TEST REPORT

DI&C Co., Ltd.						
Dt&C	42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664					
1. Report No: DRTFCC2207-012	1					
2. Customer						
Name (FCC) : SENA TECHNOLOG	ES.Inc / Name (IC) : SENA TECHNOLOGIES.Inc					
	69-gil, Gangnam-gu Seoul South Korea gil, Gangnam-gu Seoul 137-130 Korea (Republic Of)					
3. Use of Report : FCC & IC Certific	cation					
4. Product Name / Model Name : R FCC ID : S7A-SP108 IC : 8154A-SP108	1 / SP108					
5. FCC Regulation(s): Part 15.247 IC Standard(s): RSS-247 Issue 2 Test Method used: KDB558074 E						
6. Date of Test : 2022.04.08 ~ 2022	.07.05					
7. Location of Test : 🛛 Permanent	Testing Lab On Site Testing					
8. Testing Environment : See apper	nded test report.					
9. Test Result : Refer to the attache	ed test result.					
The results shown in this test report ref This test report is not related to KOLAS	er only to the sample(s) tested unless otherwise stated.					
Tested by	Technical Manager					
Affirmation Name : ChangWon Lee	(Signature) Name : JaeJin Lee (Signature)					
	2022.07.06.					
DT&C Co., Ltd.						

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2207-0121	Jul. 06, 2022	Initial issue	ChangWon Lee	JaeJin Lee

Table of Contents

1. General Information	
1.1. Description of EUT	
1.2. Declaration by the applicant / manufacturer	4
1.3. Testing Laboratory	5
1.4. Testing Environment	5
1.5. Measurement Uncertainty	
1.6. Information about the FHSS characteristics	6
1.7. Conclusion of worst-case and operation mode	7
1.8. Test Equipment List	8
2. Antenna Requirement	9
3. Summary of Test Results	. 10
4. Maximum Peak Conducted Output Power	11
4.1. Test Setup	11
4.2. Limit	11
4.3. Test Procedure	11
4.4. Test Results	12
5. 20 dB BW & Occupied BW	. 18
5.1. Test Setup	18
5.2. Limit	
5.3. Test Procedure	18
5.4. Test Results	18
6. Carrier Frequency Separation	
6.1. Test Setup	
6.2. Limit	
6.3. Test Procedure	24
6.4. Test Results	24
7. Number of Hopping Channels	
7.1. Test Setup	
7.2. Limit	
7.3. Test Procedure	
7.4. Test Results	
8. Time of Occupancy	. 35
8.1. Test Setup	
8.2. Limit	
8.3. Test Procedure	35
8.4. Test Results	
9. Unwanted Emissions	
9.1. Test Setup	40
9.2. Limit	40
9.3. Test Procedures	42
9.3.1. Test Procedures for Unwanted Emissions(Radiated)	42
9.3.2. Test Procedures for Unwanted Emissions (Conducted)	43
9.4. Test Results	
9.4.1. Unwanted Emissions(Radiated)	44
9.4.2. Unwanted Emissions(Conducted)	
10. AC Power-Line Conducted Emissions	
10.1. Test Setup	
10.2. Limit	
10.3. Test Procedure	
10.4. Test Results	
APPENDIX I	. 75
APPENDIX II	. 76

1. General Information

1.1. Description of EUT

Equipment Class	Spread Spectrum Transmitter(DSS)
Product Name	R1
Model Name	SP108
Add Model Name	-
Firmware Version Identification Number	1.0
EUT Serial Number	No Specified
Power Supply	DC 3.7 V
Frequency Range	2 402 MHz ~ 2 480 MHz
Max. RF Output Power	17.95 dBm (0.062 W)
Modulation Technique (Data rate)	GFSK(1 Mbps), π/4DQPSK(2 Mbps), 8DPSK(3 Mbps)
Number of Channels	79
Antenna Specification	Antenna Type: Chip Antenna Gain: 0.3 dBi (PK)

1.2. Declaration by the applicant / manufacturer

- NA

1.3. Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of Part 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No. : KR0034

- ISED#: 5740A

www.dtnc.net			
Telephone	:	+ 82-31-321-2664	
FAX	:	+ 82-31-321-1664	

1.4. Testing Environment

Ambient Condition	
Temperature	+20 °C ~ +25 °C
 Relative Humidity 	34 % ~ 42 %

1.5. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Antenna-port conducted emission	1.0 dB (The confidence level is about 95 %, $k = 2$)
AC power-line conducted emission	3.4 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz Below)	4.9 dB (The confidence level is about 95 %, k = 2)
Radiated emission (1 GHz ~ 18 GHz)	5.0 dB (The confidence level is about 95 %, k = 2)
Radiated emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, k = 2)

1.6. Information about the FHSS characteristics

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following :
 - A) The hopping sequence is pseudorandom
 - Note 1 : Pseudorandom Frequency Hopping Sequence Table as below:
 - Channel: 08, 24, 40, 56, 42, 54, 72, 09, 01, 11, 33, 41, 34, 42, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 41, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 52, 71, 08, 24, 06, 24, 48, 56, 45, 46, 70, 01, 72, 06, 25, 33, 12, 28, 49, 60, 45, 58, 74, 13, 05, 18, 37, 49 etc

The System receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchroniztation with the transmit ted signals.

- B) All channels are used equally on average
- C) The receiver input bandwidth equals the transmit bandwidth
- D) The receiver hops in sequenc e with the transmit signal
- 15.247(g) : In accordance with the Bluetooth Industry Standard, the system is designed to comply with all
 of the regulations in Section 15.247 when the transmitter is presented with a continuous data
 (or information) system.
- 15.247(h) : In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection / hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h) : The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the number of test channels from 79 channels to a minimum number of 20 channels.

1.7. Conclusion of worst-case and operation mode

The EUT has three types of modulation (GFSK, π /4DQPSK and 8DPSK). Therefore all applicable requirements were tested with all the modulations. And packet type was tested at the worst case(DH5).

EUT Operation test setup

- Test Software: Bluetest3 3.3.4.685
- Power setting: 16

Tested frequency information

- Hopping Function : Enable

	Tested Frequency (MHz)
Hopping Band	2 402 ~ 2 480

- Hopping Function : Disable

	Tested Frequency (MHz)			
Lowest Channel	2 402			
Middle Channel	2 441			
Highest Channel	2 480			

1.8. Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	22/04/04	23/04/04	MY50410163
Spectrum Analyzer	Agilent Technologies	N9020A	22/06/24	23/06/24	US47360812
DC Power Supply	Agilent Technologies	66332A	22/06/24	23/06/24	MY43000211
Multimeter	FLUKE	17B+	21/12/16	22/12/16	36390701WS
Signal Generator	Rohde Schwarz	SMBV100A	21/12/16	22/12/16	255571
Signal Generator	ANRITSU	MG3695C	21/12/16	22/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	21/12/16	22/12/16	120612-2
Thermohygrometer	BODYCOM	BJ5478	21/12/16	22/12/16	120612-1
Loop Antenna	ETS-Lindgren	6502	21/01/28	23/01/28	00226186
Hybrid Antenna	Schwarzbeck	VULB 9160	21/12/16	22/12/16	3362
Horn Antenna	ETS-Lindgren	3117	21/12/16	22/12/16	00140394
PreAmplifier	Agilent Technologies	8449B	22/06/24	23/06/24	3008A02108
PreAmplifier	H.P	8447D	22/12/16	23/12/16	2944A07774
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	22/06/24	23/06/24	7
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	22/06/24	23/06/24	2
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A MA2490A	21/12/16	22/12/16	1338004 1249303
EMI Test Receiver	ROHDE&SCHWARZ	ESU	21/11/12	22/11/12	100469
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	21/08/23	22/08/23	101333
LISN	SCHWARZBECK	NSLK 8128 RC	21/10/22	22/10/22	8128 RC-387
HYGROMETER	TESTO	608-H1	22/01/14	23/01/14	34862883
Cable	HUBER+SUHNER	SUCOFLEX100	22/01/04	23/01/04	M-01
Cable	HUBER+SUHNER	SUCOFLEX100	22/01/04	23/01/04	M-02
Cable	JUNFLON	MWX241/B	22/01/04	23/01/04	M-03
Cable	JUNFLON	MWX221	22/01/04	23/01/04	M-04
Cable	JUNFLON	MWX221	22/01/04	23/01/04	M-05
Cable	DTNC	Cable	22/03/08	23/03/08	M-06
Cable	JUNFLON	J12J101757-00	22/01/04	23/01/04	M-07
Cable	HUBER+SUHNER	SUCOFLEX104	22/01/04	23/01/04	M-08
Cable	HUBER+SUHNER	SUCOFLEX106	22/01/04	23/01/04	M-09
Cable	Junkosha	MWX241	22/01/04	23/01/04	mmW-1
Cable	Junkosha	MWX241	22/01/04	23/01/04	mmW-4
Cable	DTNC	Cable	22/01/04	23/01/04	RFC-45
Cable	DT&C	Cable	22/01/04	23/01/04	RFC-69
Test Software	tsj	Noise Terminal Measurement	NA	NA	Version 2.00.0170
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0177

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017 Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

2. Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

Conclusion: Comply

The antenna is permanently attached on the device. Therefore this E.U.T complies with the requirement of Part 15.203

3. Summary of Test Results

FCC part section(s)	RSS section(s)	Test Description	Limit (Using in 2 400~ 2 483.5 MHz)	Test Condition	Status Note 1
15.247(a) 15.247(b)	RSS-247[5.1] RSS-247[5.4]	Maximum Peak Conducted Output Power	For FCC =< 0.125 W(conducted) For IC =< 0.125 W(conducted) =< 4 Watt(e.i.r.p)		С
		20 dB Bandwidth	NA		С
15 247(0)	DSS 24715 41	Carrier Frequency Separation	>= 25 kHz or >= Two thirds of the 20 dB BW, whichever is greater.		С
15.247(a) RSS-247[5.1]		Number of Hopping Channels			С
		Time of Occupancy	=< 0.4 seconds		С
-	RSS-Gen[6.7]	Occupied Bandwidth (99 %)	NA		с
15.247(d)	RSS-247[5.5]	Unwanted Emissions (Conducted)	The radiated emission to any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density.	-	С
15.247(d) 15.205 15.209	RSS-247[5.5] RSS-Gen[8.9] RSS-Gen[8.10]	Linwanted Emissions Part 15 209 Limits		Radiated	C Note3
15.207	RSS-Gen[8.8]			AC Line Conducted	C Note4
15.203	-	Antenna Requirement	Part 15.203 (Refer to section 2)	-	С

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

Note 3: This test item was performed in three orthogonal EUT positions and the worst case data was reported.

Note 4: AC Line Conducted Test was tested in charging mode. Bluetooth / LE mode does not work while charging.

4. Maximum Peak Conducted Output Power

4.1. Test Setup

Refer to the APPENDIX I.

4.2. Limit

FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400 MHz 2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. §15.247(b)(1), For frequency hopping systems operating in the 2 400 2 483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 MHz 5 805 MHz band : 1 Watt. For all other frequency hopping systems in the 2 400 MHz 2 483.5 MHz band: 0.125 watts.

IC Requirements

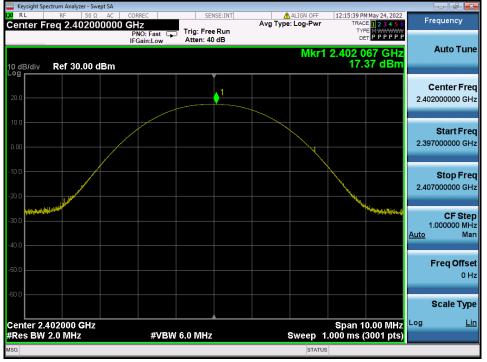
- RSS-247[5.1] (b), For FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2 400-2 483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.
- 2. RSS-247[5.4] (b), For FHSS operating in the band 2 400 MHz 2 483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels, the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p shall not exceed 4 W, except as provided in section 5.4(e)

4.3. Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using ; Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel RBW ≥ 20 dB BW VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold

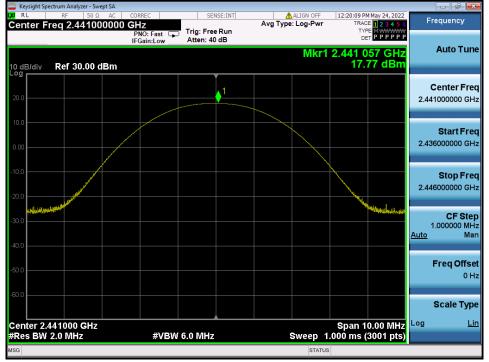
4.4. Test Results

Modulation	Tested Channel	Burst Average Output Power		Peak Output Power		Antenna Gain	e.i.r.p ^{Note3}
	Testeu Gildimer	dBm	mW	dBm	mW	(dBi)	(dBm)
	Lowest	17.09	51.17	17.37	54.58	0.30	17.67
<u>GFSK</u>	Middle	17.35	54.33	17.77	59.84	0.30	18.07
	Highest	17.49	56.10	17.95	62.37	0.30	18.25
	Lowest	6.26	4.23	7.68	5.86	0.30	7.98
<u>π/4DQPSK</u>	Middle	6.83	4.82	8.36	6.85	0.30	8.66
	Highest	6.69	4.67	8.36	6.85	0.30	8.66
	Lowest	6.24	4.21	8.42	6.95	0.30	8.72
<u>8DPSK</u>	Middle	6.80	4.79	9.12	8.17	0.30	9.42
	Highest	6.67	4.65	9.10	8.13	0.30	9.40

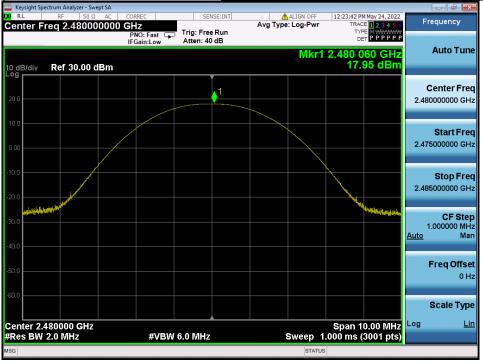

Note 1: The average output power was tested using an average power meter for reference only. Note 2: See next pages for actual measured spectrum plots.

Note 3: e.i.r.p = $P_{cond} + G_{EUT}$

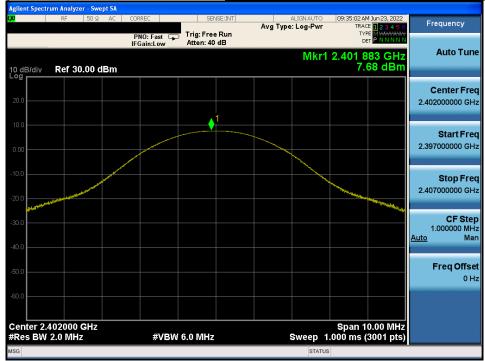
 P_{cond} = measured power at feedpoint of the EUT antenna, in dBm (Peak Conducted Output Power) G_{EUT} = gain of the EUT radiating element (antenna), in dBi

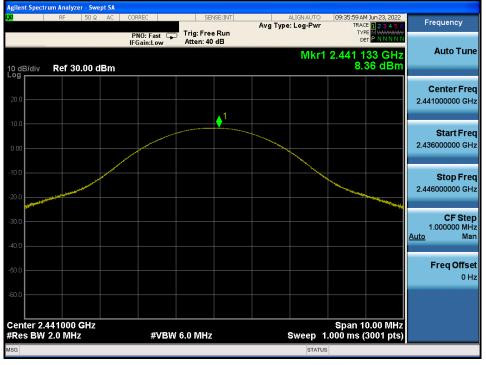


Lowest Channel & Modulation : GFSK


Peak Output Power

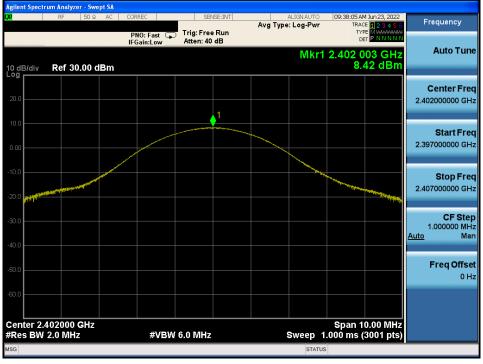
Middle Channel & Modulation : GFSK



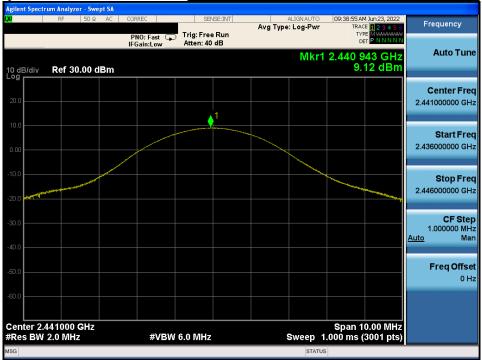

Peak Output Power

Lowest Channel & Modulation : π/4DQPSK

Middle Channel & Modulation : π/4DQPSK


Peak Output Power

Highest Channel & Modulation : π/4DQPSK



Lowest Channel & Modulation : 8DPSK



Peak Output Power <u>Middle Channel & Modulation : 8DPSK</u>

Highest Channel & Modulation : 8DPSK

5. 20 dB BW & Occupied BW

5.1. Test Setup

Refer to the APPENDIX I.

5.2. Limit

Limit : Not Applicable

5.3. Test Procedure

- 1. The 20 dB bandwidth was measured with a spectrum analyzer connected to RF antenna Connector (conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting: RBW = 1 % to 5 % of the 20 dB BW & Occupied BW

VBW ≥ 3 × RBW

Span = between two times and five times the 20 dB bandwidth & Occupied BW

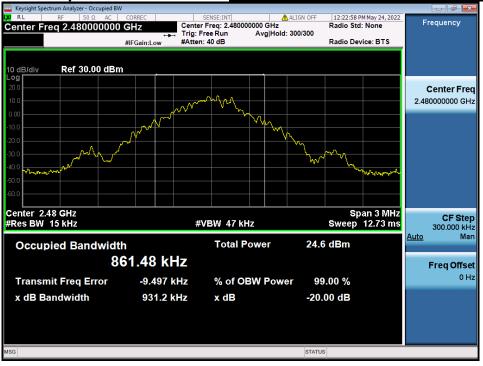
Sweep = auto

Detector function = peak

Trace = max hold

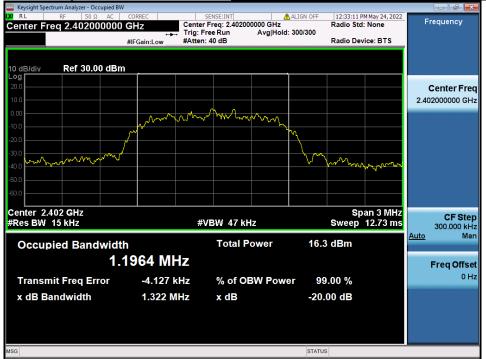
5.4. Test Results

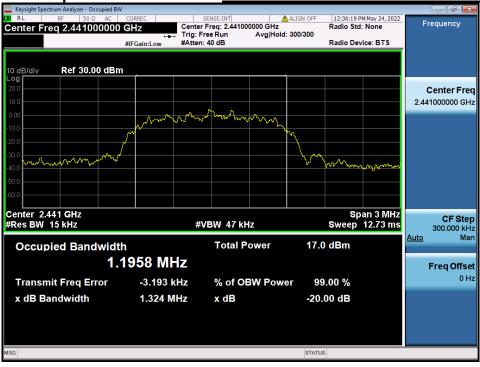
Modulation	Tested Channel	20 dB BW (MHz)	Occupied BW (MHz)		
	Lowest	0.933	0.865		
<u>GFSK</u>	Middle	0.935	0.865		
	Highest	0.931	0.861		
	Lowest	1.322	1.196		
<u>π/4DQPSK</u>	Middle	1.324	1.196		
	Highest	1.322	1.258		
	Lowest	1.290	1.237		
<u>8DPSK</u>	Middle	1.316	1.237		
	Highest	1.291	1.240		



20 dB BW & Occupied BW

Middle Channel & Modulation : GFSK

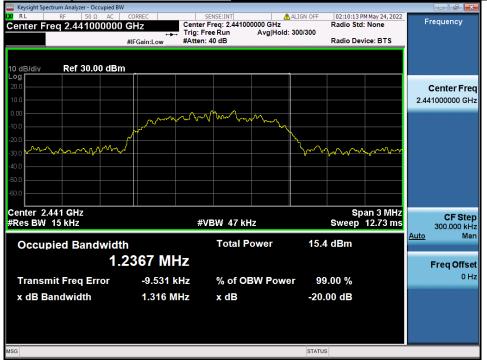


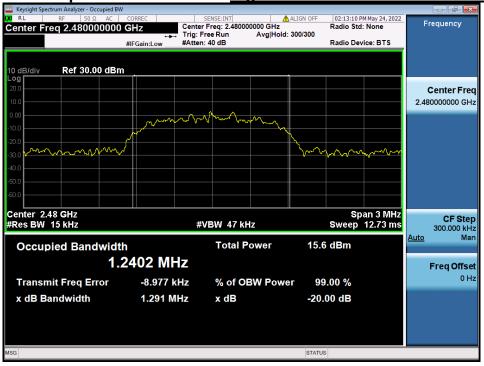


20 dB BW & Occupied BW

Lowest Channel & Modulation : π/4DQPSK

20 dB BW & Occupied BW





20 dB BW & Occupied BW

6. Carrier Frequency Separation

6.1. Test Setup

Refer to the APPENDIX I.

6.2. Limit

Limit : \geq 25 kHz or \geq Two-Thirds of the 20 dB BW whichever is greater.

6.3. Test Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the markerdelta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

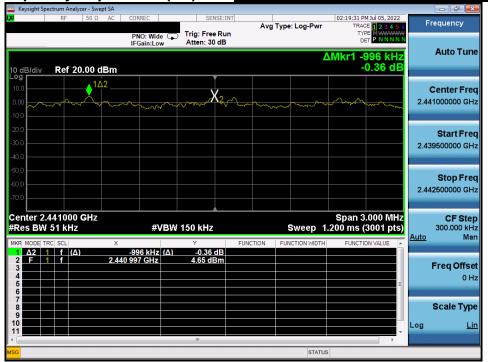
6.4. Test Results

FH mode

Hopping Mode	Modulation	Peak of reference channel(MHz)	Peak of adjacent Channel(MHz)	Test Result (MHz)
	GFSK	2 441.001	2 441.998	0.997
Enable	π/4DQPSK	2 441.005	2 442.006	-0.996
	8DPSK	2 441.160	2 442.162	1.005

AFH mode

Hopping Mode	Modulation	Peak of reference channel(MHz)	Peak of adjacent Channel(MHz)	Test Result (MHz)
	GFSK	2 441.161	2 442.156	0.995
Enable	π/4DQPSK	2 440.985	2 441.986	1.001
	8DPSK	2 441.145	2 440.143	-1.002


Note 1 : See next pages for actual measured spectrum

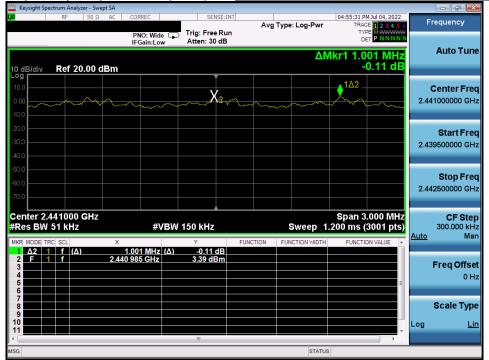
Hopping mode : Enable&GFSK

Carrier Frequency Separation (FH)

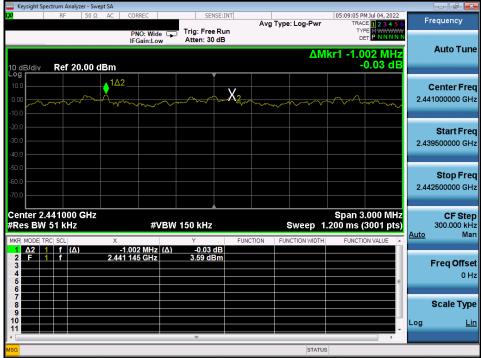
Keysight Spectrum Analyzer - S	Swept SA	,			
RL RF 50 Center Freq 2.4410	Ω AC CORREC	SENSE:INT	ALIGN OFF Avg Type: Log-Pwr	12:32:03 PM May 24, 2022 TRACE 1 2 3 4 5 6	Frequency
	PNO: Wide 😱 IFGain:Low	Trig: Free Run Atten: 40 dB		DET PPPPP	Auto Tune
10 dB/div Ref 30.00) dBm			ΔMkr1 997 kHz -0.02 dB	Auto Tune
20.0 10.0 0.00		X2			Center Freq 2.441000000 GHz
-10.0 -20.0 -30.0					Start Freq 2.439500000 GHz
-40.0 -50.0 -60.0					Stop Freq 2.442500000 GHz
Center 2.441000 GH #Res BW 51 kHz	#VBW	150 kHz	-	Span 3.000 MHz .200 ms (3001 pts)	CF Step 300.000 kHz <u>Auto</u> Man
MKR MODE TRC SCL 1 Δ2 1 f (Δ) 2 F 1 f 3 4 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	× <u>997 kHz</u> (Δ) 2.441 001 GHz	Y FUNC -0.02 dB 17.59 dBm	TION FUNCTION WIDTH	FUNCTION VALUE	Freq Offset 0 Hz
7 8 9 10 11					Scale Type Log <u>Lin</u>
MSG			STATUS		

Carrier Frequency Separation (FH) <u>Hopping mode : Enable&π/4DQPSK</u>

Carrier Frequency Separation (FH) Hop


Hopping mode : Enable&8DPSK

🔤 Keysight S	pectrum Analy	zer - Swept SA									
<mark>LXI</mark>	RF	50 Ω AC	CORREC		SENSE:INT	Avg	Type: Log-Pwr	TRAC	M Jul 05, 2022 E 1 2 3 4 5 6 E M	F	requency
10 dB/div	Ref 20	1.00 dBm	PNO: Wid IFGain:Lo		ree Run 30 dB		ΔΝ	₀ /kr1 1.0	05 MHz 1.34 dB		Auto Tune
Log 10.0 0.00	~~~~~~	m	en frent	~~~~~	X2~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1Δ2_ 	~~~w~		Center Freq 1000000 GHz
-20.0										2.43	Start Freq 9500000 GHz
-50.0 -60.0 -70.0										2.44	Stop Freq 2500000 GHz
Center 2 #Res BV		GHz		VBW 150 kH		UNCTION	Sweep 1	.200 ms (.000 MHz 3001 pts)	<u>Auto</u>	CF Step 300.000 kHz Man
3 4 5 6	1 f (Δ) 1 f	2.4	1.005 MHz 40 997 GHz		4 dB dBm						Freq Offset 0 Hz
7 8 9 10										Log	Scale Type
11									+		
MSG							STATUS	5			


Carrier Frequency Separation (AFH) <u>Hopping mode : Enable&GFSK</u>

Keysight Spectrum Analyzer - Swept SA			
KL RF 50 Ω AC Center Freq 2.441000000		ALIGN OFF 02:28:54 PM May 24, 202 Avg Type: Log-Pwr TRACE 1 2 3 4 5 TYPE 1 2 1 2 3 4 5	6 Frequency
10 dB/div Ref 30.00 dBm	PNO: Wide Trig: Free Run IFGain:Low Atten: 40 dB	түре Миллин Det P P P P ΔMkr1 995 kH -0.10 dl	Auto Tune
Log 20.0 10.0 0.00	X.		Center Freq 2.441000000 GHz
-10.0			Start Freq 2.439500000 GHz
-40.0 -50.0 -60.0			Stop Freq 2.442500000 GHz
Center 2.441000 GHz #Res BW 51 kHz	#VBW 150 kHz	Span 3.000 MH Sweep 1.200 ms (3001 pts unction Function vidth Function value	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	995 kHz (Δ) -0.10 dB 1 161 GHz 17.86 dBm		Freq Offset 0 Hz
7 8 9 10			Scale Type
11			Log <u>Lin</u>
MSG	m	STATUS	

Carrier Frequency Separation (AFH) <u>Hopping mode : Enable& $\pi/4DQPSK$ </u>

Carrier Frequency Separation (AFH) <u>Hopping mode : Enable&8DPSK</u>

7. Number of Hopping Channels

7.1. Test Setup

Refer to the APPENDIX I.

7.2. Limit

Limit : >= 15 hops

7.3. Test Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 2 400 MHz ~ 2 483.5 MHz were examined.

The spectrum analyzer is set to :

Span for FH mode = 50 MHz	Start Frequency = 2 391.5 MHz,	Stop Frequency = 2 441.5 MHz
	Start Frequency = 2 441.5 MHz,	Stop Frequency = 2 491.5 MHz
Span for AFH mode = 30 MHz	Start Frequency = 2 426.0 MHz,	Stop Frequency = 2 456.0 MHz
		ss than 30 % of the channel spacing
or the 20 dB bandwidth, v	vhichever is smaller.	
VBW ≥ RBW	Sweep = auto	
Detector function = peak	Trace = max hold	

7.4. Test Results

FH mode

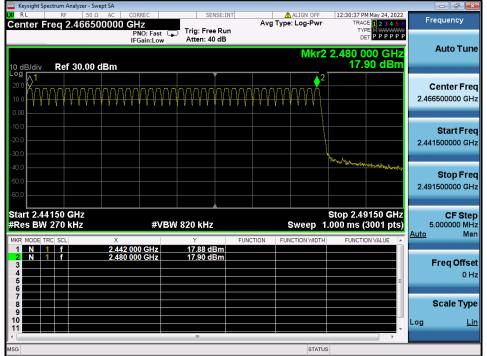
Hopping mode	Modulation	Test Result (Total Hops)
	GFSK	79
Enable	π/4DQPSK	79
	8DPSK	79

AFH mode

Hopping mode	Modulation	Test Result (Total Hops)
	GFSK	20
Enable	π/4DQPSK	20
	8DPSK	20

Note 1 : See next pages for actual measured spectrum plots.

Dt&C

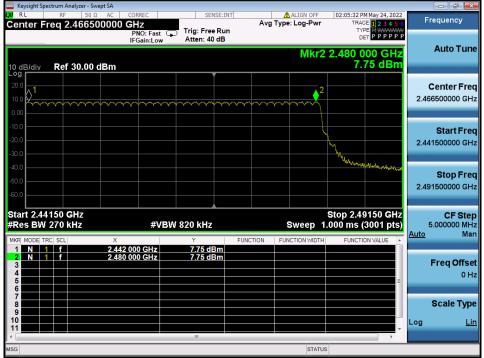

Number of Hopping Channels 1(FH)

Hopping mode : Enable & GFSK

LXI RL	RF 50 Ω	AC COR		SEN	SE:INT		ALIGN OFF		1 May 24, 2022 E 1 2 3 4 5 6	Frequency
10 dB/div	req 2.41650 Ref 30.00	PN IFG	O: Fast G	Trig: Free Atten: 40				TYP DE 2.441 0	E M WWWWW T P P P P P P	Auto Tune
20.0 10.0					Ŷ		WW			Center Freq 2.416500000 GHz
-10.0 -20.0 -30.0										Start Freq 2.391500000 GHz
-40.0 -50.0	Audithe authority of the									Stop Freq 2.441500000 GHz
Start 2.39 #Res BW	270 kHz	× 2.402 000		∮ 820 kHz Y 17.36 dE		CTION FU	Sweep 1	Stop 2.44 .000 ms (3 FUNCTIC	3001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
2 N 1 3 4 5 6	f	2.441 000		17.92 dE					=	Freq Offset 0 Hz
7 8 9 10 11										Scale Type
MSG							STATUS	8		

Number of Hopping Channels 2(FH)

Hopping mode : Enable & GFSK


Number of Hopping Channels 1(FH)

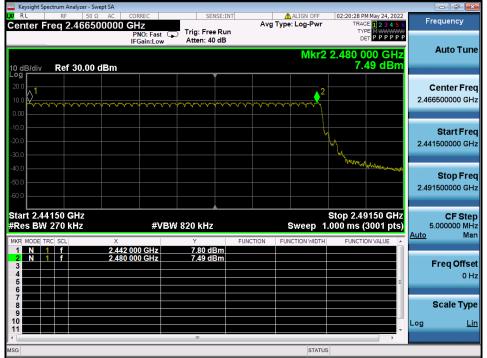
Hopping mode : Enable&π/4DQPSK

200 1	Keysight S													
PROF Past Tigen chast Tigen chast	Center	RF Fred 2.4	50 Ω /			S	ENSE:INT	Avç						Frequency
200 1	10 dB/div			IF(NO: Fast 🕔				MI	kr2 2.4	DE 441 0	00 GH	2	Auto Tune
100	20.0 10.0			1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~	~~~~	v	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.4	
500 Stop Freq 2.44150000 GHz Start 2.39150 GHz #VBW 820 kHz Start 2.39150 GHz #VBW 820 kHz Stop 7.00 ms (3000 ptz) MKR MODE TRC SCL X 2 N 1 N 2 N 1 7 2 N 1 7 2 N 1 7 2 N 1 7 2 N 1 7 2 N 1 7 2 N 1 7 2 N 1 7 2 N 1 7 2 N 1 7 2 N 1 7 2 N 2 N 3 - 3 - 4 - 5 - 6 - 1	-10.0 -20.0												2.3	
#Res BW 270 kHz #VBW 820 kHz Sweep 1.000 ms (3001 pts) 5.000000 MHz MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto Man 1 N 1 f 2.402 000 GHz 6.85 dBm Function WIDTH FUNCTION VALUE Freq Offset 3 1 f 2.441 000 GHz 7.75 dBm Freq Offset 0 Hz 5 2 2 1 6 5 6 7	-50.0	Janua (read) and for											2.4	
2 N 1 f 2.441 000 GHz 7.75 dBm Freq Offset 3 4	#Res BV	V 270 kH		X	#VB		z	FUNCTION		p 1.00	0 ms (3001 pts)	5.000000 MHz
7 8 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	2 N 3 4 5 5			2.402 00 2.441 00	0 GHz 0 GHz	6.85 c 7.75 c	IBm IBm						=	
	7 8 9												Log	
MSG	11											Þ	-	
	MSG								S	TATUS				

Number of Hopping Channels 2(FH)

Hopping mode : Enable &π/4DQPSK

Dt&C

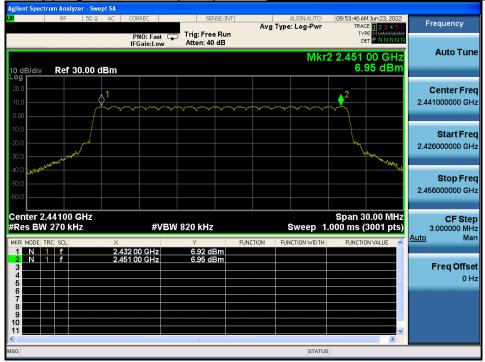

Number of Hopping Channels 1(FH)

Hopping mode : Enable&8DPSK

PNO: Fast IFGain:Low Trig: Free Run Atten: 40 dB Trig: Avg Type: Log T W Trig: Det P P P P P Mkr2 2.441 000 GHz	equency
PNO: Fast IFGain:Low Atten: 40 dB	quericy
IFGain:Low Atten: 40 dB DET PPPPPP Mkr2 2.441 000 GHz	
Mkr2 2.441 000 GHz	
MKr2 2.441 000 GHZ	Auto Tune
	Auto Tune
10 dB/div Ref 30.00 dBm 7.88 dBm	
	enter Freq
	500000 GHz
-10.0	
	Start Freq
.20.0	500000 GHz
-30.0	
-40.0	Stop Freq
-50.0	
-60.0	500000 GHz
Start 2.39150 GHz Stop 2.44150 GHz	
	CF Step
	.000000 MHz Man
	Man
1 N 1 f 2.402 000 GHz 7.22 dBm	
2 N 1 f 2.441 000 GHz 7.88 dBm	rag Offeet
	Freq Offset
	0 Hz
7	
	Scale Type
9	
	Lin
MSG	

Number of Hopping Channels 2(FH)

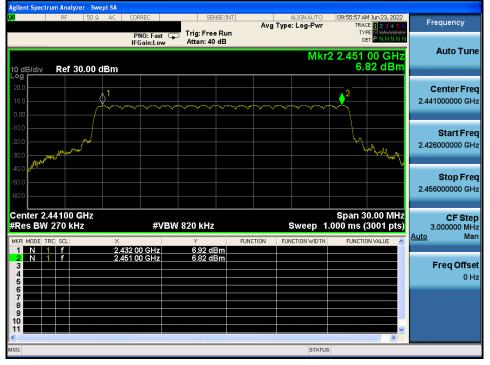
Hopping mode : Enable & 8DPSK


Number of Hopping Channels 1(AFH)

Hopping mode : Enable & GFSK

	nt Spectrum A	naiyzer - Sw																	~
IXI RL	RF	50 Ω		CORREC		SE	NSE:INT				ALIGN		02:2		M May 24, 20			requency	
Center	r Freq 2	2.44100	00000	GHz			_		Avg	Туре	e: Log-	Pwr		TRAC	E 1 2 3 4 5	6	-L	equency	
				PNO: Fas	t 🖵	Trig: Fre Atten: 4										P P			
				IFGain:Lo	w	Atten: 4	Jab											Auto Tur	
												Mkr	2 2.4	451	00 GH	z		Auto Tur	ie
10 dB/d	. Dof	30.00	Dea												01 dBr				
	IV REI	30.00					-												
20.0			⊕'											<u> </u>				Center Fre	
			$\neg \land \land$	nmm	$\cap \cap$	1/1/1	γm	M	١M	M	γm	M	hΛ						- 1 I
10.0			- V - V	++++	ł	V V V	+ { {	f V	Υl	f V		d V	₩ \				2.44	1000000 GH	٦z
0.00			· ·	Y 1 1			<u>'</u>		, i		`	* *					_		
-10.0																		Start Fre	ea
-20.0														1			2.42	6000000 GH	
																	2.42	600000 GF	
-30.0	- marken marken	marker												×	manauto				
-40.0	All from the sub-sur-														1.444.00104				
FO O																		Stop Fre	pe
-50.0																	2.45	6000000 GH	Ηz
-60.0																			
Center	2.4410	0 GHz											Sp	an 3	0.00 MH	IZ		CF Ste	ep
#Res E	3W 270	kHz		#	/BW	820 kHz					Swee	ep 1	.000	ms (3001 pt:	s)	3	3.000000 MH	
-							_										Auto	Ma	an
MKR MOD	DE TRC SCL		Х			Y	_	FUNC	TION	FUN	ICTION	WIDTH	F	UNCTI	ON VALUE	<u>^</u>			
1 N 2 N	1 f		2.43	2 00 GHz		17.83 d 18.01 d	Bm												
3			2.40	I UU GHZ		18.01 a												Freq Offs	et
4																		0H	
5																=		01	12
6																			
7																		Scale Typ	20
8																		Scale Typ	~
10																	Log		in
11																-	9		
•																			
MSG												STATUS	3						
					_			_	_	_	_	_	_	_		_			_

Number of Hopping Channels 1(AFH)


Hopping mode : Enable &π/4DQPSK

Number of Hopping Channels 1(AFH)

Hopping mode : Enable & 8DPSK

8. Time of Occupancy

8.1. Test Setup

Refer to the APPENDIX I.

8.2. Limit

The maximum permissible time of occupancy is 400 ms within a period of 400 ms multiplied by the number of hopping channels employed.

8.3. Test Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :

Center frequency = 2 441 MHz

Span = zero

RBW = 1 MHz (RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)

VBW ≥ RBW

Detector function = peak

Trace = max hold

8.4. Test Results

FH mode

Hopping mode	Packet Type	Number of hopping Channels	Burst On Time (ms)	Period (ms)	Test Result (sec)
	DH 5	79	2.880	3.750	0.307
Enable	2 DH 5	79	2.880	3.750	0.307
	3 DH 5	79	2.880	3.750	0.307

AFH mode

Hopping mode	Packet Type	Number of hopping Channels	Burst On Time (ms)	Period (ms)	Test Result (sec)
	DH 5	20	2.880	3.750	0.154
Enable	2 DH 5	20	2.880	3.750	0.154
	3 DH 5	20	2.880	3.750	0.154

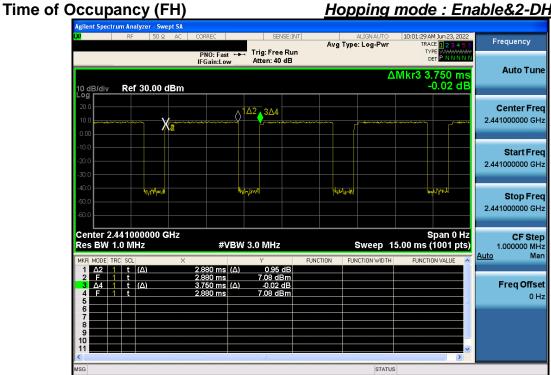
Note 1 : Dwell Time = 0.4 × Hopping channel × Burst ON time ×

((Hopping rate ÷ Time slots) ÷ Hopping channel)

- Time slots for DH5 = 6 slots (TX = 5 slots / RX = 1 slot)

- Hopping Rate = 1 600 for FH mode & 800 for AFH mode

Note 2 : See next pages for actual measured spectrum plots.

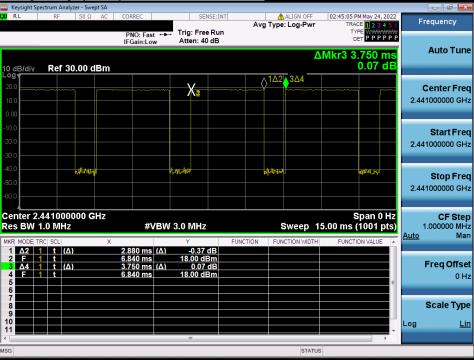


Time of Occupancy (FH)

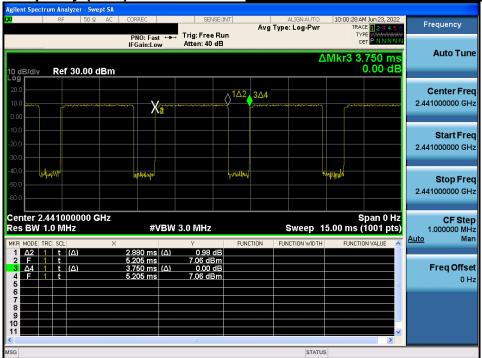
🔤 Keysight Spectrum Analyzer - Swept SA	
M RL RF 50 Ω AC CORREC SENSE:INT M ALIGN OFF 12:19:46 PM May 24, 2022 Center Freq 2.441000000 GHz Avg Type: Log-Pwr TRACE 12:34.56 From the sense:INT From the sen	equency
PNO: Fast IFGain:Low Atten: 40 dB DET PPPPP	
	Auto Tune
10 dB/div Ref 30.00 dBm 0.04 dB	
	enter Freq
	000000 GHz
	Start Freq
	000000 GHz
-40.0 hourse presented pre	Stop Freq
	000000 GHz
Center 2.441000000 GHz Span 0 Hz	CF Step
	.000000 MHz
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE	Man
Δ2 1 t Δ2.880 ms (Δ) -0.01 dB 2 F 1 t 6.863 ms 17.52 dBm 17.52 dBm	
3 Δ4 1 t Δ3.750 ms (Δ) 0.04 dB Δ4 Δ4 L Δ4 Δ4 L Δ4	Freq Offset 0 Hz
5	UHZ
	_
	Scale Type
	<u>Lin</u>
MSG STATUS	

Hopping mode : Enable&2-DH5

Hopping mode : Enable&DH5

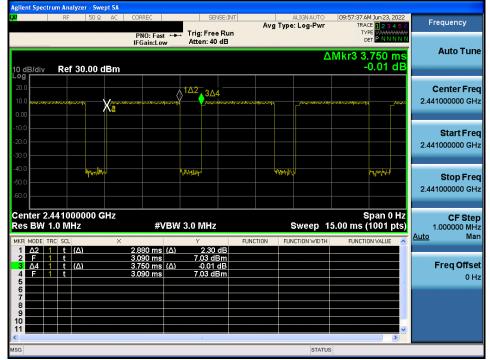

Time of Occupancy (FH)

Hopping mode : Enable&3-DH5



Time of Occupancy (AFH)

Time of Occupancy (AFH) <u>Hopping mode : Enable&2-DH5</u>



Hopping mode : Enable&DH5

Time of Occupancy (AFH)

Hopping mode : Enable&3-DH5

9. Unwanted Emissions

9.1. Test Setup

Refer to the APPENDIX I.

9.2. Limit

Part 15.247(d), Part 15.205, Part 15.209 & RSS-247 [5.5], RSS-Gen [8.9], RSS-Gen [8.10] In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

- Part 15.209 & RSS-Gen[8.9]: General requirement FCC Limit (uV/m) IC Limit (µA/m) Measurement Distance (m) Frequency (MHz) 2 400 / F (kHz) 6.37/F (F in kHz) 0.009 - 0.490300 0.490 - 1.705 24 000 / F (kHz) 63.7/F (F in kHz) 30 1.705 - 30.0 30 0.08 30

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	100	3
88 ~ 216	150 **	150	3
216 ~ 960	200 **	200	3
Above 960	500	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §15.231 and 15.241.

- Part 15.205(a): Restricted band of operation

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

- RSS-GEN[8.10]: Restricted frequency bands

MHz	MHz	MHz	MHz	MHz	GHz
0.090 ~ 0.110	8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 345.8 ~ 3 358	9.0 ~ 9.2
0.495 ~ 0.505	8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 427	3 500 ~ 4 400	9.3 ~ 9.5
2.173 5 ~ 2.190 5	8.414 25 ~ 8.414 75	108 ~ 138	1 435 ~ 1 626.5	4 500 ~ 5 150	10.6 ~ 12.7
3.020 ~ 3.026	12.29 ~ 12.293	149.9 ~ 150.05	1 645.5 ~ 1 646.5	5 350 ~ 5 460	13.25 ~ 13.4
4.125 ~ 4.128	12.519 75 ~ 12.520 25	156.524 75 ~	1 660 ~ 1 710	7 250 ~ 7 750	14.47 ~ 14.5
4.177 25 ~ 4.177 75	12.576 75 ~ 12.577 25	156.525 25	1 718.8 ~ 1 722.2	8 025 ~ 8 500	15.35 ~ 16.2
4.207 25 ~ 4.207 75	13.36 ~ 13.41	156.7 ~ 156.9	2 200 ~ 2 300		17.7 ~ 21.4
5.677 ~ 5.683	16.42 ~ 16.423	162.01 25 ~ 167.17	2 310 ~ 2 390		22.01 ~ 23.12
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 483.5 ~ 2 500		23.6 ~ 24.0
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 655 ~ 2 900		31.2 ~ 31.8
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	3 260 ~ 3 267		36.43 ~ 36.5
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 332 ~ 3 339		Above 38.6

9.3. Test Procedures

9.3.1. Test Procedures for Unwanted Emissions(Radiated)

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Measurement Instrument Setting

- Frequencies less than or equal to 1 000 MHz The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasipeak detection (QP) at frequency below 1 GHz.
- Frequencies above 1 000 MHz
 The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.
 The result of Average measurement is calculated using PK result and duty correction factor.

9.3.2. Test Procedures for Unwanted Emissions(Conducted)

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

Frequency range : 9 kHz ~ 30 MHz RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001

Frequency range : 30 MHz ~ 10 GHz, 10 GHz ~ 25 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

9.4. Test Results

9.4.1. Unwanted Emissions(Radiated)

Test Notes.

1. The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies.

- 2. Information of Distance Correction Factor
 - For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance correction factor is applied to the result.

- Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied. 3. DCCF Calculation. (DCCF = Duty Cycle Correction Factor)

- Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = 2.88 ms
- 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.74 = 2
- The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms
- DCCF = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB

4. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss,

AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

9 kHz ~ 25 GHz Data (Modulation : GFSK)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 389.93	V	Z	PK	54.40	5.71	N/A	N/A	60.11	74.00	13.89
2 389.93	V	Z	AV	54.40	5.71	-24.79	N/A	35.32	54.00	18.68
4 804.06	Н	Y	PK	48.99	10.32	N/A	N/A	59.31	74.00	14.69
4 804.06	V	Х	AV	48.99	10.32	-24.79	N/A	34.52	54.00	19.48
7 205.36	V	Х	PK	53.07	13.56	N/A	N/A	66.63	74.00	7.37
7 205.36	V	Х	AV	53.07	13.56	-24.79	N/A	41.84	54.00	12.16
9 608.53	Н	Z	PK	50.02	17.10	N/A	N/A	67.12	74.00	6.88
9 608.53	Н	Z	AV	50.02	17.10	-24.79	N/A	42.33	54.00	11.67

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4 882.14	Н	Y	PK	48.13	10.34	N/A	N/A	58.47	74.00	15.53
4 882.14	Н	Y	AV	48.13	10.34	-24.79	N/A	33.68	54.00	20.32
7 323.24	V	Х	PK	45.76	13.49	N/A	N/A	59.25	74.00	14.75
7 323.24	V	Х	AV	45.76	13.49	-24.79	N/A	34.46	54.00	19.54
9 763.42	Н	Z	PK	51.93	17.43	N/A	N/A	69.36	74.00	4.64
9 763.42	Н	Z	AV	51.93	17.43	-24.79	N/A	44.57	54.00	9.43

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 483.62	V	Z	PK	60.34	6.01	N/A	N/A	66.35	74.00	7.65
2 483.62	V	Z	AV	60.34	6.01	-24.79	N/A	41.56	54.00	12.44
4 959.62	Н	Y	PK	46.56	10.49	N/A	N/A	57.05	74.00	16.95
4 959.62	Н	Y	AV	46.56	10.49	-24.79	N/A	32.26	54.00	21.74
7 439.66	V	Х	PK	47.26	13.44	N/A	N/A	60.70	74.00	13.30
7 439.66	V	Х	AV	47.26	13.44	-24.79	N/A	35.91	54.00	18.09
9 919.28	Н	Z	PK	47.52	17.82	N/A	N/A	65.34	74.00	8.66
9 919.28	Н	Z	AV	47.52	17.82	-24.79	N/A	40.55	54.00	13.45

9 kHz ~ 25 GHz Data (Modulation : π /4DQPSK)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 389.57	V	Z	PK	48.61	5.71	N/A	N/A	54.32	74.00	19.68
2 389.57	V	Z	AV	48.61	5.71	-24.79	N/A	29.53	54.00	24.47
4 804.25	Н	Y	PK	43.46	10.32	N/A	N/A	53.78	74.00	20.22
4 804.25	Н	Y	AV	43.46	10.32	-24.79	N/A	28.99	54.00	25.01
7 205.64	Н	Z	PK	41.69	13.56	N/A	N/A	55.25	74.00	18.75
7 205.64	Н	Z	AV	41.69	13.56	-24.79	N/A	30.46	54.00	23.54
9 608.14	V	Х	PK	40.84	17.10	N/A	N/A	57.94	74.00	16.06
9 608.14	V	Х	AV	40.84	17.10	-24.79	N/A	33.15	54.00	20.85

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4 881.71	Н	Y	PK	43.80	10.34	N/A	N/A	54.14	74.00	19.86
4 881.71	Н	Y	AV	43.80	10.34	-24.79	N/A	29.35	54.00	24.65
7 322.65	Н	Z	PK	41.65	13.49	N/A	N/A	55.14	74.00	18.86
7 322.65	Н	Z	AV	41.65	13.49	-24.79	N/A	30.35	54.00	23.65
9 764.77	V	Х	PK	40.20	17.43	N/A	N/A	57.63	74.00	16.37
9 764.77	V	Х	AV	40.20	17.43	-24.79	N/A	32.84	54.00	21.16

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 483.62	V	Z	PK	66.56	6.01	N/A	N/A	72.57	74.00	1.43
2 483.62	V	Z	AV	66.56	6.01	-24.79	N/A	47.78	54.00	6.22
4 960.21	Н	Y	PK	41.68	10.49	N/A	N/A	52.17	74.00	21.83
4 960.21	Н	Y	AV	41.68	10.49	-24.79	N/A	27.38	54.00	26.62
7 440.72	Н	Z	PK	43.43	13.44	N/A	N/A	56.87	74.00	17.13
7 440.72	Н	Z	AV	43.43	13.44	-24.79	N/A	32.08	54.00	21.92
9 920.81	V	Х	PK	41.20	17.82	N/A	N/A	59.02	74.00	14.98
9 920.81	V	Х	AV	41.20	17.82	-24.79	N/A	34.23	54.00	19.77

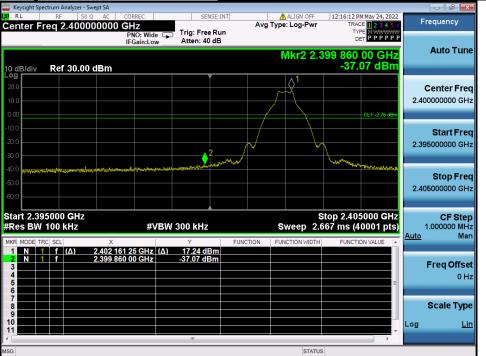
9 kHz ~ 25 GHz Data (Modulation : <u>8DPSK</u>)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 389.37	Н	Х	PK	47.86	5.71	N/A	N/A	53.57	74.00	20.43
2 389.37	Н	Х	AV	47.86	5.71	-24.79	N/A	28.78	54.00	25.22
4 804.21	Н	Y	PK	42.31	10.32	N/A	N/A	52.63	74.00	21.37
4 804.21	Н	Y	AV	42.31	10.32	-24.79	N/A	27.84	54.00	26.16
7 205.85	V	Y	PK	41.91	13.56	N/A	N/A	55.47	74.00	18.53
7 205.85	V	Y	AV	41.91	13.56	-24.79	N/A	30.68	54.00	23.32
9 607.59	Н	Z	PK	40.29	17.10	N/A	N/A	57.39	74.00	16.61
9 607.59	Н	Z	AV	40.29	17.10	-24.79	N/A	32.60	54.00	21.40

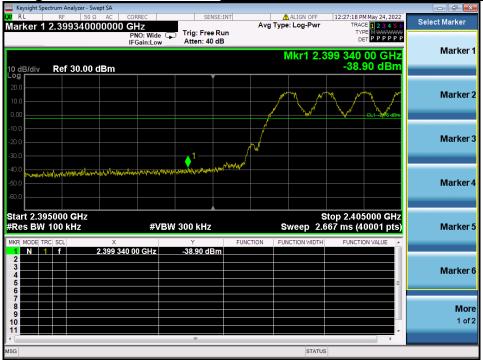
Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4 882.00	Н	Y	PK	43.00	10.34	N/A	N/A	53.34	74.00	20.66
4 882.00	Н	Y	AV	43.00	10.34	-24.79	N/A	28.55	54.00	25.45
7 323.11	V	Y	PK	42.91	13.49	N/A	N/A	56.40	74.00	17.60
7 323.11	V	Y	AV	42.91	13.49	-24.79	N/A	31.61	54.00	22.39
9 763.76	Н	Z	PK	40.09	17.43	N/A	N/A	57.52	74.00	16.48
9 763.76	Н	Z	AV	40.09	17.43	-24.79	N/A	32.73	54.00	21.27


Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 483.57	Н	Х	PK	65.69	6.01	N/A	N/A	71.70	74.00	2.30
2 483.57	Н	Х	AV	65.69	6.01	-24.79	N/A	46.91	54.00	7.09
4 959.26	Н	Y	PK	41.85	10.49	N/A	N/A	52.34	74.00	21.66
4 959.26	Н	Y	AV	41.85	10.49	-24.79	N/A	27.55	54.00	26.45
7 440.47	V	Y	PK	42.26	13.44	N/A	N/A	55.70	74.00	18.30
7 440.47	V	Y	AV	42.26	13.44	-24.79	N/A	30.91	54.00	23.09
9 920.59	Н	Z	PK	42.02	17.82	N/A	N/A	59.84	74.00	14.16
9 920.59	Н	Z	AV	42.02	17.82	-24.79	N/A	35.05	54.00	18.95

9.4.2. Unwanted Emissions(Conducted)


Low Band-edge

Low Band-edge

Hopping mode & Modulation : GFSK

Lowest Channel & Modulation : GFSK

