

Test Report					
1. Client					
• Name: • Address:		SENA TECHNOLOGIES.Inc 19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, Korea			
2. Use of Repo	rt: FCC App	proval			
3. Sample Desc	cription				
 Product Nan Model Name 					
4. Date of Rece	eipt: 2022-06	2022-06-21			
5. Date of Test	: 2022-08	2022-08-16 ~ 2022-09-01			
6. Test Method		FCC Part 15 Subpart C 15.247 RSS-247 Issue 2(2017-02), RSS-GEN Issue 5(2019-03)			
7. Test Results	: Refer to	the test results			
This test report must not be reproduced or reproduced in any way. The results shown in this test report are the results of testing the samples provided. This test report is prepared according to the requirements of ISO / IEC 17025.					
Affirmation	Tested by	(signature)	Technical Manager	(signature)	
	Dae-Seong, Choi		Yong-Min, Won		
	Sep 19, 2022				
EMC Labs Co., Ltd.					

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 1 / 41

<u>Contents</u>

1.	Applicant & Manufacturer & Test Laboratory Information	4
2.	Equipment under Test(EUT) Information	5
3.	Test Summary	6
4.	Used equipment on test······	7
5.	Antenna Requirement·····	8
6.	6 dB Bandwidth·····	9
7.	Maximum Peak Output Power	13
8.	Peak Power Spectral Density	16
9.	TX Radiated Spurious Emission and Conducted Spurious Emission	19
10.	Conducted Emission	35
	APPENDIX	

APPENDIX I	TEST SETUP	38
		4.0
APPENDIX II	UNCERTAINTY	40

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 2 / 41

This test report shall not be reproduced except in full, Without the written approval.

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
KR0140-RF2209-011	Sep 19, 2022	Initial Issue

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 3 / 41

1. Applicant & Manufacturer & Test Laboratory Information

1.1 Applicant Information

Applicant	SENA TECHNOLOGIES.Inc
Applicant Address	19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, Korea
Contact Person	Seunghyun Kim
Telephone No.	+82-2-573-7772
Fax No.	+82-2-573-7710
E-mail	shkim@sena.com

1.2. Manufacturer Information

Manufacturer SENA TECHNOLOGIES.Inc	
Manufacturer Address	19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, Korea

1.3 Test Laboratory Information

Laboratory	EMC Labs Co., Ltd.
Applicant Address	100, Jangjateo-ro, Hobeop-myeon, Icheon-si, Gyeonggi-do, Republic of
	Korea
Contact Person	Yongmin Won
Telephone No.	+82-2-508-7778
Fax No.	+82-2-538-3668
FCC Designation No.	KR0140
FCC Registration No.	58000
IC Site Registration No.	28751

2. Equipment under Test(EUT) Information

2.1 General Information

Product Name	SPLASH
Model Name	SP114
FCC ID	S7A-SP114
IC	8154A-SP114
Power Supply	DC 3.7 V

2.2 Additional Information

Operating Frequency	Frequency 2 410 MHz ~ 2 475 MHz	
Number of channel 14		
Modulation Type	OQPSK	
Antenna Type PCB Pattern Antenna		
Antenna Gain 0.46 dBi		
Firmware Version	1.0	
Hardware Version	1.0	
Test software	CMD v10.0.19044.1889	

2.3 Test Frequency

Test mode		Test Frequency (MHz)	
	Low Frequency	Middle Frequency	High Frequency
MESH 2 410		2 445	2 475

2.4 Used Test Software Setting Value

Test Mode	Setting Item	
Test Mode	Power	
MESH	10	

2.5 Mode of operation during the test

- The EUT continuous transmission mode during the test with set at Low Channel, Middle Channel, and High Channel. To get a maximum radiated emission levels from the EUT, the EUT was moved throughout the XY, YZ, XZ planes.

2.6 Modifications of EUT

- None

3. Test Summary

Applied	FCC Rule	IC Rule	Test Items	Test Condition	Result
\square	15.203	-	Antenna Requirement		С
\boxtimes	15.247(a)	RSS-247 (5.2)	6 dB Bandwidth		С
\square	_	RSS GEN (6.7)	Occupied Bandwidth (99%)	Conducted	С
\square	15.247(b)	RSS-247 (5.4)	Maximum Peak Output Power		С
\square	15.247(e)	RSS-247 (5.2)	Peak Power Spectral Density		С
	15.247(d)	RSS-247 (5.5)	Conducted Spurious Emission		С
	15.247(d) 15.205 & 15.209	RSS-247 (5.5) RSS-GEN (8.9 & 8.10)	Radiated Spurious Emission	Radiated	С
\square	15.207	RSS-GEN (8.8)	Conducted Emissions	AC Line Conducted	С
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable					

The sample was tested according to the following specification: ANSI C63.10:2013.

Compliance was determined by specification limits of the applicable standard according to customer requirements.

4. Used equipment on test

Description	Manufacturer	Model Name	Serial Name	Next Cal.
TEMP & HUMID CHAMBER	JFM	JFMA-001	20200929-01	2022.12.17
CONTROLLER	AMWON TECHNOLOGY	TEMI2500	S7800VK191 0707	2022.12.17
PSA SERIES SPECTRUM ANALYZER	AGILENT	E4440A	MY45304057	2022.12.15
MXG ANALOG SIGNAL GENERATOR	AGILENT	N5183A	MY50141890	2022.12.15
SYSTEM DC POWER SUPPLY	AGILENT	6674A	MY53000118	2022.12.15
VECTOR SIGNAL GENERATOR	ROHDE & SCHWARZ	SMBV100A	257524	2022.12.15
BLUETOOTH TESTER	TESCOM	TC-3000A	3000A480088	2022.12.15
DIRECTIONAL COUPLER	AGILENT	773D	2839A01855	2022.12.15
ATTENUATOR	AGILENT	8493C	73193	2022.12.15
ATTENUATOR	ACE RF COMM	ATT SMA 20W 20dB 8GHz	A-0820.SM20.2	2023.04.11
TERMINATIOM	HEWLETT PACKARD	909D	07492	2022.12.15
POWER DIVIDER	HEWLETT PACKARD	11636A	06916	2022.12.15
SLIDE-AC	DAEKWANG TECH	SV-1023	_	_
DIGITAL MULTIMETER	HUMANTECHSTORE	15B+	50561541WS	2022.12.15
ACTIVE LOOP ANTENNA	TESEQ	HLA 6121	55685	2022.12.30
Biconilog ANT	Schwarzbeck	VULB 9160	3260	2023.02.03
Biconilog ANT	Schwarzbeck	VULB9168	902	2023.01.14
Horn Ant.	Schwarzbeck	BBHA9120D	974	2023.01.08
Horn Ant.	S/B	BBHA9120D	1497	2023.01.25
Amplifier	TESTEK	TK-PA18H	200104-L	2023.03.17
EMI TEST RECEIVER	ROHDE& SCHWARZ	ESW44	101952	2023.04.07
PROGRAMMABLE DC POWER SUPPLY	ODA	OPE-305Q	oda-01-09-23-1831	2023.01.10
DC POWER SUPPLY	AGILENT	E3634A	MY40012120	2023.02.03
POWER SENSOR	AGILENT	U2001H	MY51140028	2023.02.19
Test Receiver	ROHDE & SCHWARZ	ESR7	101616	2023.06.28
LISN	ROHDE & SCHWARZ	ENV216	100409	2023.01.10
PULSE LIMITER	lignex1	EPL-30	NONE	2023.01.24

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 7 / 41

5. Antenna Requirement

Accoding to §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Accoding to §15.247(b)(4) e conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1 Result

Complies

(The transmitter has a PCB Pattern Antenna. The directional peak gain of the antenna is 0.46 dBi.)

6. 6 dB Bandwidth

6.1 Test Setup

Refer to the APPENDIX I.

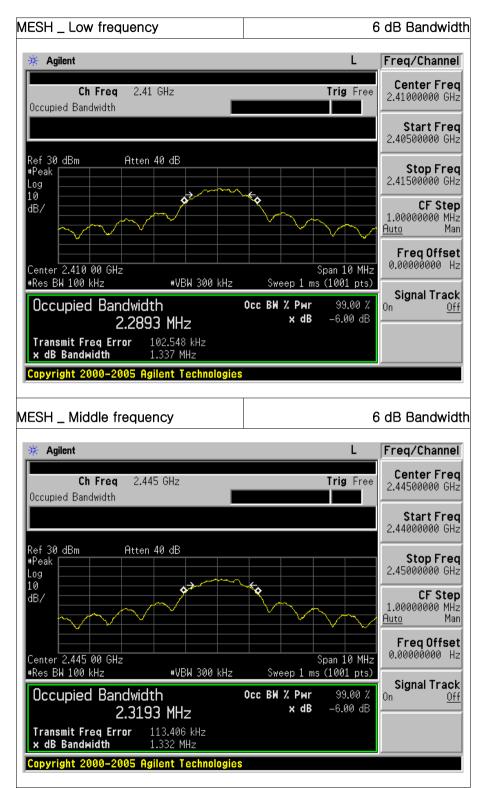
6.2 Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

6.3 Test Procedure

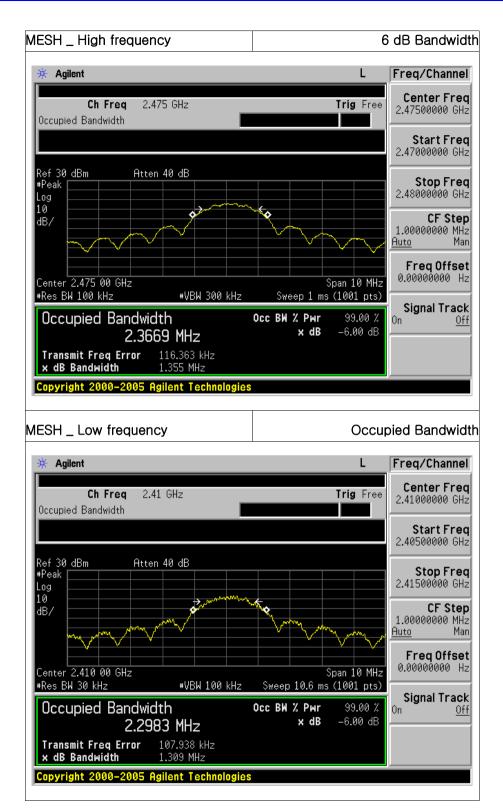
The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max Hold.
- 5. Sweep = Auto
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
 - Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW ≥ 3 x RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.


6.4 Test Result

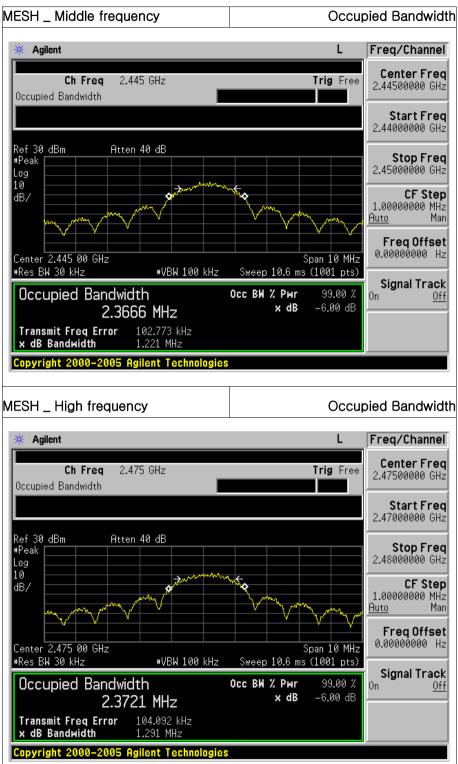
Test Mode	Test Frequency	6 dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
	Low	1.337	2.298
MESH	Middle	1.332	2.367
	High	1.355	2.372

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 9 / 41



6.5 Test Plot

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 10 / 41



EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 11 / 41

This test report shall not be reproduced except in full, Without the written approval.

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 12 / 41

7. Maximum Peak Output Power

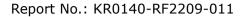
7.1 Test Setup

Refer to the APPENDIX I.

7.2 Limit

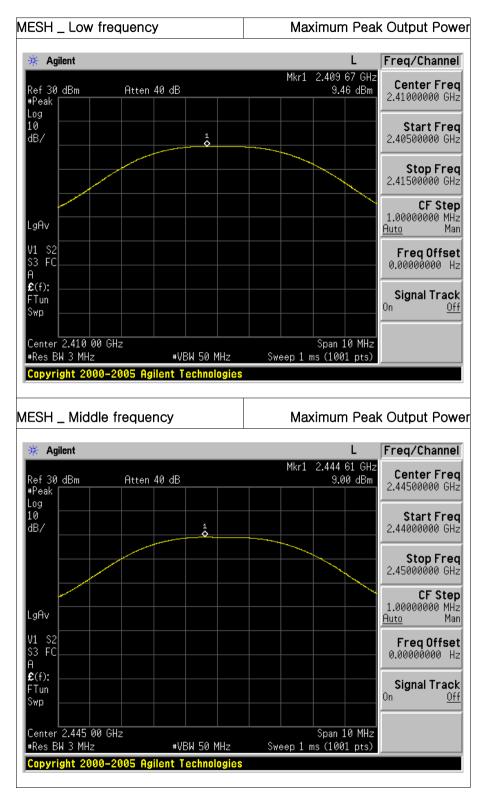
The maximum permissible conducted output power is 1 Watt.

7.3 Test Procedure

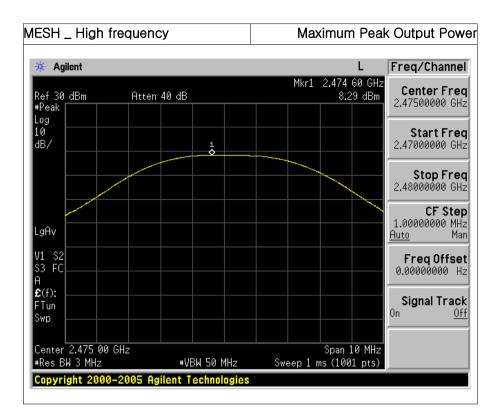

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer. Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

- 1. Set the RBW \geq DTS bandwidth
- 2. Set VBW \geq 3 x RBW
- 3. Set span \geq 3 x RBW.
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak search function to determine the peak amplitude level.

7.4 Test Result


Test Mode	Test Frequency	Peak Output Power				
Test Mode	Test Frequency	dBm	mW			
	Low	9.46	8.83			
MESH	Middle	9.00	7.94			
	High	8.29	6.75			

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 13 / 41



7.5 Test Plot

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 14 / 41

8. Peak Power Spectral Density

8.1 Test Setup

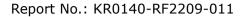
Refer to the APPENDIX I.

8.2 Limit

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

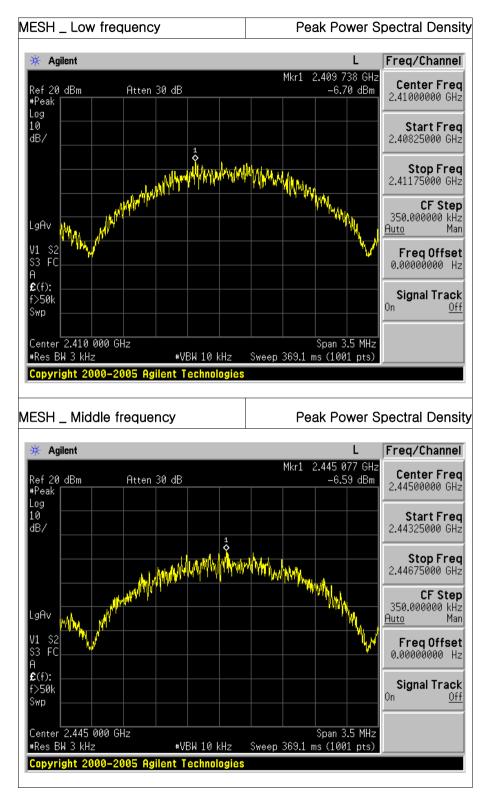
8.3 Test Procedure

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

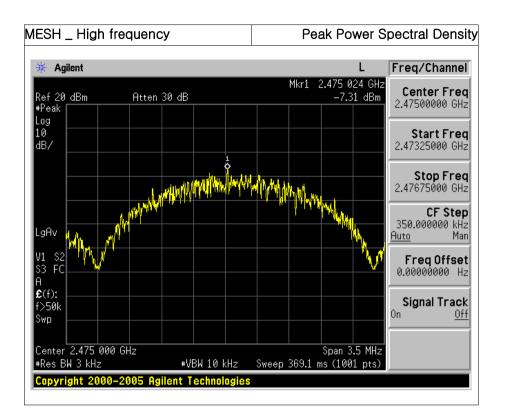

(ANSI C63.10-2013 _ Section 11.10.2 - Method PKPSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = Peak.
- 6. Sweep time = Auto
- 7. Trace mode = Max Hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Mode	Test Frequency	Peak Power Spectral Density (dBm)
	Low	-6.70
MESH	Middle	-6.59
	High	-7.31


8.4 Test Result

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 16 / 41



8.5 Test Plot

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 17 / 41

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 18 / 41

9. TX Radiated Spurious Emission and Conducted Spurious Emission

9.1 Test Setup

Refer to the APPENDIX I.

9.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1705	24000/F (kHz)	30
1705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

radiator shall not exceed the field strength levels specified in the following table

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 19 / 41

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 ~ 0.110	16.42 ~ 16.423	399.90 ~ 410	4.5 ~ 5.15
0.495 ~ 0.505	16.69475 ~ 16.69525	608 ~ 614	5.35 ~ 5.46
2.1735 ~ 2.1905	16.80425 ~ 16.80475	960 ~ 1240	7.25 ~ 7.75
4.125 ~ 4.128	25.5 ~ 25.67	1300 ~ 1427	8.025 ~ 8.5
4.17725 ~ 4.17775	37.5 ~ 38.	1435 ~ 1626.5	9.0 ~ 9.2
4.20725 ~ 4.20775	25 73 ~ 74.6	1645.5 ~ 1646.5	9.3 ~ 9.5
4.17725 ~ 4.17775	74.8 ~ 75.2	1660 ~ 1710	10.6 ~ 12.7
6.215 ~ 6.218	108 ~ 121.94	1718.8 ~ 1722.2	13.25 ~ 13.4
6.26775 ~ 6.26825	149.9 ~ 150.05	2200 ~ 2300	14.47 ~ 14.5
6.31175 ~ 6.31225	156.52475 ~ 156.52525	2310 ~ 2390	15.35 ~ 16.2
8.291 ~ 8.294	156.7 ~ 156.9	2483.5 ~ 2500	17.7 ~ 21.4
8.362 ~ 8.366	162.0125 ~ 167.17	2690 ~ 2900	22.01 ~ 23.12
8.37625 ~ 8.38675	3345.8 ~ 3358	3260 ~ 3267	23.6 ~ 24.0
8.41425 ~ 8.41475	3600 ~ 4400	3332 ~ 3339	31.2 ~ 31.8
12.51975 ~ 12.52025	3345.8 ~ 3358	240 ~ 285	36.43 ~ 36.5
12.57675 ~ 12.57725	3600 ~ 4400	322 ~ 335.4	Above 38.6
13.36 ~ 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

9.3 Test Procedure for Radiated Spurious Emission

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a Broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading. (The EUT was pre-tested with three axes (X, Y, Z) and the final test was performed at the worst case.)
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Measurement Instrument Setting

- 1. Frequency Range: Below 1 GHz RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak
- 2. Frequency Range: Above 1 GHz

```
Peak Measurement
RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto,
Trace mode = Max Hold until the trace stabilizes
```

Average Measurement RBW = 1 MHz, VBW = 3 MHz, Detector = RMS (Number of points ≥ 2 x Span / RBW), Trace Mode = Average (Averaging type = power(i.e. RMS)), Sweep Time = Auto, Sweep Count = at least 100 traces

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 21 / 41

- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than tuming on and off with the transmit cycle, then no duty cycle correction is required for that emission.

9.4 Test Procedure for Conducted Spurious Emission

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The reference level of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below. Frequency range: 30 MHz ~ 26.5 GHz
 RBW = 100 kHz, VBW = 300 kHz, Sweep Time = Auto, Detector = Peak, Trace = Max Hold

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

9.5 Test Result

9 kHz \sim 25 GHz Data MESH

• Low frequency

Frequency	Rea	ding		E	2005	Lin	nits	Re	sult	Ма	rgin
Frequency	(dBu	V/m)	Pol.	Factor (dB)	DCCF (dB)	(dBu	V/m)	(dBu	V/m)	(d	в)
(MHz)	AV ,	/ Peak		(48)	(00)	AV /	Peak	AV /	Peak	AV /	Peak
2 389.64	N/A	32.75	Н	11.84	-34.28	54.0	74.0	10.3	44.6	43.7	29.4
4 819.42	N/A	52.58	Н	4.18	-34.28	54.0	74.0	22.5	56.8	31.5	17.2
7 228.92	N/A	39.92	V	20.20	-34.28	54.0	74.0	25.8	60.1	28.2	13.9

• Middle frequency

Fraguanay	Rea	ding		- ·	0.005	Lin	nits	Re	sult	Mai	rgin
Frequency	(dBu	V/m)	Pol.	Factor (dB)	DCCF (dB)	(dBu	IV/m)	(dBu	IV/m)	(d	в)
(MHz)	AV /	/ Peak		(42)	(42)	AV /	Peak	AV /	Peak	AV /	Peak
4 891.36	N/A	50.13	Н	4.04	-34.28	54.0	74.0	19.9	54.2	34.1	19.8
7 333.86	N/A	36.32	V	20.53	-34.28	54.0	74.0	22.6	56.9	31.4	17.2

• High frequency

Fraguanay	Rea	ding				Lin	nits	Re	sult	Ma	rgin
Frequency	(dBu	V/m)	Pol.	Factor (dB)	DCCF (dB)	(dBu	V/m)	(dBu	V/m)	(d	в)
(MHz)	AV /	Peak			(00)	AV /	Peak	AV /	Peak	AV /	Peak
2 483.74	N/A	45.58	Η	12.21	-34.28	54.0	74.0	23.5	57.8	30.5	16.2
4 949.20	N/A	45.86	Η	4.11	-34.28	54.0	74.0	15.7	50.0	38.3	24.0
7 424.01	N/A	33.88	V	20.46	-34.28	54.0	74.0	20.1	54.3	33.9	19.7

Note 1: The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: DCCF(Duty Cycle Correction Factor)

- T_{on} = 0.644 ms / T_{off} = 43.38 ms

- DCCF = $20 \times \log(\text{The Worst Case Dwell Time / 100 ms}) dB = <math>20 \times \log(1.932 / 100) dB = -34.28 dB$ Note 3: Sample Calculation.

Margin = Limit - Result / Peak Result = Peak Reading + TF / Average Result = Peak Reading + TF + DCCF TF = Ant factor + Cable Loss + Filter Loss - Amp Gain

9.6 Test Plot for Radiated Spurious Emission MESH

• MESH _ Low frequency

ultiView 🗄 Spectrum	Spectrum 2	Spectrum 3	Spectru	im 4 🕱			
	RBW 1 MH: T 1.01 ms VBW 3 MH:	z Mode Auto Sweep			Fre	equency 2.3	500000 GI
nput 1 AC PS requency Sweep	On Notch Of	1					•1Pk Ma
звру						M1[1]	32.75 dBj 2.3896404 G
dвµV					r		
ІВµV							
ври							
ВµУ							
							Much
ВРА			Martin Labor and	mound	mounderline	month	-Mu Mo
Murding and an announced and a	when the way we have a series of the series	Manufacture and a second s	and the second second				
вµν							
μν							
45.0	1 1						
авна							
d8µv	1	1001 pts	8	.0 MHz/	ļ	Spuriou	
			8 rum 3			Spuriou	is – Pe
I GHz	n 🖾 Spectrun • RBW 1 MHz	n 2 🖾 Spect					is – Pe
Il GHz	n 🛛 Spectrun	1 2 X Spect				Spuriou equency 4.8	is – Pe [200000 GI
Il GHz	n ⊠ Spectrun ● RB₩ 1 MHz 1.01 ms ● VB₩ 3 MHz	1 2 X Spect				equency 4.8	IS – Pe 200000 GI 1Pk Mai 52.58 dB
1 GHz ItiView C Spectrum fLevel 80.00 dBµV t 0 0 dB SWI put 1 AC PS equency Sweep	n ⊠ Spectrun ● RB₩ 1 MHz 1.01 ms ● VB₩ 3 MHz	1 2 X Spect				equency 4.8	IS – Pe 200000 GI 1Pk Ma 52.58 dB
1 GHz ItiView (Spectrum fLevel 80.00 dBµV t 0 dB SWI put 1 AC PS requency Sweep BµV	n ⊠ Spectrun ● RB₩ 1 MHz 1.01 ms ● VB₩ 3 MHz	1 2 X Spect				equency 4.8	IS – Pe 200000 GI 1Pk Ma 52.58 dB
1 GHz ItiView (Spectrum fLevel 80.00 dBµV t 0 dB SWI put 1 AC PS requency Sweep BµV	n ⊠ Spectrun ● RB₩ 1 MHz 1.01 ms ● VB₩ 3 MHz	Node Auto Sweep				equency 4.8	IS – Pe 200000 GI 1Pk Ma 52.58 dB
Itilitie Spectrum If Level 80.00 dBp/ Spectrum If Level 80.00 dBp/ W put 1 AC PS requency Sweep IBp/ IBp/	n ⊠ Spectrun ● RB₩ 1 MHz 1.01 ms ● VB₩ 3 MHz	1 2 X Spect				equency 4.8	IS – Pe 200000 GI 1Pk Mai 52.58 dB
Itilitie Spectrum If Level 80.00 dBp/ Spectrum If Level 80.00 dBp/ W put 1 AC PS requency Sweep IBp/ IBp/	n ⊠ Spectrun ● RB₩ 1 MHz 1.01 ms ● VB₩ 3 MHz	Node Auto Sweep				equency 4.8	IS – Pe 200000 GI 1Pk Mai 52.58 dB
I GHz Spectrum f Level 80.00 dBµV 0 dB SWI but 1 AC PS equency Sweep 8µV sµv 8µV	n Spectrum BBW 1 MHz 1.01 ms • VBW 3 MHz Off Notch Off	Node Auto Sweep				equency 4.8	IS – Pe 200000 GI 1Pk Mai 52.58 dB
I GHz Spectrum IltiView Spectrum f Level 80.00 dBµV 0 dB SWI but 1 AC PS equency Sweep 8µV bµv 8µv bµv 8µv bµv 8µv	n Spectrum BBW 1 MHz 1.01 ms • VBW 3 MHz Off Notch Off	Node Auto Sweep				equency 4.8	IS – Pe 200000 GI 1Pk Ma 52.58 dB
II GHz II GHz III GHz III GHz III GHz Spectrum If Level 80.00 dBµV 0 dB SWI put 1 AC PS requency Sweep IBµV IBµ	n Spectrum BBW 1 MHz 1.01 ms • VBW 3 MHz Off Notch Off	Node Auto Sweep				equency 4.8	IS – Pe 200000 GI 1Pk Ma 52.58 dB
II GHz II GHz II GHz II GHz Spectrum Spectrum S	n Spectrum BBW 1 MHz 1.01 ms • VBW 3 MHz Off Notch Off	Node Auto Sweep				equency 4.8	IS – Pe 200000 GI 1Pk Mai 52.58 dB
II GHz II GHz II GHz II GHz Spectrum Spectrum S	n Spectrum BBW 1 MHz 1.01 ms • VBW 3 MHz Off Notch Off	Node Auto Sweep				equency 4.8	IS – Pe 200000 GI 1Pk Mai 52.58 dB
ItiView Spectrum ItiView Spectrum If Level 80.00 dBµV 0 dB SWT put 1 AC requency Sweep dBµV	n Spectrum BBW 1 MHz 1.01 ms • VBW 3 MHz Off Notch Off	Node Auto Sweep				equency 4.8	IS – Pe 200000 Gł 1Pk Mał 52.58 dBj
ItiView Spectrum ItiView Spectrum If Level 80.00 dBµV 0 dB SWT Itiview Itiview If Level 80.00 dBµV 1 AC PS Itiview Itiview	n Spectrum BBW 1 MHz 1.01 ms • VBW 3 MHz Off Notch Off	Node Auto Sweep				equency 4.8	IS – Pe 200000 GI 1Pk Mai 52.58 dB
ItiView Spectrum ItiView Spectrum If Level 80.00 dBµV 0 dB SWT Itiview Itiview If Level 80.00 dBµV 1 AC PS Itiview Itiview	n Spectrum BBW 1 MHz 1.01 ms • VBW 3 MHz Off Notch Off	Node Auto Sweep				equency 4.8	IS – Pe 200000 GI 1Pk Mai 52.58 dB
ItiView Spectrum ItiView Spectrum If Level 80.00 dBµ/ 0 dB SWT put 1 AC PS requency Sweep 18µ/ Bµ/ 18µ/ Bµ/ 18µ/ Bµ/ 18µ/ Bµ/ 18µ/ Bµ/ 18µ/ Bµ/ 18µ/	n Spectrum BBW 1 MHz 1.01 ms • VBW 3 MHz Off Notch Off	Node Auto Sweep				equency 4.8	IS – Pe 200000 Gł 1Pk Mał 52.58 dBj
ItiView Spectrum ItiView Spectrum If Level 80.00 dBµV 0 dB SWT put 1 AC PS requency Sweep 38µV 38µV 38µV 38µV 38µV 38µV 38µV	n Spectrum BBW 1 MHz 1.01 ms • VBW 3 MHz Off Notch Off	Node Auto Sweep				equency 4.8	

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 24 / 41

	2012				1				is – Pea
MultiView 🗄		I Spe	ectrum 2	I Spect	rum 3	X			
Ref Level 80.0 Att	O dB SWT 1	• RBW	3 MHz Mod	e Auto Sweep			Fre	quency 7.2	300000 GH
Input Frequency Sv	1 AC PS veep	Off Notd	n Off						●1Pk Max
								M1[1]	39.92 dBµ
70 dBµV				-	-				
60 dBµV				-		-			
50 dBµV									
			м	1					
40 dBµV			under and and	the literation of the second s	en approximation	and the second second second	and a second		
30. dBuV		and what what when					marca	Vin	
30 dByV	n Min han pinkikak	M						and a state of the	or which should
20 dBµV									
lū dbµv				_			-		
) dвµV									-
10 45-41									
-10 dBµV									1

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 25 / 41

• MESH _ Middle frequency

	~					-			_
AultiView 8 Ref Level 80.0	DO dBµV	• RBV	ectrum 2 V 1 MHz	I Spect	rum 3 🛛 🛛	3		_	▽
Att Input	0 dB SWT 1 AC PS	1.01 ms • VBW Off Note	✔ 3 MHz Mod dh Off	e Auto Sweep			Fn	equency 4.8	900000 GH
Frequency S	weep							M1[1]	• 1Pk Max 50.13 dBµ
0 dBµV								4	.89135864 GH
5 00p.									
) dBµV									
						MI			
0 dBµV			-						
0 dBµV			and the second				- and		
	manuser	and the second second					and share	manstran	algrahinnag
0 dBµV									and a second we
) dBµV									
) dBµV			-						
dвµV									
10 dBµV									
то авру-									
4.89 GHz			1001 p	to.		LO MHz/			Span 10.0 MH
						1.0 Mili27	ļ		
4ultiView 1	Spectrum	x Su	actrum 2	C Enoch			;		ıs – Pe
Ref Level 80.0	Spectrum	■ RB¥ 1.01 ms ■ VB¥	actrum 2	C Enoch		3		Spuriou	is – Pea
Ref Level 80.0 Att Input	0 dBµV 0 dB SWT 1 AC PS	EX Sp RBY 1.01 ms • VBM Off Note		C Enoch				Spuriou	IS − Pea ⊽ 350000 GH
AultiView B RefLevel 80.0 Att Input Frequency S	0 dBµV 0 dB SWT 1 AC PS	EX Sp RBY 1.01 ms • VBW Off Note	actrum 2	C Enoch				Spuriou equency 7.3 M1[1]	IS — Pea ▼ 350000 GH • 1Pk Max 36.32 dBµ "33366114 GH
Ref Level 80.0 Att Input Frequency S	0 dBµV 0 dB SWT 1 AC PS	Sp BBY 1.01 ms = VBW Off Note	actrum 2	C Enoch				Spuriou equency 7.3 M1[1]	IS – Pea ⊽ 350000 GH 1Pk Max 36.32 dBµ
Ref Level 80.0 Att Input Frequency S I dBµV	0 dBµV 0 dB SWT 1 AC PS	SF BW 1.01 ms # VBW Off Note	actrum 2	C Enoch				Spuriou equency 7.3 M1[1]	IS – Pea ⊽ 350000 GH 1Pk Max 36.32 dBµ
Ref Level 80.0 Att Input Frequency S I dBµV	0 dBµV 0 dB SWT 1 AC PS	(Ⅲ) SF ● RBW 1.01 ms ● VBW Off Note	actrum 2	C Enoch				Spuriou equency 7.3 M1[1]	IS – Pea ⊽ 350000 GH 1Pk Max 36.32 dBµ
Ref Level 80.0 Att Input Frequency S 0 dBµV	0 dBµV 0 dB SWT 1 AC PS	(Ⅲ) Sp ■ RBW ■ RBW Off Note	actrum 2	C Enoch				Spuriou equency 7.3 M1[1]	IS – Pea ⊽ 350000 GH 1Pk Max 36.32 dBµ
Ref Level 80.0 Att Input Frequency S 0 dBµV	0 dBµV 0 dB SWT 1 AC PS	EX • RBV • Off Note	actrum 2	C Enoch				Spuriou equency 7.3 M1[1]	IS – Pea ⊽ 350000 GH 1Pk Max 36.32 dBµ
Ref Level 80.0 Att Input Frequency S 0 dBµV 0 dBµV 0 dBµV	0 dBµV 0 dB SWT 1 AC PS	220 Sp ■ RBV 1.01 ms ● VBV Off Note	actrum 2	C Enoch				Spuriou equency 7.3 M1[1]	IS – Pea ⊽ 350000 GH 1Pk Max 36.32 dBµ
Ref Level 80.04 Att Input Frequency S 0 dbpv 0 dbpv 0 dbpv 0 dbpv 0 dbpv	10 dBµV 0 dB SWT 1 AC PS weep	RBW 0.01 ms = VBW 0ff Note	actrum 2	C Enoch				equency 7.3	IS — Pea ▼ 350000 GH ● 1P/C Max 36.32 dBµ 33366114 GH
RefLevel 80.0.0 Att Input Frequency S 0 dbpv 0 dbpv 0 dbpv 0 dbpv 0 dbpv	0 dBµV 0 dB SWT 1 AC PS	RBW 0.01 ms = VBW 0ff Note	actrum 2	C Enoch	rum 3 2			equency 7.3	IS – Pea ⊽ 350000 GH 1Pk Max 36.32 dBµ
Ref Level 80.0 Att Input Frequency S 0 dBµv 0 dBµv 0 dBµv 0 dBµv 0 dBµv 0 dBµv	10 dBµV 0 dB SWT 1 AC PS weep	RBW 0.01 ms = VBW 0ff Note	actrum 2	C Enoch	rum 3 2			equency 7.3	IS — Pea ▼ 350000 GH ● 1P/C Max 36.32 dBµ -33366114 GH
RefLevel 80.0 Att Input Frequency S 0 dbpv 0 dbpv	10 dBµV 0 dB SWT 1 AC PS weep	RBW 0.01 ms = VBW 0ff Note	actrum 2	C Enoch	rum 3 2			equency 7.3	IS — Pea ▼ 350000 GH ● 1P/C Max 36.32 dBµ -33366114 GH
RefLevel 80.0 Att Input Frequency S 0 dbpv 0 dbpv	10 dBµV 0 dB SWT 1 AC PS weep	RBW 0.01 ms = VBW 0ff Note	actrum 2	C Enoch	rum 3 2			equency 7.3	IS — Pea ▼ 350000 GH ● 1P/C Max 36.32 dBµ -33366114 GH
RefLevel 80.0 Att Input Frequency S 0 dbpv	10 dBµV 0 dB SWT 1 AC PS weep	RBW 0.01 ms = VBW 0ff Note	actrum 2	C Enoch	rum 3 2			equency 7.3	IS — Pea ▼ 350000 GH ● 1P/C Max 36.32 dBµ -33366114 GH
Ref Level 80.0 Att Input Frequency S 0 dBµv 0 dBµv 0 dBµv 0 dBµv 0 dBµv 0 dBµv	10 dBµV 0 dB SWT 1 AC PS weep	RBW 0.01 ms = VBW 0ff Note	actrum 2	C Enoch	rum 3 2			equency 7.3	IS — Pea ▼ 350000 GH ● 1P/C Max 36.32 dBµ -33366114 GH
Ref Level 80.01 Att Input Frequency S 0 dbpv 0 dbpv 0 dbpv 0 dbpv 0 dbpv 0 dbpv 0 dbpv 0 dbpv 0 dbpv 0 dbpv	10 dBµV 0 dB SWT 1 AC PS weep	RBW 0.01 ms = VBW 0ff Note	actrum 2	C Enoch	rum 3 2			equency 7.3	IS — Pea ▼ 350000 GH ● 1P/C Max 36.32 dBµ -33366114 GH

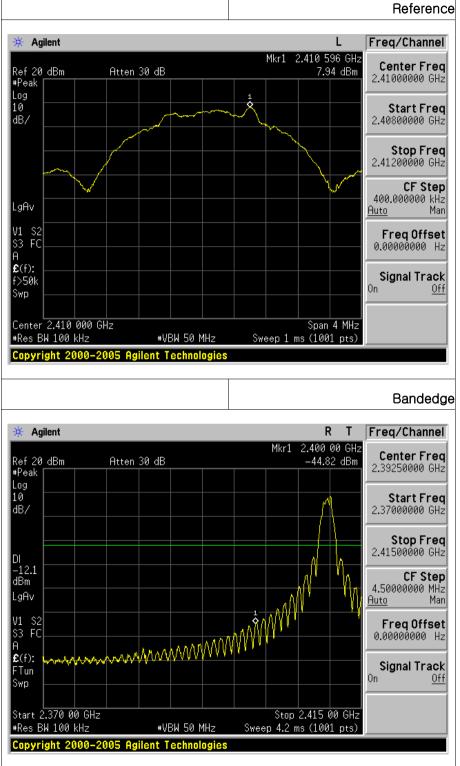
EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 26 / 41

• MESH _ High frequency

									Restric	leu bai	iu – rea
AultiView 🔠	Spectrun	n 🖾	Spectrun	n 2	Spect	rum 3	Spectro	um 4 🕅			▽
Ref Level 8 Att	0 dB	SWT 1.01 r	ns 🖷 VBW	1 MHz 3 MHz	Mode Auto	Sweep	(Fr	requency 2.4	4917500 GH
Input Frequency		PS (On Noto	sh Off							1Pk Max
									,	1[1]	45.58 dBµ\ 2.4837390 GH
10 dBhA		-									11100705000
70 dBµV										0	
alana da esta											
0 dBµV											
0 ₁ dBµV	-										
0 dBµV	and and										
0 OBHA		John Harris	and the second se	2. Sur manufactures	una m	and and and and and and and	My shales				
0 dBµV	2	-					Marchalena	annu marine	and which is a second	Anne Marrie	and the second second
0 dBµV										+	
0 dBµV	-									-	
dBµV											
овру											
10 dBµV									G		
	1										
2.4835 GHz				10	01 pts		1	.65 MHz/	1	Spurio	
	Spec	trum	Spe	10 ectrum 2		Spectr			<u>_</u>	Spurio	2.5 GHz us – Pea
MultiView Ref Level 80 Att	0.00 dBµV 0 dB	SWT 1.01 m	RBW S S VBW	ectrum 2 1 MHz 3 MHz	2 🕱	(.					us – Pea
MultiView Ref Level 80 Att Input Frequency	0.00 dBµV 0 dB 1 AC	SWT 1.01 m	• RBW	ectrum 2 1 MHz 3 MHz	2 🕱	(.				requency 4.9	us – Pea v 9500000 GH: • 1Pk Max
MultiView Ref Level 80 Att Input	0.00 dBµV 0 dB 1 AC	SWT 1.01 m	RBW S S VBW	ectrum 2 1 MHz 3 MHz	2 🕱	(.				requency 4.9	us – Pea v
MultiView Ref Level 80 Att Input Frequency	0.00 dBµV 0 dB 1 AC	SWT 1.01 m	RBW S S VBW	ectrum 2 1 MHz 3 MHz	2 🕱	(.				requency 4.9	us – Pea ⊽ 9500000 GH: 1Pk Max 45.86 dBµA
MultiView Ref Level 80 Att Input Frequency	0.00 dBµV 0 dB 1 AC	SWT 1.01 m	RBW S S VBW	ectrum 2 1 MHz 3 MHz	2 🕱	(.				requency 4.9	us – Pea ⊽ 9500000 GH: 1Pk Max 45.86 dBµA
AultiView Ref Level 30 Att Input Frequency 0 d8µV	0.00 dBµV 0 dB 1 AC	SWT 1.01 m	RBW S S VBW	ectrum 2 1 MHz 3 MHz	2 🕱	(.				requency 4.9	us – Pea ⊽ 9500000 GH: 1Pk Max 45.86 dBµA
AultiView Ref Level 80 Att Input Frequency 8 d8µV	0.00 dBµV 0 dB 1 AC	SWT 1.01 m	RBW S S VBW	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.				requency 4.9	us – Pea ⊽ 9500000 GH: 1Pk Max 45.86 dBµA
AultiView Ref Level 30 Att Input Frequency 0 d8µV 0 d8µV	0.00 dBµV 0 dB 1 AC	SWT 1.01 m	RBW S S VBW	ectrum 2 1 MHz 3 MHz	2 🕱	(.				requency 4.9	us – Pea ⊽ 9500000 GH: 1Pk Max 45.86 dBµA
JultiView Ref Level 30 Att Input Frequency: a dsµv a dsµv a dsµv	0.00 dBµV 0 dB 1 AC	SWT 1.01 m	RBW S S VBW	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.			Fr	MI[1]	us – Pea ⊽ 9500000 GH: 45.6 dBµ1 4.94920080 GH:
AultiView Ref Level 80 Att Input Frequency a dbµv a dbµv a dbµv b dbµv	.00 dbµV 0 dB 1 AC Sweep	SWT 1.01 m PS 0	● RBW is ● VBW Iff Notch	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.			Fr	MI[1]	us – Pea ⊽ 9500000 GH: 45.6 dBµ1 4.94920080 GH:
AultiView Ref Level 80 Att Input Frequency a dbµv a dbµv a dbµv b dbµv	.00 dbµV 0 dB 1 AC Sweep	SWT 1.01 m	● RBW is ● VBW Iff Notch	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.			Fr	MI[1]	us – Pea ⊽ 9500000 GH: 1Pk Max 45.86 dBµA
JultiView Ref Level 30 Att Input Frequency: a dsµv	.00 dbµV 0 dB 1 AC Sweep	SWT 1.01 m PS 0	● RBW is ● VBW Iff Notch	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.			Fr	MI[1]	us – Pea ⊽ 9500000 GH: 45.6 dBµ1 4.94920080 GH:
JultiView Ref Level 30 Att Input Frequency: a dsµv	.00 dbµV 0 dB 1 AC Sweep	SWT 1.01 m PS 0	● RBW is ● VBW Iff Notch	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.			Fr	MI[1]	us – Pea ⊽ 9500000 GH: 45.6 dBµ1 4.94920080 GH:
JultiView Ref Level 80 Att Input Frequency 0 dbµV	.00 dbµV 0 dB 1 AC Sweep	SWT 1.01 m PS 0	● RBW is ● VBW Iff Notch	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.			Fr	MI[1]	us – Pea ⊽ 9500000 GH: 45.6 dBµ1 4.94920080 GH:
AultiView Ref Level 80 Att Input Frequency 0 dBµV	.00 dbµV 0 dB 1 AC Sweep	SWT 1.01 m PS 0	● RBW is ● VBW Iff Notch	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.			Fr	MI[1]	us – Pea ⊽ 9500000 GH: 45.6 dBµ1 4.94920080 GH:
JultiView Ref Level 80 Att Input Frequency 0 dbµV 0 dbµV	.00 dbµV 0 dB 1 AC Sweep	SWT 1.01 m PS 0	● RBW is ● VBW Iff Notch	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.			Fr	MI[1]	us – Pea ⊽ 9500000 GH: 45.6 dBµ1 4.94920080 GH:
AultiView RefLevel 80 Att input Frequency 0 dBµV	.00 dbµV 0 dB 1 AC Sweep	SWT 1.01 m PS 0	● RBW is ● VBW Iff Notch	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.			Fr	MI[1]	us – Pea ⊽ 9500000 GH: 45.6 dBµ1 4.94920080 GH:
JultiView Ref Level 80 Att Input Frequency: 0 dbµV 0 dbµV	.00 dbµV 0 dB 1 AC Sweep	SWT 1.01 m PS 0	● RBW is ● VBW Iff Notch	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.			Fr	MI[1]	us – Pea ⊽ 9500000 GH: 45.6 dBµ1 4.94920080 GH:
MultiView Ref Level 30 Att Input Frequency 0 dsµV 0 dsµV 0 dsµV 0 dsµV	.00 dbµV 0 dB 1 AC Sweep	SWT 1.01 m PS 0	● RBW is ● VBW Iff Notch	ectrum 2 1 MHz 3 MHz	2 X Mode Auto	(.			Fr	MI[1]	us – Pea ⊽ 9500000 GH: 45.6 dBµ1 4.94920080 GH:

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 27 / 41

MultiView	Constant		ectrum 2	(m) Course		<u>_</u>			
Ref Level 80.0			1 MHz	Spect	rum 3	z l			L.
Att	0 dB SWT 1 1 AC PS		3 MHz Mod	e Auto Sweep			Fre	equency 7.4	250000 GH
Frequency S		OII NOL	n on						o1Pk Max
								M1[1]	33.88 dBµ\
'0 dBµV									
i0 dBµV									
0 dвµV									
0.0050									
Ю dBµV									
0.0001				191					
ю dвµV			and and an and all	Many marked and	all is a manual of	un manutine and	manantal		
An an search	unall humans	www.governet.au.the					- Aller	the state of the s	lensthe months
20 dBµV									
0 00014									
0 dвµv									
0 0001									
і dBµV									
on and a									
10 dBµV									
το αρμν									

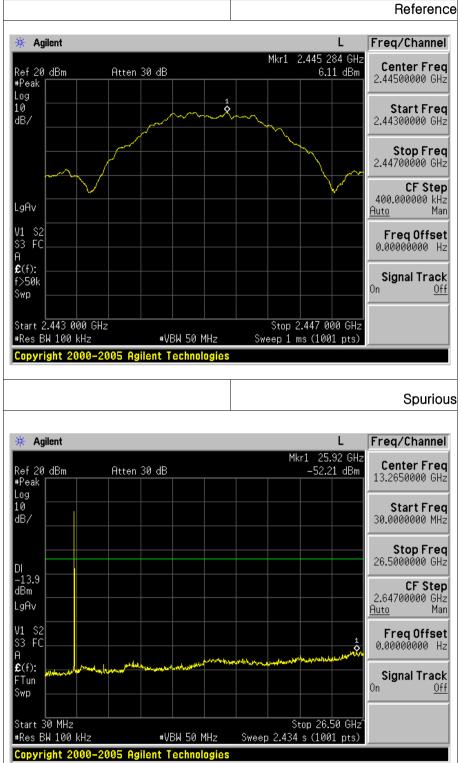

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 28 / 41

This test report shall not be reproduced except in full, Without the written approval.

9.7 Test Plot for Conducted Spurious Emission

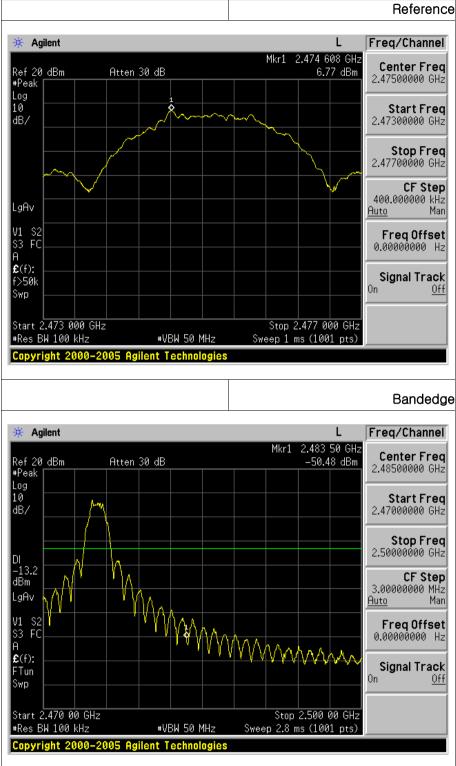
• MESH _ Low frequency

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 29 / 41



					E
Agilent				L	Freq/Channe
ef 20 dBm Peak	Atten 30 dB		M	kr1 4.82 GHz -54.42 dBm	Center Fre 13.2650000 GH
9 9 3/					Start Fre 30.0000000 MH
					Stop Fre
12.1 3m gAv					CF Ste 2.64700000 GH Auto Ma
L S2 3 FC	,		المنتقد ورجا ورجا ورجا ورجا و	Mahandran dah Mangadak Manga	FreqOffse 0.00000000 H
(f): Tun vp	an a balance and the second	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			Signal Trac ^{On <u>O</u>}
tart 30 MHz Res BW 100 kHz	#VF	3W 50 MHz		op 26.50 GHz^ s (1001 pts)	

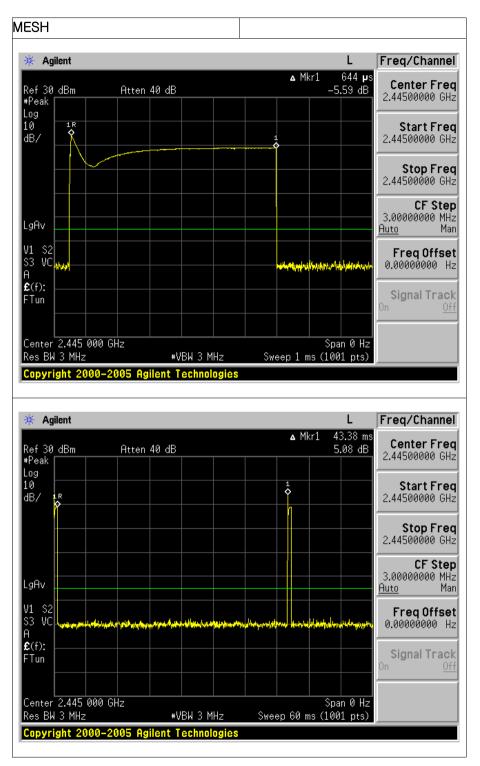
EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 30 / 41


• MESH _ Middle frequency

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 31 / 41

MESH _ High frequency

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 32 / 41



			1				
🗧 Agilent						L	Freq/Channe
ef 20 dBm Peak	Atten 30 dB			Mki		97 GHz 0 dBm	Center Fre 13.2650000 GH
og Ø B/							Start Fre 30.0000000 MH
							Stop Fre 26.5000000 GH
13.2 Bm gAv							CF Ste 2.64700000 GH <u>Auto</u> Ma
1 S2 3 FC			No. of a second second		in a khathann	1	Freq Offse 0.00000000 H
(f): Tun alamanan aran aran aran aran aran aran ara	and a state of the	ha waa hay filo a	*****				Signal Trac On <u>Of</u>
tart 30 MHz Res BW 100 kHz		/BW 50 MHz	Sw <u>ee</u>	St p 2.434		50 GHz^ 1 pts)	

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 33 / 41

9.8 Test Plot for Duty Cycle

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 34 / 41

10. Conducted Emission

10.1 Test Setup

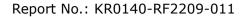
See test photographs for the actual connections between EUT and support equipment.

10.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

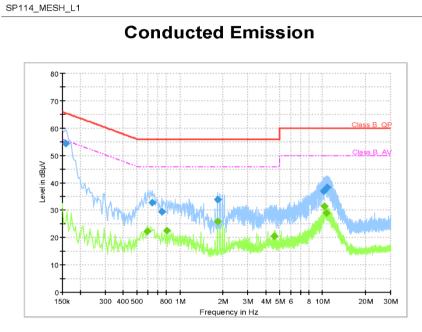
	Conducted Limit (dBuV)				
Frequency Range (MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			


* Decreases with the logarithm of the frequency

10.3 Test Procedure

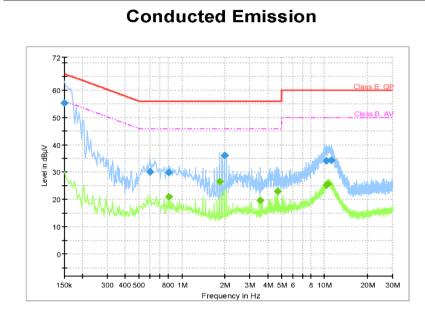
Conducted emissions from the EUT were measured according to the ANSI C63.10.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.


EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 35 / 41

10.4 Test Result

• AC Line Conducted Emission (Graph)



Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(kHz)		(dB)
0.158	54.42		65.57	11.15	9	L1	19.4
0.590		22.25	46.00	23.75	9	L1	19.8
0.640	32.81		56.00	23.19	9	L1	19.8
0.750	29.51		56.00	26.49	9	L1	19.8
0.810		22.58	46.00	23.42	9	L1	19.8
1.840		25.93	46.00	20.07	9	L1	19.7
1.840	33.78		56.00	22.22	9	L1	19.7
4.560		20.45	46.00	25.55	9	L1	19.8
10.150	37.09		60.00	22.91	9	L1	20.0
10.340		31.52	50.00	18.48	9	L1	20.0
10.650		29.06	50.00	20.94	9	L1	20.0
10.750	38.38		60.00	21.62	9	L1	20.0

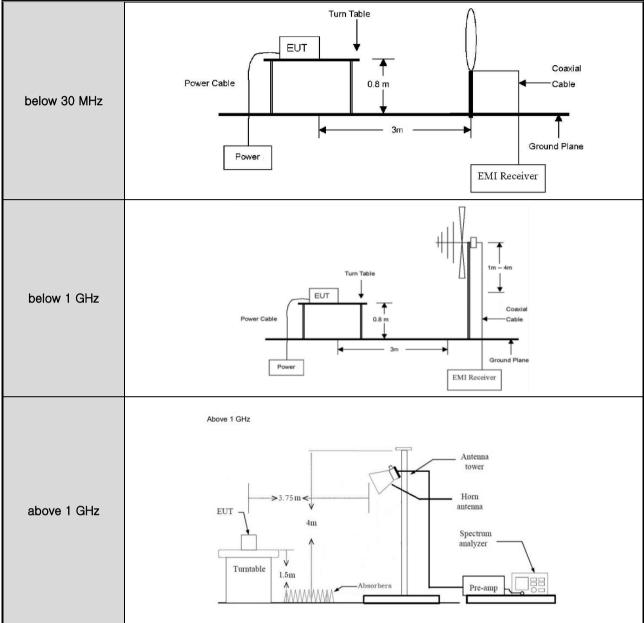
EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 36 / 41

SP114_MESH_N

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.150	55.26		66.00	10.74	9	N	19.2
0.600	30.17		56.00	25.83	9	N	19.8
0.810		20.96	46.00	25.04	9	N	19.8
0.810	29.90		56.00	26.10	9	N	19.8
1.840		26.62	46.00	19.38	9	N	19.7
1.990	36.13		56.00	19.87	9	N	19.7
3.530		19.62	46.00	26.38	9	N	19.8
4.710		23.07	46.00	22.93	9	N	19.8
10.260	34.17		60.00	25.83	9	N	20.0
10.360		25.24	50.00	24.76	9	N	20.0
10.560		25.69	50.00	24.31	9	N	20.0
11.120	34.32		60.00	25.68	9	N	20.0

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 37 / 41


APPENDIX I

TEST SETUP

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 38 / 41

Radiated Measurement

• Conducted Measurement

Conducted	EUT	Attenuator	Spectrum Analyzer

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 39 / 41

APPENDIX II

UNCERTAINTY

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 40 / 41

Measurement Item	Expanded Uncertainty U = <i>k</i> Uc (<i>k</i> =2)
Conducted RF power	0.32 dB
Conducted Spurious Emissions	0.32 dB
Radiated Spurious Emissions	6.34 dB
Conducted Emissions	1.74 dB