FCC ID: S7AZBLINXZE10

ATTACHMENT

**** MPE Calculations ****

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = 13.10dBm + 5.37dBi	P = Power input to the antenna (mW)
EIRP = 18.47 dBm	G = Power gain of the antenna (dBi)

<u>Power density at the spec</u>ific separation:

$\mathbf{S} = \mathbf{PG}/(4\mathbf{R}^2\boldsymbol{\pi})$	Where,
	S = Maximum power density (mW/cm2)
$S = (20.42 * 3.44) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0140 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm^2 .

The power density does not exceed the 1 mW/cm^2 limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
	P = Power input to the antenna (mW)
R = $\sqrt{(20.42*3.44/4\pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 2.37Cm	(20cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

 $G = Log^{-1} (dB \text{ antenna gain / 10})$ $G = Log^{-1} (0 / 10)$

$$G = Log^{-1}(0 / 10)$$

G = 3.44