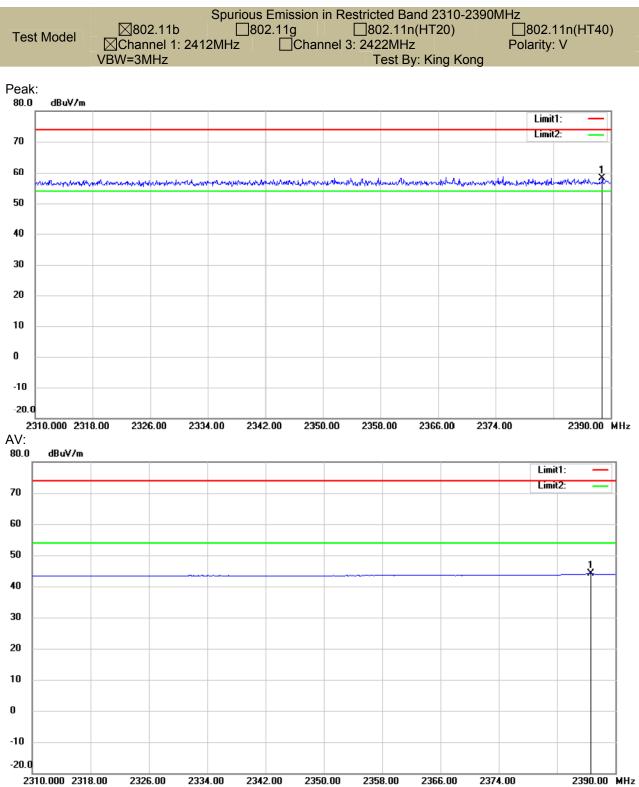
■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below:

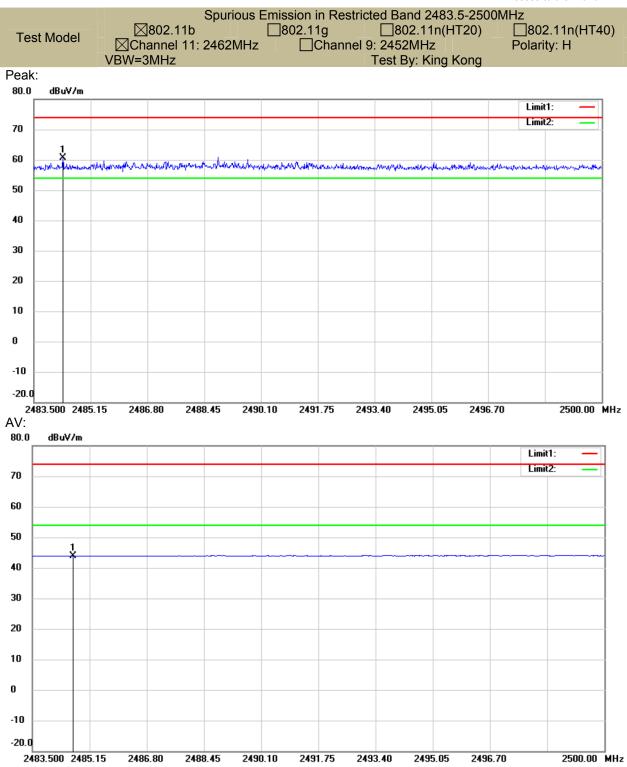
Temperature : Humidity : Test mode:	26℃ 60 % 802.11b		est Date : est By: requency:	August 13, 2015 King Kong Channel 1: 2412MHz			
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over(dB)
2388.00	Н	57.77	74	-16.23	/	54	/
2387.76	V	/	74	/	42.42	54	-10.58
2388.80	Н	58.07	74	-15.93	1	54	/
2386.64	V	1	74	/	44.09	54	-9.91
Temperature : 26 °C Humidity : 60 % Test mode: 802.11b		Т	Test By: Ki		ugust 13, 2015 ng Kong hannel 11: 2462MHz		
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over(dB)
2484.34	Н	60.62	74	-1338	/	54	/
2484.67	V	1	74	/	44.00	54	-10.00
2485.36	Н	58.48	74	-15.52	1	54	/
2484.77	V	1	74	/	43.91	54	-10.09

 2484.77
 V
 /
 74
 /
 43.91
 54
 -10.09

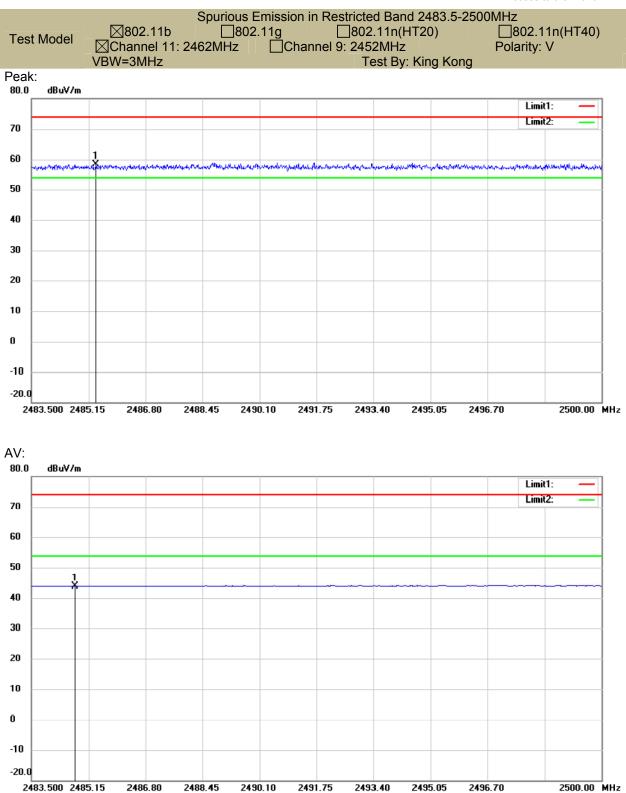
 Note:
 (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 -10.09
 <

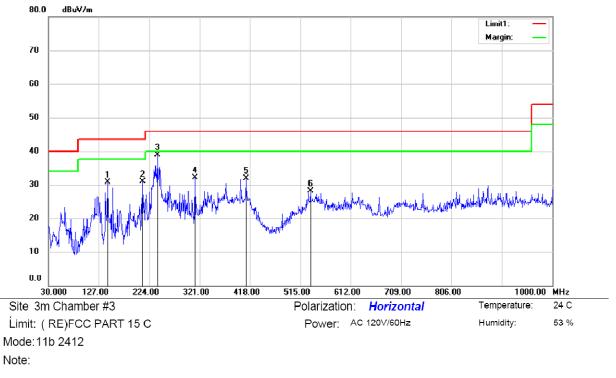

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

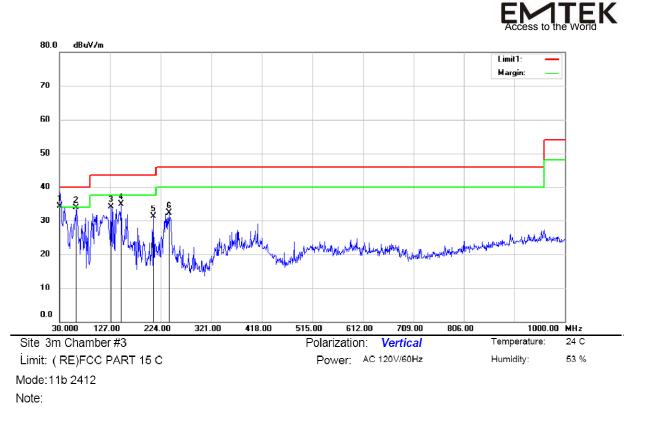
(3) Data of measurement within this frequency range shown "-- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



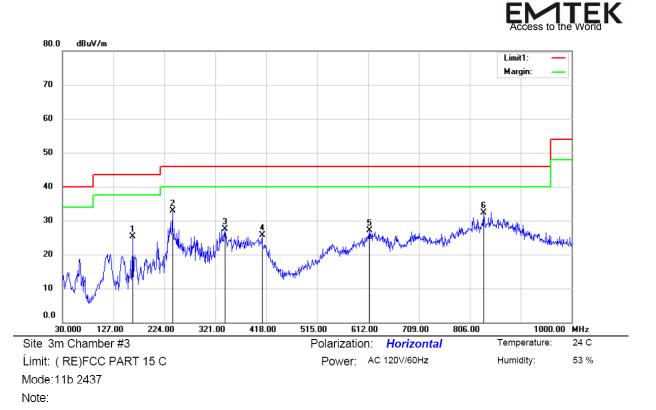
t Model	80	2.11b		802	.11g	sion in Re	802.1	11n(H	T20)	[802.11	n(HT40)
	Chan VBW=3	nel 1:	2412MH	z		nannel 3:	2422N	/Hz	King Ko	P	Polarity: H	
	VBVV=31						Tes	ы бу.	King Ku	ng		
k: ∣dBu¥/m												
											Limit1	
											Limit2	
												1
where the second	upah-hardwaranturka	alen neveralen	notowal designed	******	n dagen för dere	anterio anterio de la constante	ummunut	haven	and a short when the	Manaharhanana	Proventier and a second	-
1												
0												
0 310_000 231	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.	00	2366.00	2374.0	D	2390.00
310.000 231	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.	00	2366.00	2374.0	D	2390.00
	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.	00	2366.00	2374.0	D Limit1:	
310.000 231	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.	00	2366.00	2374.0		
310.000 231	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.	00	2366.00	2374.0	Limit1:	
310.000 231	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.	00	2366.00	2374.0	Limit1:	
310.000 231	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.	00	2366.00	2374.0	Limit1:	
310.000 231	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.	00	2366.00	2374.0	Limit1:	
310.000 231	8.00 233	26.00	2334.00	234	2.00	2350.00	2358.	00	2366.00	2374.0	Limit1:	
310.000 231	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.		2366.00	2374.0	Limit1:	
310.000 231	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.		2366.00	2374.0	Limit1:	
310.000 231	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.	00	2366.00	2374.0	Limit1:	
310.000 231		26.00	2334.00	234	2.00	2350.00	2358.		2366.00	2374.0	Limit1:	
310.000 231	8.00 23	26.00	2334.00	234	2.00	2350.00	2358.		2366.00	2374.0	Limit1:	



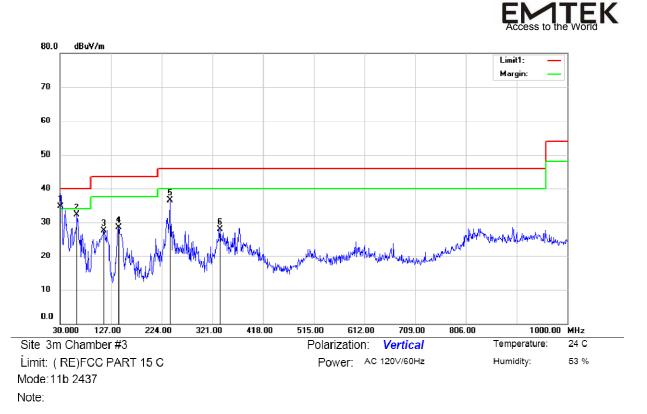


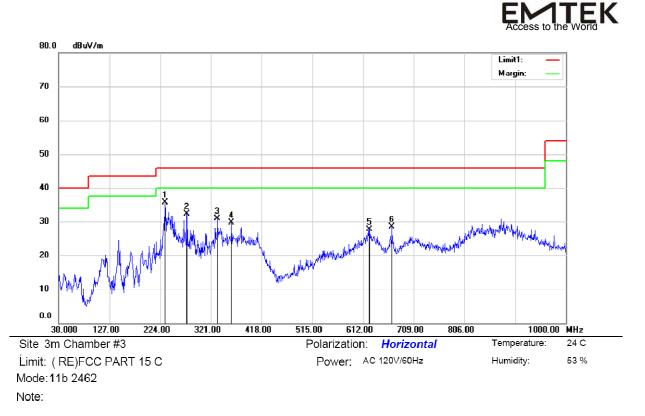

■ Spurious Emission below 1GHz (30MHz to 1GHz)

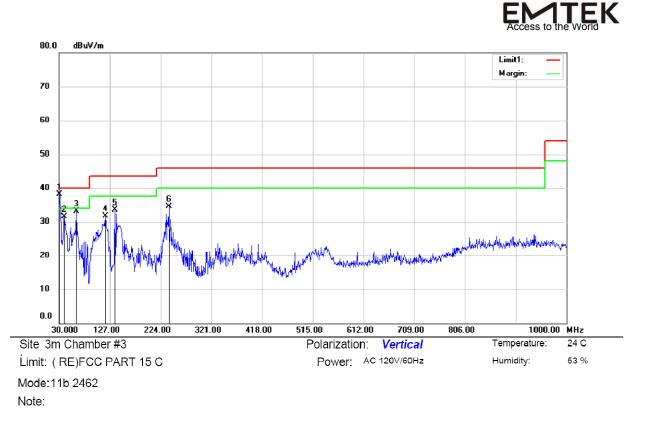
All modes 2.4G 802.11b/g/n and 120V &240V voltage have been tested, and the worst result 802.11b recorded was report as below:



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		144.4600	48.61	-17.92	30.69	43.50	-12.81	QP			
2		211.3900	47.27	-16.38	30.89	43.50	-12.61	QP			
3	*	239.5200	52.88	-13.89	38.99	46.00	-7.01	QP			
4		312.2700	45.73	-13.63	32.10	46.00	-13.90	QP			
5		410.2400	41.12	-9.16	31.96	46.00	-14.04	QP			
6		534.4000	35.60	-7.53	28.07	46.00	-17.93	QP			


*:Maximum data x:Over limit !:over margin


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBu∀/m	dBuV/m	dB	Detector	¢m	degree	Comment
1	*	30.9700	50.43	-16.13	34.30	40.00	-5.70	QP			
2		62.0100	50.07	-16.12	33.95	40.00	-6.05	QP			
3		128.9400	51.32	-17.16	34.16	43.50	-9.34	QP			
4		148.3400	52.98	-18.04	34.94	43.50	-8.56	QP			
5		210.4200	47.64	-16.38	31.26	43.50	-12.24	QP			
6		239.5200	46.13	-13.89	32.24	46.00	-13.76	QP			


No.	M۴	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		163.8600	44.37	-19.00	25.37	43.50	-18.13	QP			
2	*	239.5200	46.70	-13.89	32.81	46.00	-13.19	QP			
3		339.4300	40.03	-12.49	27.54	46.00	-18.46	QP			
4		410.2400	34.91	-9.16	25.75	46.00	-20.25	QP			
5		614.9100	33.93	-6.85	27.08	46.00	-18.92	QP			
6		832.1900	34.54	-2.15	32.39	46.00	-13.61	QP			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	31.0000	50.82	-16.12	34.70	40.00	-5.30	QP			
2		62.0100	48.37	-16.12	32.25	40.00	-7.75	QP			
3		113.4200	42.53	-14.94	27.59	43.50	-15.91	QP			
4		141.5500	46.37	-17.84	28.53	43.50	-14.97	QP			
5		239.5200	50.42	-13.89	36.53	46.00	-9.47	QP			
6		335.5500	40.51	-12.70	27.81	46.00	-18.19	QP			

No.	M۲	k. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MH	lz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	×	233.70	00	50.40	-14.63	35.77	46.00	-10.23	QP			
2		275.41	00	44.84	-12.62	32.22	46.00	-13.78	QP			
3		333.61	00	43.76	-12.80	30.96	46.00	-15.04	QP			
4		360.77	00	40.49	-10.71	29.78	46.00	-16.22	QP			
5		624.61	00	34.45	-6.74	27.71	46.00	-18.29	QP			
6		667.29	00	34.87	-6.30	28.57	46.00	-17.43	QP			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	30.9700	54.29	-16.13	38.16	40.00	-1.84	QP			
2		39.7000	44.52	-12.95	31.57	40.00	-8.43	QP			
3		62.9800	49.59	-16.40	33.19	40.00	-6.81	QP			
4		118.2700	47.63	-15.97	31.66	43.50	-11.84	QP			
5		136.7000	51.15	-17.61	33.54	43.50	-9.96	QP			
6		239.5200	48.38	-13.89	34.49	46.00	-11.51	QP			

8.6 CONDUCTED EMISSIONS TEST

8.6.1 Applicable Standard

According to FCC Part 15.207(a)

8.6.2 Conformance Limit

Conducted Emission Limit								
Frequency(MHz)	Quasi-peak	Average						
0.15-0.5	66-56	56-46						
0.5-5.0	56	46						
5.0-30.0	60	50						

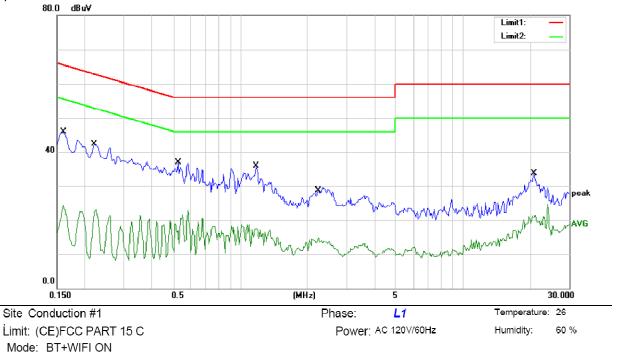
Note: 1. The lower limit shall apply at the transition frequencies 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to

0.50MHz.

8.6.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

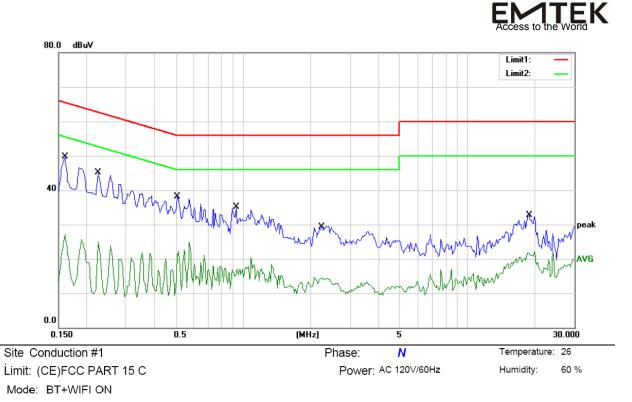
8.6.4 Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

8.6.5 Test Results

Pass

All modes 2.4G 802.11b/g/n and 120V &240V voltage have been tested, and the worst result recorded was report as below:


Note:

MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.1600 45.98 0.00 45.98 65.46 -19.48 QP 2 0.1600 24.41 0.00 24.41 55.46 -31.05 AVG 3 0.2200 42.30 0.00 42.30 62.82 -20.52 QP 4 0.2200 23.16 0.00 23.16 52.82 -29.66 AVG 5 * 0.5250 36.99 0.00 36.99 56.00 -19.01 QP 6 0.5250 22.95 0.00 22.95 46.00 -23.05 AVG 7 1.1750 35.85 0.00 35.85 56.00 -20.15 QP 8 1.1750 18.68 0.00 18.68 46.00 -27.32 AVG 9 2.2450 29.55 0.00 29.55 56.00 -26.45 QP 10 2.2450 <th>No.</th> <th>Mk.</th> <th>Freq.</th> <th>Reading Level</th> <th>Correct Factor</th> <th>Measure- ment</th> <th>Limit</th> <th>Over</th> <th></th> <th></th>	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
2 0.1600 24.41 0.00 24.41 55.46 -31.05 AVG 3 0.2200 42.30 0.00 42.30 62.82 -20.52 QP 4 0.2200 23.16 0.00 23.16 52.82 -29.66 AVG 5 * 0.5250 36.99 0.00 36.99 56.00 -19.01 QP 6 0.5250 22.95 0.00 22.95 46.00 -23.05 AVG 7 1.1750 35.85 0.00 35.85 56.00 -20.15 QP 8 1.1750 18.68 0.00 18.68 46.00 -27.32 AVG 9 2.2450 29.55 0.00 29.55 56.00 -26.45 QP 10 2.2450 14.97 0.00 14.97 46.00 -31.03 AVG 11 20.8250 33.74 0.00 33.74 60.00 -26.26 QP			MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
3 0.2200 42.30 0.00 42.30 62.82 -20.52 QP 4 0.2200 23.16 0.00 23.16 52.82 -29.66 AVG 5 * 0.5250 36.99 0.00 36.99 56.00 -19.01 QP 6 0.5250 22.95 0.00 22.95 46.00 -23.05 AVG 7 1.1750 35.85 0.00 35.85 56.00 -20.15 QP 8 1.1750 18.68 0.00 18.68 46.00 -27.32 AVG 9 2.2450 29.55 0.00 29.55 56.00 -26.45 QP 10 2.2450 14.97 0.00 14.97 46.00 -31.03 AVG 11 20.8250 33.74 0.00 33.74 60.00 -26.26 QP	1		0.1600	45.98	0.00	45.98	65.46	-19.48	QP	
4 0.2200 23.16 0.00 23.16 52.82 -29.66 AVG 5 * 0.5250 36.99 0.00 36.99 56.00 -19.01 QP 6 0.5250 22.95 0.00 22.95 46.00 -23.05 AVG 7 1.1750 35.85 0.00 35.85 56.00 -20.15 QP 8 1.1750 18.68 0.00 18.68 46.00 -27.32 AVG 9 2.2450 29.55 0.00 29.55 56.00 -26.45 QP 10 2.2450 14.97 0.00 14.97 46.00 -31.03 AVG 11 20.8250 33.74 0.00 33.74 60.00 -26.26 QP	2		0.1600	24.41	0.00	24.41	55.46	-31.05	AVG	
5 * 0.5250 36.99 0.00 36.99 56.00 -19.01 QP 6 0.5250 22.95 0.00 22.95 46.00 -23.05 AVG 7 1.1750 35.85 0.00 35.85 56.00 -20.15 QP 8 1.1750 18.68 0.00 18.68 46.00 -27.32 AVG 9 2.2450 29.55 0.00 29.55 56.00 -26.45 QP 10 2.2450 14.97 0.00 14.97 46.00 -31.03 AVG 11 20.8250 33.74 0.00 33.74 60.00 -26.26 QP	3		0.2200	42.30	0.00	42.30	62.82	-20.52	QP	
6 0.5250 22.95 0.00 22.95 46.00 -23.05 AVG 7 1.1750 35.85 0.00 35.85 56.00 -20.15 QP 8 1.1750 18.68 0.00 18.68 46.00 -27.32 AVG 9 2.2450 29.55 0.00 29.55 56.00 -26.45 QP 10 2.2450 14.97 0.00 14.97 46.00 -31.03 AVG 11 20.8250 33.74 0.00 33.74 60.00 -26.26 QP	4		0.2200	23.16	0.00	23.16	52.82	-29.66	AVG	
7 1.1750 35.85 0.00 35.85 56.00 -20.15 QP 8 1.1750 18.68 0.00 18.68 46.00 -27.32 AVG 9 2.2450 29.55 0.00 29.55 56.00 -26.45 QP 10 2.2450 14.97 0.00 14.97 46.00 -31.03 AVG 11 20.8250 33.74 0.00 33.74 60.00 -26.26 QP	5	*	0.5250	36.99	0.00	36.99	56.00	-19.01	QP	
8 1.1750 18.68 0.00 18.68 46.00 -27.32 AVG 9 2.2450 29.55 0.00 29.55 56.00 -26.45 QP 10 2.2450 14.97 0.00 14.97 46.00 -31.03 AVG 11 20.8250 33.74 0.00 33.74 60.00 -26.26 QP	6		0.5250	22.95	0.00	22.95	46.00	-23.05	AVG	
9 2.2450 29.55 0.00 29.55 56.00 -26.45 QP 10 2.2450 14.97 0.00 14.97 46.00 -31.03 AVG 11 20.8250 33.74 0.00 33.74 60.00 -26.26 QP	7		1.1750	35.85	0.00	35.85	56.00	-20.15	QP	
10 2.2450 14.97 0.00 14.97 46.00 -31.03 AVG 11 20.8250 33.74 0.00 33.74 60.00 -26.26 QP	8		1.1750	18.68	0.00	18.68	46.00	-27.32	AVG	
11 20.8250 33.74 0.00 33.74 60.00 -26.26 QP	9		2.2450	29.55	0.00	29.55	56.00	-26.45	QP	
	10		2.2450	14.97	0.00	14.97	46.00	-31.03	AVG	
12 20.8250 24.76 0.00 24.76 50.00 -25.24 AVG	11		20.8250	33.74	0.00	33.74	60.00	-26.26	QP	
	12		20.8250	24.76	0.00	24.76	50.00	-25.24	AVG	

*:Maximum data x:Over limit !:

l:over margin (

Comment: Factor build in receiver.

No	le:								
No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1600	49.64	0.00	49.64	65.46	-15.82	QP	
2		0.1600	27.06	0.00	27.06	55.46	-28.40	AVG	
3		0.2250	44.20	0.00	44.20	62.63	-18.43	QP	
4		0.2250	25.17	0.00	25.17	52.63	-27.46	AVG	
5		0.5100	38.02	0.00	38.02	56.00	-17.98	QP	
6		0.5100	24.86	0.00	24.86	46.00	-21.14	AVG	
7		0.9300	35.14	0.00	35.14	56.00	-20.86	QP	
8		0.9300	20.46	0.00	20.46	46.00	-25.54	AVG	
9		2.2450	29.49	0.00	29.49	56.00	-26.51	QP	
10		2.2450	14.48	0.00	14.48	46.00	-31.52	AVG	
11		18.8250	32.77	0.00	32.77	60.00	-27.23	QP	
12		18.8250	22.13	0.00	22.13	50.00	-27.87	AVG	

Comment: Factor build in receiver.

8.7 ANTENNA APPLICATION

8.7.1 Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.7.2 Result

The EUT'S antenna is PCB antenna. The antenna's gain is 2dBi, and the antenna can't be replaced by the user which in accordance to section 15.203, please refer to the photos.