

243 Jubug-Ri,Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 <u>http://www.ltalab.com</u>

SENA

Dates of Tests: May 13~ 22, 2013 Test Report S/N: LR500111305I Test Site : LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID IC APPLICANT

8154A-IW04 Sena Technologies, Inc.

S7A-IW04

Equipment Class	:	Part 15 Spread Spectrum Transmitter (DSS)
Manufacturing Description	:	Bluetooth USB Adapter
Manufacturer	:	Sena Technologies, Inc.
Model name	:	UD100a
Test Device Serial No.:	:	Identical prototype
Rule Part(s)	:	FCC Part 15.247 Subpart C; ANSI C-63.4-2003
		RSS-210 and ISSUE No. :8 Date :2010
Frequency Range	:	2402 ~ 2480MHz
RF power	:	Max 8.96 dBm – Conducted
Data of issue	:	May 22, 2013

This test report is issued under the authority of:

Kyu-Hyun Lee, Manager

The test was supervised by:

Jung-Moo Her, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST IFEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 FREQUENCY HOPPING SYSTEM REQUIREMENTS	6
3.3 TECHNICAL CHARACTERISTICS TEST	8
3.3.1 CARRIER FREQUENCY SEPARATION	8
3.3.2 NUMBER OF HOPPING FREQUENCIES	10
3.3.3 20 dB BANDWIDTH	12
3.3.4 TIME OF OCCUPANCY (Dwell Time)	19
3.3.5 TRANSMITTER OUTPUT POWER	24
3.3.6 BAND – EDGE & SPURIOUS	28
3.3.7 FIELD STRENGTH OF HARMONICS-Transmitter	34
3.3.8 FIELD STRENGTH OF HARMONICS-Receiver	42
3.3.9 AC CONDUCTED EMISSIONS	49

APPENDIX

APPENDIX TEST EQUIPMENT USED FOR TESTS 56	APPENDIX	TEST EQUIPMENT	USED FOR TESTS		56
---	----------	----------------	----------------	--	----

1. General information's

<u>1-1 Test Performed</u>

Company name	: LTA Co., Ltd.
Address	: 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822
Web site	: <u>http://www.ltalab.com</u>
E-mail	: <u>chahn@ltalab.com</u>
Telephone	: +82-31-323-6008
Facsimile	+82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2013-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	UPDATING	EMC accredited Lab.
FCC	U.S.A	610755	2014-04-27	FCC filing
FCC	U.S.A	649054	UPDATING	FCC CAB
VCCI	JAPAN	R2133(10m), C2307	2014-06-21	VCCI registration
VCCI	JAPAN	T-2009	2013-12-23	VCCI registration
VCCI	JAPAN	G-563	2015-05-28	VCCI registration
IC	CANADA	5799A-1	2015-06-21	IC filing

2. Information's about test item

2-1 Client & Manufacturer

Company name	:	Sena Technologies, Inc.
Address	:	210 Yangjae-dong Seocho-gu Seoul 137-130 Korea
Telephone / Facsimile	:	+82-2-571-8283 / +82-2-573-7710

<u>2-2 Equipment Under Test (EUT)</u>

Trade name	:	SENA
Model name	:	UD100a
Serial number	:	Identical prototype
Date of receipt	:	May 13, 2013
EUT condition	:	Pre-production, not damaged
Antenna type	:	Dipole antenna (M/N: AN2400-3306RS) Max Gain 1.4 dBi
		Dipole antenna (M/N: R-AN2400-5801RS) Max Gain 3.17 dBi
		Dipole antenna (M/N: R-AN2400-1901RS) Max Gain 5.37 dBi
Frequency Range	:	2402 ~ 2480MHz
RF output power	:	Max. 8.96 dBm - Conducted
Number of channels	:	79
Duty cycle	:	80.44 %
Channel spacing	:	1MHz
Channel Access Protocol	:	Frequency Hopping Spread Spectrum (FHSS)
Power Source	:	DC 5.0V
Firmware Version	:	V2.0.1

2-3 Tested frequency

Bluetooth	LOW	MID	HIGH
Frequency (MHz)	2402	2441	2480

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer	
NOTEBOOK	PP37L	29705283757	DELL	

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	Carrier Frequency Separation	> 25 kHz		C
15.247(a)	Number of Hopping Frequencies	> 15 hops	_	С
15.247(a)	20 dB Bandwidth 99% Bandwidth	> 1.5 MHz	-	С
15.247(a)	Dwell Time	< 0.4 seconds	Conducted	С
15.247(b)	Transmitter Output Power	< 250 mWatt	-	С
15.247(d)	Conducted Spurious emission	> 20 dBc	_	С
15.247(d)	Band Edge	> 20 dBc	_	С
15.249 / 15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)		С
15.109	Field Strength	-	– Radiated	С
15.207 /15.107	AC Conducted Emissions	EN 55022	Line Conducted	С
15.203	Antenna requirement	-	-	С
ote 1: C=Complies	NC=Not Complies NT=Not Tester	d NA=Not Applicable	- I	1

<u>Note 2</u>: The data in this test report are traceable to the national or international standards.

Note 1: Antenna Requirement

→ The Sena Technologies, FCC ID: S7A-IW04 unit complies with the requirement of §15.203. The antenna connector is reverse polarity SMA type, Antenna type is Dipole.

Note 2: The sample was tested according to the following specification: FCC Parts 15.247; ANSI C-63.4-2003 RSS-210 and ISSUE No.:8 Date:2010

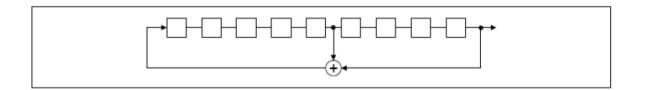
Note3: TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.10-2009) and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" were used in the measurement of the Sena Technologies, FCC ID: S7A-IW04

3.2 Frequency Hopping System Requirements

3.2.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3.2.2 EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9

Length of pseudo-random sequence: 29-1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

0246	62 64 78	1 73 75 77

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

3.2.3 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

3.3 Transmitter requirements

3.3.1 Carrier Frequency Separation

Procedure:

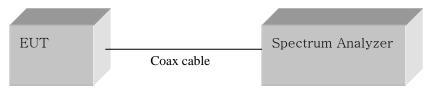
The test follows DA000705. The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

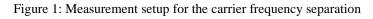
After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = 2~ 3 MHz (wide enough to capture the peaks of two adjacent channels)RBW = 10 kHz (1% of the span or more)Sweep = autoVBW = 10 kHzDetector function = peakTrace = max holdTrace = max hold

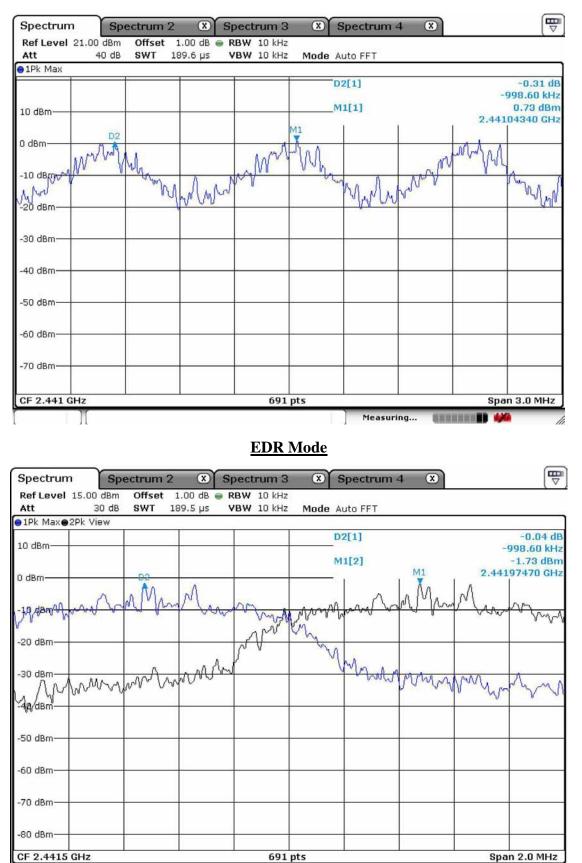
Measurement Data:


Test Results			
Carrier Frequency Separation (MHz)	Result		
0.9986	Complies		


- See next pages for actual measured spectrum plots.

Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of 20dB bandwidth of the hopping channel, whichever is greater.


Measurement Setup

Carrier Frequency Separation

Basic Mode

Measuring...

Carlos de las de las de las 🕽 🗰

3.3.2 Number of Hopping Frequencies

Procedure:

The test follows DA000705. The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the $2400 \sim 2483.5$ MHz FH band were examined.

The spectrum analyzer is set to (Bluetooth):

 $\begin{array}{ll} \mbox{Frequency range} & \mbox{Start} = 2400.0\mbox{MHz}, & \mbox{Stop} = 2483.5\mbox{ MHz}\\ \mbox{RBW} = 100\mbox{ kHz} (1\%\mbox{ of the span or more}) & \mbox{Sweep} = \mbox{auto}\\ \mbox{VBW} = 100\mbox{ kHz} (\mbox{VBW} \geq \mbox{RBW}) & \mbox{Detector function} = \mbox{peak}\\ \mbox{Trace} = \mbox{max} \mbox{ hold} & \mbox{Span} > 40\mbox{MHz} \end{array}$

Measurement Data : Complies

Total number of Hopping Channels	79
	_

- See next pages for actual measured spectrum plots.

Minimum Standard:

At least 15 hopes

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Spectrum	Spectrum 2	× s	pectrum 3	×s	pectrum 4	4 🗶		
Ref Level 21.00			BW 100 kHz		1712-110			
Att 4	odb SWT '	94.8 µs 🛛 🗸	BW 100 kHz	Mode A	uto FFT			
		88	F					-
10 dBm		84 7 ⁻				17. J. 19. 4 1	0.171.71	11.0.0
	LA A A A A A A A A A A A A A A A A A A	144804444	AAAAAAAAAA	AAMAAAAAA	I A A A A A A A A A A A A A A A A A A A	AAAAAAAA	NAALAADAT	IANAN -
	(45),(4)(.5)			AT ROAD				WWW
-20 dBm	Rohanaava	00000000000	0 -000000	0	101000	000-000		
-20 dBm								
-30 dBm							, () ()	4
-40 dBm		-	2				9]
-to ubin							J	
-50 dBm								
-60 dBm								
-70 dBm								
Start 2.4 GHz			691	nts			Stop 2	.4835 GHz
			071	pro-	Measuri	ng		1000 0112

Number of Hopping Frequencies

3.3.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The s	pectrum	analyz	zer is	set to (Bluetooth):

Center frequency = the highest, middle and the lowest channelsSpan = 3 MHz (approximately 2 or 3 times of the 20 dB bandwidth)RBW = 30 kHzSweep = autoVBW = 30 kHz (VBW \geq RBW)Detector function = peakTrace = max hold

Measurement Data: Basic Mode

Frequency	Channel No.	Test Results	s(MHz)
(MHz)	Channel No.	20dB Bandwidth	99% Bandwidth
2402	0	1.094	1.064
2441	39	1.094	1.055
2480	78	1.094	1.059

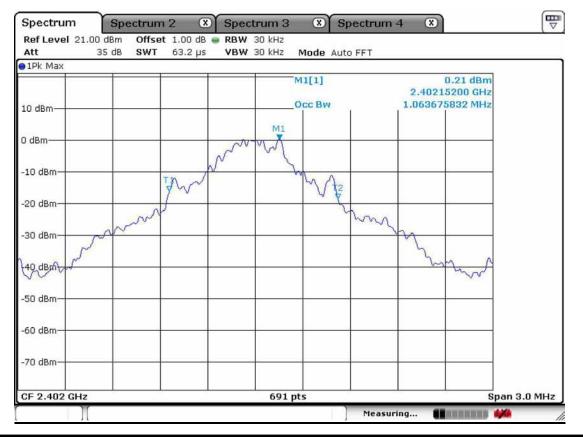
Measurement Data: EDR Mode

Frequency	Channel No.	Test Results	s(MHz)
(MHz)	Channel No.	20dB Bandwidth	99% Bandwidth
2402	0	1.346	1.307
2441	39	1.355	1.298
2480	78	1.320	1.294

- See next pages for actual measured spectrum plots.

Minimum Standard:

N/A


Measurement Setup

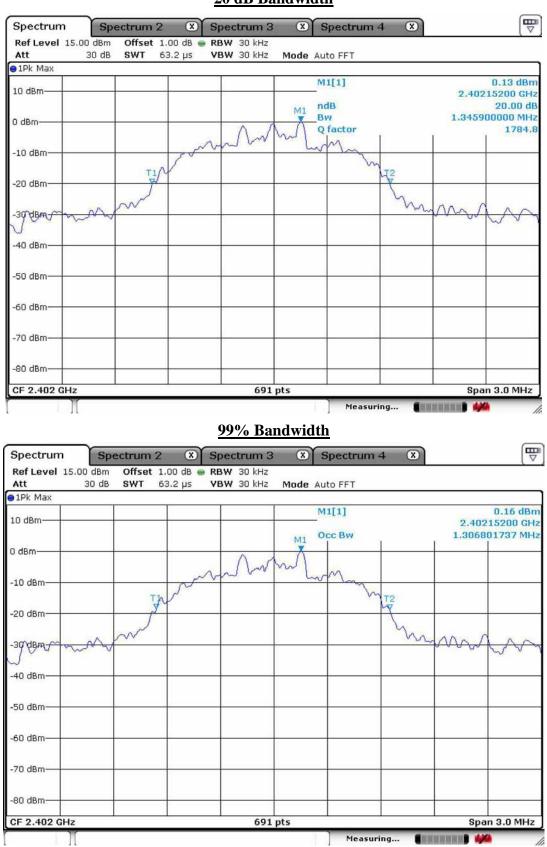
Same as the Chapter 3.2.1 (Figure 1)

<u>Channel 1 of basic mode</u> <u>20 dB Bandwidth</u>

99% Bandwidth

<u>Channel 2 of basic mode</u> 20 dB Bandwidth


99% Bandwidth


Spectrum	Spectrum 2	2 🗶 8	Spectrum 3	×	Spectrum	4 🗙		
Ref Level 21.00 di Att 35			RBW 30 kHz /BW 30 kHz	Mode /	Auto FFT			
1Pk Max								
					M1[1]			3.59 dBm 15200 GHz
10 dBm				M1	Occ Bw	6	1.0549	92764 MHz
0 dBm			N	nt	2	5		
-10 dBm		the			MAR	С. – <u>С</u>		
-20 dBm	m				<u>}</u>	my	~	
-30 dBm							- h	mul
-50 dBm								
-60 dBm						1 <u>.</u>		
-70 dBm								
CF 2.441 GHz			691	pts			Spā	n 3.0 MHz
T I				1	Measuri	na 💷	annaa 🦀	4

20 dB Bandwidth **₩** Spectrum X Spectrum 4 X Spectrum 2 Spectrum 3 RBW 30 kHz Ref Level 21.00 dBm Offset 1.00 dB 👄 VBW 30 kHz 40 dB SWT 63.2 µs Mode Auto FFT Att ●1Pk Max M1[1] 4.93 dBm 2.47992190 GHz 20.00 dB ndB 10 dBm-1.094100000 MHz BW N Q factor 2266.7 0 dBm -10 dBm -20 dBm--30 dBm 40 dBm -50 dBm--60 dBm--70 dBm-Span 3.0 MHz 691 pts CF 2.48 GHz Measuring...

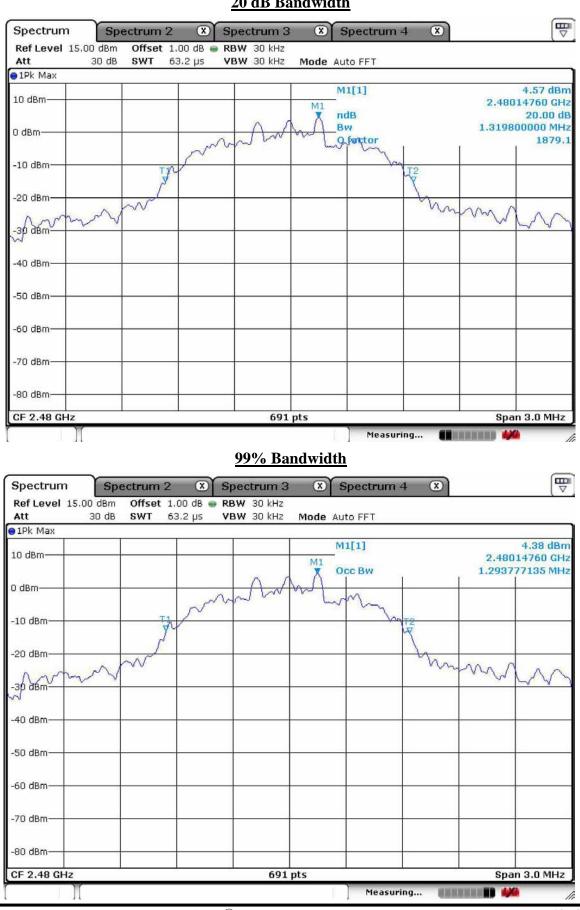
Channel 3 of basic mode

99% Bandwidth

Channel 1 at EDR mode

20 dB Bandwidth

Channel 2 at EDR mode


20 dB Bandwidth

		ectrum 2	320-200 - 12-32	pectrum 3	X Spect	rum 4 (🗶)		V
Ref Level Att	15.00 dBm 30 dB		.00 dB 👄 RI 3.2 µs 🛛 V	BW 30 kHz BW 30 kHz	Mode Auto FFT	r i		
19k Max		1	1	1 1	M1[1]			9 49 dBe
10 dBm					M1[1]		2.4409	2.43 dBn)8700 GH;
				M	ndB			20.00 dE
0 dBm		-		AN	W Q facto	r.	1.35460	1802.1
			~~~		mout	2	1 1	
-10 dBm		т1/				44		
-20 dBm		T				H2		
-20 UBIII		N				m	m	
-30 dBm	mrw						n n n n n	SV
2								
-40 dBm								
-50 dBm								
-60 dBm		·)						
70 -0.								
-70 dBm					2			
-80 dBm								
1998 - 107 (4794)								
CF 2.441	GHz			691		easuring	Spar	3.0 MHz
				<u>99% Ba</u>	<u>ndwidth</u>			
Spectrum	I Spe	ectrum 2				rum 4 🔊		
	<b>Spo</b> 15.00 dBm	ectrum 2 Offset 1.	× s	99% Bar pectrum 3 BW 30 kHz		rum 4 🙁		
Ref Level Att	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Offset 1.	🗴 S	pectrum 3				
Ref Level Att	15.00 dBm	Offset 1.	🗴 S	pectrum 3 BW 30 kHz	Spect			
Ref Level Att 1Pk Max	15.00 dBm	Offset 1.	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1		2.441	3.45 dBr
Ref Level Att 1Pk Max 10 dBm	15.00 dBm	Offset 1.	🗴 S	pectrum 3 BW 30 kHz	Spect	r		3.45 dBr 15200 GH
Ref Level Att 1Pk Max 10 dBm	15.00 dBm	Offset 1.	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	r		3.45 dBr 15200 GH
Ref Level Att ) 1Pk Max 10 dBm	15.00 dBm	Offset 1.	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	r		3.45 dBr 15200 GH
Ref Level Att ) 1Pk Max 10 dBm	15.00 dBm	Offset 1.	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	r		3.45 dBr 15200 GH
Ref Level Att 1Pk Max 10 dBm 0 dBm -10 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2	1.2981	3.45 dBr 15200 GH 18669 MH
Ref Level Att 1Pk Max 10 dBm 0 dBm -10 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2	1.2981	3.45 dBr 15200 GH 18669 MH
Ref Level       Att       11Pk Max       10 dBm       0 dBm       10 dBm       20 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2		3.45 dBi 15200 GH 18669 MH
Ref Level       Att       11Pk Max       10 dBm       0 dBm       10 dBm       20 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2	1.2981	3.45 dBi 15200 GH 18669 MH
Ref Level       Att       1Pk Max       10 dBm       0 dBm       10 dBm       20 dBm       20 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2	1.2981	3.45 dBi 15200 GH 18669 MH
Ref Level       Att       1Pk Max       10 dBm       0 dBm       -10 dBm       -20 dBm       -20 dBm       -30 dBm       -40 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2	1.2981	3.45 dBr 15200 GH 18669 MH
Ref Level       Att       1Pk Max       10 dBm       0 dBm       -10 dBm       -20 dBm       -20 dBm       -30 dBm       -40 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2	1.2981	3.45 dBr 15200 GH 18669 MH
Ref Level       Att       1Pk Max       10 dBm       0 dBm       -10 dBm       -20 dBm       -30 dBm       -40 dBm       -50 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2	1.2981	3.45 dBr 15200 GH 18669 MH
Ref Level       Att       1Pk Max       10 dBm       0 dBm       -10 dBm       -20 dBm       -30 dBm       -40 dBm       -50 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2	1.2981	3.45 dBr 15200 GH 18669 MH
Att 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2	1.2981	3.45 dBr 15200 GH 18669 MH
Ref Level       Att       1Pk Max       10 dBm       0 dBm       -10 dBm       -20 dBm       -30 dBm       -40 dBm       -50 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2	1.2981	3.45 dBr 15200 GH 18669 MH
Ref Level       Att       1Pk Max       10 dBm       0 dBm       10 dBm       10 dBm       20 dBm       30 dBm       40 dBm       50 dBm       60 dBm	15.00 dBm	Offset 1. SWT 63	🗴 S	pectrum 3 BW 30 kHz	Spect Mode Auto FF1 M1[1]	T MT2	1.2981	3.45 dBr 15200 GH 18669 MH

Д

1

Measuring... 📲



## **Channel 3 at EDR mode**

20 dB Bandwidth

## 3.3.4 Time of Occupancy (Dwell Time)

### **Procedure:**

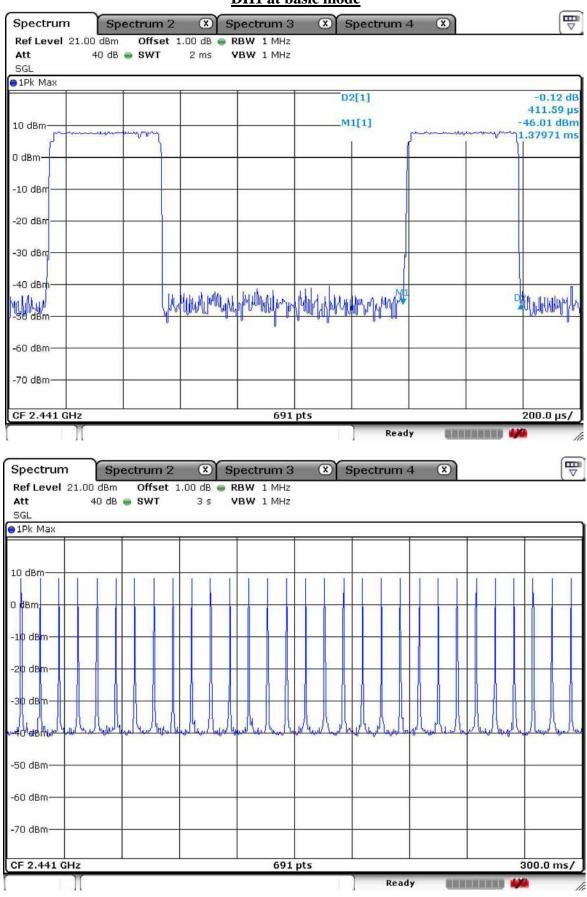
The test follows DA000705. The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :	
Center frequency = 2441 MHz	Span = zero
RBW = 1 MHz	$VBW = 1 MHz (VBW \ge RBW)$
Trace = max hold	Detector function = peak

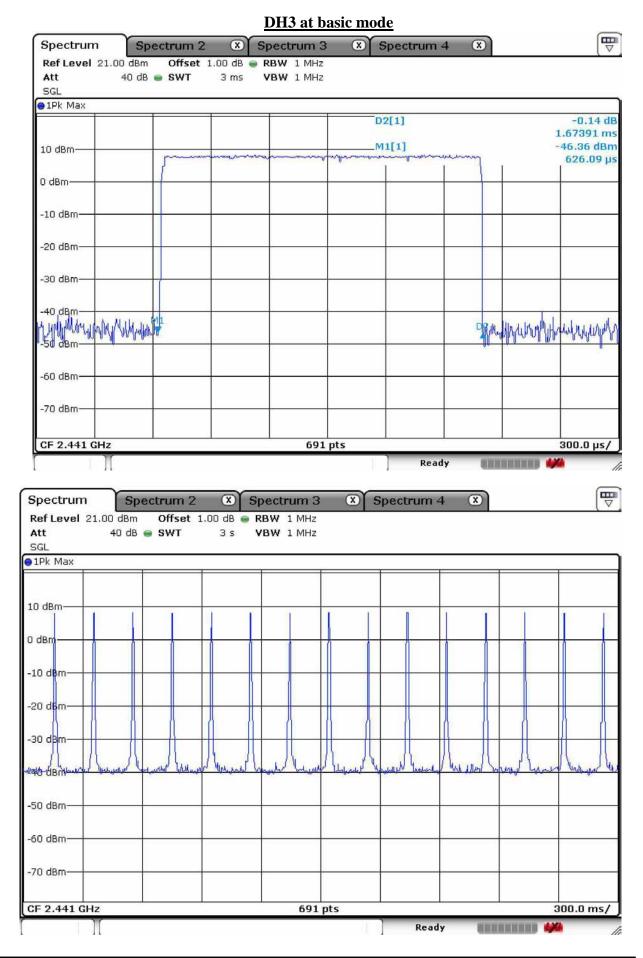
### Measurement Data (Bluetooth):

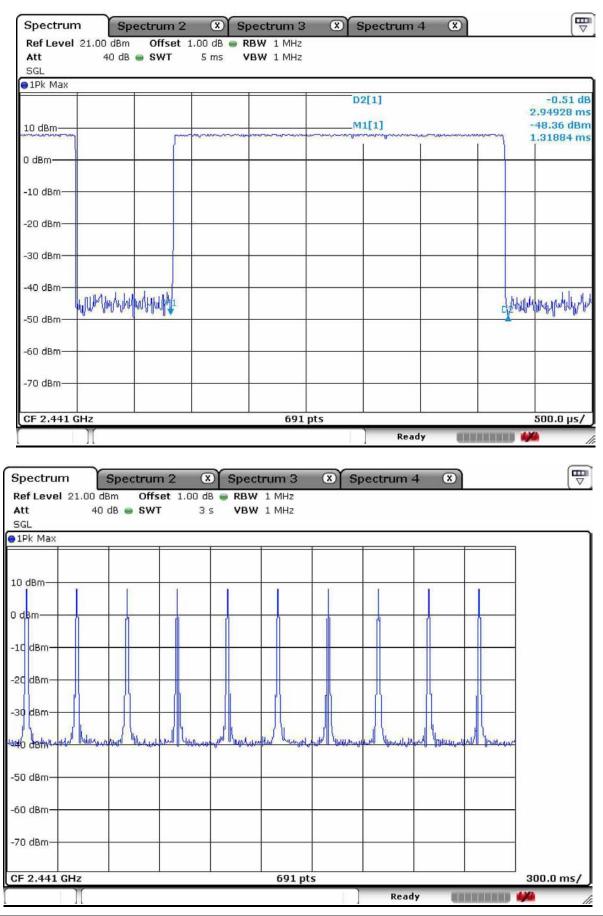
Mode	Number of transmission ina 31.6s ( 79Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
DH1	30(Times / 3sec) *10.533 = 315.99	0.412	130.19	400
DH3	15(Times / 3sec) *10.533 = 158.00	1.674	264.49	400
DH5	10(Times / 3sec) *10.533 = 105.33	2.949	310.62	400
EDR 3Mbps DH5	10(Times / 3sec) *10.533 = 105.33	2.964	312.20	400

- See next pages for actual measured spectrum plots.

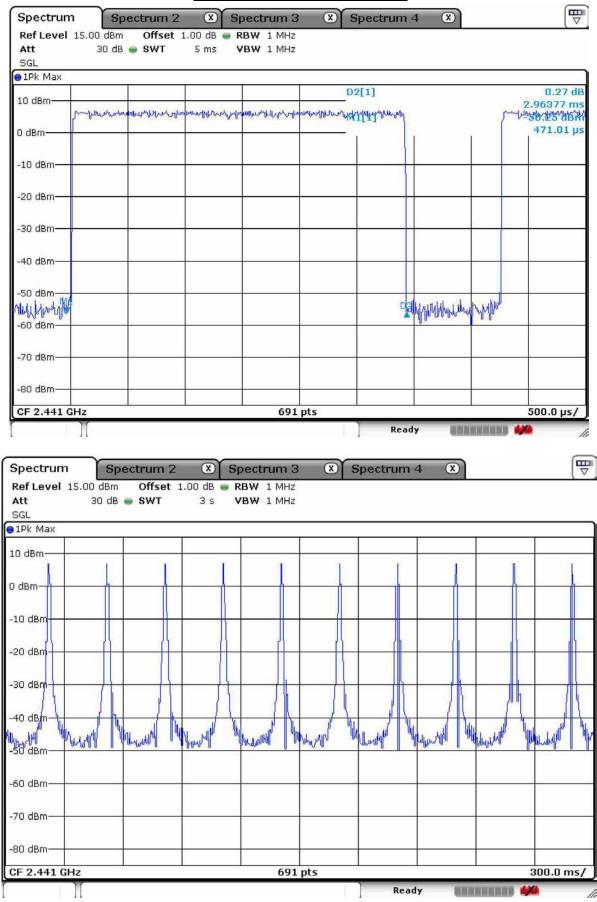

- dwell time = {(number of hopping per second / number of slot ) x duration time per channel} x 0.4 ms

### Minimum Standard:


0.4 seconds within a 30 second period per any frequency


### **Measurement Setup**

Same as the Chapter 3.2.1 (Figure 1)




### DH1 at basic mode





### DH5 at basic mode



### DH5 at EDR mode with 3Mbps

## 3.3.5 Transmitter Output Power

### **Procedure:**

The test follows DA000705. The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.. After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Center frequency = the highest, middle and the lowest channels				
Span = 10 MHz (approximately 5 times of the 20 dB bandwidth)				
RBW = 3 MHz (greater than the 20dB bandwidth of the emission being measured)				
$VBW = 3 MHz (VBW \ge RBW)$ Detector function = peak				
Trace = max hold	Sweep = auto			

### Measurement Data : Basic Mode

Frequency	Ch		Test Results				
(MHz)	Ch.	dBm	mW	Result			
2402	0	4.44	2.78	Complies			
2441	39	7.84	6.08	Complies			
2480	78	8.96	7.87	Complies			

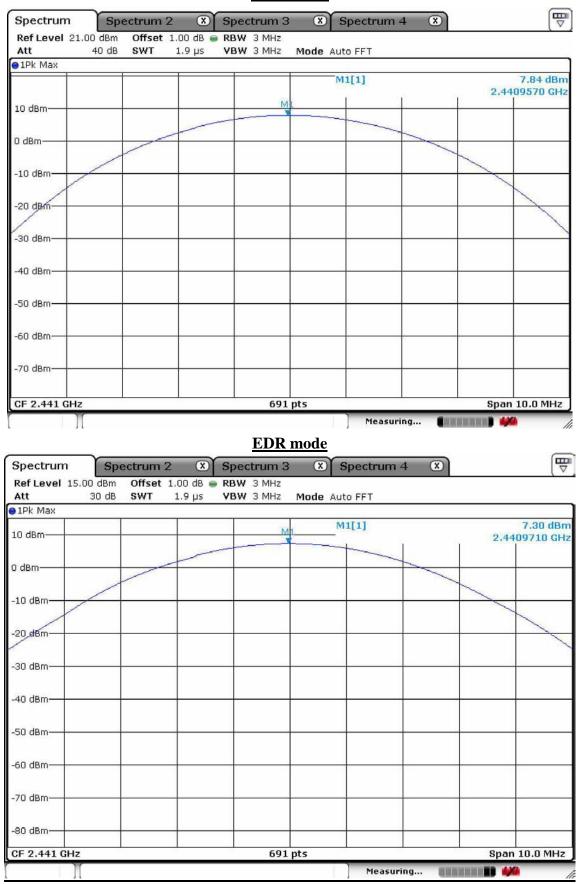
### Measurement Data : EDR Mode

Frequency	Ch.		Test Results						
(MHz)	CII.	dBm	mW	Result					
2402	0	3.75	2.37	Complies					
2441	39	7.30	5.37	Complies					
2480	78	8.24	6.67	Complies					

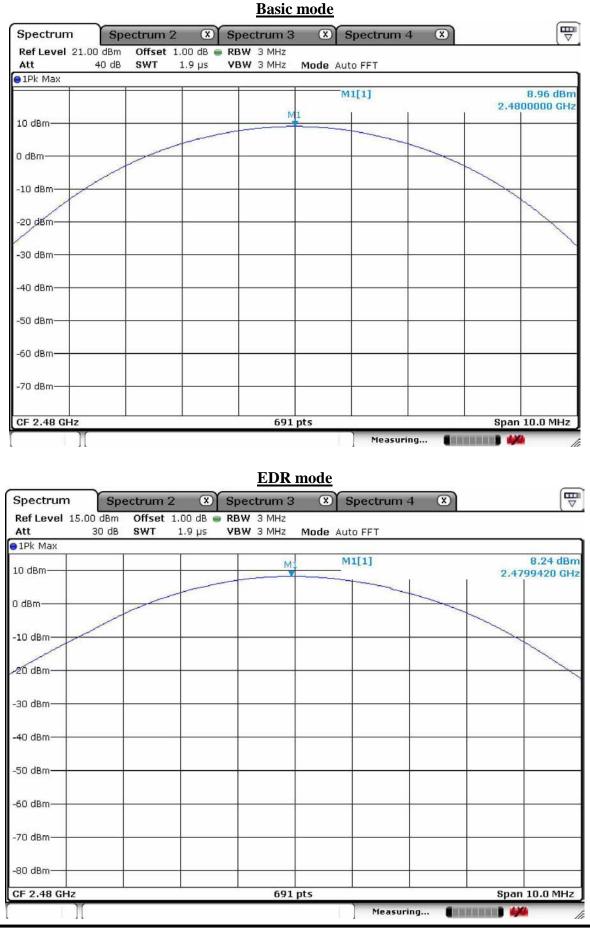
- See next pages for actual measured spectrum plots.

Minimum Standard:	< 250 mW
-------------------	----------

### **Measurement Setup**


Same as the Chapter 3.2.1 (Figure 1)

Spectrum	Spectrum 2	Spectrum 3	Spectrum	4 🗴	u and a state of the state of
Ref Level 21.00 Att		) dB 👄 <b>RBW</b> 3 MHz Э µs <b>VBW</b> 3 MHz	Mode Auto FFT		
1Pk Max					
			M1[1]	2	4.44 dBr .4019710 GH
10 dBm		M	1		474 61
0 dBm					
5 dbin					
-10 dBm					
-20 dBm					X
					1
-30 dBm					
-40 dBm					
-50 dBm					7
-60 dBm					
-70 dBm					
-yo ubiii					
CF 2.402 GHz		691	pts	SI	pan 10.0 MHz
T T			Measur	ing <b>(IANANA)</b>	


## <u>Channel 1</u> Basic mode

## EDR mode

Spectrum Sp	ectrum 2	Spectrum 3	Spectrum 4	×	
Ref Level 15.00 dBm		💿 RBW 3 MHz	76. M. 17.0 Aller		
Att 30 dB	<b>SWT</b> 1.9 μs	VBW 3 MHz	Mode Auto FFT		
1Pk Max			541[1]		3.75 dBm
10 dBm		M1	M1[1]	ř	2.4019860 GHz
0 dBm					
-10 dBm					<
-20 dBrp					
					1
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
-80 dBm					
CF 2.402 GHz		691 p	ots		Span 10.0 MHz
Ĭ			Measurin	Landson and the United States	



## <u>Channel 2</u> Basic mode



Channel 3

## 3.3.6 Band Edge

### **Procedure:**

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:	
Center frequency = the highest, middle	and the lowest channels
RBW = 100 kHz	VBW = 100  kHz
Span = 10~30 MHz	Detector function = peak
Trace = max hold	Sweep = auto

### Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:> 20 dBc	
---------------------------	--

### Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

#### Lower edge ₽ Spectrum 4 X Spectrum Spectrum 2 X Spectrum 3 Ref Level 21.00 dBm Offset 1.00 dB 👄 RBW 100 kHz VBW 100 kHz 40 dB Att SWT 37.9 µs Mode Auto FFT ●1Pk Max D2[1] -52.29 dB -13.8490 MHz M1[1] 2.92 dBm 10 dBm-2.4019390 GHz 0 dBm -10 dBm -20 dBm--30 dBm--40 dBm-D2 -50 dBm many mound and m my whow we have the monthether -60 dBm--70 dBm-Span 30.0 MHz CF 2.39 GHz 691 pts Measuring... 4.97 EN INT HE HAD IN THE R Upper edge ₩ Spectrum X X X Spectrum 4 Spectrum 2 Spectrum 3 Ref Level 21.00 dBm Offset 1.00 dB 👄 RBW 100 kHz Att 40 dB SWT VBW 100 kHz 19 µs Mode Auto FFT 1Pk Max -53.26 dB D2[1] 3.7050 MHz 8.22 dBm M M1[1] 10 dBm 2.4799830 GHz 0 dBm--10 dBm· -20 dBm SO dBm -40 dBm-D2 in -50 dBm--60 dBm· -70 dBm-Span 10.0 MHz CF 2.4835 GHz 691 pts Measuring... CARACTER STATES

Band - edge

8	Reading [dBuV/m] AV / Peak				Correction		nits		sult	Mar	gin
Frequency			Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]			V / Peak Antenna Amp. Gain+CableLos		Amp. Gain+CableLoss	AV / Peak		AV / Peak		AV / Peak	
2389.9	38.9	50.2	V	29.1	24.4	54.0	74.0	43.6	54.9	10.4	19.1

### Band-edges in the restricted band 2310-2390 MHz measurement (Ant M/N: AN2400-3306RS)

Band-edges in the restricted band 2483.5-2500 MHz measurement (Ant M/N: AN2400-3306RS)

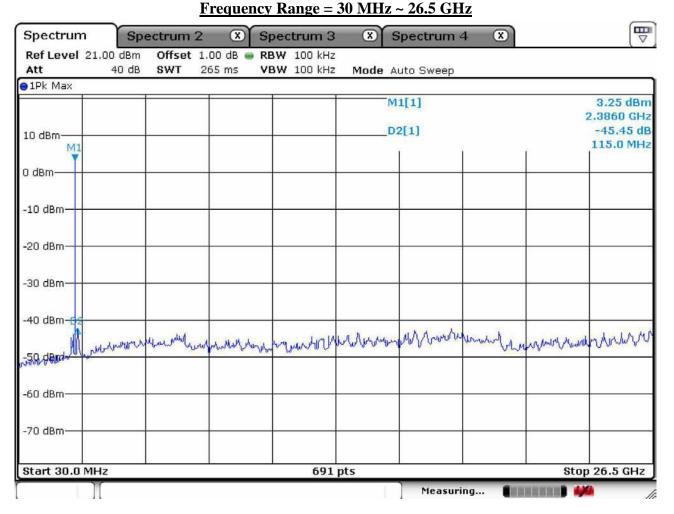
Frequency	Reading			Correction	Lin	nits	Res	sult	Ма	rgin
Frequency	[dBuV/m]	Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV / Peak		Antenna	Amp. Gain+CableLoss	AV /	AV / Peak		AV / Peak		Hz]
2483.6	41.1 56.9	V	29.1	24.4	54.0	74.0	45.8	61.6	8.2	12.4

### Band-edges in the restricted band 2310-2390 MHz measurement (Ant M/N: R-AN2400-5801RS)

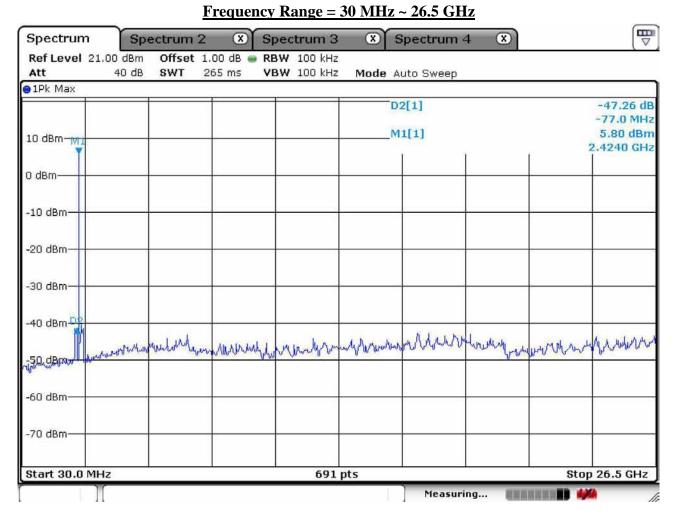
<b>F</b>	Rea	ding			Correction	Lin	nits	Res	sult	Mai	rgin
Frequency	[dBuV/m]		Pol.		[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV / Peak			Antenna Amp. Gain+CableLoss		AV / Peak		AV /	Peak	AV /	Peak
2389.9	39.4	51.5	V	29.1	24.4	54.0	74.0	44.1	56.2	9.9	17.8

### Band-edges in the restricted band 2483.5-2500 MHz measurement (Ant M/N: R-AN2400-5801RS)

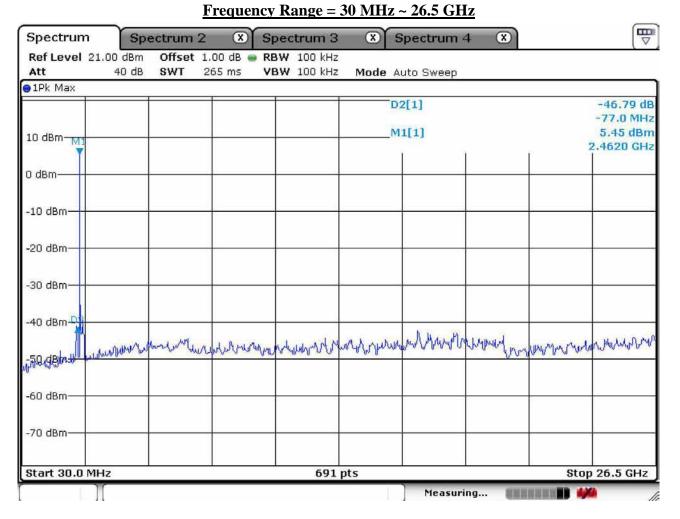
<b>F</b>	Rea	ding			Correction	Lin	nits	Res	sult	Ma	rgin
Frequency	[dBuV/m]		Pol.		[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV /	' Peak		Antenna	Amp. Gain+CableLoss	AV /	AV / Peak		Peak	[M	Hz]
2483.6	41.7	56.2	V	29.1	24.4	54.0	74.0	46.4	60.9	7.6	13.1


### Band-edges in the restricted band 2310-2390 MHz measurement (Ant M/N: R-AN2400-1901RS)

Fraguanay	Reading cy [dBuV/m]				Lin	nits	Res	sult	Mar	rgin	
Frequency			Pol.		[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV / Peak			Antenna	Amp. Gain+CableLoss	AV /	' Peak	AV /	Peak	AV /	Peak
2389.7	41.5	53.8	V	29.1	24.4	54.0	74.0	46.2	58.5	7.8	15.5


### Band-edges in the restricted band 2483.5-2500 MHz measurement (Ant M/N: R-AN2400-1901RS)

<b>F</b>	Rea	ding			Correction	Lin	Limits		sult	Mar	gin		
Frequency	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dBuV/m] [dB]			
[MHz]	AV / Peak		AV / Peak			Antenna	Amp. Gain+CableLoss	AV /	/ Peak	AV /	Peak	[M]	Hz]
2483.5	45.5	59.2	V	29.1	24.4	54.0	74.0	50.2	63.9	3.8	10.1		


Note : This EUT was tested in 3 orthogonal positions and the worst-case data was presented.



## <u> Unwanted Emission – Low channel</u>



## **Unwanted Emission – Middle channel**



## <u> Unwanted Emission – High channel</u>

### 3.3.7 Field Strength of Harmonics-Transmitter

### **Procedure:**

Radiated emissions from the EUT were measured according to the dictates of DA000705. The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

- (a) In the frequency range of 9kHz to 30 MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 3m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

 $VBW \ge RBW$ 

Sweep = auto

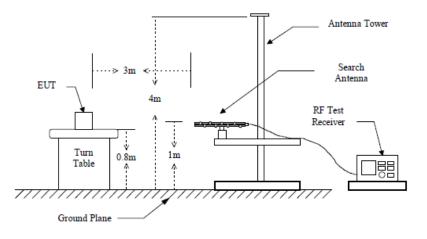
Detector function = peak

### The spectrum analyzer is set to:

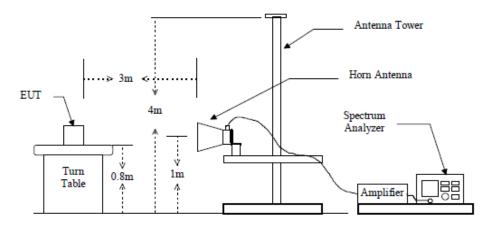
Center frequency = the worst channel

Frequency Range = 9 kHz ~  $10^{\text{th}}$  harmonic.

 $RBW = 120 \text{ kHz} (10 \text{MHz} \sim 1 \text{ GHz})$ 


= 1 MHz (1 GHz ~  $10^{\text{th}}$  harmonic)

- Span = 100 MHz
- Trace = max hold


RX Antenna FUT B0cm B0cm Metal Full Soldered Ground Plane Spectrum Analyzer /Receiver

## below 30MHz

### below 1GHz (30MHz to 1GHz)



#### above 1GHz



### Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20dB below limit include from 9KHz to 30MHz.

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz) (@ <b>300m</b> )
0.490 ~ 1.705	24000/F(kHz) (@ <b>30m</b> )
1.705 ~ 30	30(@ <b>30</b> m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

#### Minimum Standard: FCC Part 15.209(a)

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Frequency	Reading			Correction			Limits		Result		Margin					
riequency	[dBuV/m]		Pol.	Factor		D.C.F	[dBuV/m]		[dBuV/m]		[dB]					
[MHz]	AV / Peak			Antenna Amp.Gain+Cable			AV/Peak		AV/Peak		AV / Peak					
4805	52.7	62.3	V	29.8	21.6	-30.43	54.0	74.0	30.5	40.1	23.5	33.9				
<b>F</b>	Reading		Reading		Reading			C	Correction		Limits		Result		Margin	
Frequency	[dBuV/m]		Pol.		Factor	D.C.F	[dBuV/m]		[dBuV/m]		[dB]					
[MHz]	AV / Peak			Antenna Amp.Gain+Cable			AV/Peak		AV/Peak		AV / Peak					
4881.0	55.6	64.7	V	29.8	21.6	-30.43	54.0	74.0	33.4	42.5	20.6	31.5				
Frequency	Reading			Correction			Limits		Result		Margin					
	[dBuV/m]		Pol.	Factor		D.C.F	[dBuV/m]		[dBuV/m]		[dB]					
[MHz]	AV / Peak			Antenna Amp.Gain+Cable			AV/Peak		AV/Peak		AV / Peak					
4959.0	54.5	63.2	V	29.8	21.6	-30.43	54.0	74.0	32.3	41.0	21.7	33.0				
			ſ													
		•														

Measurement Data : (Above 1GHz) Antenna M/N: AN2400-3306RS

- No other emissions were detected at a level greater than 20dB below limit.

- D.C.F ( Duty Cycle Correction Factor) = 20log(The worst Case DWELL Time/100ms)

 $= 20\log(3.007 \text{ ms}/100 \text{ ms}) = -30.43$ 

### Measurement Data: (9kHz - 30MHz)

Frequency	Reading [dBuV/m] AV / Peak				ncy			Limits [dBuV/m]		Result [dBuV/m]		Margin [dB]	
[MHz]				Antenna Amp.Gain+Cable AV / Pea		' Peak	AV /	' Peak	AV / Peak				
-	-	-	-	-	-	-	-	-	-				
No emissions were detected at a level greater than 20dB below limit.													
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				

*No emissions were detected at a level greater than 20dB below limit.

Frequency	Rea	ding		C	Correction		Lim	nits	Res	sult	Mar	gin
riequency	[dBu	V/m]	Pol.		Factor	D.C.F	[dBu	V/m]	[dBu	[dBuV/m]		3]
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable		AV/Peak		AV/Pea		AV / Peak	
4805	53.3	62.1	V	29.8	21.6	-30.43	54.0	74.0	31.1	39.9	22.9	34.1
Frequence	Rea	ding		C	Correction		Lin	nits	Res	sult	Mar	gin
Frequency	[dBu	V/m]	Pol.		Factor	D.C.F	[dBu	V/m]	[dBuV/m]		BuV/m] [dB]	
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable		AV/	Peak	AV/Peak		ak AV / Peal	
4882.0	54.4	64.5	V	29.8	21.6	-30.43	54.0	74.0	32.2	42.3	21.8	31.7
<b>F</b>	Rea	ding		C	Correction		Lin	nits	Res	sult	Mar	gin
Frequency	[dBu	V/m]	Pol.		Factor	D.C.F	[dBu	V/m]	[dBu	V/m]	[di	3]
[MHz]	AV /	/ Peak		Antenna	Amp.Gain+Cable		AV/	Peak	AV/	Peak	AV / 1	Peak
4959.0	52.7	60.6	V	29.8	21.6	-30.43	54.0	74.0	30.5	38.4	23.5	35.6

#### Measurement Data : (Above 1GHz) Antenna M/N: R-AN2400-5801RS

- No other emissions were detected at a level greater than 20dB below limit.

- D.C.F ( Duty Cycle Correction Factor) = 20log(The worst Case DWELL Time/100ms)

 $= 20\log(3.007 \text{ms}/100 \text{ms}) = -30.43$ 

## Measurement Data: (9kHz - 30MHz)

Frequency		Reading		Correction			nits		sult	Mar	0		
[MHz]	-	v / mj / Peak	Pol.	Antenna	Factor Amp.Gain+Cable	[dBuV/m] AV / Peak				[dBuV/m] AV / Peak		dI] AV /	-
-	-	-	-	-	-	-	-	-	-	-	-		
		No em	issions	were detec	ted at a level greater	than 200	B below	ı limit.					
-	-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-	-		

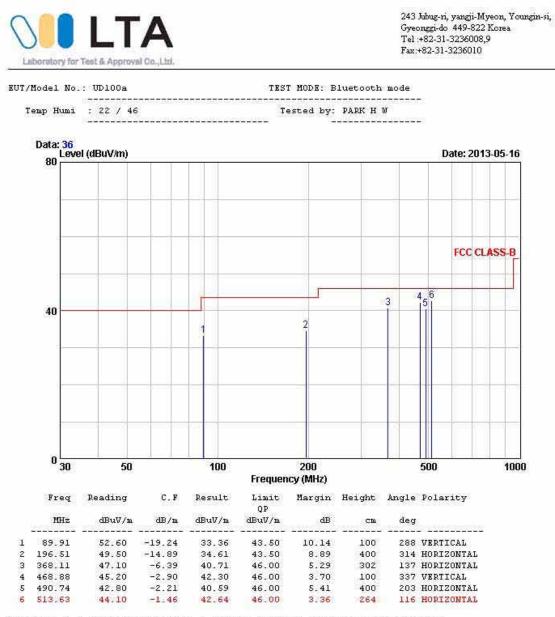
*No emissions were detected at a level greater than 20dB below limit.

	Reading			(	Correction		Lin	nits	Res	sult	Marg	gin	
Frequency	[dBu	V/m]	Pol.		Factor	D.C.F	[dBu	V/m]	[dBu	V/m]	[dE	3]	
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable		AV/Peak		AV/	Peak	eak AV / Peak		
4805	52.9	63.5	V	29.8	29.8 21.6		54.0	74.0	30.7	41.3	23.3	32.7	
Frequency	Rea	ding		C	Correction		Lin	nits	Res	sult	Març	gin	
	[dBu	V/m]	Pol.	Factor		D.C.F	[dBuV/m]		[dBuV/m]		[dBuV/m] [dB]		3]
[MHz]	AV /	Peak		Antenna Amp.Gain+Cable			AV/	AV/Peak AV/Peak		Peak	AV / Peak		
4882.0	55.1	65.9	V	29.8	21.6	-30.43	54.0	74.0	32.9	43.7	21.1	30.3	
Frequency	Rea	ding		C	Correction		Lin	nits	Res	sult	Marg	gin	
	[dBu	V/m]	Pol.		Factor	D.C.F	[dBu	V/m]	[dBu	V/m]	[dE	3]	
[MHz]	AV /	Peak		Antenna Amp.Gain+Cable			AV/	Peak	AV/	Peak	AV / F	Peak	
4960.0	53.3	62.5	V	29.8	21.6	-30.43	54.0	74.0	31.1	40.3	22.9	33.7	

Measurement Data : (Above 1GHz) Antenna M/N: R-AN2400-1901RS

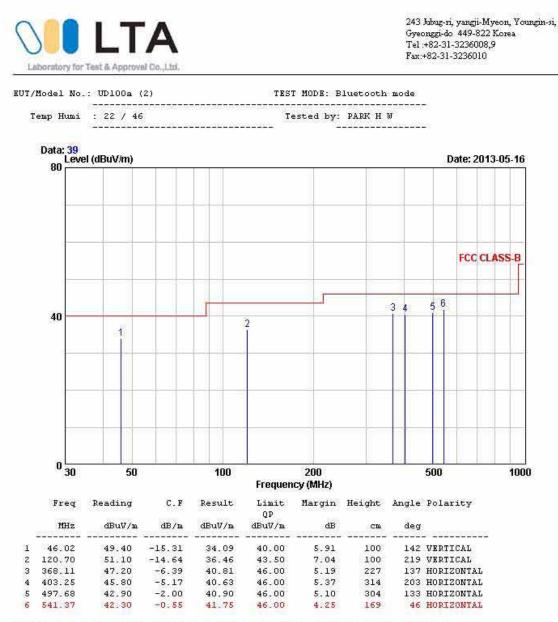
- No other emissions were detected at a level greater than 20dB below limit.

- D.C.F ( Duty Cycle Correction Factor) = 20log(The worst Case DWELL Time/100ms)


 $= 20\log(3.007 \text{ ms}/100 \text{ ms}) = -30.43$ 

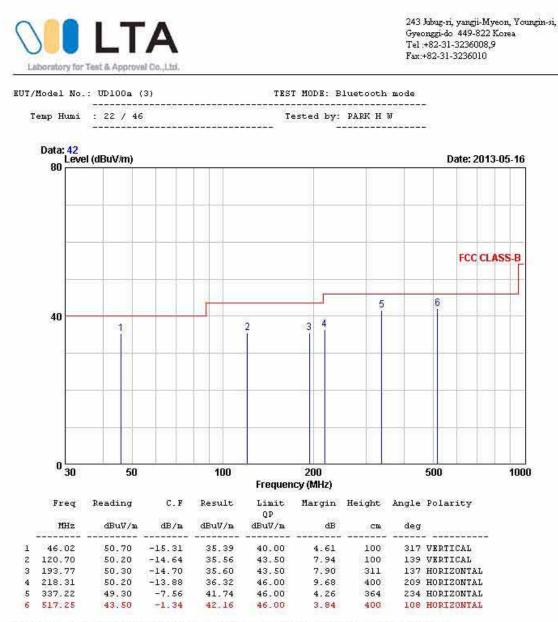
## Measurement Data: (9kHz - 30MHz)

Frequency		ding V/m]	Pol.	(			Result [dBuV/m]	Margin [dB]			
[MHz]	AV /	' Peak		Antenna	Amp.Gain+Cable	AV / Peak		AV / Peak		AV / Peak	AV / Peak
-	-	-	-	-			-				
		No em	lissions	were detec	ted at a level greater	than 20d	IB below	/ limit.			
-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-				


*No emissions were detected at a level greater than 20dB below limit.

## Radiated Emissions – BT mode (Ant M/N: AN2400-3306RS)




Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

## Radiated Emissions – BT mode (Ant M/N: R-AN2400-5801RS)



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

## Radiated Emissions – BT mode (Ant M/N: R-AN2400-1901RS)



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

## 3.3.8 Field Strength of Harmonics - Receivers

#### **Definition:**

The field strength of emissions from intentional radiators was measured. In case of the air temperature of the test site is out of the range is 10 to 40°C before the testing proceeds the warm-up time of EUT maintain adequately

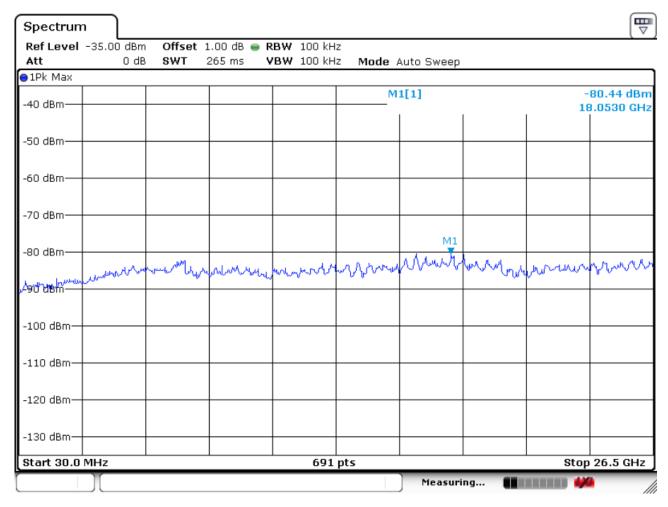
Test method	:	FCC Part 15.209
Frequency Range	:	$30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic.}$
Bandwidth	:	$100 \text{ kHz} (F < 1 \text{GHz}) \qquad 1 \text{ MHz} (F > 1 \text{GHz})$
Distance of antenna	:	3 meters
Test mode	:	BT Rx mode
Result	:	Complies

#### **Measurement Data:**

- Refer to the next page.
- No other emissions were detected at a level greater than 20dB below limit
- It gave the worse case emissions.

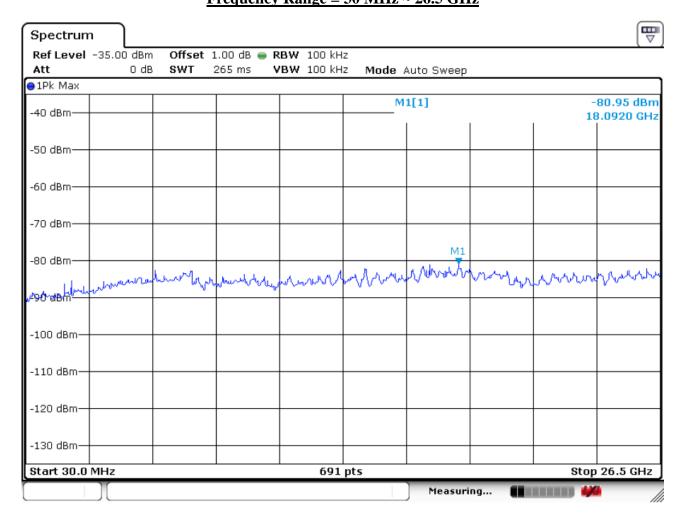
#### **Field Strength Limit**

#### Part 15.209 LIMIT:


Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz)
0.490 ~ 1.705	24000/F(kHz)
1.705 ~ 30	30
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Spectrum	'n			Tunge					
Ref Level Att	-35.00 dBm 0 dB			BW 100 kH BW 100 kH		Auto Sweep			
⊖1Pk Max									
-40 dBm					M	1[1]	1		80.50 dBm 3.1300 GHz
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm						MI			بالا م
,190-deknubu	weeklywe	How bollowed wyon	hand	M may mark	portyblydrywrand	M I MAN	wwwww	John Charles	rt Andrew
-100 dBm—									
-110 dBm—									
-120 dBm—									
-130 dBm—									
Start 30.0	MHz	I	I	691	pts	I		Stop	26.5 GHz
						Measuri	ng 🔳	••••	


## <u>Conducted Emission – Low channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

# Conduceted Emission – Middle channel



## Frequency Range = 30 MHz ~ 26.5 GHz

## <u>Conduceted Emission – High channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>



Wiedsureinene	2				III. AII2400-3300105															
	Rea	ding		(	Correction	Lin	nits	Res	ult	Margin										
Frequency	[dBu]	V/m]			Factor	[dBu	V/m1	[dBu\	//m]	[dB]										
	Lapa	•> ••1	Pol.			[dBuV/m]		Lapa	• • • • • • • • • • • • • • • • • • • •	[ub]										
					Amp. Gain	AV / Peak														
[MHz]	AV /	Peak		Antenna	+Cable	AV /	AV / Peak A		' Peak	AV / Peak										
		1														1		1		
-	-	-	-	-	-	-	-	-	-											
Frequency	Rea	ding		(	Correction	Lin	nits	Res	ult	Margin										
Frequency	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBu\	//m]	[dB]										
			P01.		Amp. Gain															
[MHz]	AV /	/ Peak		Antenna	-	AV /	V / Peak AV / Peak		AV / Peak											
		1			+Cable			T												
2353.0	30.3	37.2	V	29.1	24.4	54.0	74.0	35.0	41.9	19.0 32.1										
	Rea	ding		(	Correction	Lin	nits	Res	ult	Margin										
Frequency	[dBu	V/m]			Factor	ГdВu	V/m]	[dBu\	//m]	[dB]										
	Lang		Pol.			[		Langa		[]										
[MHz]	۸\/	/ Peak		Antenna	Amp. Gain	Δ.V	/ Posk	AV /	Doak	AV / Peak										
		Feak		Antenna	+Cable	AV / Peak		AV /	reak	AV / Feak										
_	_	_	_	_	_			_												
_	_	_	_	-	_			_	-											
1										1										

#### Measurement Data: BT Rx mode Antenna M/N: AN2400-3306RS

No other emissions were detected at a level greater than 20dB below limit.

Measurement Data. DT KX mode Antenna M/N. K-AN2400-3601KS										
Frequency	Rea	ding		(	Correction	Lin	nits	Result	Margin	
,, <b>,</b> ,	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBuV/m]	[dB]	
[MHz]	AV /	/ Peak	1 01.	Antenna	Amp. Gain +Cable	AV / Peak		AV / Peak	AV / Peak	
-	-	-	-	-	-	-	-			
<b>F</b>	Rea	ding		(	Correction	Lin	nits	Result	Margin	
Frequency	[dBu	[dBuV/m] Pol		Factor		[dBuV/m]		[dBuV/m]	[dB]	
[MHz]	AV /	/ Peak	P OI.	Antenna	Amp. Gain +Cable	AV / Peak		AV / Peak	AV / Peak	
-	-	_	_	-	-	-	_			
_	Rea	ding		(	Correction	Lin	nits	Result	Margin	
Frequency	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBuV/m]	[dB]	
[MHz]	AV /	/ Peak	P01.	Antenna	Amp. Gain +Cable	AV /	' Peak	AV / Peak	AV / Peak	
-	-	-	-	-	-	-	-			

#### Measurement Data: BT Rx mode Antenna M/N: R-AN2400-5801RS

No other emissions were detected at a level greater than 20dB below limit.

					IN. K-AIN2400-1901K	~			
	Reading			(	Correction	Lin	nits	Result	Margin
Frequency	[dBu]	V/m]			Factor	[dBu	V/m]	[dBuV/m]	[dB]
	Lapa	•> ••1	Pol.			[ubut/m]		[abav/m]	[00]
[MHz]	AV /	/ Peak		Antenna	Amp. Gain +Cable	AV /	/ Peak	AV / Peak	AV / Peak
-			-	-	-	-	-		
_	Rea	ding		(	Correction	Lin	nits	Result	Margin
Frequency	[dBu	[dBuV/m] Pol.		Factor		[dBuV/m]		[dBuV/m]	[dB]
[MHz]	AV /	AV / Peak		Antenna	Amp. Gain +Cable	AV / Peak		AV / Peak	AV / Peak
-	_	-	-	_	-	-	-		
	Rea	ding		(	Correction	Lin	nits	Result	Margin
Frequency	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBuV/m]	[dB]
[MHz]	AV /	/ Peak	POI.	Antenna	Amp. Gain +Cable	AV 2	/ Peak	AV / Peak	AV / Peak
-	-	-	-	-	-	-	-		

#### Measurement Data: BT Rx mode Antenna M/N: R-AN2400-1901RS

No other emissions were detected at a level greater than 20dB below limit.

## **3.3.9 AC Conducted Emissions**

#### **Procedure:**

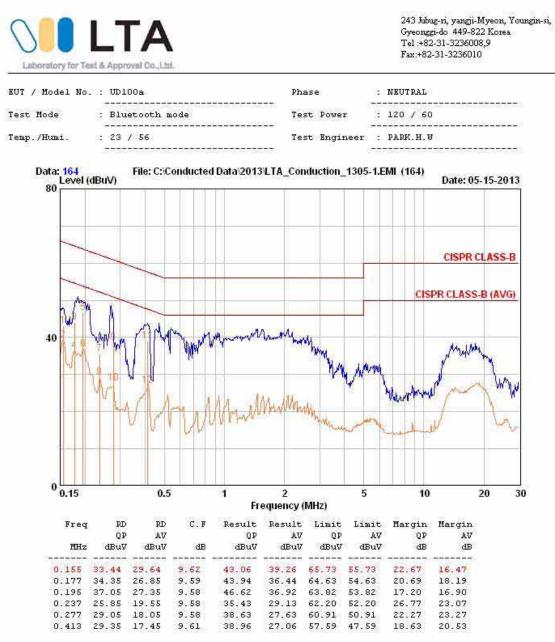
AC power line conducted emissions from the EUT were measured according to the dictates of ANSI C63.4:2003. The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

#### Measurement Data: Complies

- Refer to the next page.
- No other emissions were detected at a level greater than 20dB below limit
- It gave the worse case emissions

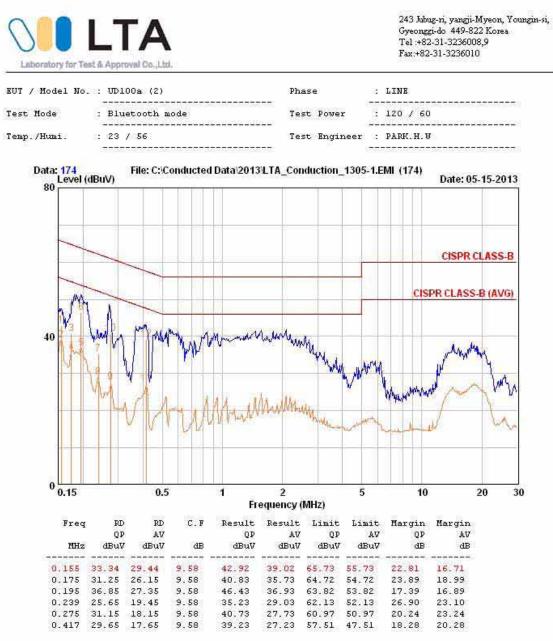
## Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted I	.imit (dBuV)
(MHz)	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50


* Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

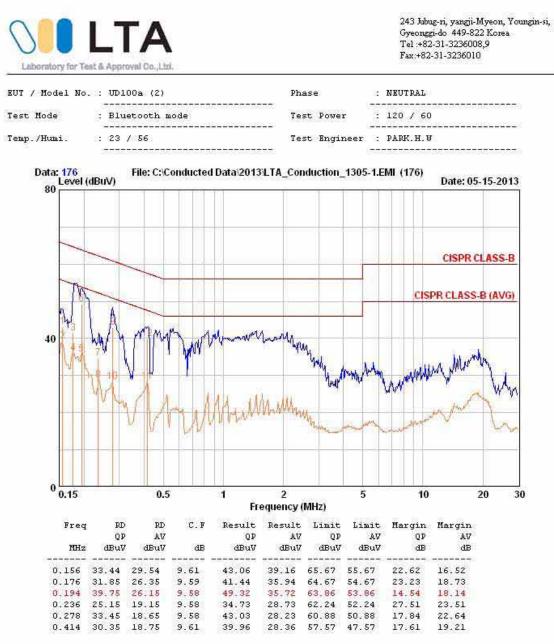
## Conducted Emissions - BT mode - LINE (Ant M/N: AN2400-3306RS)




Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

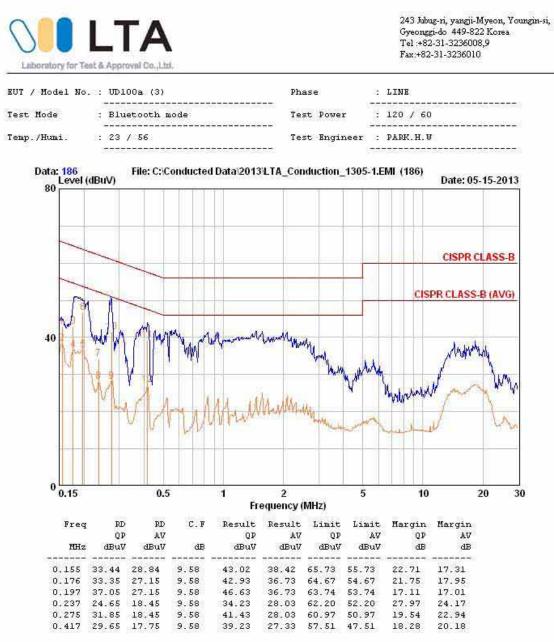
## Conducted Emissions - BT mode - NEUTRAL (Ant M/N: AN2400-3306RS)




Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

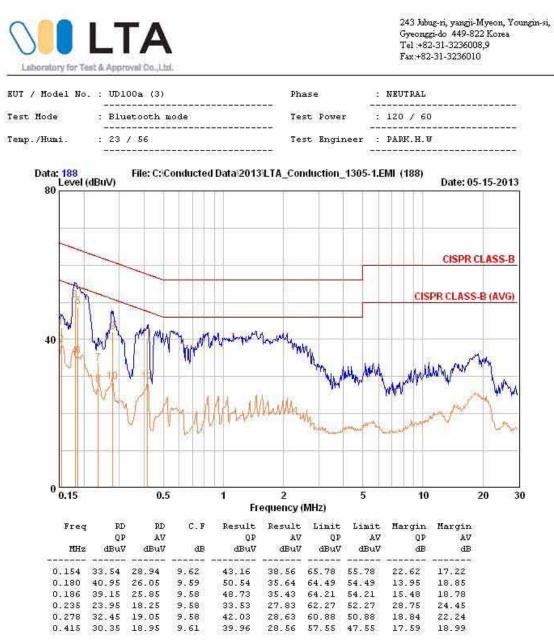
## Conducted Emissions – BT mode – LINE (Ant M/N: R-AN2400-5801RS)




Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

## Conducted Emissions – BT mode – NEUTRAL (Ant M/N: R-AN2400-5801RS)




Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

## Conducted Emissions – BT mode – LINE (Ant M/N: R-AN2400-1901RS)



Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

## Conducted Emissions – BT mode – NEUTRAL (Ant M/N: R-AN2400-1901RS)



Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

## APPENDIX

## TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Expiration date of Calibration
1	Spectrum Analyzer (~30GHz)	FSV-30	100757	R&S	2014-01-15
2	Spectrum Analyzer (~2.9GHz)	8594E	3649A03649	HP	2014-03-26
3	Signal Generator (~3.2GHz)	8648C	3623A02597	HP	2014-03-25
4	Signal Generator (1~20GHz)	83711B	US34490456	HP	2014-03-25
5	Attenuator (3dB)	8491A	37822	HP	2014-09-22
6	Attenuator (10dB)	8491A	63196	HP	2014-09-22
7	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	2014-03-25
8	EMI Test Receiver (~7GHz)	ESCI7	100722	R&S	2013-09-22
9	RF Amplifier (~1.3GHz)	8447D	2439A09058	HP	2014-09-22
10	RF Amplifier (1~18GHz)	8449B	3008A02126	HP	2014-03-26
11	Horn Antenna (1~18GHz)	BBHA 9120D	9120D122	SCHWARZBECK	2014-12-21
12	Horn Antenna (18 ~ 40GHz)	SAS-574	154	SCHWARZBECK	2014-03-15
13	Horn Antenna (18 ~ 40GHz)	SAS-574	155	SCHWARZBECK	2014-03-15
14	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	2014-09-20
15	Hygro-Thermograph	THB-36	0041557-01	ISUZU	2013-09-26
16	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-
17	Power Divider	11636A	6243	HP	2014-09-22
18	DC Power Supply	6622A	3448A03079	HP	-
19	Frequency Counter	5342A	2826A12411	HP	2014-03-25
20	Power Meter	EPM-441A	GB32481702	HP	2014-03-25
21	Power Sensor	8481A	US41030291	HP	2013-09-22
22	Audio Analyzer	8903B	3729A18901	НР	2013-09-22
23	Modulation Analyzer	8901B	3749A05878	HP	2013-09-22
24	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	2013-09-22
25	Stop Watch	HS-3	601Q09R	CASIO	2014-03-26
26	LISN	ENV216	100408	R&S	2013-09-22
27	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	2014-06-27
28	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	-
29	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	-
30	Active Loop Antenna	FMZB 1519	1519-031	SCHWARZBECK	2014-12-14