

FCC RADIO TEST REPORT FCC ID: S7A-SP73

Product: R1 EVO CAM Trade Mark: SENA Model No.: SP73 Family Model: N/A Report No.: S19072400911001 Issue Date: 16 Aug. 2019

Prepared for

SENA TECHNOLOGIES.Inc

19, Heolleung-ro 569-gil, Gangnam-gu Seoul, South Korea

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

1	TES	ST RESULT CERTIFICATION	3
2	SUN	AMARY OF TEST RESULTS	4
3	FAC	CILITIES AND ACCREDITATIONS	5
U		CILITIES	
		BORATORY ACCREDITATIONS AND LISTINGS	
	2.3	MEASUREMENT UNCERTAINTY	
4	GE	NERAL DESCRIPTION OF EUT	6
5	DES	SCRIPTION OF TEST MODES	8
6	SET	UP OF EQUIPMENT UNDER TEST	.10
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
	6.2	SUPPORT EQUIPMENT	. 11
	6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TES	ST REQUIREMENTS	.14
	7.1	CONDUCTED EMISSIONS TEST	-
	7.2	RADIATED SPURIOUS EMISSION	
	7.3 7.4	6DB BANDWIDTH DUTY CYCLE	
	7.4 7.5	MAXIMUM OUTPUT POWER	
	7.6	POWER SPECTRAL DENSITY	
	7.7	CONDUCTED BAND EDGE MEASUREMENT	
	7.8	SPURIOUS RF CONDUCTED EMISSIONS.	
	7.9	ANTENNA APPLICATION	. 39
8	TES	ST RESULTS	.40
	8.1	DUTY CYCLE	.40
	8.2	MAXIMUM CONDUCTED OUTPUT POWER	
	8.3	OCCUPIED CHANNEL BANDWIDTH	
	8.4	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
	8.5	BAND EDGE	
	8.6	CONDUCTED RF SPURIOUS EMISSION	.71

Report No.:S19072400911001

1 TEST RESULT CERTIFICATION

Applicant's name:	SENA TECHNOLOGIES.Inc
Address:	19, Heolleung-ro 569-gil, Gangnam-gu Seoul, South Korea
Manufacturer's Name:	Sena Technologies, Inc.
Address:	Floor 4G/4F, Science&Technology building, Maozhoushan industry park, BaoAn District, ShenZhen City, GuangDong province, China
Product description	
Product name:	R1 EVO CAM
Model and/or type reference:	SP73
Family Model:	N/A

Measurement Procedure Used:

APPLICABLE STANDARD/ TEST PROCEDUREAPPLICABLE STANDARD/ TEST PROCEDURETEST RESULTFCC 47 CFR Part 2, Subpart JFCC 47 CFR Part 15, Subpart CKDB 174176 D01 Line Conducted FAQ v01r01CompliedANSI C63.10-2013KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	24 Jul. 2019 ~ 13 Aug, 2019
Testing Engineer	:	John Lin
		(Allen Liu)
Technical Manager	:	Jason chen
		(Jason Chen)
		Sam. Chen
Authorized Signatory	:	
		(Sam Chen)

NTEKJEW

2 SUMMARY OF TEST RESULTS FCC Part15 (15.247), Subpart C **Standard Section Test Item** Verdict Remark 15.207 **Conducted Emission** PASS 15.247 (a)(2) 6dB Bandwidth PASS 15.247 (b) Maximum Output Power PASS 15.209 (a) **Radiated Spurious Emission** PASS 15.205 (a) 15.247 (e) **Power Spectral Density** PASS 15.247 (d) Band Edge Emission PASS Spurious RF Conducted Emission PASS 15.247 (d) 15.203 Antenna Requirement PASS

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

2.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.68dB
5	All emissions, radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification					
Equipment	R1 EVO CAM				
Trade Mark	SENA				
FCC ID	S7A-SP73				
Model No.	SP73				
Family Model	N/A				
Model Difference	N/A				
Operating Frequency	2412-2462MHz for 802.11b/g/11n(HT20); 2422-2452MHz for 802.11n(HT40);				
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;				
Number of Channels	11 channels for 802.11b/g/11n(HT20); 7 channels for 802.11n(HT40);				
Antenna Type	Chip Antenna				
Antenna Gain	0.5dBi				
Power supply	DC supply: DC 3.8V from Helmet Battery				
	Adapter supply:				
HW Version	1.2				
SW Version	1.0				

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History						
Report No.	Version	Description	Issued Date			
S19072400911001	Rev.01	Initial issue of report	Aug 16, 2019			

5 DESCRIPTION OF TEST MODES

丫EK 北氾

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20/HT40):

Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
10	2457
11	2462

Note: fc=2412MHz+(k-1)×5MHz k=1 to 11

Report No.:S19072400911001

Test Items	Mode	Data Rate	Channel	Ant
AC Power Line Conducted Emissions	Normal Link	-	-	-
	11b/CCK	1 Mbps	1/6/11	1
Maximum Conducted Output	11g/BPSK	6 Mbps	1/6/11	1
Power	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
	11b/CCK	1 Mbps	1/6/11	1
Dower Spectral Density	11g/BPSK	6 Mbps	1/6/11	1
Power Spectral Density	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
	11b/CCK	1 Mbps	1/6/11	1
6dB Spectrum Bandwidth	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
Radiated Emissions Below 1GHz	Normal Link	-	-	-
	11b/CCK	1 Mbps	1/6/11	1
Radiated Emissions Above	11g/BPSK	6 Mbps	1/6/11	1
1GHz	11g/BPSK 11n HT20	MCS0	1/6/11	1
	11n HT20	MCS0	3/6/9	1
		101030	3/0/9	
	11b/CCK	1 Mbps	1/6/11	1
Band Edge Emissions	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1

SETUP OF EQUIPMENT UNDER TEST 6 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode AC Plug C-2 C-1 EUT AE-2 AE-1 Helmet Adapter For Radiated Test Cases C-2 AE-2 EUT Helmet For Conducted Test Cases C-3 Measurement C-2 AE-2 Εl Instrument Helmet Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Report No.:S19072400911001

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	SIMP	KSAPK0110500200D5	N/A	Peripherals
AE-2	Helmet	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	DC Cable	NO	NO	0.1m
C-2	USB Cable	NO	NO	0.8m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Report No.:S19072400911001

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

adian		col equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2019.05.13	2020.05.12	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2018.10.08	2019.10.07	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2018.10.08	2019.10.07	1 year
4	Test Receiver	R&S	ESPI7	101318	2019.05.13	2020.05.12	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2019.04.15	2020.04.14	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2019.04.15	2020.04.14	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2018.12.11	2019.12.10	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2019.08.04	2020.08.03	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2018.12.11	2019.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2019.08.04	2020.08.03	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
16	Filter	TRILTHIC	2400MHz	29	2017.04.19	2020.04.18	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2019.05.13	2020.05.12	1 year
2	LISN	R&S	ENV216	101313	2019.04.15	2020.04.14	1 year
3	LISN	SCHWARZB ECK	NNLK 8129	8129245	2019.05.13	2020.05.12	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.05.19	2020.05.18	2 year
5	Test Cable (9KHz-30MHz)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MHz)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MHz)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

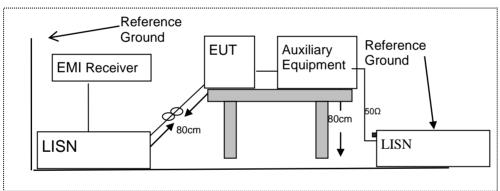
7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Frequency/MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

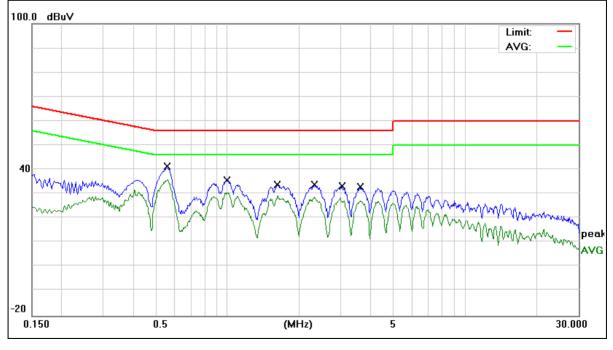
The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.


7.1.6 Test Results

EUT:	R1 EVO CAM	Model Name :	SP73
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal Link

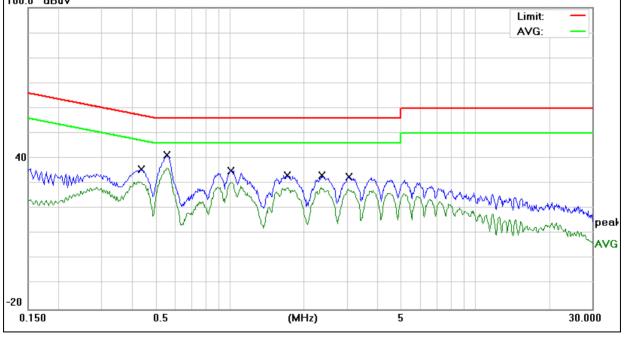
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.5580	31.49	9.74	41.23	56.00	-14.77	QP
0.5580	26.12	9.74	35.86	46.00	-10.14	AVG
0.9900	25.96	9.74	35.70	56.00	-20.30	QP
0.9900	20.89	9.74	30.63	46.00	-15.37	AVG
1.6260	24.13	9.77	33.90	56.00	-22.10	QP
1.6260	13.59	9.77	23.36	46.00	-22.64	AVG
2.3260	24.11	9.79	33.90	56.00	-22.10	QP
2.3260	19.01	9.79	28.80	46.00	-17.20	AVG
3.0260	23.43	9.83	33.26	56.00	-22.74	QP
3.0260	12.75	9.83	22.58	46.00	-23.42	AVG
3.6300	22.97	9.84	32.81	56.00	-23.19	QP
3.6300	16.74	9.84	26.58	46.00	-19.42	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

Version.1.3

EUT:	R1 EVO CAM	Model Name :	SP73
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal Link

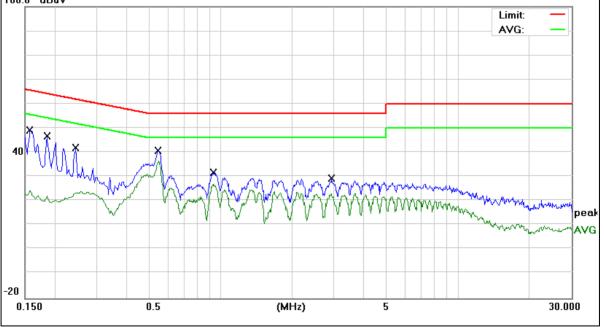

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4340	25.79	9.75	35.54	57.18	-21.64	QP
0.4340	16.60	9.75	26.35	47.18	-20.83	AVG
0.5540	31.58	9.75	41.33	56.00	-14.67	QP
0.5540	26.36	9.75	36.11	46.00	-9.89	AVG
1.0100	25.35	9.75	35.10	56.00	-20.90	QP
1.0100	20.81	9.75	30.56	46.00	-15.44	AVG
1.7100	23.55	9.78	33.33	56.00	-22.67	QP
1.7100	18.55	9.78	28.33	46.00	-17.67	AVG
2.3780	23.39	9.81	33.20	56.00	-22.80	QP
2.3780	14.52	9.81	24.33	46.00	-21.67	AVG
3.0540	22.68	9.87	32.55	56.00	-23.45	QP
3.0540	13.00	9.87	22.87	46.00	-23.13	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

EUT:	R1 EVO CAM	Model Name :	SP73
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Normal Link

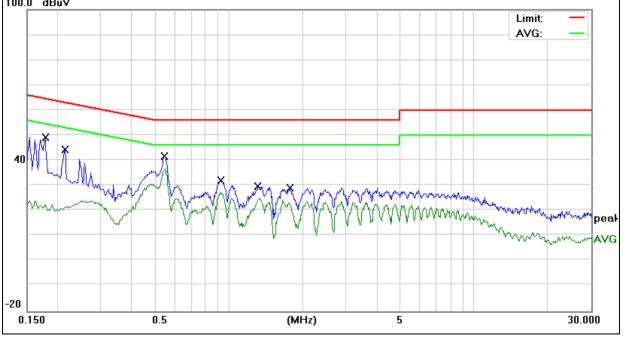

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerle
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1580	39.34	9.75	49.09	65.56	-16.47	QP
0.1580	20.50	9.75	30.25	55.56	-25.31	AVG
0.1860	36.97	9.76	46.73	64.21	-17.48	QP
0.1860	23.69	9.76	33.45	54.21	-20.76	AVG
0.2460	32.29	9.76	42.05	61.89	-19.84	QP
0.2460	22.29	9.76	32.05	51.89	-19.84	AVG
0.5460	31.07	9.74	40.81	56.00	-15.19	QP
0.5460	26.74	9.74	36.48	46.00	-9.52	AVG
0.9380	22.15	9.74	31.89	56.00	-24.11	QP
0.9380	17.33	9.74	27.07	46.00	-18.93	AVG
2.9380	19.48	9.83	29.31	56.00	-26.69	QP
2.9380	13.14	9.83	22.97	46.00	-23.03	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

EUT:	R1 EVO CAM	Model Name :	SP73
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Normal Link


Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demorily
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1780	39.29	9.73	49.02	64.57	-15.55	QP
0.1780	23.62	9.73	33.35	54.57	-21.22	AVG
0.2140	34.63	9.73	44.36	63.04	-18.68	QP
0.2140	20.29	9.73	30.02	53.04	-23.02	AVG
0.5460	31.98	9.75	41.73	56.00	-14.27	QP
0.5460	27.05	9.75	36.80	46.00	-9.20	AVG
0.9260	22.37	9.75	32.12	56.00	-23.88	QP
0.9260	17.78	9.75	27.53	46.00	-18.47	AVG
1.3140	19.93	9.76	29.69	56.00	-26.31	QP
1.3140	15.01	9.76	24.77	46.00	-21.23	AVG
1.7780	19.17	9.79	28.96	56.00	-27.04	QP
1.7780	8.23	9.79	18.02	46.00	-27.98	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FCC Fait 15.205, Restricted bands						
MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

	Frequency(MHz)	Class B (dBuV/	′m) (at 3M)
		PEAK	AVERAGE
	Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

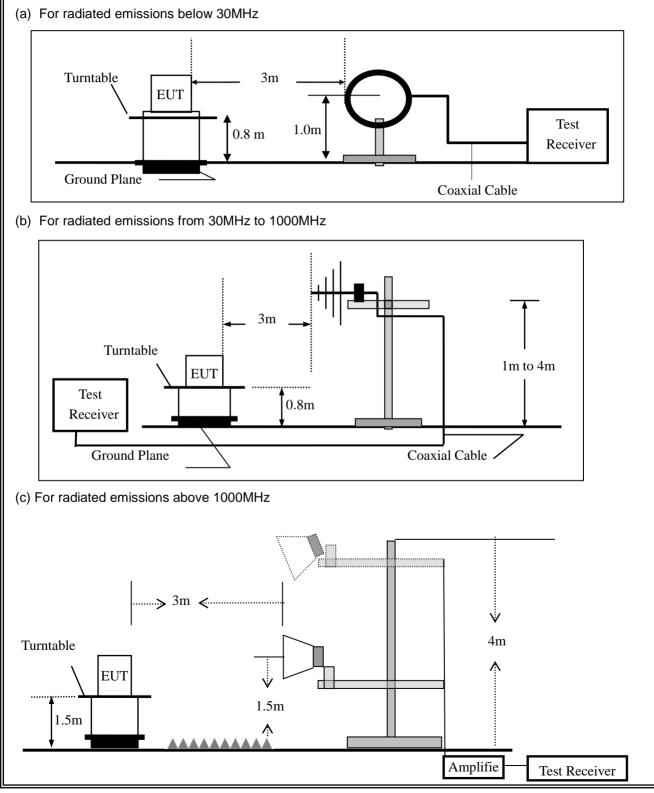
3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);


Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	1000 MHz					
Stop Frequency	10th carrier harmonic					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average					

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:

Set RBW=120 kHz for f < 1 GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f≥1 GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of

operation.

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

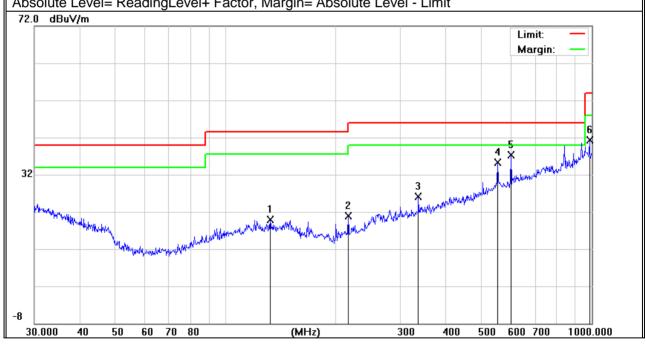
■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	R1 EVO CAM	Model No.:	SP73
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n(HT20, HT40)	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz)


All the modulation modes have been tested, and the worst result was report as below:

EUT:	R1 EVO CAM	Model Name :	SP73
Temperature:	25 ℃	Relative Humidity:	51%
Pressure:	1010hPa	Test Mode:	Normal Link
Test Voltage :	3.8V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	132.2206	6.51	13.43	19.94	43.50	-23.56	QP
V	216.0240	9.85	11.10	20.95	46.00	-25.05	QP
V	336.0350	8.92	17.18	26.10	46.00	-19.90	QP
V	552.8831	10.76	24.51	35.27	46.00	-10.73	QP
V	601.4265	13.37	23.95	37.32	46.00	-8.68	QP
V	986.0717	10.31	30.95	41.26	54.00	-12.74	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

(H/V	r Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	⁽⁾ (MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	167.8243	18.08	11.38	29.46	43.50	-14.04	QP
Н	336.0350	17.07	17.18	34.25	46.00	-11.75	QP
Н	425.0280	15.71	20.22	35.93	46.00	-10.07	QP
Н	552.8832	16.82	24.51	41.33	46.00	-4.67	QP
Н	601.4265	18.31	23.95	42.26	46.00	-3.74	QP
Н	938.8326	10.65	30.85	41.50	46.00	-4.50	QP
32			1		4 2 3 X	× Luluhuhuh	6 K K K
~wt	mutum man Muthi man	approximation of the second	al in the way of the second	MW Willing were with	Muldbelik		
8	00 40 50 60	70 80	(MHz)	30() 400 500	600 700 1	

<u>NTEK北测</u>

Report No.:S19072400911001

Spurious	Spurious Emission Above 1GHz (1GHz to 25GHz)								
EUT:		R1 EVO (CAM		Mode	el No.:	SP73	3	
Temperature:		20 °C			Relat	Relative Humidity: 48%			
Test Mode:	Test Mode: 802.11b/g/n(HT20, HT40)				Test	Test By: Allen Liu			
All the modula	ation mod	des have b	een tested	d, and the	worst resu	It was repor	t as belov	N:	
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
Low Channel (2422 MHz)(802.11n40)Above 1G									
4824.890	59.91	5.21	35.59	44.30	56.41	74.00	-17.59	Pk	Vertical
4824.890	41.71	5.21	35.59	44.30	38.21	54.00	-15.79	AV	Vertical
7236.097	63.19	6.48	36.27	44.60	61.34	74.00	-12.66	Pk	Vertical
7236.097	40.12	6.48	36.27	44.60	38.27	54.00	-15.73	AV	Vertical
4823.070	63.55	5.21	35.55	44.30	60.01	74.00	-13.99	Pk	Horizontal
4823.070	41.58	5.21	35.55	44.30	38.04	54.00	-15.96	AV	Horizontal
7235.808	59.12	6.48	36.27	44.52	57.35	74.00	-16.65	Pk	Horizontal
7235.808	39.36	6.48	36.27	44.52	37.59	54.00	-16.41	AV	Horizontal
		Mic	Idle Channe	el (2437 M⊦	lz)(802.11n4	40)Above 1	G		
4874.634	59.03	5.21	35.66	44.20	55.70	74.00	-18.30	Pk	Vertical
4874.634	41.70	5.21	35.66	44.20	38.37	54.00	-15.63	AV	Vertical
7311.166	63.67	7.10	36.50	44.43	62.84	74.00	-11.16	Pk	Vertical
7311.166	41.40	7.10	36.50	44.43	40.57	54.00	-13.43	AV	Vertical
4874.310	63.64	5.21	35.66	44.20	60.31	74.00	-13.69	Pk	Horizontal
4874.310	40.70	5.21	35.66	44.20	37.37	54.00	-16.63	AV	Horizontal
7311.873	63.64	7.10	36.50	44.43	62.81	74.00	-11.19	Pk	Horizontal
7311.873	40.40	7.10	36.50	44.43	39.57	54.00	-14.43	AV	Horizontal
	I	Hi	gh Channel	(2452 MH	z)(802.11n4	0)Above 10	6	1	
4923.819	62.91	5.21	35.52	44.21	59.43	74.00	-14.57	Pk	Vertical
4923.819	41.43	5.21	35.52	44.21	37.95	54.00	-16.05	AV	Vertical
7385.296	63.80	7.10	36.53	44.60	62.83	74.00	-11.17	Pk	Vertical
7385.296	42.36	7.10	36.53	44.60	41.39	54.00	-12.61	AV	Vertical
4923.622	60.56	5.21	35.52	44.21	57.08	74.00	-16.92	Pk	Horizontal
4923.622	39.58	5.21	35.52	44.21	36.10	54.00	-17.90	AV	Horizontal
7386.070	59.45	7.10	36.53	44.60	58.48	74.00	-15.52	Pk	Horizontal
7386.070	42.77	7.10	36.53	44.60	41.80	54.00	-12.20	AV	Horizontal

Note:

- (1) Emission Level= Antenna Factor + Cable Loss + Read Level Preamp Factor
- (2) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3)"802.11n40" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Froguese	Meter			, and the w						
Frequenc y	Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)		(dBµV/m)	(dB)	Туре		
802.11b										
2310.00	61.35	2.97	27.80	43.80	48.32	74	-25.68	Pk	Horizonta	
2310.00	41.16	2.97	27.80	43.80	28.13	54	-25.87	AV	Horizonta	
2310.00	61.90	2.97	27.80	43.80	48.87	74	-25.13	Pk	Vertical	
2310.00	42.96	2.97	27.80	43.80	29.93	54	-24.07	AV	Vertical	
2390.00	63.39	3.14	27.21	43.80	49.94	74	-24.06	Pk	Vertical	
2390.00	41.31	3.14	27.21	43.80	27.86	54	-26.14	AV	Vertical	
2390.00	63.76	3.14	27.21	43.80	50.31	74	-23.69	Pk	Horizonta	
2390.00	39.09	3.14	27.21	43.80	25.64	54	-28.36	AV	Horizonta	
2483.50	61.58	3.58	27.70	44.00	48.86	74	-25.14	Pk	Vertical	
2483.50	42.68	3.58	27.70	44.00	29.96	54	-24.04	AV	Vertical	
2483.50	60.24	3.58	27.70	44.00 44.00	47.52	74 54	-26.48	Pk AV	Horizonta Horizonta	
2483.50	41.93	3.58	27.70		29.21 .11g	54	-24.79	Av	попиона	
2310.00	63.48	2.97	27.80	43.80	50.45	74	-23.55	Pk	Horizonta	
2310.00	41.61	2.97	27.80	43.80	28.58	54	-25.42	AV	Horizonta	
2310.00	59.68	2.97	27.80	43.80	46.65	74	-27.35	Pk	Vertical	
2310.00	42.60	2.97	27.80	43.80	29.57	54	-24.43	AV	Vertical	
2390.00	61.15	3.14	27.21	43.80	47.70	74	-26.30	Pk	Vertical	
2390.00	39.98	3.14	27.21	43.80	26.53	54	-27.47	AV	Vertical	
2390.00	63.30	3.14	27.21	43.80	49.85	74	-24.15	Pk	Horizonta	
2390.00	39.29	3.14	27.21	43.80	25.84	54	-28.16	AV	Horizonta	
2483.50	62.65	3.58	27.70	44.00	49.93	74	-24.07	Pk	Vertical	
2483.50	41.01	3.58	27.70	44.00	28.29	54	-25.71	AV	Vertical	
2483.50	60.05	3.58	27.70	44.00	47.33	74	-26.67	Pk	Horizonta	
2483.50	41.86	3.58	27.70	44.00	29.14	54	-24.86	AV	Horizonta	
				802.1	1n20					
2310.00	60.87	2.97	27.80	43.80	47.84	74	-26.16	Pk	Horizonta	
2310.00	41.04	2.97	27.80	43.80	28.01	54	-25.99	AV	Horizonta	
2310.00	60.45	2.97	27.80	43.80	47.42	74	-26.58	Pk	Vertical	
2310.00	40.24	2.97	27.80	43.80	27.21	54	-26.79	AV	Vertical	
2390.00	63.45	3.14	27.21	43.80	50.00	74	-24.00	Pk	Vertical	
2390.00	39.53	3.14	27.21	43.80	26.08	54	-27.92	AV	Vertical	
2390.00	63.41	3.14	27.21	43.80	49.96	74	-24.04	Pk	Horizonta	
2390.00	39.73	3.14	27.21	43.80	26.28	54	-27.72	AV	Horizonta	
2483.50	60.82	3.58	27.70	44.00	48.10	74	-25.90	Pk	Vertical	
2483.50	42.76	3.58	27.70	44.00	30.04	54	-23.96	AV	Vertical	
2483.50	63.97	3.58	27.70	44.00	51.25	74	-22.75	Pk AV	Horizonta Horizonta	
2483.50	41.25	3.58	27.70	44.00	28.53 1n40	54	-25.47	Av	ΠΟΠΖΟΠΙΑ	
2310.00	62.38	2.97	27.80	43.80	49.35	74	-24.65	Pk	Horizonta	
2310.00	62.38 41.57	2.97	27.80	43.80	49.35 28.54	74 54	-24.65	AV	Horizonta	
2310.00	60.35	2.97	27.80	43.80	47.32	54 74	-25.40	Pk	Vertical	
2310.00	42.56	2.97	27.80	43.80	29.53	74 54	-20.08	AV	Vertical	
2390.00	60.29	3.14	27.21	43.80	46.84	74	-27.16	Pk	Vertical	
2390.00	41.57	3.14	27.21	43.80	28.12	54	-25.88	AV	Vertical	
2390.00	60.28	3.14	27.21	43.80	46.83	74	-27.17	Pk	Horizonta	
2390.00	41.57	3.14	27.21	43.80	28.12	54	-25.88	AV	Horizonta	
2483.50	61.26	3.58	27.70	44.00	48.54	74	-25.46	Pk	Vertical	
2483.50	41.45	3.58	27.70	44.00	28.73	54	-25.27	AV	Vertical	
2483.50	62.38	3.58	27.70	44.00	49.66	74	-24.34	Pk	Horizonta	
			27.70	44.00	29.53	54	-24.47	AV	Horizonta	

Spurious Emission in Restricted Bands 3260MHz- 18000MHz

All the modulation modes have been tested, the worst result was report as below:

Frequenc v	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	62.64	4.04	29.57	44.70	51.55	74	-22.45	Pk	Vertical
3260	49.89	4.04	29.57	44.70	38.80	54	-15.20	AV	Vertical
3260	59.03	4.04	29.57	44.70	47.94	74	-26.06	Pk	Horizontal
3260	47.91	4.04	29.57	44.70	36.82	54	-17.18	AV	Horizontal
3332	61.00	4.26	29.87	44.40	50.73	74	-23.27	Pk	Vertical
3332	47.49	4.26	29.87	44.40	37.22	54	-16.78	AV	Vertical
3332	61.75	4.26	29.87	44.40	51.48	74	-22.52	Pk	Horizontal
3332	48.98	4.26	29.87	44.40	38.71	54	-15.29	AV	Horizontal
17797	43.89	10.99	43.95	43.50	55.33	74	-18.67	Pk	Vertical
17797	31.53	10.99	43.95	43.50	42.97	54	-11.03	AV	Vertical
17788	44.79	11.81	43.69	44.60	55.69	74	-18.31	Pk	Horizontal
17788	31.18	11.81	43.69	44.60	42.08	54	-11.92	AV	Horizontal

"802.11n40" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \geq 3*RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	R1 EVO CAM	Model No.:	SP73
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02 Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on}/T_{total}

7.4.6 Test Results

EUT:	R1 EVO CAM	Model No.:	SP73
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

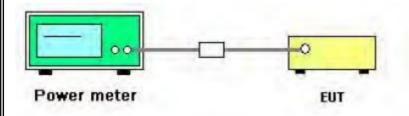
Test data reference attachment.

7.5 MAXIMUM OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.2.3.

7.5.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The following table is the setting of the power meter.

Power meter parameter	Setting	
Detector	Peak	

7.5.4 Test Setup

7.5.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.9.1.3 of ANSI C63.10

7.5.6 EUT opration during Test

The EUT was programmed to be in continuously transmitting mode.

7.5.7 Test Results

EUT:	R1 EVO CAM	Model No.:	SP73
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

d) Set the VBW \geq 3 *RBW.

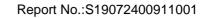
e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.


j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	R1 EVO CAM	Model No.:	SP73
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	R1 EVO CAM	Model No.:	SP73
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -30dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and mwasure frequeny range from 9KHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached Chip Antenna (Gain: 0.5dBi). It comply with the standard requirement.

8 TEST RESULTS

8.1 DUTY CYCLE

Condition	Mode	Frequency (MHz)	Duty Cycle (%)
NVNT	802.11b	2412	100
NVNT	802.11b	2437	100
NVNT	802.11b	2462	100
NVNT	802.11g	2412	100
NVNT	802.11g	2437	100
NVNT	802.11g	2462	100
NVNT	802.11n(HT20)	2412	100
NVNT	802.11n(HT20)	2437	100
NVNT	802.11n(HT20)	2462	100
NVNT	802.11n(HT40)	2422	100
NVNT	802.11n(HT40)	2437	100
NVNT	802.11n(HT40)	2452	100

Duty Cycle NVNT 802.11b 2412MHz

ACCREDITED

Certificate #4298.01

Ref Level 27.63 Att	40 dB 😑 SWT	7.63 dB 👄 RE 100 ms 👄 VE				
●1Pk Clrw 20 dBm				M1[1	1	 -5.08 dBr 36.3000 m
10 dBm						
0 dBm		M1				
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm			1001 pts			10.0 ms/

20 dBm	M1[1] -4.60 dBm 0 dBm 83.0000 ms 0 dBm M1		PK CIFW	SGL 1Pk Clrw							
10 dBm Image: Constraint of the second sec							M	1[1]			
0 dBm Image: state s	dBm	0 dBm 83.0000 ms		20 dBm		 			1	1	83.0000 ms
0 dBm Image: state s	dBm			10 dBm							
-10 dBm	0 dBm		dBm 83.0000 ms								
-10 dBm	0 dBm		dBm 83.0000 ms	0 dBm						M1	
-20 dBm	0 dBm	dBm M1	dBm 83.0000 ms	-10 dBm							
-30 dBm			dBm 83.0000 ms	10 0.0.11							
	2 dBm		dBm 83.0000 ms	-20 dBm		 					
		10 dBm	dBm	-30 dBm		 					
40 dPm		10 dBm 20	dBm								
-+0 UDII		10 dBm	dBm	-40 dBm		1					+1
-50 dBm		10 dBm	dBm	-50 dBm		 					
		10 dBm	dBm								
-60 dBm	0 dBm	10 dBm	dBm	-60 dBm							
-70 dBm	0 dBm	10 dBm	dBm	-70 dBm							
CF 2.437 GHz 1001 pts 10.0 ms/	0 dBm 0 dBm0 dBm0 dBm 0 dBm	10 dBm	dBm Image: Sector sec	CF 2.437 GHz		100:	1 pts				10.0 ms/
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB SWT 100 ms VBW 3 MHz	0 dBm 0 dBm 0 dBm 0 dBm 2.437 GHz 1001 pts 10.0 ms/ Perdv 10.0 ms/	10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm Contrue Contract	dBm B3.0000 ms dBm H								
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB • RBW 1 MHz Att 40 dB • SWT 100 ms • VBW 3 MHz SGL	0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 5 2.437 GHz 1001 pts 10.0 ms/ 10.0 ms/	10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm	dBm B3.0000 ms dBm Ban dBm				M	1[1]			-4.26 dBm
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB Offset 7.72 dB RBW 1 MHz Att 40 dB SWT 100 ms VBW 3 MHz SGL 1Pk Clrw M1[1] -4.26 dBm	0 dBm 0 dBm <td< th=""><th>10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm Product Duty Cycle NVNT 802.11b 2462MHz Expectrum Ref Level 27.72 dBm Offset 7.72 dB @ RBW 1 MHz Att 40 dB @ SWT 100 ms @ VBW 3 MHz Superior MI[1] MI[1]</th><th>dBm </th><th>20 dBm</th><th></th><th> </th><th><u> </u></th><th>I</th><th>I</th><th>1</th><th>14.9000 ms</th></td<>	10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm Product Duty Cycle NVNT 802.11b 2462MHz Expectrum Ref Level 27.72 dBm Offset 7.72 dB @ RBW 1 MHz Att 40 dB @ SWT 100 ms @ VBW 3 MHz Superior MI[1] MI[1]	dBm	20 dBm		 	<u> </u>	I	I	1	14.9000 ms
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB Offset 7.72 dB RBW 1 MHz Att 40 dB SWT 100 ms VBW 3 MHz SGL PPk Clrw	0 dBm 0 dBm 0 dBm 0 dBm 2.437 GHz 1001 pts 10.0 ms/ Prodv 10.0 ms/ Prodv 10.0 ms/ Prodv 10.0 ms/ Prodv 10.0 ms/ 10.0 ms/	10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 10 dBm 40 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm F2.437 GHz 100 lpts 10 dBm 10 dBm Cept Level 27.72 dBm Offset 7.72 dBm RBW 1 MHz Stt 40 dBm SWT 100 ms YBW 3 MHz SGL 1Pk Cirw M1[1] 14 d000 pm 14 d000 pm 14 d000 pm	dBm Bm BBm Bm <	10 dBm							
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB I RBW 1 MHz Att 40 dB I SWT 100 ms VBW 3 MHz SGL IPk Clrw 20 dBm	0 dBm 0 dBm 0 dBm 0 dBm 2.437 GHz 1001 pts 10.0 ms/ Prodv 10.0 ms/ Prodv 10.0 ms/ 0 dBm 0 dBm 10.0 ms/ 0 dBm 0 dB	10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 70 dBm 10 dBm 10 dBm 10 dBm 10 dBm 70 dBm 10 dBm 10 dBm 10 dBm 10 dBm 70 dBm 10 dBm 10 dBm 10 dBm 10 dBm 70 dBm 0 dBm 0 dBm 10 dBm 10 dBm 10 dBm Control Cycle NVNT 802.11b 2462MHz Control Cycle NVNT 802.11b 2462MHz <	dBm Ba Ba <t< td=""><td>10 000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	10 000							
Duty Cycle NVNT 802.11b 2462MHz Spectrum Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspan="2	0 dBm 0 dBm 0 dBm 0 dBm 2.437 GHz 1001 pts 10.0 ms/ Prodv 10.0 ms/ Prodv 10.0 ms/ 0 dBm 0 dBm 10.0 ms/ 0 dBm 0 dB	10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 70 dBm 10 dBm 10 dBm 10 dBm 10 dBm 70 dBm 10 dBm 10 dBm 10 dBm 10 dBm 70 dBm 10 dBm 10 dBm 10 dBm 10 dBm 70 dBm 0 dBm 0 dBm 10 dBm 10 dBm 10 dBm Control Cycle NVNT 802.11b 2462MHz Control Cycle NVNT 802.11b 2462MHz <	dBm Ba Ba <t< td=""><td>0 dBm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0 dBm							
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB @ RBW 1 MHz Att 40 dB @ SWT 100 ms @ VBW 3 MHz SGL @ 1Pk Clrw 20 dBm M1[1] -4.26 dBm 10 dBm Image: Clrw Image: Clrw Image: Clrw 0 dBm M1 Image: Clrw Image: Clrw	0 dBm 0 dBm 0 dBm 0 dBm 2.437 CHz 1001 pts 10.0 ms/ Prodv 0 dBm 0 dBm	10 dBm 20 dBm 20 dBm 40 dBm 50 dB	dBm	-10 dBm							
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB @ RBW 1 MHz Att 40 dB @ SWT 100 ms @ VBW 3 MHz SGL • IPk Clrw 20 dBm	0 dBm 0 dBm 0 dBm 0 dBm 2.437 GHz 1001 pts 10.0 ms/ 10.0 ms	10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 10 dBm 40 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 70 dBm 10 dBm 10 dBm 10 dBm 70 dBm 10 dBm 10 dBm 10 dBm 70 dBm 0 dBm 10 dBm 10 dBm 10 dBm 10 dBm 11 dBm 14.9000 ms 0 dBm 10 dBm 14.9000 ms 0 dBm 10 dBm 14.9000 ms	dBm B3.0000 ms dBm Bm dBm M1 dBm M1 d								
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB @ RBW 1 MHz Att 40 dB @ SWT 100 ms @ VBW 3 MHz SGL • IPk Clrw 20 dBm	0 dBm	10 dBm	dBm	-20 dBm		1					
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB @ RBW 1 MHz Att 40 dB @ SWT 100 ms @ VBW 3 MHz SGL • IPk Clrw 20 dBm	0 dBm	10 dBm	dBm	-30 dBm		 					
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB @ RBW 1 MHz Att 40 dB @ SWT 100 ms @ VBW 3 MHz SGL • IPk Clrw 20 dBm	0 dBm	10 dBm 1 <td>dBm </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td>	dBm								
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dBm Offset 7.72 dBm RBW 1 MHz Att 40 dBm SWT 100 ms YBW 3 MHz SGL 0 dBm M1[1] -4.26 dBm 10 dBm 14.9000 ms 14.9000 ms 10 dBm 1 1 1 -10 dBm 1 1 1 1 -20 dBm 1 1 1 1 1	0 dBm	00 dBm 20 dBm 20 dBm 40 dBm 40 dBm 40 dBm 50 dBm 50 dBm 70 dBm 72 dB	dBm	-40 dBm		1			1		
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB @ RBW 1 MHz Att 40 dB @ SWT 100 ms @ VBW 3 MHz SGL • IPk Clrw 20 dBm	0 dBm	00 dBm 20 dBm 20 dBm 40 dBm 40 dBm 40 dBm 50 dBm 50 dBm 70 dBm 72 dB	dBm	-50 dBm		 					1
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB @ RBW 1 MHz Att 40 dB @ SWT 100 ms @ YBW 3 MHz SGL 0 PPk Clrw M1[1] -4.26 dBm 10 dBm M1[1] -4.26 dBm 14.9000 ms 10 dBm M1 How	0 dBm	00 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 70 dB	dBm	60 d0							
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dB • RBW 1 MHz 4tt 40 dB • SWT 100 ms • VBW 3 MHz 5GL • Pk Clrw -4.26 dBm 10 dBm 14.9000 ms 0 dBm M1[1] -4.26 dBm -10 dBm	0 dBm	10 dbm 20 dbm 20 dbm 30 dbm 40 dbm 50 db	dBm B3.0000 ms dBm B3.0000 ms </td <td>-60 dBm — —</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-60 dBm — —							
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dBm Offset 7.72 dB RBW 1 MHz Att 40 dB SWT 100 ms VBW 3 MHz Sol • 1Pk Clrw M1[1] -4.26 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm	10 dbm 20 dbm 20 dbm 30 dbm 40 dbm 50 db	dBm B3.0000 ms dBm B3.0000 ms </td <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Duty Cycle NVNT 802.11b 2462MHz Spectrum Ref Level 27.72 dBm Offset 7.72 dB RBW 1 MHz Att 40 dB SWT 100 ms VBW 3 MHz SGL 91Pk Clrw	0 dBm	10 dbm 20 dbm 20 dbm 40 dbm 40 dbm 50 db	dBm	-70 dBm		100	1 pts				
		10 dBm 20	dBm	30 dBm							
40 dBm		10 dBm	dBm	-30 dBm		 					
		10 dBm	dBm	-20 dBm							
-30 dBm			dBm 83.0000 ms	-20 dBm							
-30 dBm			dBm 83.0000 ms	-10 dbiii							
-30 dBm		dBm M1	dBm 83.0000 ms	-10 dBm							
-20 dBm	0 dBm	dBm M1	dBm 83.0000 ms			 	<u> </u>			T T	
-10 dBm	0 dBm		dBm 83.0000 ms	0 dBm		 			_	M1	
-10 dBm	0 dBm		dBm 83.0000 ms								
0 dBm M1	dBm	0 dBm		10 dBm							
0 dBm M1	dBm										
10 dBm M1 M1M1M1	i dBm	80,0000 mm		20 d8m				1(1)			

ACCREDITED

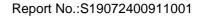
Certificate #4298.01

SGL 91Pk Clrw								
				м	1[1]			-5.05 dBm
20 dBm						1		4.3000 ms
10 dBm								
0 dBm								
ฟาหมโมเมเมเม -10 dBm	աստություններ	hundrokologhal	elinetrodoneringen and a fil	whatadhalhadhada	hataandaalaahadhadh	alligeradination()	matakalana	nananananan
-20 dBm								
-20 0811								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.412 GHz			1001	pts				10.0 ms/
Ref Level 27.77	dBm Offset 7	Ity Cycle	BW 1 MHz	802.11g) 2437M	IHz		
Ref Level 27.77 Att 4 SGL	dBm Offset 7	7.77 dB 👄 R	BW 1 MHz	802.11g) 2437M	lHz		
Att 4 SGL 1Pk Cirw	dBm Offset 7	7.77 dB 👄 R	BW 1 MHz		1[1]	IHz		-4.48 dBm
Att 4 SGL 1Pk Cirw	dBm Offset 7	7.77 dB 👄 R	BW 1 MHz			Hz		
Att 4	dBm Offset 7	7.77 dB 👄 R	BW 1 MHz			Hz		-4.48 dBm
Ref Level 27.77 Att 4 SGL 1 1Pk Clrw 20 dBm 10 dBm 1	dBm Offset 7	7.77 dB 👄 R	BW 1 MHz			Hz		-4.48 dBm 98.7000 ms
Ref Level 27.77 Att 4 SGL 10 10 dBm 0	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz	M	1[1]			-4.48 dBm 98.7000 ms
Ref Level 27.77 Att 4 SGL 1 1Pk Clrw 20 20 dBm 10 10 dBm 10 6 dBm 6	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz	M	1[1]		oftelhoemennen	-4.48 dBm 98.7000 ms
Ref Level 27.77 Att 4 SGL 1 1Pk Clrw 20 dBm	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz	M	1[1]		nftafhsenanna	-4.48 dBm 98.7000 ms
Ref Level 27.77 Att 4 SGL 1 1Pk Clrw 20 20 dBm 10 10 dBm 10 MBm 10 -10 dBm 10 -20 dBm -10	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz	M	1[1]		nftafhsenanna	-4.48 dBm 98.7000 ms
Ref Level 27.77 Att 4 SGL 1 1Pk Clrw 2 20 dBm 1 10 dBm 1 0 dBm 1 10 dBm 1	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz	M	1[1]		njtruhaeharunhaa	-4.48 dBm 98.7000 ms
Ref Level 27.77 Att 4 SGL 1 1Pk Clrw 20 20 dBm 10 10 dBm 10 MBm 10 -10 dBm 10 -20 dBm -10	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz	M	1[1]		ngtraftasensentense	-4.48 dBm 98.7000 ms
Ref Level 27.77 Att 4 SGL 1 1Pk Clrw 20 20 dBm 10 10 dBm 10 0 dBm 10 -20 dBm	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz	M	1[1]			-4.48 dBm 98.7000 ms
Ref Level 27.77 Att 4 SGL 1 1Pk Clrw 20 20 dBm 10 10 dBm 10 0 dBm 10 -20 dBm	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz	M	1[1]		efteftsersernetne	-4.48 dBm 98.7000 ms
Ref Level 27.77 Att 4 SGL 1 1Pk Clrw 20 20 dBm 10 10 dBm 10 0 dBm 10 -20 dBm	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz	M	1[1]			-4.48 dBm 98.7000 ms
Ref Level 27.77 Att 4 SGL 4 IPk Clrw 20 dBm 10 dBm - 0 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm - -50 dBm - -70 dBm -	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz		1[1]			-4.48 dBm 98.7000 ms
Ref Level 27.77 Att 4 SGL 1 1Pk Clrw 20 20 dBm 10 10 dBm 10 0 dBm 10 -20 dBm 10 -30 dBm	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz		1[1]			-4.48 dBm 98.7000 ms 98.7000 ms
Ref Level 27.77 Att 4 SGL 4 IPk Clrw 20 dBm 10 dBm - 0 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm - -50 dBm - -70 dBm -	dBm Offset 7 0 dB ⊕ SWT	7.77 dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz		1[1]			-4.48 dBm 98.7000 ms

SGL 91Pk Clrw							
				M1[1]			-4.31 dBm 70.2000 ms
20 dBm							70.2000 ms
10 dBm							
0 dBm					- MI		
տնդերին որություն -10 dBm	hurbahaanaan ahaanaana	ang	արդություն	anahadnading na hadaa hadaa	ավատերութերություն	վերություներ	MUHUHUHUHU MUHUHUHUHU
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
							10.0
CF 2.462 GHz Spectrum Ref Level 27.6		Cycle N	BW 1 MHz	ts 11n(HT20) :	Ready 1		10.0 ms/) ₩
Spectrum Ref Level 27.6 Att SGL	53 dBm Offset	: 7.63 dB 👄 R	/NT 802.1		2412MHz) 4	
Spectrum Ref Level 27.6 Att	53 dBm Offset	: 7.63 dB 👄 R	/NT 802.1		2412MHz		-5.69 dBm
Spectrum Ref Level 27.6 Att SGL	53 dBm Offset	: 7.63 dB 👄 R	/NT 802.1	11n(HT20)	2412MHz		
Spectrum Ref Level 27.6 Att SGL • 1Pk Clrw	53 dBm Offset	: 7.63 dB 👄 R	/NT 802.1	11n(HT20)	2412MHz		-5.69 dBm
Spectrum Ref Level 27.6 Att SGL P1Pk Clrw 20 dBm 10 dBm 0 dBm	53 dBm Offset 40 dB • SWT	7.63 dB • R 100 ms • V	/NT 802.1 BW 1 MHz BW 3 MHz	M1[1]			-5.69 dBm 40.4000 ms
Spectrum Ref Level 27.6 Att SGL P1Pk Clrw 20 dBm 10 dBm 0 dBm	53 dBm Offset	7.63 dB • R 100 ms • V	/NT 802.1 BW 1 MHz BW 3 MHz	M1[1]			-5.69 dBm 40.4000 ms
Spectrum Ref Level 27.6 Att SGL P1Pk Clrw 20 dBm 10 dBm 0 dBm	53 dBm Offset 40 dB • SWT	7.63 dB • R 100 ms • V	/NT 802.1 BW 1 MHz BW 3 MHz	M1[1]			-5.69 dBm 40.4000 ms
Spectrum Ref Level 27.6 Att SGL • 1Pk Clrw 20 dBm 10 dBm 0 dBm 0 dBm 10 dBm	53 dBm Offset 40 dB • SWT	7.63 dB • R 100 ms • V	/NT 802.1 BW 1 MHz BW 3 MHz	M1[1]			-5.69 dBm 40.4000 ms
Spectrum Ref Level 27.6 Att SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm	53 dBm Offset 40 dB • SWT	7.63 dB • R 100 ms • V	/NT 802.1 BW 1 MHz BW 3 MHz	M1[1]			-5.69 dBm 40.4000 ms
Spectrum Ref Level 27.6 Att SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm	53 dBm Offset 40 dB • SWT	7.63 dB • R 100 ms • V	/NT 802.1 BW 1 MHz BW 3 MHz	M1[1]			-5.69 dBm 40.4000 ms
Spectrum Ref Level 27.6 Att SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -20 dBm -20 dBm -40 dBm	53 dBm Offset 40 dB • SWT	7.63 dB • R 100 ms • V	/NT 802.1 BW 1 MHz BW 3 MHz	M1[1]			-5.69 dBm 40.4000 ms
Spectrum Ref Level 27.6 Att SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	53 dBm Offset 40 dB • SWT	7.63 dB • R 100 ms • V	/NT 802.1	M1[1]			-5.69 dBm 40.4000 ms
Spectrum Ref Level 27.6 Att SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm	53 dBm Offset 40 dB • SWT	7.63 dB • R 100 ms • V	/NT 802.1 BW 1 MHz BW 3 MHz	M1[1]			-5.69 dBm 40.4000 ms

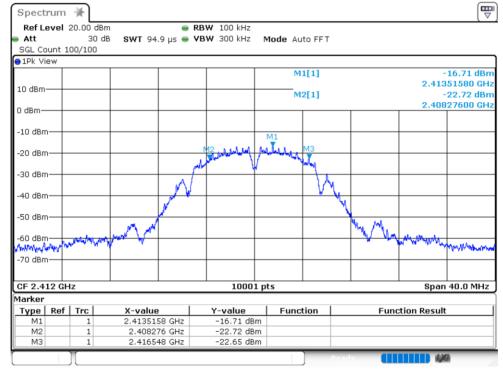
●1Pk Clrw			_	-				
00.40				м	1[1]			-3.98 dBm 65.9000 ms
20 dBm								
10 dBm								
0 dBm					M1			
	mounterployed		4 WWW. HTMPMAP 19744	uwwwww		አግሪካ/ምምተቀመም ነ ^ው ግ	A THIN THIN THE AND	and the second
-10 dBm								
-20 dBm								
20 40								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.437 GHz			1001	. pts	<u> </u>			10.0 ms/
Spectrum Ref Level 27.7 Att SGL		7.72 dB • F 100 ms • V	RBW 1 MHz	2.11n(H1	Г20) 24(62MHz		
Ref Level 27.7 Att	2 dBm Offset	7.72 dB 👄 F	RBW 1 MHz			62MHz		
Ref Level 27.7 Att SGL	2 dBm Offset	7.72 dB 👄 F	RBW 1 MHz		1[1]	62MHz		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL 1Pk Clrw 20 dBm	2 dBm Offset	7.72 dB 👄 F	RBW 1 MHz			62MHz		-3.35 dBm
Ref Level 27.7 Att SGL 1Pk Clrw	2 dBm Offset	7.72 dB 👄 F	RBW 1 MHz			62MHz		-3.35 dBm
Ref Level 27.7 Att SGL ● 1Pk Clrw 20 dBm 10 dBm 0 dBm	2 dBm Offset 40 dB ● SWT	7.72 dB • F 100 ms • V	RBW 1 MHz VBW 3 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL ● 1Pk Clrw 20 dBm 10 dBm 0 dBm	2 dBm Offset	7.72 dB • F 100 ms • V	RBW 1 MHz VBW 3 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL ● 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm	2 dBm Offset 40 dB ● SWT	7.72 dB • F 100 ms • V	RBW 1 MHz VBW 3 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL ● 1Pk Clrw 20 dBm 10 dBm 0 dBm	2 dBm Offset 40 dB ● SWT	7.72 dB • F 100 ms • V	RBW 1 MHz VBW 3 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL ● 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm	2 dBm Offset 40 dB ● SWT	7.72 dB • F 100 ms • V	RBW 1 MHz VBW 3 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL © 1Pk Clrw 20 dBm 10 dBm 0 0 dBm	2 dBm Offset 40 dB ● SWT	7.72 dB • F 100 ms • V	RBW 1 MHz VBW 3 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL ● 1Pk Clrw 20 dBm 10 dBm 0 0 dBm	2 dBm Offset 40 dB ● SWT	7.72 dB • F 100 ms • V	RBW 1 MHz VBW 3 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL © 1Pk Clrw 20 dBm 10 dBm 0 0 dBm	2 dBm Offset 40 dB ● SWT	7.72 dB • F 100 ms • V	RBW 1 MHz VBW 3 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL ● 1Pk Clrw 20 dBm 10 dBm 0 0 dBm	2 dBm Offset 40 dB ● SWT	7.72 dB • F 100 ms • V	RBW 1 MHz VBW 3 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL ● 1Pk Clrw 20 dBm 10 dBm 0 0 dBm 0 -10 dBm	2 dBm Offset 40 dB ● SWT	7.72 dB • F 100 ms • V	RBW 1 MHz VBW 3 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL ● 1Pk Clrw 20 dBm 10 dBm 0 0 dBm	2 dBm Offset 40 dB ● SWT	7.72 dB • F 100 ms • V	RBW 1 MHz VBW 3 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms
Ref Level 27.7 Att SGL ● 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	2 dBm Offset 40 dB ● SWT	7.72 dB • F 100 ms • V	RBW 1 MHz	M	1[1]	Mi		-3.35 dBm 76.6000 ms

●1Pk Clrw								
				М	1[1]			-6.40 dBm i8.4000 ms
20 dBm								0.4000 ms
10 dBm								
0 dBm					M1			
WWW.WHANGUIPPITATION	Hand Strendles on 14 horizon		the other starts of			Attes altitudens das	- Alexandratica disa	ter i hourin nited
	nounded and file of the t	ափոփիսիս վերյո	առումվե առը, տե	ana Nu-aamba	naada aha. 18	La Manuel Nation de	ֆոնվուտ արտու	ին՝ թ. աՌովիլ, թայե
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm CF 2.422 GHz			1001	pts				10.0 ms/
	dBm Offset	Cycle N\ 7.77 dB • R 100 ms • V	BW 1 MHz		〕 ^{Rood} 「40) 243	37MHz		
Ref Level 27.77	dBm Offset	7.77 dB 👄 R	BW 1 MHz	.11n(HT		37MHz		
Ref Level 27.77 Att 40 SGL	dBm Offset	7.77 dB 👄 R	BW 1 MHz	.11n(HT) Pool [40] 243	87MHz		-6.75 dBm 0.4000 ms
Ref Level 27.77 Att 40 SGL 1Pk Cirw	dBm Offset	7.77 dB 👄 R	BW 1 MHz	.11n(HT		37MHz		-6.75 dBm
Ref Level 27.77 Att 40 SGL 1Pk Clrw 20 dBm	dBm Offset	7.77 dB 👄 R	BW 1 MHz BW 3 MHz	.11n(HT		37MHz		-6.75 dBm
Ref Level 27.77 Att 40 SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm	dBm Offset [*]	7.77 dB	BW 1 MHz BW 3 MHz	.11n(HT	1[1]			-6.75 dBm i0.4000 ms
Ref Level 27.77 Att 40 SGL 10 10 dBm 10 0 dBm 10	dBm Offset [*]	7.77 dB	BW 1 MHz BW 3 MHz	.11n(HT	1[1]			-6.75 dBm i0.4000 ms
Ref Level 27.77 Att 40 SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm	dBm Offset [*]	7.77 dB	BW 1 MHz BW 3 MHz	.11n(HT	1[1]			-6.75 dBm i0.4000 ms
Ref Level 27.77 Att 40 SGL 10 10 dBm 10 0 dBm 10	dBm Offset [*]	7.77 dB	BW 1 MHz BW 3 MHz	.11n(HT	1[1]			-6.75 dBm i0.4000 ms
Ref Level 27.77 Att 40 SGL 10 10 dBm 10 0 dBm 10 -20 dBm -20 dBm	dBm Offset [*]	7.77 dB	BW 1 MHz BW 3 MHz	.11n(HT	1[1]			-6.75 dBm i0.4000 ms
Ref Level 27.77 Att 40 SGL 10 10 dBm 10 0 dBm 10 -20 dBm	dBm Offset [*]	7.77 dB	BW 1 MHz BW 3 MHz	.11n(HT	1[1]			-6.75 dBm i0.4000 ms
Ref Level 27.77 Att 40 SGL 10 1Pk Clrw 20 20 dBm 10 10 dBm 10 0 dBm 10 -20 dBm	dBm Offset [*]	7.77 dB	BW 1 MHz BW 3 MHz	.11n(HT	1[1]			-6.75 dBm i0.4000 ms
Ref Level 27.77 Att 40 SGL 10 11 Pk Clrw 20 20 dBm 10 10 dBm 10 0 dBm 10 20 dBm 10 30 dBm 10 -20 dBm 10 -20 dBm 10 -30 dBm 10 -60 dBm 10	dBm Offset [*]	7.77 dB	BW 1 MHz BW 3 MHz	.11n(HT	1[1]			-6.75 dBm i0.4000 ms
Ref Level 27.77 Att 40 SGL 10 10 dBm 10 0 dBm 10 -20 dBm	dBm Offset [*]	7.77 dB	BW 1 MHz BW 3 MHz	.11n(HT	1[1]			-6.75 dBm i0.4000 ms


	dBm Offset	7.75 dB 😑	RBW 1 MHz					
SGL	idB 👄 SWT	100 ms 👄	VBW 3 MHz					
1Pk Clrw								
20 dBm				M	1[1]			-6.14 dBm 85.6000 ms
10 dBm								
TO ODIN								
0 dBm		_					M1	
HEALAND TO THE AND THE	ender Hale Alterna		HUNDHAMMALL	alloof to a loop of the second se	Malandin Derfan	al Allenter And Allenter	Hutandopptur	www.hautoutu
-20 dBm					0.00.0	101		
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.452 GHz			1001	nts	-			10.0 ms/

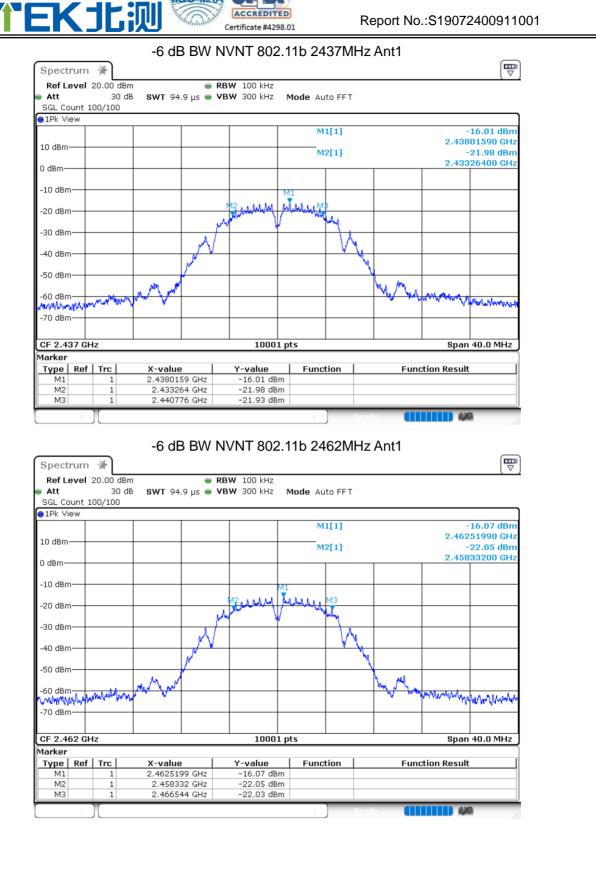
8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Antenna	Conducted	Limit	Verdict
		(MHz)		Power	(dBm)	
				(dBm)		
NVNT	802.11b	2412	Ant 1	0.37	30	Pass
NVNT	802.11b	2437	Ant 1	0.70	30	Pass
NVNT	802.11b	2462	Ant 1	1.06	30	Pass
NVNT	802.11g	2412	Ant 1	-1.74	30	Pass
NVNT	802.11g	2437	Ant 1	-1.36	30	Pass
NVNT	802.11g	2462	Ant 1	-0.92	30	Pass
NVNT	802.11n(HT20)	2412	Ant 1	-2.96	30	Pass
NVNT	802.11n(HT20)	2437	Ant 1	-1.14	30	Pass
NVNT	802.11n(HT20)	2462	Ant 1	-0.84	30	Pass
NVNT	802.11n(HT40)	2422	Ant 1	0.78	30	Pass
NVNT	802.11n(HT40)	2437	Ant 1	0.92	30	Pass
NVNT	802.11n(HT40)	2452	Ant 1	1.13	30	Pass

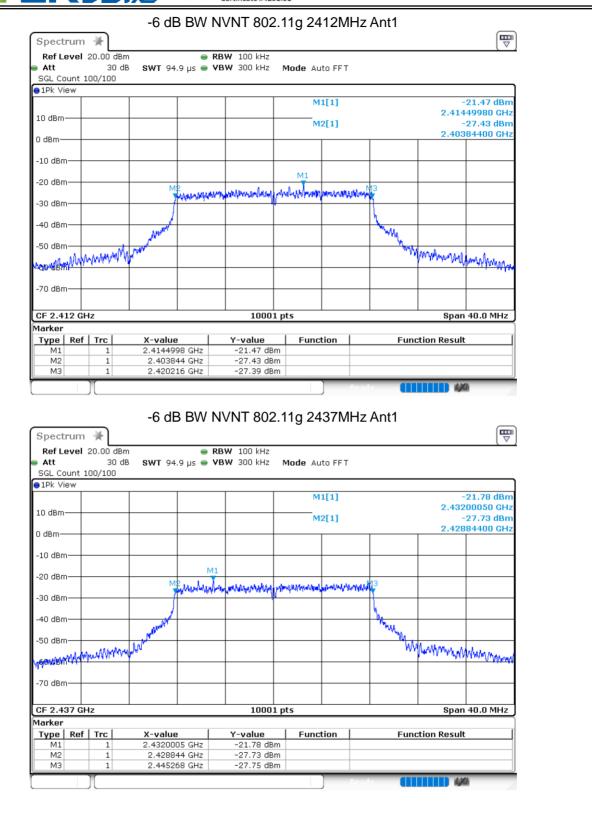

8.3 OCCUPIED CHANNEL BANDWIDTH

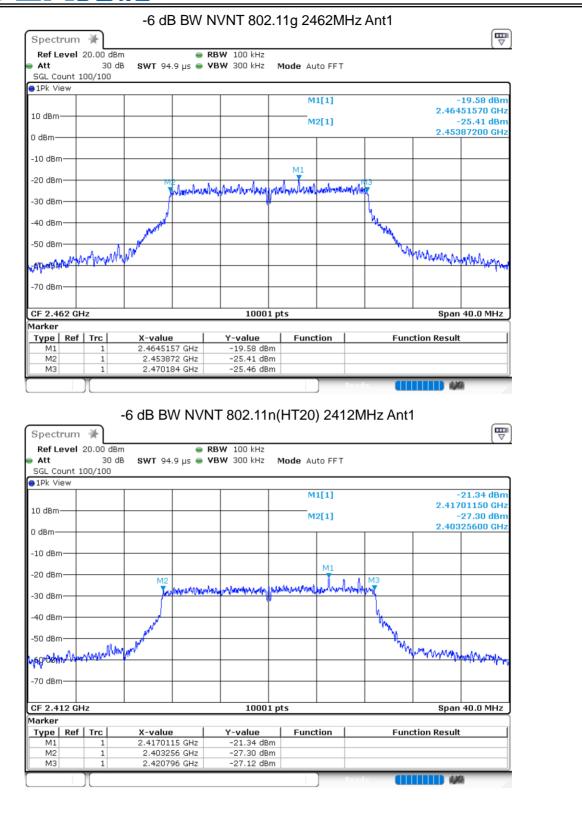
Condition	Mode	Frequency	Antenna	-6 dB	Limit -6 dB	Verdict
		(MHz)		Bandwidth	Bandwidth	
				(MHz)	(MHz)	
NVNT	802.11b	2412	Ant 1	8.272	≥0.5	Pass
NVNT	802.11b	2437	Ant 1	7.512	≥0.5	Pass
NVNT	802.11b	2462	Ant 1	8.212	≥0.5	Pass
NVNT	802.11g	2412	Ant 1	16.372	≥0.5	Pass
NVNT	802.11g	2437	Ant 1	16.424	≥0.5	Pass
NVNT	802.11g	2462	Ant 1	16.312	≥0.5	Pass
NVNT	802.11n(HT20)	2412	Ant 1	17.540	≥0.5	Pass
NVNT	802.11n(HT20)	2437	Ant 1	17.200	≥0.5	Pass
NVNT	802.11n(HT20)	2462	Ant 1	17.572	≥0.5	Pass
NVNT	802.11n(HT40)	2422	Ant 1	35.936	≥0.5	Pass
NVNT	802.11n(HT40)	2437	Ant 1	35.736	≥0.5	Pass
NVNT	802.11n(HT40)	2452	Ant 1	35.672	≥0.5	Pass

ACCREDITED

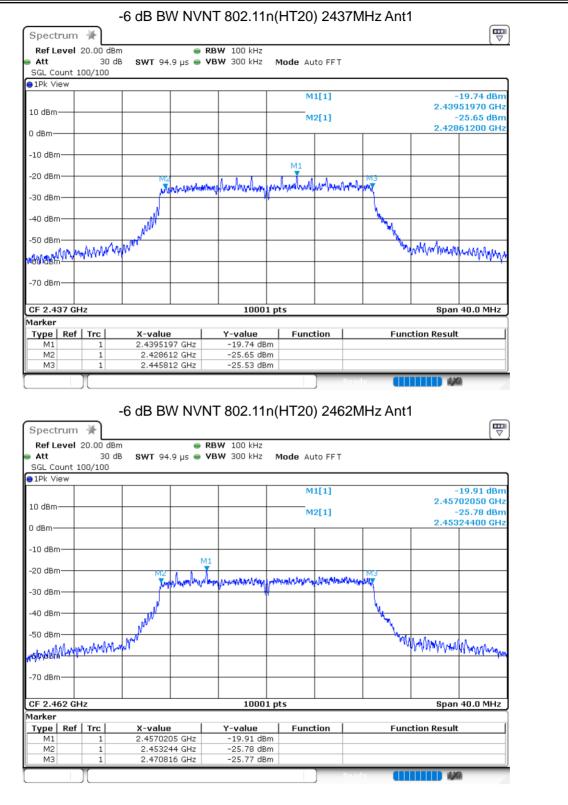

Certificate #4298.01

-6 dB BW NVNT 802.11b 2412MHz Ant1

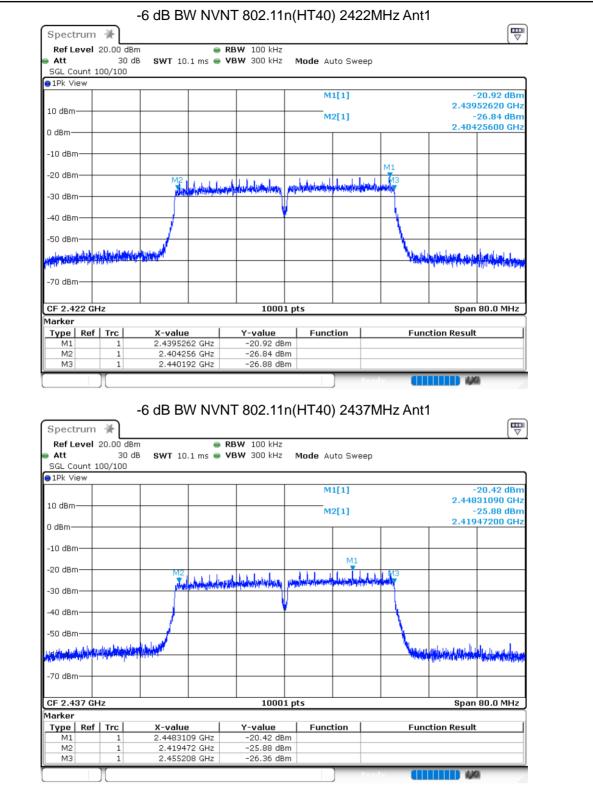



Iac-MR ACCREDITED Certificate #4298.01

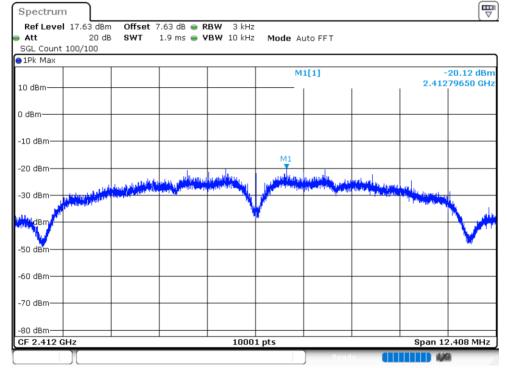
Report No.:S19072400911001



Version.1.3

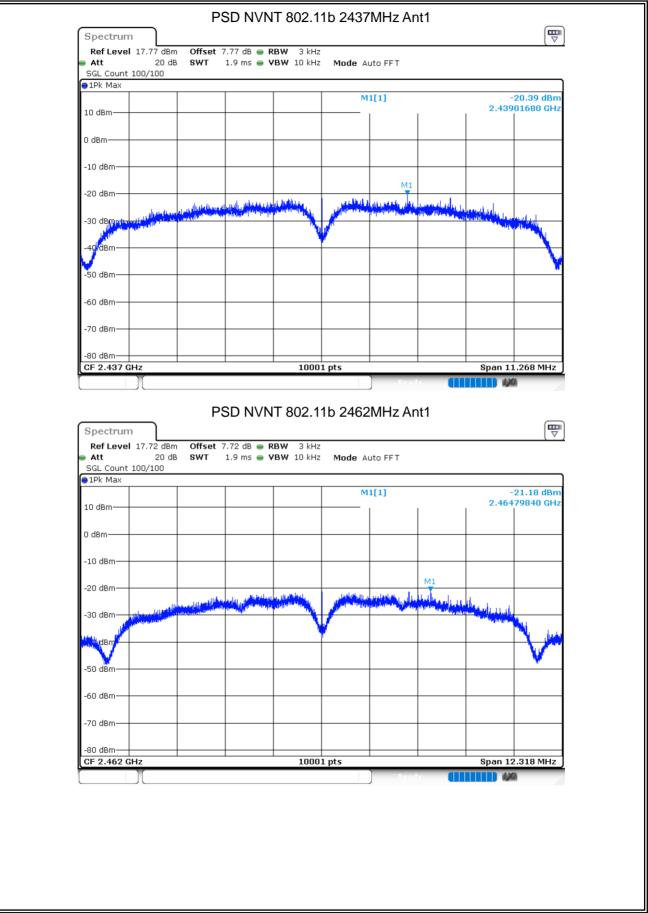


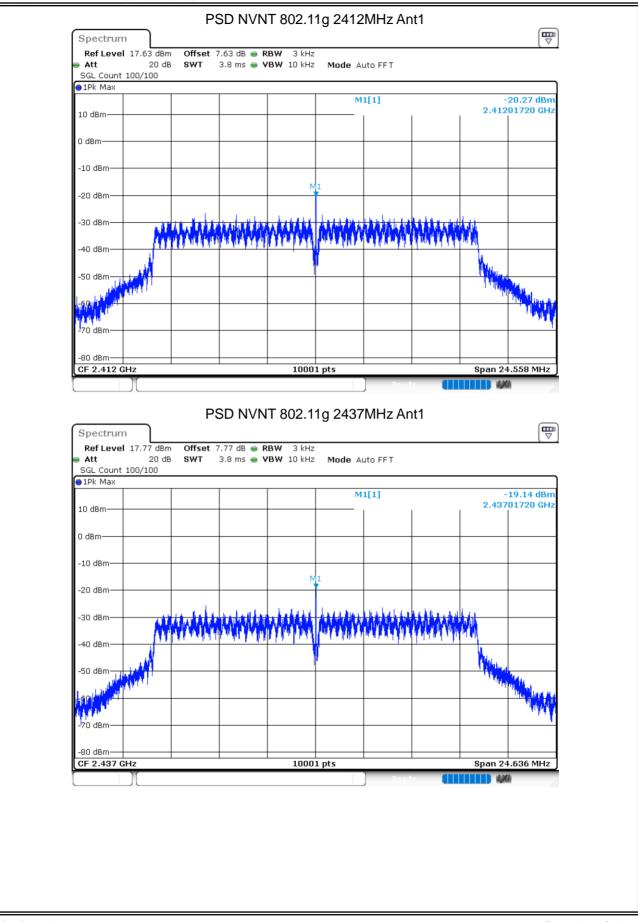
Att		20.00 d	Bm 🧧	• RBW 100 kHz			``````````````````````````````````````
		30			Mode Auto Sw	eep	
SGL CO	unt 10	00/100					
1Pk Vie	ew						
					M1[1]		-20.13 dBm
.0 dBm-							2.46700650 GHz
o ubiii					M2[1]		-25.19 dBm
dBm—							2.43451200 GHz
10 dBm							
						M1	
20 dBm			M2	1.1.1.1.1.		L M3	
			Jan Barrison and Barrison	grandlandapelandarcheddig pro		Manual And Index	
30 dBm							
40 dBm				Y I			
ro ubin			1				
50 dBm						\	
			all the second			1 N	والمروالا ومعالمة والمعالم والالمروال
	1110	hold his					ale a state a state a state a state in a state a state A state a state
70 dBm	+						
F 2.45	2 GH	z		10001	ots		Span 80.0 MHz
arker							
Гуре	Ref	Trc	X-value	Y-value	Function	Fur	nction Result
M1		1	2.4670065 GHz	-20.13 dBm			
M2		1	2.434512 GHz	-25.19 dBm			
M3		1	2.470184 GHz	-25.72 dBm			



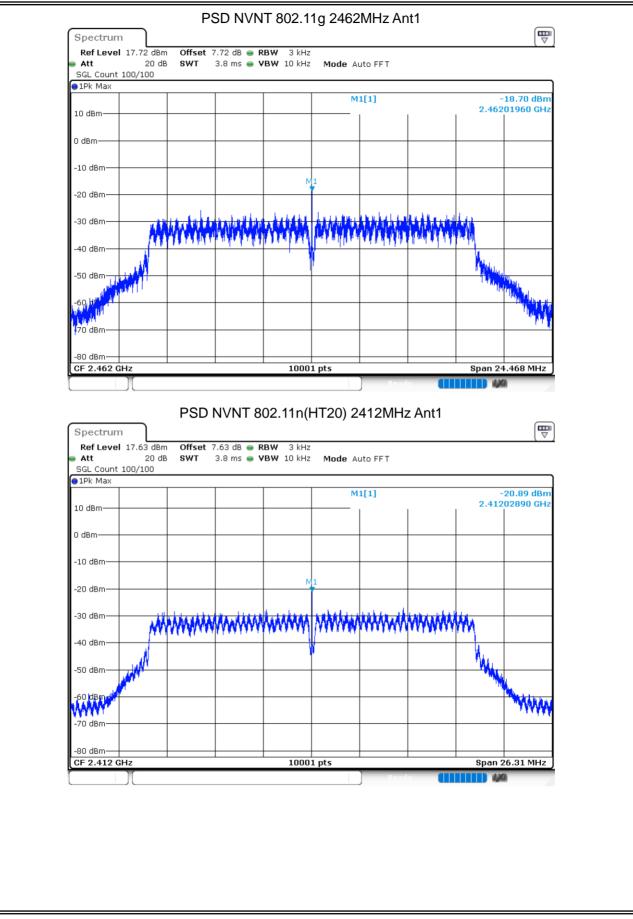
8.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL

NTEK北视

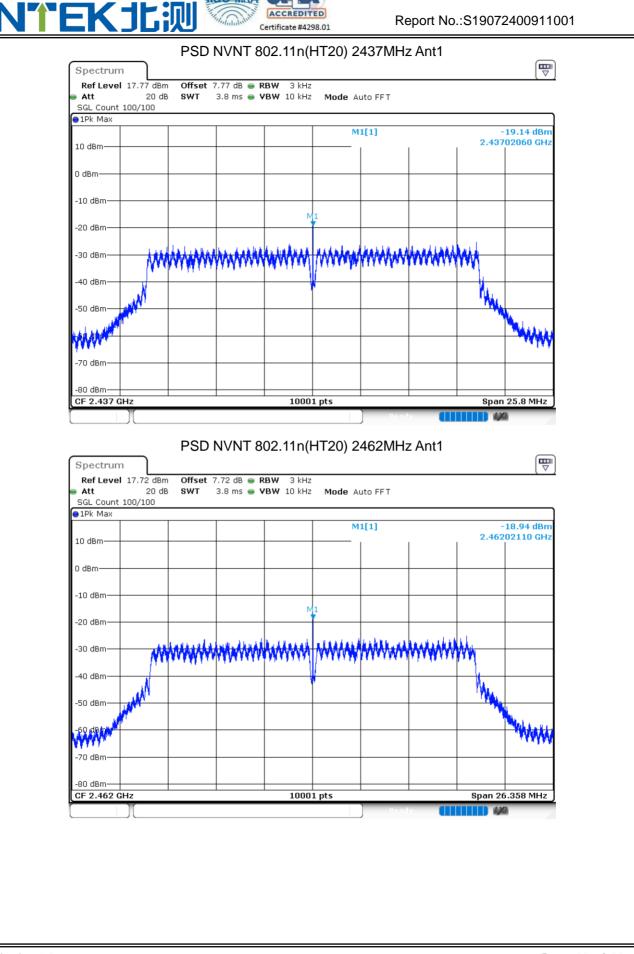

	IUN FOWER SFE					
Condition	Mode	Frequency	Antenna	Max PSD	Limit	Verdict
		(MHz)		(dBm/3kHz)	(dBm/3kHz)	
NVNT	802.11b	2412	Ant 1	-20.117	8	Pass
NVNT	802.11b	2437	Ant 1	-20.394	8	Pass
NVNT	802.11b	2462	Ant 1	-21.183	8	Pass
NVNT	802.11g	2412	Ant 1	-20.266	8	Pass
NVNT	802.11g	2437	Ant 1	-19.144	8	Pass
NVNT	802.11g	2462	Ant 1	-18.696	8	Pass
NVNT	802.11n(HT20)	2412	Ant 1	-20.890	8	Pass
NVNT	802.11n(HT20)	2437	Ant 1	-19.143	8	Pass
NVNT	802.11n(HT20)	2462	Ant 1	-18.938	8	Pass
NVNT	802.11n(HT40)	2422	Ant 1	-25.459	8	Pass
NVNT	802.11n(HT40)	2437	Ant 1	-25.955	8	Pass
NVNT	802.11n(HT40)	2452	Ant 1	-25.608	8	Pass

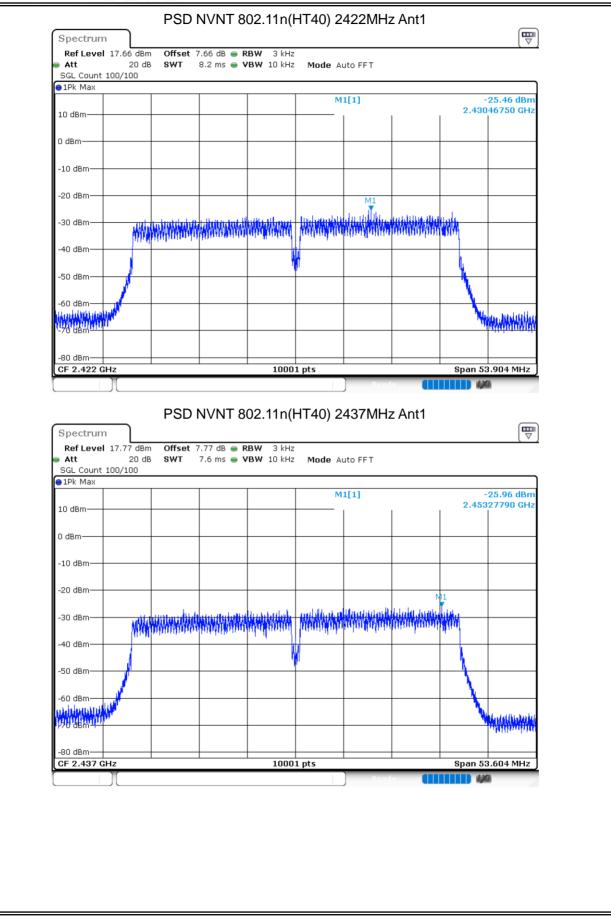


N



Version.1.3


Ν



N

