ATTACHMENT

**** MPE Calculations ****

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = 12.86 dBm + 0.2 dBi	P = Power input to the antenna (mW)
EIRP = 13.06 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
	S = Maximum power density (mW/cm2)
$\mathbf{S} = (19.32 * 1.05) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.004 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm^2 .

The power density does not exceed the 1 mW/cm^2 limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
	P = Power input to the antenna (mW)
$R = \sqrt{(19.32*1.05 / 4\pi)}$	G = Numeric power gain of the antenna
	$\mathbf{R} = \mathbf{Distance}$ to the center of the radiation of the antenna
R = 1.27 Cm	(20 cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

 $G = Log^{-1} (dB antenna gain / 10)$

$$G = Log^{-1} (0.2 / 10)$$

G = 1.05