

243 Jubug-Ri,Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 <u>http://www.ltalab.com</u>

Dates of Tests: September 02 ~ 08, 2006 Test Report S/N: LR500110609F Test Site : LTA CO., LTD.

CERTIFICATIO OF COMPLIANCE

FCC ID.

S7APARANISD200L

APPLICANT

Sena Technologies, Inc.

• • • • • • • •

FCC Classification
Manufacturing Description
Manufacturer
Model name
Test Device Serial No.:
Rule Part(s)
Frequency Range
RF power
Data of issue

FHSS Sequence Spread Spectrum (FHSS)
Bluetooth Serial Adaptor
Sena Technologies, Inc.
Parani-SD200L
Identification
FCC Part 15.247 Subpart C; ANSI C-63.4-2003
2402 ~ 2480MHz
3.02dBm - Conducted
September 10, 2006

This test report is issued under the authority of:

Dong – Min JUNG, Technical Manager

The test was supervised by:

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 CARRIER FREQUENCY SEPARATION	6
3.2.2 NUMBER OF HOPPING FREQUENCIES	8
3.2.3 20 dB BANDWIDTH	11
3.2.4 TIME OF OCCUPANCY (Dwell Time)	13
3.2.5 TTANSMITTER OUTPUT POWER	15
3.2.6 BAND - EDGE	17
3.2.7 FIELD STRENGTH OF HARMONICS	26
3.2.8 AC CONDUCTED EMISSIONS	28

APPENDIX

APPENDIX	TEST EQUIPMENT USED FOR TESTS		31
----------	-------------------------------	--	----

1. General information's

<u>1-1 Test Performed</u>

Company name	: LTA Co., Ltd.
Address	: 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822
Web site	: <u>http://www.ltalab.com</u>
E-mail	: <u>chahn@ltalab.com</u>
Telephone	: +82-31-323-6008
Facsimile	+82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No. Validity Reference		Reference	
NVLAP	U.S.A	200723-0	2006-09-30	2006-09-30 ECT accredited Lab.	
RRL	KOREA	KR0049	2007-07-13	EMC accredited Lab.	
FCC	U.S.A	610755	2008-03-28	FCC filing	
VCCI	JAPAN	R2133, C2307	2008-06-22	VCCI registration	
IC	CANADA	IC5799	2008-04-23	IC filing	

2. Information's about test item

2-1 Client & Manufacturer

Company name	: :	Sena Technologies, Inc.
Address	: 2	210 Yangjae-dong Seocho-gu Seoul 137-130 Korea
TEL / FAX	: -	+82-2-571-8283/ +82-2-573-7710

<u>2-2 Equipment Under Test (EUT)</u>

Trade name	Bluetooth Serial Adaptor	
FCC ID	S7APARANISD200L	
Model name	Parani-SD200L	
Serial number	Identification	
Date of receipt	September 01, 2006	
EUT condition	Pre-production, not damaged	
Antenna type	Helical antenna Max Gain 1.56dBi (Left-handed SMA Conne	ector)
Frequency Range	2402 ~ 2480MHz	
RF output power	3.02 dBm - Conducted	
Number of channels	79	
Channel spacing	1MHz	
Channel Access Protocol	Frequency Hopping	
Type of Modulation	GFSK	
Power Source	5.0Vdc, AC Adaptor 100- 240Vac	

2-3 Tested frequency

	LOW	MID	HIGH	
Frequency (MHz)	2402	2441	2480	

2-4 Ancillary Equipment

Equipment	Model No. Serial No.		Manufacturer	
Notebook	Notebook Latitude D505		DELL	
_	-	-	-	

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	Carrier Frequency Separation	>25 kHz		С
15.247(a)	Number of Hopping Frequencies	> 75 hops		С
15.247(a)	20 dB Bandwidth	< 1 MHz		С
15.247	Dwell Time	< 0.4 seconds	Conducted	С
15.247(b)	Transmitter Output Power	< 1Watt		С
15.247(d)	Conducted Spurious emission	> 20 dBc		С
15.247(d)	Band Edge	> 20 dBc		С
15.249 / 15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)	Radiated	С
15.207 /15.107	AC Conducted Emissions	EN 55022	Line Conducted	С
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable				

<u>Note 2</u>: The data in this test report are traceable to the national or international standards.

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

3.2 Transmitter requirements

3.2.1 Carrier Frequency Separation

Procedure:

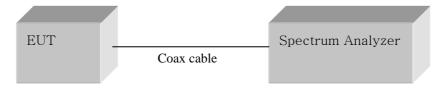
The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

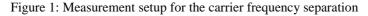
After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

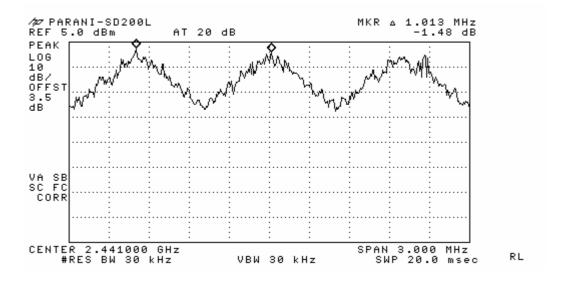
The spectrum analyzer is set to:

Span = 3 MHz (wide enough to capture the peaks of two adjacent channels)RBW = 30 kHz (1% of the span or more)Sweep = autoVBW = 30 kHzDetector function = peakTrace = max holdTrace = max hold

Measurement Data:


Test Results		
Carrier Frequency Separation (MHz) Result		
1.013	Complies	


- See next pages for actual measured spectrum plots.


Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup

Carrier Frequency Separation

3.2.2 Number of Hopping Frequencies

Procedure:

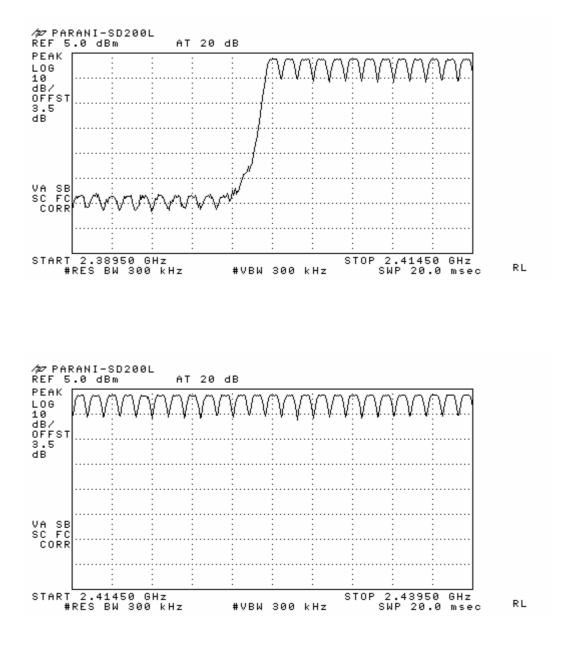
The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 ~ 2483.5 MHz FH band were examined.

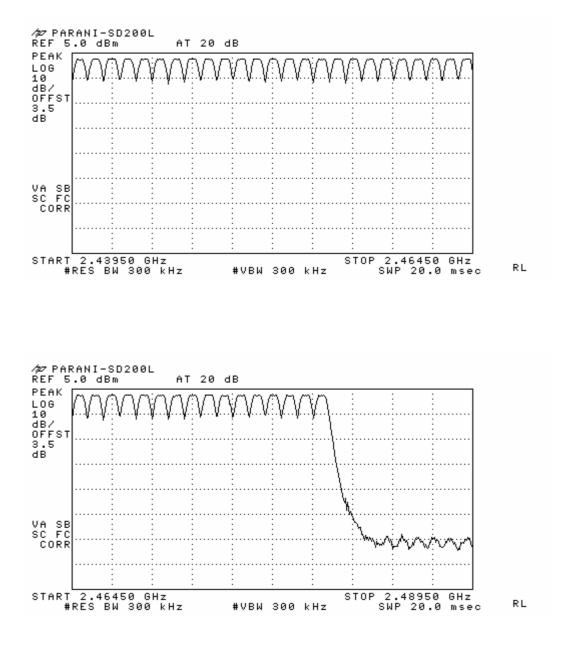
The spectrum analyzer is set to:

Frequency range	1: Start = 2389.5MHz,	Stop = 2414.5 MHz
	2: Start = 2414.5MHz,	Stop = 2439.5 MHz
	3: Start = 2439.5MHz,	Stop = 2464.5 MHz
	4: Start = 2464.5MHz,	Stop = 2489.5 MHz
RBW = 300 kHz (1	% of the span or more)	Sweep = auto
VBW = 300 kHz (VBW \geq RBW)		Detector function = peak
Trace = max hold		Span = 25MHz

Measurement Data: Complies


Total number of Hopping Channels	79

- See next pages for actual measured spectrum plots.


Minimum Standard:

At least 75 hopes

Measurement Setup

Number of Hopping Frequencies

Number of Hopping Frequencies

3.2.3 20 dB Bandwidth

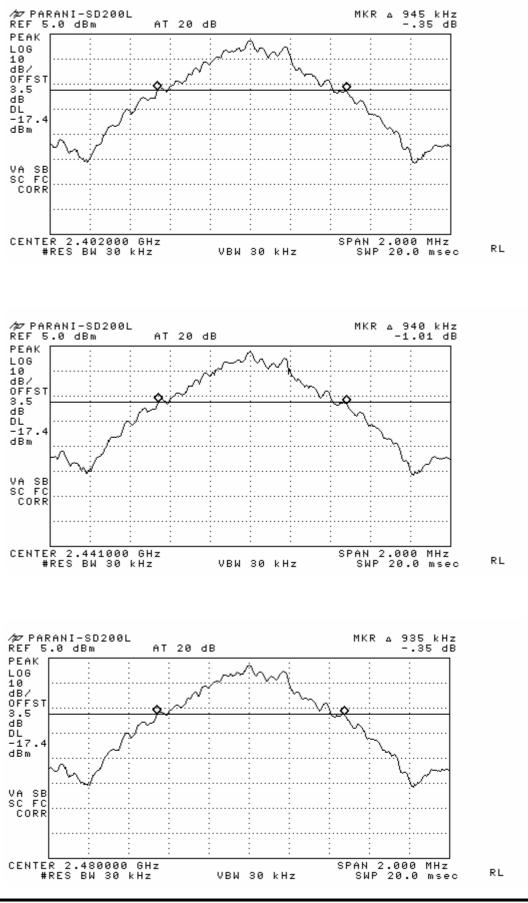
Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

RBW = 30 kHzSweep = autoVBW = 30 kHz (VBW \geq RBW)Detector function = peakTrace = max holdTrace = max hold

Measurement Data:


Frequency (MHz)	Channel No.	Test Results		
		Measured Bandwidth (MHz)	Result	
2402	0	0.945	Complies	
2441	39	0.940	Complies	
2480	78	0.935	Complies	

- See next pages for actual measured spectrum plots.

Minimum Standard:

The transmitter shall have a maximum 20dB bandwidth of 1 MHz.

Measurement Setup

20 dB Bandwidth

Copyright © 2006, LTA Co., Ltd.

3.2.4 Time of Occupancy (Dwell Time)

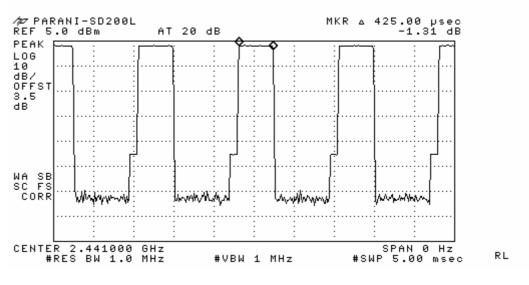
Procedure:

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

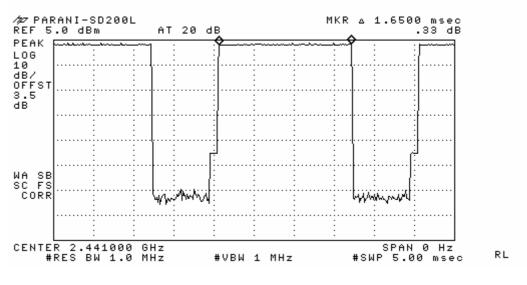
The spectrum analyzer is set to:	
Center frequency = 2441 MHz	Span = zero
RBW = 1 MHz	$VBW = 1 MHz (VBW \ge RBW)$
Trace = max hold	Detector function = peak

Measurement Data:

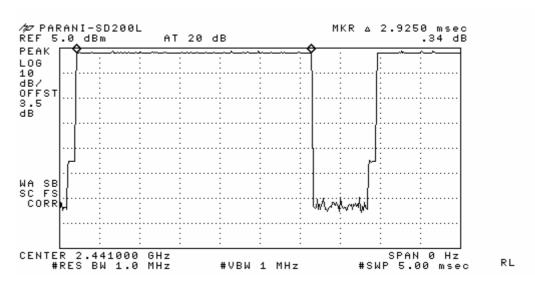
Channel	Channel	Test Results		
Number	Frequency (MHz)	Packet Type	Dwell Time (ms)	Result
	DH 1	136.05	Complies	
39	39 2441	DH 3	265.91	Complies
		DH 5	311.48	Complies


- See next pages for actual measured spectrum plots.

Minimum Standard:


 $0.4\ seconds$ within a 30 second period per any frequency

Measurement Setup



3.2.5 Transmitter Output Power

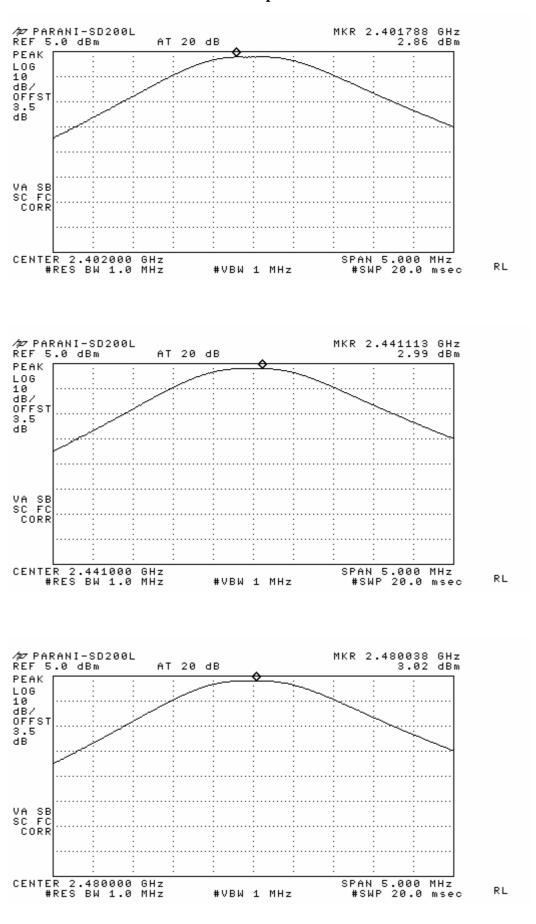
Procedure:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum	analy	yzer	is	set	to:

RBW = 1 MHz (greater than the 20dB bandwidth of the emission being measured)VBW = 1 MHz (VBW \geq RBW)Detector function = peakTrace = max holdSweep = auto


Measurement Data:

Frequency	Ch.	Test Results			
(MHz)	CII.	dBm	mW	Result	
2402	0	2.86	1.932	Complies	
2441	39	2.99	1.991	Complies	
2480	78	3.02	2.004	Complies	

- See next pages for actual measured spectrum plots.

Minimum Standard:	< 1W

Measurement Setup

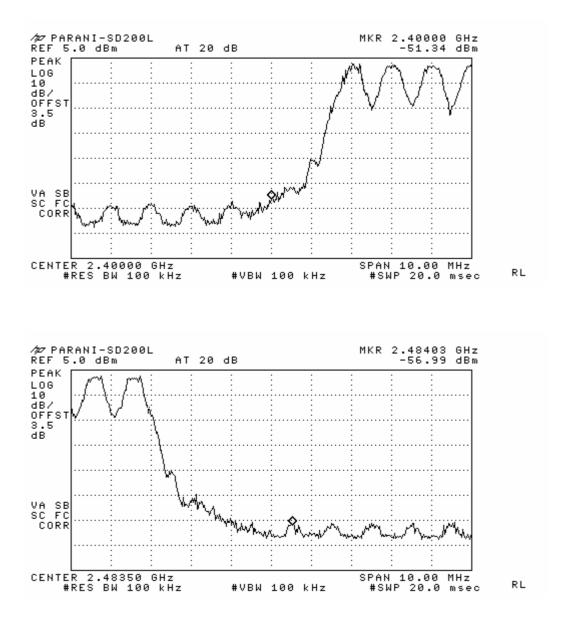
Peak Output Power

3.2.6 Band - edge

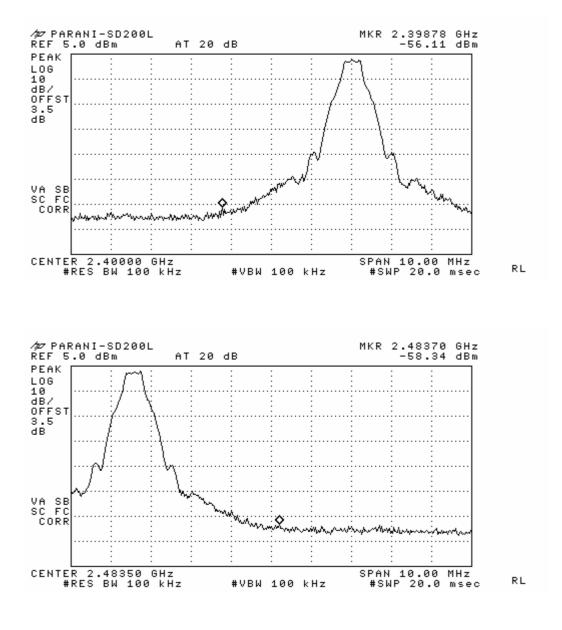
Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

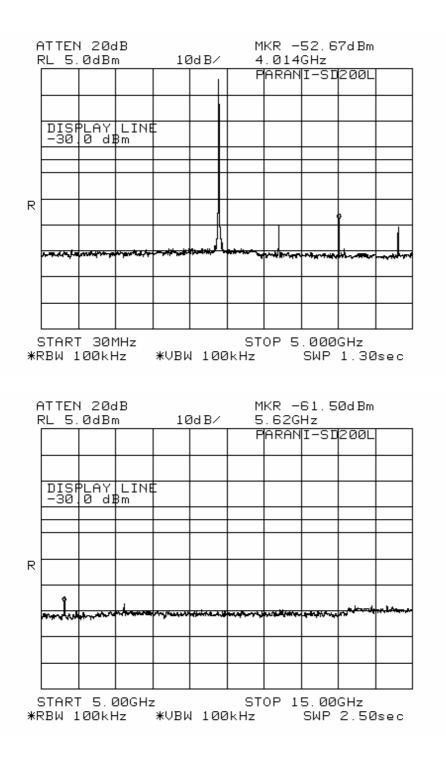
After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.


The spectrum analyzer is set to:	
Center frequency = the highest, middle	and the lowest channels
RBW = 100 kHz	VBW = 100 kHz
Span = 10 MHz	Detector function = peak
Trace = max hold	Sweep = auto

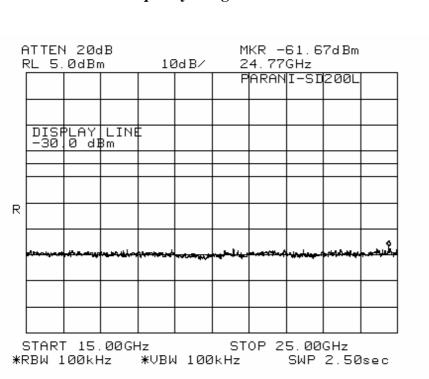
Measurement Data: Complies


- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

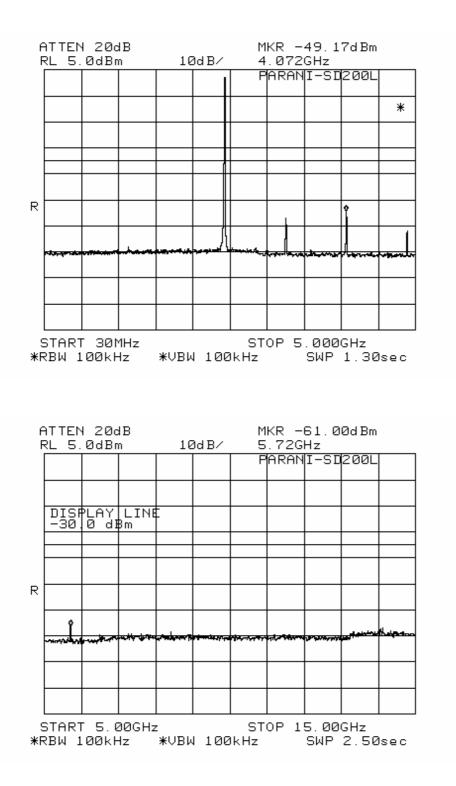
Minimum Standard:	> 20 dBc


Measurement Setup

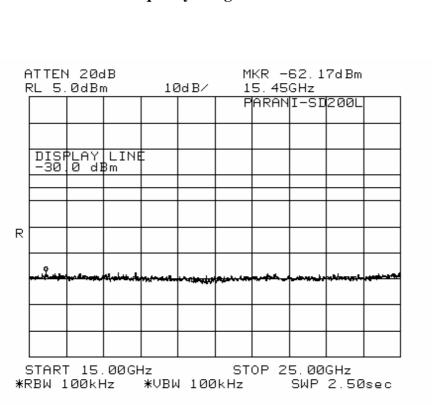
Band - edge (with Hopping)

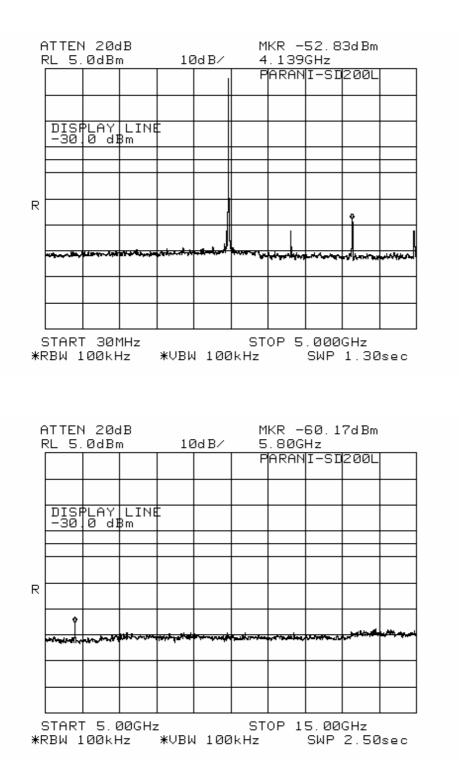


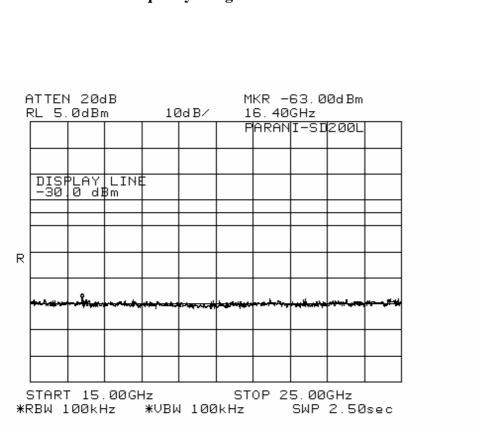
Band - edge (without Hopping)



Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.


- Continues


Band - edge (at 20 dB blow) – Low channel Frequency Range = 30 MHz ~ 10th harmonics.


Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

Band - edge (at 20 dB blow) – Mid channel Frequency Range = 30 MHz ~ 10th harmonics.

Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

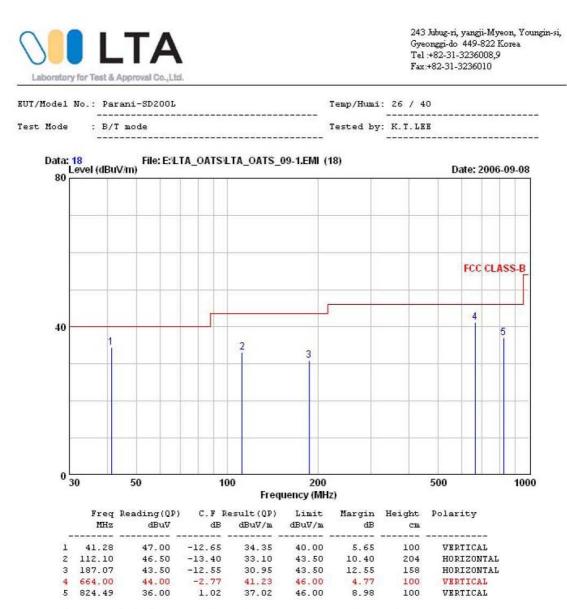
Band - edge (at 20 dB blow) – High channel Frequency Range = 30 MHz ~ 10th harmonics. - Continues

3.2.7 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:Center frequency = the worst channelFrequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.RBW = $100 \text{ kHz} (30 \text{ MHz} \sim 1 \text{ GHz})$ VBW \geq RBW= 1 MHz ($1 \text{ GHz} \sim 10^{\text{th}}$ harmonic)Span = 100 MHzDetector function = peakTrace = max holdSweep = auto


Measurement Data: Complies

Low channel		Mid channel		High channel	
Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)
4005	36.3	4063	38.2	4130	35.7
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
Measuremen	Measurement uncertainty ± 6 dB				

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m	
30 ~ 88	100 **	
88 ~ 216	150 **	
216 ~ 960	200 **	
Above 960	500	

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.8 AC Conducted Emissions

Procedure:

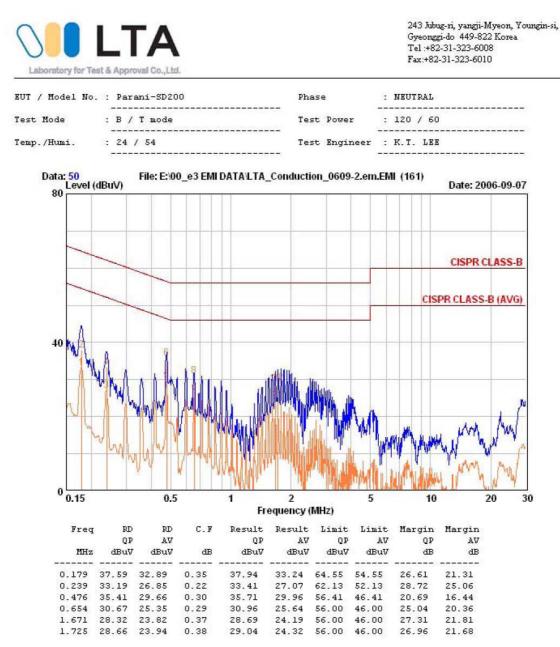
The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 10dB below limit.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)				Conducted Limit (dBuV)	
(MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				


* Decreases with the logarithm of the frequency

AC Conducted Emissions –Line

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions -Neutral

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	8594E	3649A03649	HP	Dec-06
2	Signal Generator	8657A	3430U02049	HP	Dec-06
3	Attenuator (3dB)	8491A	37822	HP	Dec-06
4	Attenuator (3dB)	8491A	28881	HP	Dec-06
5	EMI Test Receiver	ESVD	843748/001	R&S	Dec-06
6	Spectrum Analyzer	8591E	3649A05888	HP	Jan-07
7	Spectrum Analyzer	8563E	3425A02505	HP	Jan-07
8	RF Amplifier	8447D	2949A02670	HP	Jan-07
9	RF Amplifier	8447D	2439A09058	HP	Jan-07
10	RF Amplifier	8449B	3008A02126	HP	Jun-07
11	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	Feb-07
12	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Feb-07
13	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Feb-07
14	Horn Antenna	3115	00055005	ETS LINDGREN	Jun-07
15	Horn Antenna	BBHA 9120D	0499	Schwarzbeck	Jun-07
16	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Feb-07
17	Splitter (BNC)	ZFM-150	15542	Mini-Circuits	-
18	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-
19	Power Divider	11636A	6243	HP	Apr-07
20	DC Power Supply	6622A	3448A03079	HP	Apr-07
21	Attenuator (30dB)	8498A	1801A06689	HP	Apr-07
22	Attenuator (10dB)	8491A	63196	HP	Apr-07
23	Power Meter	EPM-441A	GB32481702	HP	Apr-07
24	Power Sensor	8481A	2702A64048	HP	Apr-07
25	Audio Analyzer	8903B	3729A18901	HP	May-07
26	Modulation Analyzer	8901B	3749A05878	HP	May-07
27	Dipole Antenna	VHA9103	2116	Schwarzbeck	Oct-06
28	Dipole Antenna	VHA9103	2117	Schwarzbeck	Oct-06
29	Dipole Antenna	UHA9105	2261	Schwarzbeck	Oct-06
30	Dipole Antenna	UHA9105	2262	Schwarzbeck	Oct-06
31	Digital Multimeter	34401A	US36062141	HP	Apr-07
32	LISN	KNW-407	8-1430-1	Kyoritsu	Jan-07
33	Two-Line V-Network	ESH3-Z5	893045/017	R&S	Jan-07
34	Test Receiver	ESHS10	828404009	R&S	Jan-07
35	TEMP & HUMIDITY Chamber	YJ-500	L05022	JinYoung Tech	-