COMPLIANCE NGINEERING RELAND LTD

Compliance Engineering Ireland Ltd

Clonross Lane, Derrockstown, Dunshaughlin Co. Meath, Ireland A85 XN59 Ph +353 1 8017000 , 8256722

Project Num	16E6465-1b		
Quotation	Q16-1312-1		
Prepared For	Tekelek Europe Ltd		
Prepared By	Compliance Engineering Ireland		
Test Lab Address	Clonross Lane, Derrockstown,		
	Dunshaughlin, Co. Meath, Ireland		
Tested By	Michael Kirby		
Test Report By	Michael Kirby		
FCC Site Registration	92592		
IC Site Registration	8517-A2, 8517-A1		
Date	10 th Mar 2017		
IC Equipment Authorisation	Test Report		
EUT Description	Wifi Radio Module		
FCC ID	S6T784		
IC ID	20606-784		
Authorised by	John McAuley		
Authorised Signature :	John the anley		

TEST SUMMARY

The equipment complies with the requirements according to the following standards.

FCC Part Section(s)	RSS-247 Section	TEST PARAMETERS	Test Result
15.247a 2	5.2.1	6dB bandwidth	Pass
15.247e	5.2.2	Power Spectral Density	Pass
15.247(b)1	5.4.4	Output power Conducted	Pass
15.247(d)1	5.5	Conducted Spurious Emissions	Pass
15.209	5.5	Radiated Spurious Emissions	Pass
15.247a	RSS Gen 6.6	99% bandwidth	Pass

RSS 247-1

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF COMPLIANCE ENGINEERING IRELAND LTD

Exhibit A – Technical Report

Tabl	e of Contents	
1.0	EUT DESCRIPTION	
1.1	EUT OPERATION	5
1.2	MODIFICATIONS	
1.3	DATE OF TEST	5
1.4	DESCRIPTION OF TEST MODES	
2.0	EMISSIONS MEASUREMENTS	7
2.3	ANTENNA REQUIREMENTS	8
3.0	CONDUCTED EMISSIONS ON THE MAINS MEASUREMENTS	
4.0	CONDUCTED MEASUREMENTS	
5.0	RADIATED MEASUREMENTS	
6.0	RADIATED MEASUREMENTS INTERNAL HOST ANTENNA	
7.0	LIST OF TEST EQUIPMENT	
8.0	MEASUREMENT UNCERTAINTY	

APPENDIX A	SCANS FOR	CONDUCTED MEASUREM	ENTS	19
APPENDIX B	SCANS FOR	RADIATED BAND EDGE /F	RESTRICTED BAND	
APPENDIX C	SCANS FOR	RADIATED SPURIOUS EM	ISSIONS ANTENNA PORT	TERMINATED 31
APPENDIX D	SCANS FOR	RADIATED SPURIOUS EM	ISSIONS HOST INTERNAL	ANTENNA40

1.0 EUT Description

Model:	TEK784		
Туре:	Wifi Radio Module		
FCC ID:	S6T784		
Company:	Tekelek Europe Ltd		
Contact	Rory Keating		
Address:	Unit 118		
	Shannon		
	Co Clare		
	Ireland		
Phone:	+353 61 471511		
e-mail:	rory.keating@tekelek.ie		
Test Standards:	47 CFR, Part 15.247		
Type of radio:	Stand-alone		
Transmitter Type:	802.11b, g, n		
Operating Frequency Range(s):	2.412 GHz, - 2.462GHz		
Number of Channels:	11		
Antenna:	Integral		
Power	3.6 v Battery.		
configuration:			
Ports:	None		
Oper. Temp Range:	-40° C to +85° C		
Classification:	DTS		
Test Methodology:	Measurements performed according to the procedures in ANSI C63.10-2013		

The TEK784 is a Wifi module which is installed on a host pcb. The Wifi module does not have an internal antenna and radio power is available on an output pin from the module. It is intended that the host pcb will contain options to connect an internal (host pcb) antenna and an EFL connector for connecting to a reverse SMA external antenna connector. Switching between antenna connections on the host is achieved by changing the location of a capacitor on the host pcb.

Therefore it is required that the TEK784 module would only be fitted to hosts which contain a fixed pcb and tracking pattern in the antenna output section of the host pcb Note the external antenna fitted to the host pcb connector is limited to 7dBi gain .

1.1 EUT Operation

Operating Conditions during Test:

The EUT (TEK 784 module) was fitted to a host pcb (TEK750) to allow powering and control of the module. An SMA was connected to the module radio output pin via a cable soldered directly to the module output pin. Conducted measurements were carried out with the analyser connected to the SMA connector.

The EUT was operated in test mode where the channel and modulation was set via USB connection from the host pcb to a laptop.

The EUT was powered from a bench PSU set to 3.6Vdc. for all tests

Radiated measurements (Cabinet spurious emission) were carried out on this sample with the SMA connector terminated.

Further Radiated tests were carried out on a second unit TEK784 fitted onto a host which had the internal antenna option enabled.

Environmental conditions

	Temperature	Relative Humidity
Test	С°	%
Conducted Emissions	19	47
Radiated Emissions <1GHz	18	42
Radiated Emissions >1GHz	19	47

1.2 Modifications

No modifications were required in order to pass the test specifications.

1.3 Date of Test

The tests were carried out on 11^{th} , 12^{th} , 13^{th} , 16^{th} , 17^{th} Jan 2017.

1.4 Description of Test modes

Channel	Freq MHz	Channel	Freq MHz
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Channel List

Available Data Rates

802.11 B	802.11 G	802.11 N
MB/s	MB/s	MB/s
1,2,5.5,11	6,9,12,18,24,36,48,54	6.5,13,19.5,26,39,52,58.5,65
1,2,5.5,11	6,9,12,18,24,36,48,54	6.5,13,19.5,26,39,52,58.5,65
1,2,5.5,11	6,9,12,18,24,36,48,54	6.5,13,19.5,26,39,52,58.5,65

Evaluation test for max power test carried out on the following

Channel	Freq	В	G	Ν
	MHz	MB/s	MB/s	MB/s
1	2412	1,2,5.5,11	6,9,12,18,24,36,48,54	6.5,13,19.5,26,39,52,58.5,65
6	2437	1,2,5.5,11	6,9,12,18,24,36,48,54	6.5,13,19.5,26,39,52,58.5,65
11	2462	1,2,5.5,11	6,9,12,18,24,36,48,54	6.5,13,19.5,26,39,52,58.5,65

Complete test was carried out on the worst cases for Ch1 B/G/N Ch6 B/G/N and Ch11 B/G/N It was found that the highest output levels were recorded on the 802.11B modulation

2 Emissions Measurements

2.1 Conducted Emissions Measurements

Radio Conducted measurements were carried out on the EUT as per section 1.1 above.

All results were measured as conducted on the antenna except radiated spurious emissions.

2.2 Radiated Emissions Measurements

Radiated Power measurements were made at the Compliance Engineering Ireland Ltd anechoic chamber located in Dunshaughlin, Co. Meath, Ireland to determine the radio noise radiated from the EUT. A "Description of Measurement Facilities" has been submitted to the FCC and approved pursuant to Section 2.948 of CFR 47 of the FCC rules.

The EUT was centred on a motorized turntable, which allows 360 degree rotation.

Emissions below 1GHz were measured using a bi-log antenna positioned at a distance of 3 metres from the EUT (as measured from the closest point of the EUT). The radiated emissions were maximised by configuring the EUT, by rotating the EUT, and by raising and lowering the antenna from 1 to 4 metres. In this case the resolution bandwidth was 100kHz.

Emissions in the 1GHz-3.6GHz range were measured using a horn antenna located at 3 metres distance from the EUT in a fully anechoic chamber. The radiated emissions were maximised by configuring the EUT and by rotating the EUT In this case the resolution bandwidth was 1MHz and video bandwidth was 1MHz. for peak measurements. The Video bandwidth was changed to 10Hz for Average measurements (as per ANSI 63.10 2013 Section 4.1.4.2.3)

Emissions above 3.6GHz were measured using a horn antenna located at 1 metre distance from the EUT in a fully anechoic chamber. The radiated emissions were maximised by configuring the EUT and by rotating the EUT In this case the resolution bandwidth was 1MHz and video bandwidth was 1MHz. for peak measurements. The Video bandwidth was changed to 10Hz for Average measurements (as per ANSI 63.10 2013 Section 4.1.4.2.3)

2.3 Antenna Requirements

According to FCC 47 CFR 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

There is no direct antenna connection to the module The module is intended for soldering to host with Internal antenna complies with this requirement.

The option for external antenna has a reverse polarity SMA connector and thereby meets this requirement.

*The E.U.T Complies with the requirement of 15.203

3.0 Results for Conducted emissions on the mains

Test not performed as the host for the EUT is battery powered only and battery cannot be recharged while in the host unit.

Conducted Measurements

₽ Spectrum 2 Spectrum 3 X X Spectrum 4 Spectrum Ref Level 17.00 dBm Offset 10.70 dB 👄 RBW 100 kHz Att 25 dB SWT 37.9 µs 👄 VBW 300 kHz Mode Auto FFT Input 1 AC O1Pk Max M1[1] 1.75 dBm 10 dBm-2.4108350 GHz M1 ndB 6.00 dB 7.547000000 MHz BW2 0 dBm-Q factor 319.4 -10 dBm--20 dBm--30 dBm -40 dBm· U -50 dBm--60 dBm--70 dBm--80 dBm-CF 2.412 GHz 691 pts Span 35.0 MHz Marker Type | Ref | Trc X-value Function **Function Result** Y-value 7.547 MHz M1 1 2.410835 GHz 1.75 dBm ndB down Τ1 1 2.408252 GHz -3.91 dBm ndB 6.00 dB -4.39 dBm 319.4 Τ2 1 2.415799 GHz Q factor 6dB Bandwidth Fig 1

4.1 Bandwidth

4.1.1 6dB bandwidth

4.

4.1.2 99% bandwidth

Bandwidth

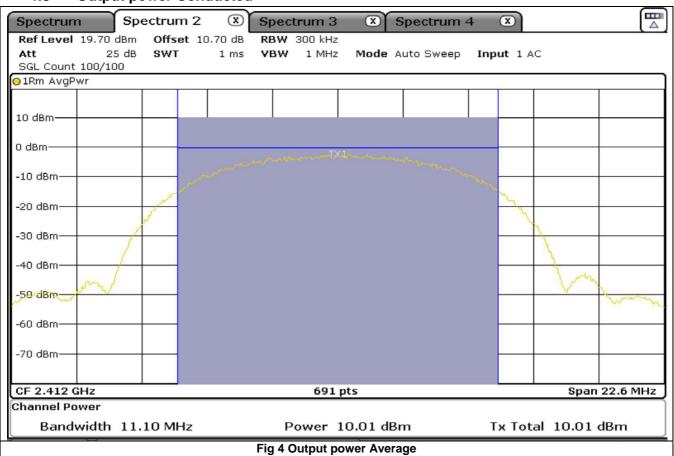
Channel	802.11	Frequency	6dB Bandwidth	99% Bandwidth
		GHz	MHz	MHz
Low	В	2.412	7.55	11.1
Mid	В	2.437	7.65	11.1
High	В	2.462	6.79	11.14
Low	G	2.412	16.66	17.22
Mid	G	2.437	16.66	17.12
High	G	2.462	16.66	17.17
Low	Ν	2.412	17.78	18.08
Mid	Ν	2.437	17.88	18.08
High	Ν	2.462	17.88	18.03

As per KDB 558074 Section 8.1

Limit for 6dB Bandwidth = 500KHz min

Result :- Pass

X


₽

4.2 Power Spectral Density Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Ref Level 11.00 dBm Offset 10.70 dB ■ RBW 10 kHz Att 20 dB SWT 948.1 μs VBW 30 kHz Mode Auto FFT Ing SGL Count 100/100 ■ DBm AugBurg

Channel	802.11	Frequency	Power Spectral Density	Limit
		GHz	dBm	dBm
Low	В	2.412	-15.63	8
Mid	В	2.437	-20.43	8
High	В	2.462	-21.75	8
Low	G	2.412	-16.67	8
Mid	G	2.437	-19.86	8
High	G	2.462	-21.42	8
Low	Ν	2.412	-16.83	8
Mid	Ν	2.437	-20.39	8
High	Ν	2.462	-20.61	8

As per KDB 558074 Section 10.3 Result :- Pass

4.3 Output power Conducted

Channel	802.11	Frequency	Output Power Average	Antenna Gain	Eirp	Limit	Margin
		GHz	dBm	dBi	dBm	dBm	dB
Low	В	2.412	10.01	7	17.01	29	11.99
Mid	В	2.437	9.37	7	16.37	29	12.63
High	В	2.462	8.7	7	15.7	29	13.3
Low	G	2.412	9.05	7	16.05	29	12.95
Mid	G	2.437	9.12	7	16.12	29	12.88
High	G	2.462	8.69	7	15.69	29	13.31
Low	Ν	2.412	8.6	7	15.6	29	13.4
Mid	Ν	2.437	8.83	7	15.83	29	13.17
High	Ν	2.462	8.5	7	15.5	29	13.5

As per KDB 558074 Section 9.2.2.2

Test Result :- Pass

5. Radiated Emissions EUT

5.1 Spurious Emissions in Restricted bands

5.1.1 Antenna-port conducted measurements

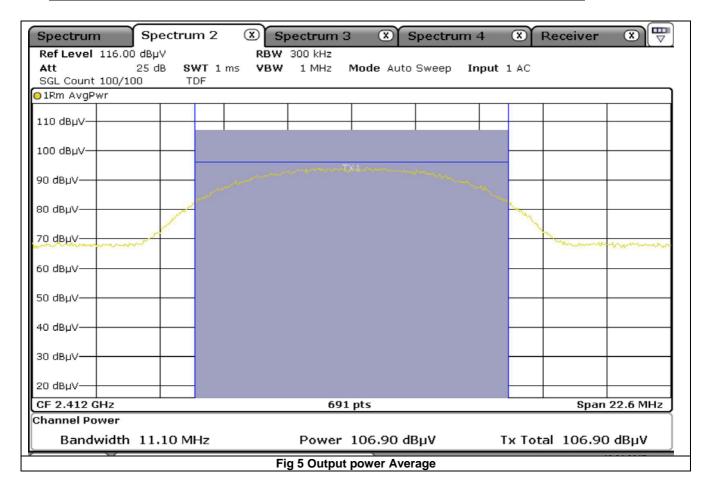
As per KDB 558074 section 12.2.2 and 12.2.5.1

Freq GHz	Average dBm	Antenna Gain dB	EIRP	20log(D) dB		Duty cycle correction dB	Max Ground Reflection dB	E dBuV/m	Limit dBuV/m	Margin dB	Pass /Fail
4.828	-57.63	7	-50.63	-9.54	104.80	0.00	0.0	44.63	54	9.37	Pass
7.236	-75.75	7	-68.75	-9.54	104.80	0.00	0.0	26.51	54	27.49	Pass
9.648	-71.2	7	-64.2	-9.54	104.80	0.00	0.0	31.06	54	22.94	Pass
4.874	-53.93	7	-46.93	-9.54	104.80	0.00	0.0	48.33	54	5.67	Pass
7.311	-75.7	7	-68.7	-9.54	104.80	0.00	0.0	26.56	54	27.44	Pass
9.746	-71.92	7	-64.92	-9.54	104.80	0.00	0.0	30.34	54	23.66	Pass
4.924	-51.84	7	-44.84	-9.54	104.80	0.00	0.0	50.42	54	3.58	Pass
7.386	-75.59	7	-68.59	-9.54	104.80	0.00	0.0	26.67	54	27.33	Pass
9.848	-73.12	7	-66.12	-9.54	104.80	0.00	0.0	29.14	54	24.86	Pass

5.1.2 Radiated Emissions with antenna port terminated

Frequency	Reading Peak	Antenna Polarity	Antenna Factor	Preamp Gain	Cable loss	Final Field Strength Peak	Average Limit	Margin for Peak v Average Limit +20dB
GHz	dBuV/m	V/H	dB	dB	dB	dBuV/m	dBuV/m	dB
4.824	52.9	Vertical	32.5	38.6	3.6	50.4	54.0	23.6
4.824	52.3	Horizontal	32.5	38.6	3.6	49.8	54.0	24.2
7.236	41.0	Vertical	35.5	39	3.9	41.4	54.0	32.6
7.236	41.1	Horizontal	35.5	39	3.9	41.5	54.0	32.5
4.874	53.4	Vertical	32.5	38.6	3.6	50.9	54.0	23.1
4.874	55.2	Horizontal	32.5	38.6	3.6	52.7	54.0	21.3
7.311	40.5	Vertical	35.5	39	3.9	40.9	54.0	33.1
7.311	40.4	Horizontal	35.5	39	3.9	40.8	54.0	33.2
4.924	55.0	Vertical	32.5	38.6	3.6	52.5	54.0	21.5
4.924	55.3	Horizontal	32.5	38.6	3.6	52.8	54.0	21.2
7.386	40.7	Vertical	35.5	39	3.9	41.1	54.0	32.9
7.386	40.5	Horizontal	35.5	39	3.9	40.9	54.0	33.1

Average measurements not performed as peak results were below average limit


Peak measurement performed with Resolution Bandwidth set to 1MHz as per ANSI C63.10-2013 Section 4.1.4.2.2 and KDB 558074 Section 12.2.4 Peak power measurement procedure

Test Result :- Pass

Average measurements as per KDB 558074 Section 12.2.5.1 Trace averaging with continuous EUT transmission at full power

6. Radiated Emissions Host6.1 Output Power Radiated Results Host Internal Antenna

Channel	802.11	Frequency	Radiated Field Strength	Output Power	Limit
		GHz	dBuV/m	dBm	dBm
Low	В	2.412	106.90	11.67	30
Mid	В	2.437	104.59	9.36	30
High	В	2.462	105.44	10.21	30
Low	G	2.412	105.23	10.00	30
Mid	G	2.437	104.83	9.60	30
High	G	2.462	105.22	9.99	30
Low	N	2.412	105.79	10.56	30
Mid	N	2.437	104.90	9.67	30
High	N	2.462	105.75	10.52	30

Radiated Field Strength measured at 3 metres.

Output power calculated using

eirp = pt x gt = (E x d)2 /30

As per eq 1 KDB 412172 D01 Test Result :- Pass Determining ERP and EIRP v01r01

Frequency	Reading Peak	Antenna Polarity	Antenna Factor	Preamp Gain	Cable loss	Final Field Strength Peak	Average Limit	Margin for Peak V Average Limit +20dB
GHz	dBuV/m	V/H	dB	dB	dB	dBuV/m	dBuV/m	dB
4.824	50.9	Vertical	32.5	38.6	3.6	48.4	54.0	25.6
4.824	46.3	Horizontal	32.5	38.6	3.6	43.8	54.0	30.2
7.236	39.8	Vertical	35.5	39	3.9	40.2	54.0	33.8
7.236	39.9	Vertical	35.5	39	3.9	40.3	54.0	33.7
4.874	50.3	Vertical	32.5	38.6	3.6	47.8	54.0	26.2
4.874	48.1	Vertical	32.5	38.6	3.6	45.6	54.0	28.4
7.311	40.4	Vertical	35.5	39	3.9	40.8	54.0	33.2
7.311	40.7	Vertical	35.5	39	3.9	41.1	54.0	32.9
4.924	49.7	Vertical	32.5	38.6	3.6	47.2	54.0	26.8
4.924	48.6	Horizontal	32.5	38.6	3.6	46.1	54.0	27.9
7.386	39.8	Horizontal	35.5	39	3.9	40.2	54.0	33.8
7.386	41.1	Horizontal	35.5	39	3.9	41.5	54.0	32.5

6.2 Radiated Spurious Emissions Measurements (1GHz – 26 GHz) 6.2.1 Host Internal Antenna

Average measurements not performed as peak results were below the average limit

Peak measurement performed with Resolution Bandwidth set to 1MHz as per ANSI C63.10-2013 Section 4.1.4.2.2

Average measurements are performed with Video Bandwidth set to 10Hz as per ANSI C63.10-2013 Section 4.1.4.2.3 , where required,

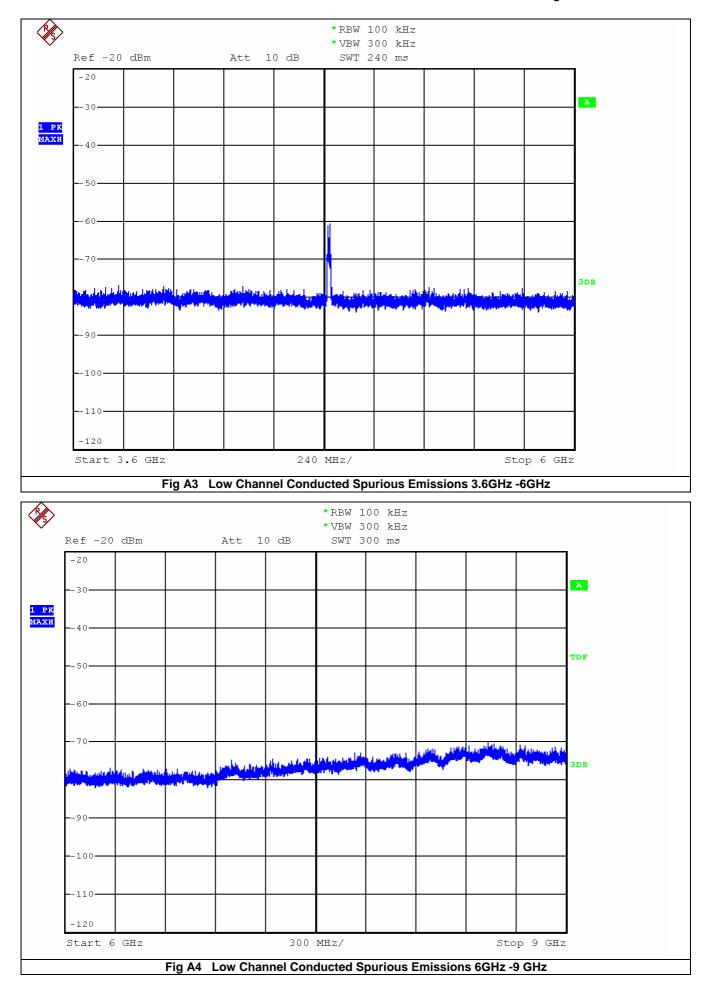
Test Result :- Pass

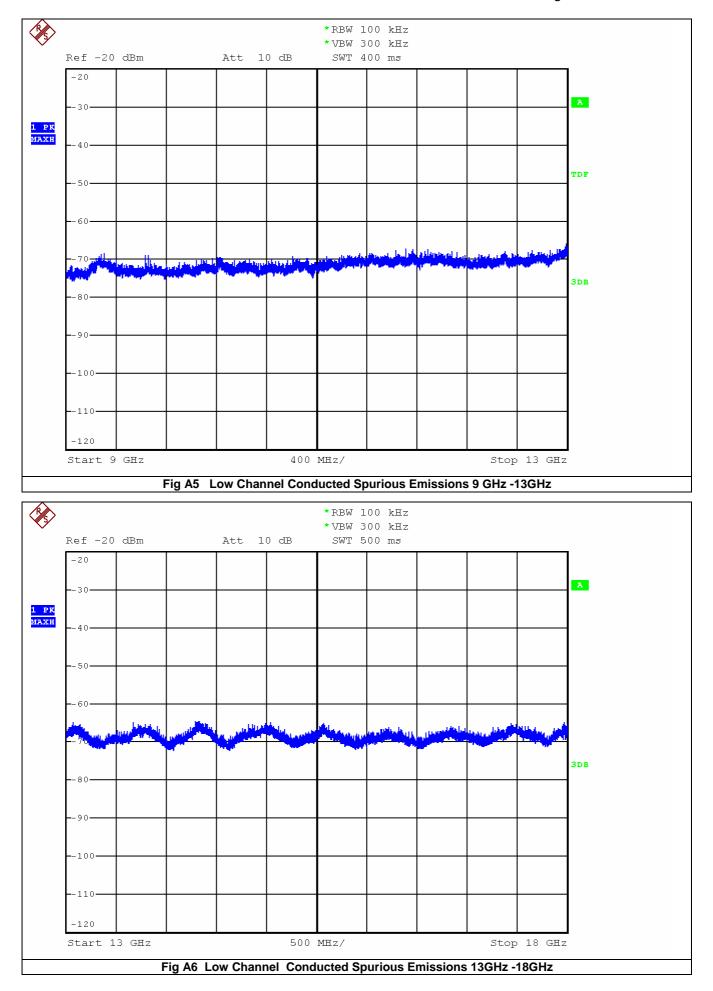
7 List of Test Equipment

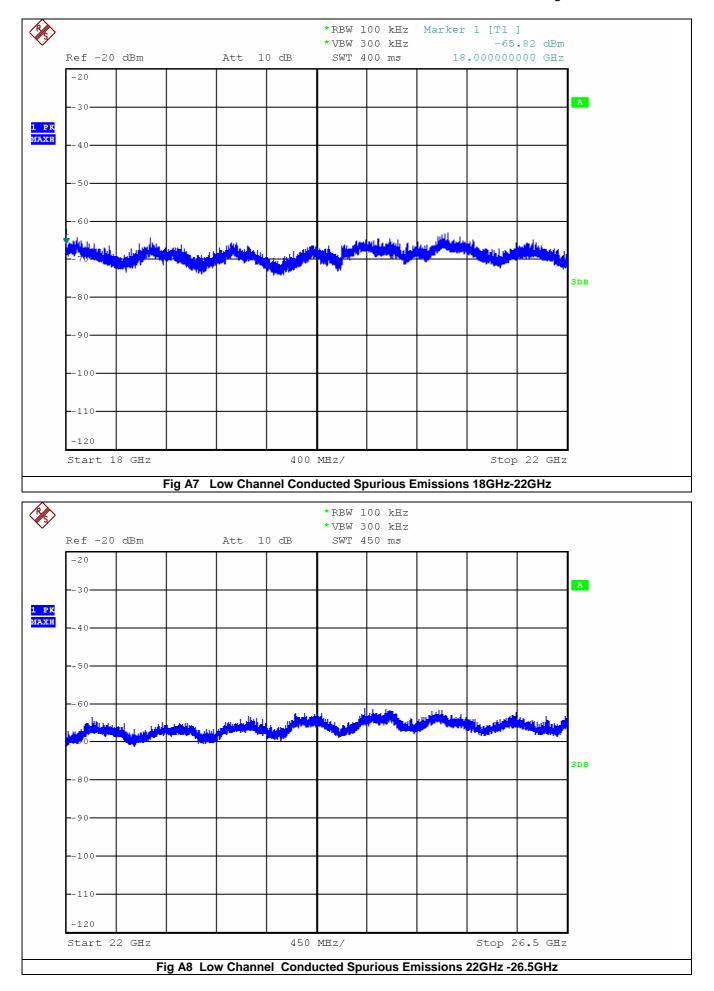
Instrument	Manufacturer	Model	Serial Num	CEI Ref	Cal Due Date	Cal Interval Months
Microwave Preamplifier	Hewlett Packard	83017A	3123A00175	805	29/09/2017	12
Spectrum Analyser 30Hz-40GHz	Rohde& Schwarz	FSP40	100053	850	09/11/2018	36
Test Receiver 3.6GHz	Rohde& Schwarz	ESR	1316.3003k03- 101625-s	869	04/06/2017	36
Anechoic Chamber	CEI	SAR 10M	845	845	16/03/2019	36
Antenna Horn	EMCO	3115	9905-5809	655	03/11/2017	24
Fully Anechoic Chamber	CEI	FAR 3M	906	906	22/03/2018	36
Antenna Trilog	Schwarzbeck	VULB 9160	9160-3361	889	04/08/2018	24
LISN	Rohde& Schwarz	ESH3-Z5	825460/003	604	21/01/2019	36

8 Measurement Uncertainties

Measurement	Uncertainty
Radio Frequency	+/- 5x10 ⁻⁷
Maximum Frequency Deviation	+/- 1.7 %
Conducted Emissions	+/- 1 dB
Radiated Emission 30MHz-100MHz	+/- 5.3 dB
Radiated Emission 100MHz-300MHz	+/- 4.7 dB
Radiated Emission 300MHz-1GHz	+/- 3.9 dB
Radiated Emission 1GHz-40GHz	+/- 3.8 dB


The measurement uncertainties stated were calculated with a k=2 for a confidence level of over 95% as per ETS TR100 028.


Appendix A


Additional Test Results For Conducted Measurements on the Antenna Port

Report Ref: 16E6465-1b Page 20 of 49

Spectrum	Spe	ectrum 2	🗶 St	bectrum 3	×s	pectrum -	4 🗴		
Ref Level			0.70 dB 👄 R				Innut 1 4C		
Att 01Pk Max	25 dB	SWT 9	48.4 µs V	/BW 300 kH	z Mode /	Auto FFT	Input 1 AC		
10 dBm									
TO OPIN									
0 dBm									
o abiii									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
		τ.2.	0.				a second	10. j	1711 - 11 - 11
Chula A. C. Inde		handara Kili (Kili kang Kangalangan menjadang			الافارينية ومنظل المراجعة الم المراجعة المراجعة الم	har bilg tha haring paganang dina bar		The same in the second	An and the set of the
~				0		A11			
-70 dBm									
Start 30.0 M	MHz			2400	0 pts			Sto	p 1.0 GHz
<u> </u>									ž – L
		Fig A1 Lo	ow Channe	Conducted	d Spurious	Emissions	30MHz -1G	Hz	
	×	-						Hz	
Spectrum		ectrum 2	× s	pectrum 3	×s	Emissions pectrum		Hz	
Ref Level	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
		ectrum 2	🗙 SI	pectrum 3	× S		4 🗷		
Ref Level	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level Att	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level Att 1Pk View	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level Att 10 dBm 0 dBm	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level Att 10 dBm 0 dBm -10 dBm	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	× S	pectrum	4 🗷		
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	15.00 dBm	ectrum 2 Offset 10	🗙 SI	Dectrum 3 RBW 100 kH	X S	Auto Sweep	4 🗷		
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	15.00 dBm 20 dB	ectrum 2 Offset 10 SWT	(X) SI (D,70 dB • F (26 ms · V	Dectrum 3 RBW 100 kH /BW 300 kH	× S	Auto Sweep	4 🗷	AC	
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	15.00 dBm 20 dB	ectrum 2 Offset 10 SWT	🗙 SI	Dectrum 3 RBW 100 kH /BW 300 kH	X S	Auto Sweep	4 (X)	AC	
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	15.00 dBm 20 dB	ectrum 2 Offset 10 SWT	(X) SI (D,70 dB • F (26 ms · V	Dectrum 3 RBW 100 kH /BW 300 kH	X S	Auto Sweep	4 (X)	AC	
Ref Level Att • 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	15.00 dBm 20 dB	ectrum 2 Offset 10 SWT	SI SI SI S	Dectrum 3 RBW 100 kH /BW 300 kH	X S	Auto Sweep	4 (X)	AC	
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	15.00 dBm 20 dB	ectrum 2 Offset 10 SWT	SI SI SI S	Dectrum 3 RBW 100 kH /BW 300 kH	Z Mode /	Auto Sweep	4 (X)	AC	

Report Ref: 16E6465-1b Page 24 of 49

Spectrum		ectrum 2	2 🗙 S	pectrum 3	× s	Spectrum	4 🗶		
	17.00 dBm		10.70 dB 🔵 I						
Att	25 dB	SWT	37.9 µs 👄 🕻	VBW 300 kH:	z Mode	Auto FFT	Input 1 AC		
⊖1Pk Max									
					M	1[1]		9 4115	2.98 dBm 55750 GHz
10 dBm				M1		1	1	2.7110	55750 GH2
				Ť					
0 dBm			romment	And a strategy and a	and the second	montan	ñ.		
		_ M	Anna				www		
-10 dBm		AN	·				many		
	1	V					MUL		
-20 dBm	and the second s							M	
	N							Ny.	
-30 dBm	1								
-30 ubiii	1							h	
10 10 -	1							1	ma
-40 dBpg	1							1	and the second s
have V								¥	m
-50 dBm—									
-60 dBm									
-70 dBm									
-80 dBm									
CF 2.4121	2256 CH-			22000) ntc			- Cin - n	20.0 MHz
UCF 2.4121	2330 GHZ		E : 40.1	32000				span	20.0 MHz
			Fig A9 Low	/ channel B	Conducte	ed Fundam	nental		

Appendix B

Radiated tests for Band Edges /Restricted band

Report Ref: 16E6465-1b Page 26 of 49

Spectrum	Spectrur			Spect	rum 4 🗷	
Ref Level 87.0 Att			RBW 1 MHz	Mode Auto FFT	Input 1 AC	
TDF						
				M1[1]		58.77 dBµV
80 dBµV					I	2.4835000 GHz
70 dBµV						
60 dBµV	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n	N	1	m	~~~~~~
50 dBµV						
40_dBµV						
30 dBµV						
20 dBµV						
10 dBµV						
0 dBµV						
-10 dBµV						
CF 2.4835 GHz			691	pts		Span 40.0 MHz
	Fig B1 Hi	gh Channe	Restricted B	and Radiated \	/ertical Peak at 3	3 metres
Spectrum	Spectrur	n 2 🛛 🛪	Spectrum 3	Spect	rum 4 🔊	
Spectrum Ref Level 91.3	Spectrur 0 dBµV		Spectrum 3	Spect	rum 4 🛛 🗶	
Ref Level 91.3 Att	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz	Mode Auto FFT		
Ref Level 91.3	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz			
Ref Level 91.3 Att SGL Count 100/1	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz			(∇) 48.67 dBµV
Ref Level 91.3 Att SGL Count 100/1	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz	Mode Auto FFT		
Ref Level 91.3 Att SGL Count 100/1 1Rm AvgPwr	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz	Mode Auto FFT		(∇) 48.67 dBµV
Ref Level 91.3 Att SGL Count 100/1 1Rm AvgPwr 80 dBµV	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz	Mode Auto FFT		(∇) 48.67 dBµV
Ref Level 91.3 Att SGL Count 100/1 1Rm AvgPwr 80 dBµV 70 dBµV	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz VBW 3 MHz	Mode Auto FFT		(∇) 48.67 dBµV
Ref Level 91.3 ■ Att SGL Count 100/1 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz VBW 3 MHz	Mode Auto FFT		(∇) 48.67 dBµV
Ref Level 91.3 ● Att SGL Count 100/1 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz VBW 3 MHz	Mode Auto FFT		(∇) 48.67 dBµV
Ref Level 91.3 ■ Att SGL Count 100/1 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz VBW 3 MHz	Mode Auto FFT		(∇) 48.67 dBµV
Ref Level 91.3 ■ Att SGL Count 100/1 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz VBW 3 MHz	Mode Auto FFT		(∇) 48.67 dBµV
Ref Level 91.3 ■ Att SGL Count 100/1 ● 1Rm AvgPwr 80 dBµV 70 dBµV 70 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz VBW 3 MHz	Mode Auto FFT		(∇) 48.67 dBµV
Ref Level 91.3 ■ Att SGL Count 100/1 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 20 dBµV 10 dBµV 10 dBµV	OdBµV OdB S₩	/T 5l.7 μs	RBW 1 MHz VBW 3 MHz	Mode Auto FFT		(∇) 48.67 dBµV
Ref Level 91.3 Att SGL Count 100/1 ● 1Rm AvgPwr 80 dBµV 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 10 dBµV 10 dBµV CF 2.4835 GHz		/T 5.7 μs	RBW 1 MHz VBW 3 MHz	Mode Auto FFT		48.67 dBµV 2.48350000 GHz

Report Ref: 16E6465-1b Page 27 of 49

	Spectrum 2	Spectrun 🗴	n 3 🗴 Spectru	m4 🗷	
Ref Level 87.00 d Att		RBW 1 MHz μs VBW 3 MHz		nnut 1 AC	
TDF				iput 1 Ho	
O1Pk Max			M1[1]		56.91 dBµV
80 dBµV			milil	1 1	2.4835000 GHz
70 dвµv					
60 dBµV			M	~~~~	
50 dBµV					
40 dBµV					
30 dBµV					
20 dBµV					
10 dBµV					
0 dBµV					
-10 dBµV					
CF 2.4835 GHz		6	91 pts		Span 40.0 MHz
Fi	g B3 High Chai	nnel Restricted I	Band Radiated Horiz	contal Peak at 3	metres
Spectrum	Spectrum 2	(X) Spectrun	n 3 🔿 Spectru	m 4 🔊	E
Spectrum Ref Level 91.30 d	Spectrum 2	Spectrun		m 4 🛞	
Ref Level 91.30 d	Вµ∨)dB SWT 5.7	RBW 1 MHz	-		
Ref Level 91.30 d Att	Вµ∨	RBW 1 MHz	-		
Ref Level 91.30 d	Вµ∨)dB SWT 5.7	RBW 1 MHz	-		(∇) 48.15 dBµV
Ref Level 91.30 d Att	Вµ∨)dB SWT 5.7	RBW 1 MHz	Mode Auto FFT I		
Ref Level 91.30 d Att SGL Count 100/100 1Rm AvgPwr	Вµ∨)dB SWT 5.7	RBW 1 MHz	Mode Auto FFT I		(∇) 48.15 dBµV
Ref Level 91.30 d Att SGL Count 100/100 1Rm AvgPwr 80 dBµV	Вµ∨)dB SWT 5.7	RBW 1 MHz	Mode Auto FFT I		(∇) 48.15 dBµV
Ref Level 91.30 d Att SGL Count 100/100 1Rm AvgPwr 80 dBµV 70 dBµV	Вµ∨)dB SWT 5.7	RBW 1 MHz	Mode Auto FFT I		(∇) 48.15 dBµV
Ref Level 91.30 d ■ Att SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV	Вµ∨)dB SWT 5.7	RBW 1 MHz	Mode Auto FFT I		(∇) 48.15 dBµV
Ref Level 91.30 d ■ Att SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV	Вµ∨)dB SWT 5.7	RBW 1 MHz	Mode Auto FFT I		(∇) 48.15 dBµV
Ref Level 91.30 d ▲ Att SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 40 dBµV 30 dBµV	Вµ∨)dB SWT 5.7	RBW 1 MHz	Mode Auto FFT I		(∇) 48.15 dBµV
Ref Level 91.30 d Att SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	Вµ∨)dB SWT 5.7	RBW 1 MHz	Mode Auto FFT I		(∇) 48.15 dBµV
Ref Level 91.30 d Att SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV	Вµ∨)dB SWT 5.7	RBW 1 MHz	Mode Auto FFT I		(∇) 48.15 dBµV
Ref Level 91.30 d Att SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	Вµ∨)dB SWT 5.7	RBW 1 MHz	Mode Auto FFT I		(∇) 48.15 dBµV
Ref Level 91.30 d Att SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV CF 2.4835 GHz	ВµV 0 dB SWT 5.7 TDF	● RBW 1 MHz µs VBW 3 MHz	Mode Auto FFT I		48.15 dBµV 2.48350000 GHz

Report Ref: 16E6465-1b Page 28 of 49

	pectrum 2		ectrum 3	🗶 Sp	ectrum 4	₄ ⊗_		
Ref Level 87.00 dB			VI MHz	ada Auto E	CT Inne			
Att 0 TDF	dB SWT 1	.9 hz 🛋 🗚	N/3 MHz M	IOGE AUTO F	FT Inpu	IT I AC		
●1Pk Max								
				M1[1]			58.86 dBµV
80 dBµV				1			2.40	00000 GHz
						2		
70 dBµV								
			M1	~				
60 dBµV								
50 dBµV								
40 dBµV								
40 UBHV								
30 dBµV								
		7						
20 dBµV								
10 dBµV								
0 dBµV								
-10 dBµV								
CF 2.4 GHz			691 p				-	15.0 MHz
	Fig B5	Low Chan	nel Band E	dae Verti	ical Peak	at 3 metres	5	
Spectrum	pectrum 2	× Sp						
	pectrum 2		ectrum 3		ectrum 4			
RefLevel 91.30 dB	μV dB SWT 1	● RBV	ectrum 3	(X) Sp	ectrum 4	4 X		
Ref Level 91.30 dB Att 0 SGL Count 100/100	μV	● RBV	ectrum 3	(X) Sp	ectrum 4	4 X		
RefLevel 91.30 dB	μV dB SWT 1	● RBV	ectrum 3	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		
Ref Level 91.30 dB Att 0 SGL Count 100/100	μV dB SWT 1	● RBV	ectrum 3	(X) Sp	ectrum 4 FT Inpu	4 X		₩ +8.27 dBpV 00000 GHz
Ref Level 91.30 dB Att 0 SGL Count 100/100	μV dB SWT 1	● RBV	ectrum 3	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB Att 0 SGL Count 100/100 91Rm AvgPwr	μV dB SWT 1	● RBV	ectrum 3	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB Att 0 SGL Count 100/100 91Rm AvgPwr	μV dB SWT 1	● RBV	ectrum 3	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB ▲ Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV	μV dB SWT 1	● RBV	ectrum 3	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB ● Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV	μV dB SWT 1	● RBV	ectrum 3	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB ● Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV	μV dB SWT 1	● RBV	ectrum 3	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB ▲ Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV	μV dB SWT 1	● RBV	ectrum 3 V 1 MHz V 3 MHz M	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB ▲ Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV	μV dB SWT 1	● RBV	ectrum 3 V 1 MHz V 3 MHz M	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB ● Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV	μV dB SWT 1	● RBV	ectrum 3 V 1 MHz V 3 MHz M	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV	μV dB SWT 1	● RBV	ectrum 3 V 1 MHz V 3 MHz M	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB ▲ Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV	μV dB SWT 1	● RBV	ectrum 3 V 1 MHz V 3 MHz M	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB Att 0 SGL Count 100/100 IRm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV	μV dB SWT 1	● RBV	ectrum 3 V 1 MHz V 3 MHz M	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV	μV dB SWT 1	● RBV	ectrum 3 V 1 MHz V 3 MHz M	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB Att 0 SGL Count 100/100 IRm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV	μV dB SWT 1	● RBV	ectrum 3 V 1 MHz V 3 MHz M	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	μV dB SWT 1	● RBV	ectrum 3 V 1 MHz V 3 MHz M	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	μV dB SWT 1	● RBV	ectrum 3 V 1 MHz V 3 MHz M	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 10 dBµV 10 dBµV	μV dB SWT 1	● RBV	ectrum 3 V 1 MHz V 3 MHz M	(X) Sp lode Auto F	ectrum 4 FT Inpu	4 X		(∇) ₩8.27 d₽#∀
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV	μV dB SWT 1 TDF	● RBV	Dectrum 3 V 1 MHz V 3 MHz M M M M M M M M M M M M M M	Sp Iode Auto F M1[ectrum 4 FT Inpu	4 X	2.400	(∇) ₩8.27 d₽#∀

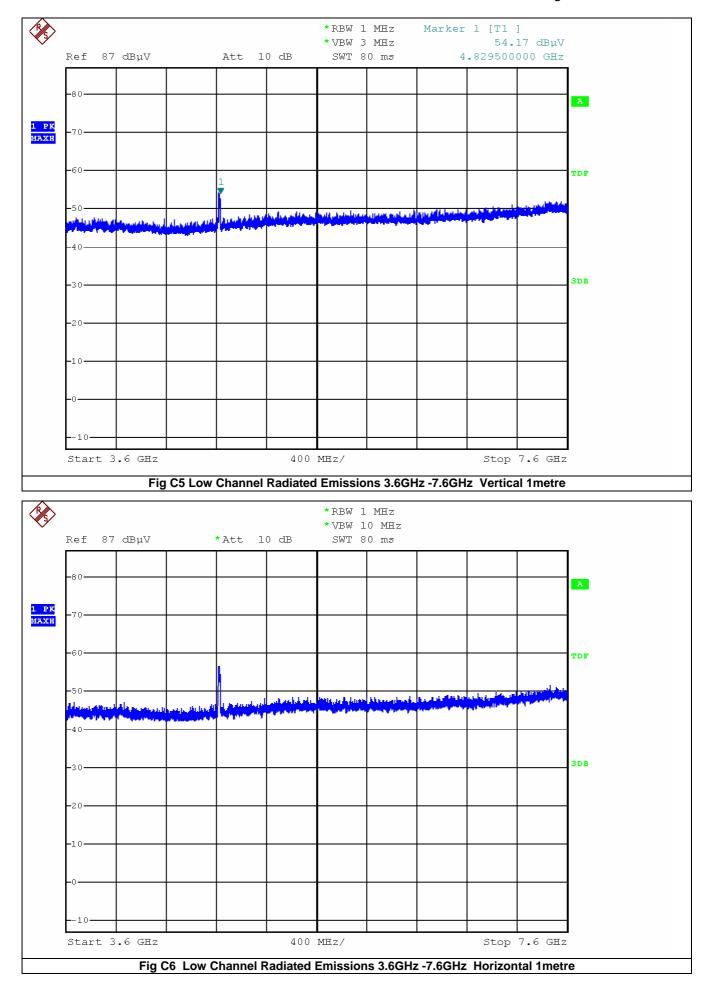
Report Ref: 16E6465-1b Page 29 of 49

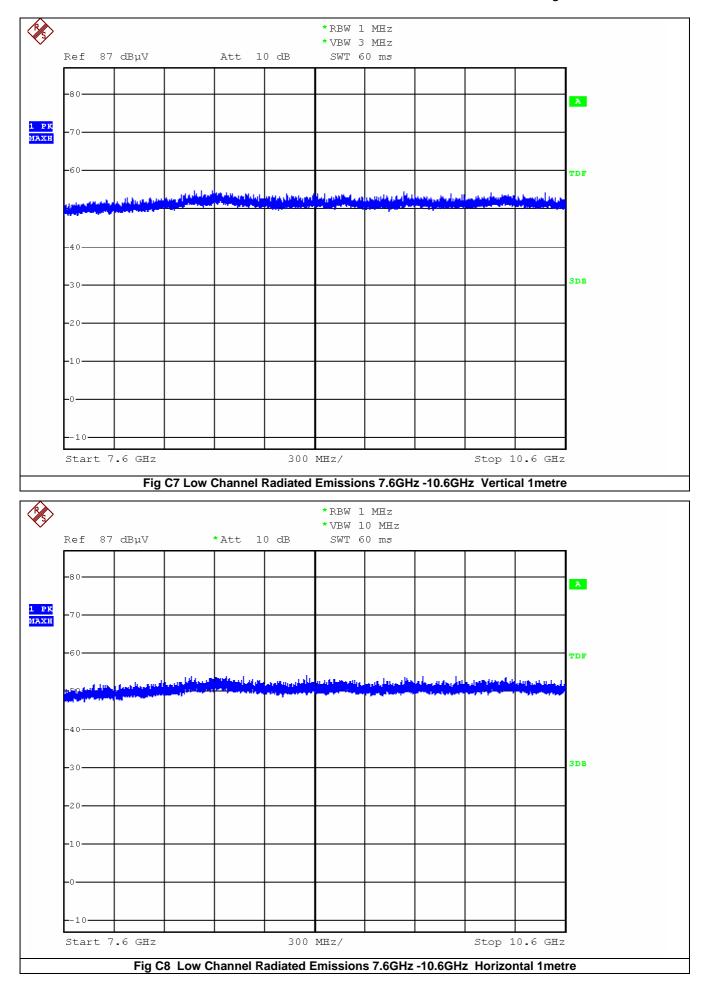
	pectrum 2		ectrum 3	Spectrun	n4 ⊗_		
Ref Level 87.00 dB			1 MHz				
Att 0 TDF	dB SWT 1	r.a ha 🕋 🗚 🗛	3 Mitz Mio	de Auto FFT In	put 1 AC		
⊖1Pk Max							
				M1[1]			7.53 dBµV
80 dBµV		+ +			I	2.40	00000 GHz
70 dBµV					/		
co do se			M1				
60 dBµV							
50 dBµV							
40 dBµV							
30 dBµV							
20 dBµV							
10 dBµV							
0 dBµV							
O GBDV							
-10 dBµV							
CF 2.4 GHz			691 pts			Span	15.0 MHz
5	Fig B7	Low Channe	Band Edg	e Horizontal P	eak at 3 metro	es	
	pectrum 2		ectrum 3	Spectrun	n 4 🛛 🗶		
Ref Level 91.30 dB	μV	👄 RBW	1 MHz	-			
Ref Level 91.30 dB		👄 RBW	1 MHz	Spectrun			
RefLevel 91.30 dB	µV dB SWT 1	👄 RBW	1 MHz	de Auto FFT In			
Ref Level 91.30 dB Att 0 SGL Count 100/100	µV dB SWT 1	👄 RBW	1 MHz	-			(∇) 8.35 dBµV
Ref Level 91.30 dB Att 0 SGL Count 100/100 1Rm AvgPwr	µV dB SWT 1	👄 RBW	1 MHz	de Auto FFT In			
Ref Level 91.30 dB Att 0 SGL Count 100/100	µV dB SWT 1	👄 RBW	1 MHz	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB Att 0 SGL Count 100/100 1Rm AvgPwr	µV dB SWT 1	👄 RBW	1 MHz	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB ■ Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV	µV dB SWT 1	👄 RBW	1 MHz	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB ■ Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV	µV dB SWT 1	👄 RBW	1 MHz	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB ▲ Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB ▲ Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV	µV dB SWT 1	👄 RBW	1 MHz	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB ▲ Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB ▲ Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB ▲ Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB Att 0 SGL Count 100/100 IRm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB Att 0 SGL Count 100/100 IRm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 10 dBµV 10 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In			(∇) 8.35 dBµV
Ref Level 91.30 dB Att 0 SGL Count 100/100 ● 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 10 dBµV 10 dBµV	µV dB SWT 1	👄 RBW	1 MHz Mo	de Auto FFT In		2.400	(∇) 8.35 dBµV

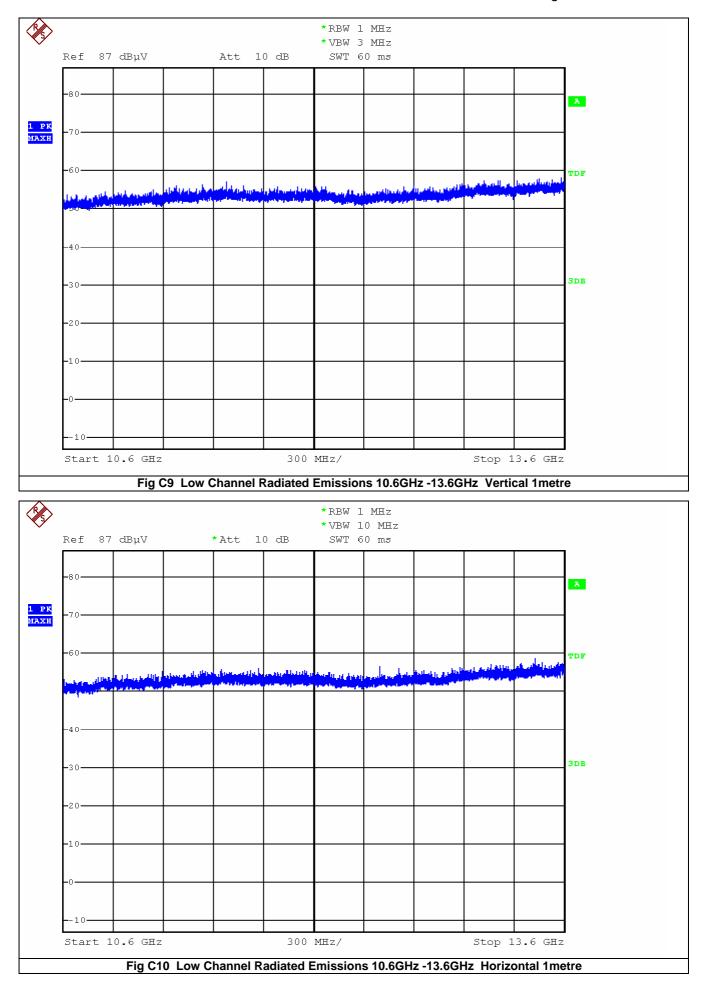
Peak measurement performed with Resolution Bandwidth set to 1MHz as per ANSI C63.10-2013 Section 4.1.4.2.2 and KDB 558074 Section 12.2.4 Peak power measurement procedure

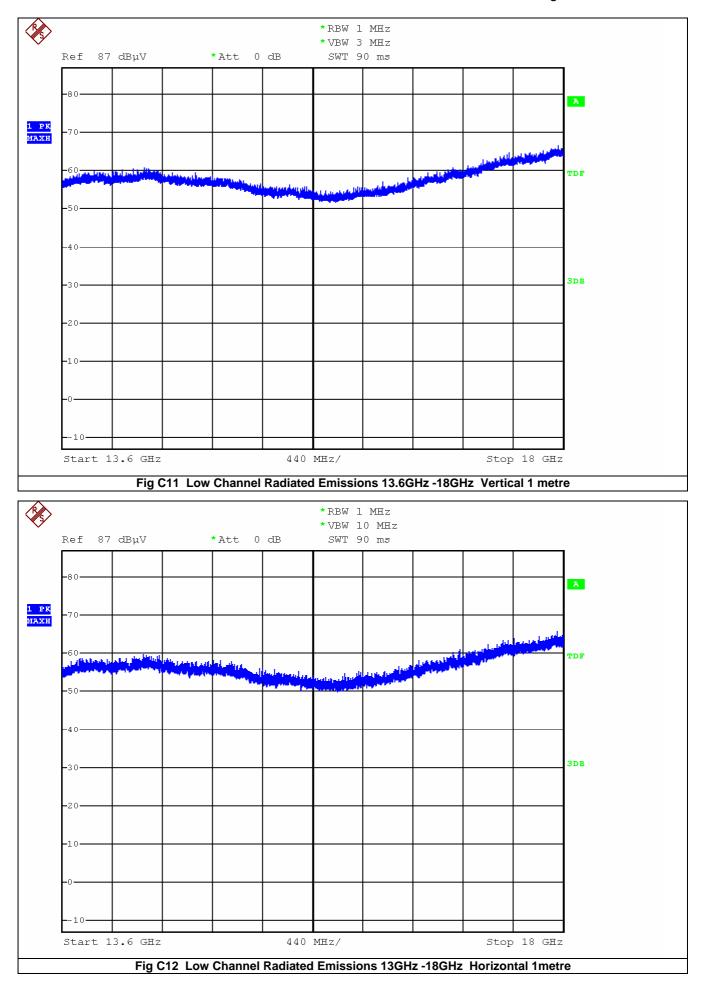
Average measurements as per KDB 558074 Section 12.2.5.1 Trace averaging with continuous EUT transmission at full power

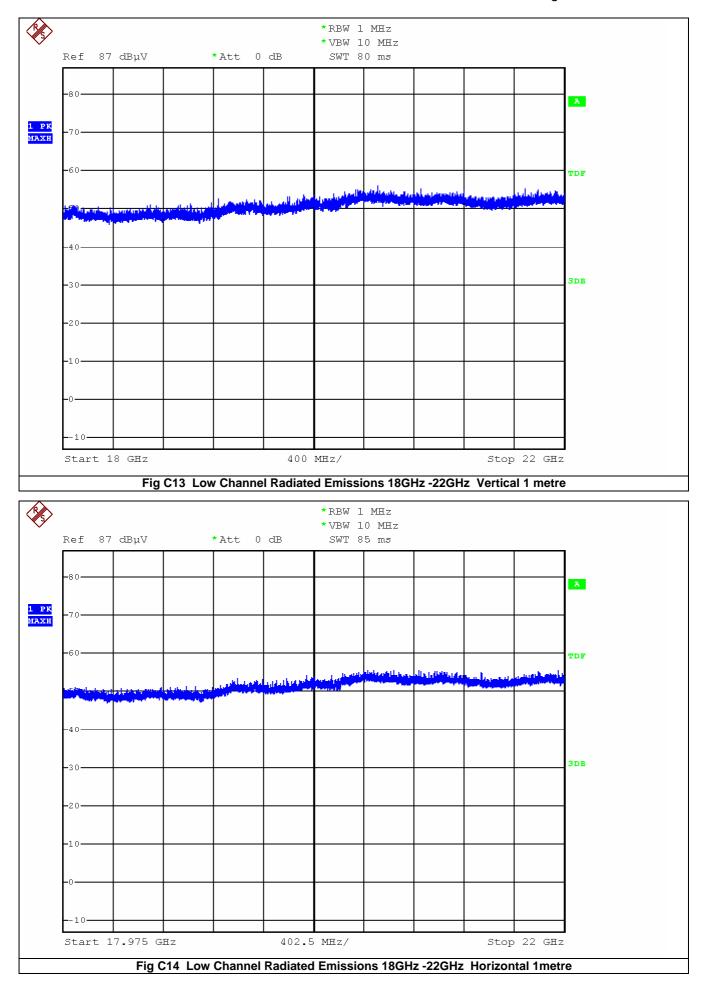
Appendix C

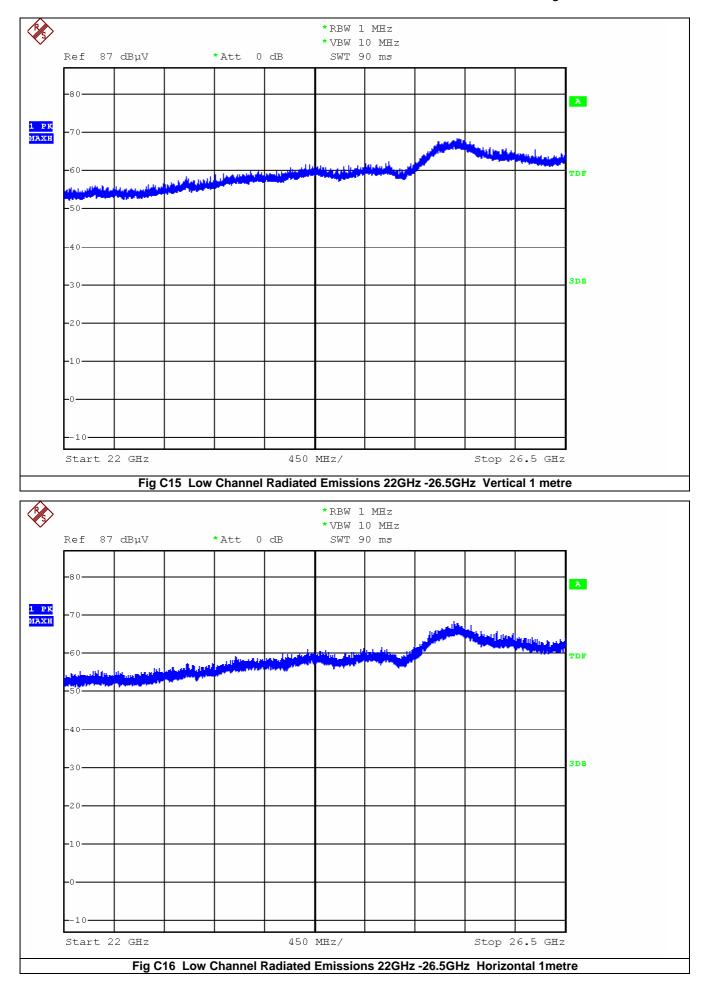

Radiated Spurious Emissions Conducted sample with antenna port terminated


Report Ref: 16E6465-1b Page 32 of 49

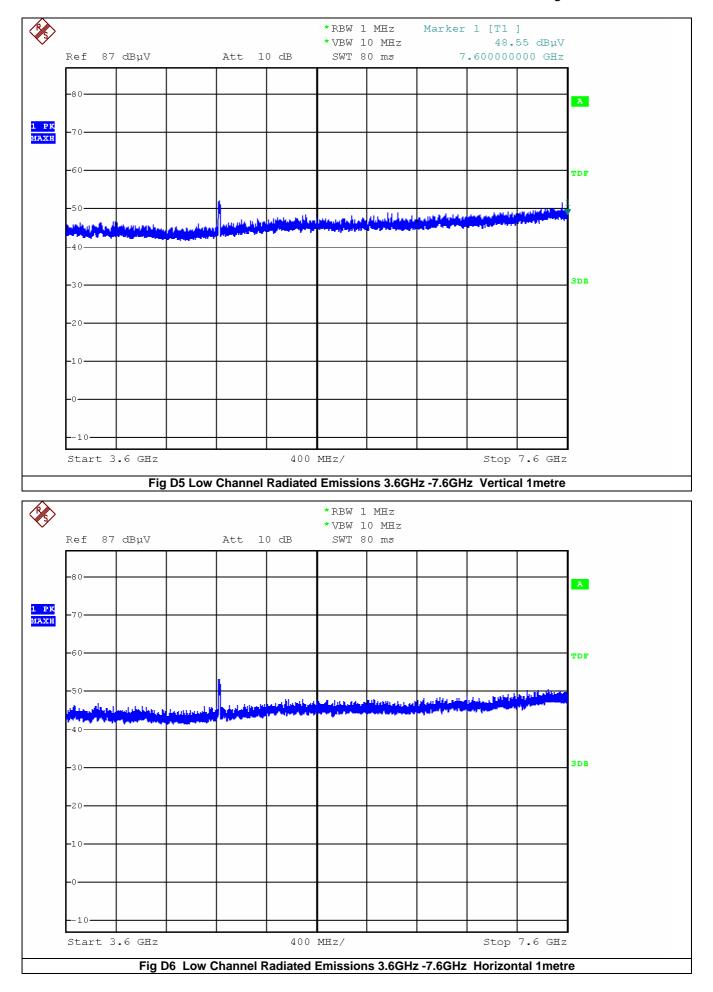

Spectrum	Spectrum 2			Spectrum 4	× Receiver	. ∞[≞]
RBW Input 1 AC Att	(CISPR) 120 kHz 10 dB		ms ON Step TD Sca	889RxCabBCI3 an	3m	
Level	dBµV		Frequen		1.000000	0 GHz
Max Peak	37.86	20 0	20	40	60	80
Scan O1Pk Clrw						
		100 MHz				
90 dBµV						
80 dBµV						
70 dBµV						
60 dBµV						
50 dBµV						
40 dBμV		1 1 1				mand an again
30 dBµV				مىلىنىنى <u>بىلىنى بىلى</u>	who while the manufactor	
20 dBµV	man mar	and when and we	manymoutherstown	waterhand		
10 dBµV		1 1 1 1				
						TF
Start 30.0 MHz						top 1.0 GHz
	Fig C1 Low C	hannel Radiat	ed Emissions 30	MHz -1GHz Vert	tical 3metres	
Spectrum	Spectrum 2	× Spect	rum 3 🛛 🔊	Spectrum 4	× Receiver	
	Spectrum 2 (CISPR) 120 kHz	X Spect MT 100	rum 3 🛛 🔊	Spectrum 4 889RxCabBC 3	× Receiver	
RBW Input 1 AC Att	Spectrum 2 (CISPR) 120 kHz 10 dB	Spect MT 100	rum 3 (X) ms DN Step TD Sca	Spectrum 4 889RxCabBC 3	× Receiver	
Input 1 AC Att	Spectrum 2 (CISPR) 120 kHz 10 dB	Spect MT 100 Preamp	rum 3 (x) ^{ms} DN Step TD Sca Frequend	Spectrum 4 889RxCabBC 3 n CY	× Receiver	
RBW Input 1 AC Att	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV	Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
RBW Input 1 AC Att Level Max Peak	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
Input 1 AC Att Level Max Peak	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	X Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
RBW Input 1 AC Att Level Max Peak	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	X Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	X Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV 80 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	X Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV 80 dBµV 70 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	X Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
RBW Input 1 AC Att Level Max Peak Scan<	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	X Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV 80 dBµV 70 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	X Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
RBW Input 1 AC Att Level Max Peak Scan<	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	X Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
RBW Input 1 AC Att Level Max Peak Scan ● 1Pk Clrw 90 dBµV 90 dBµV 80 dBµV 90 dBµV 70 dBµV 90 dBµV 60 dBµV 90 dBµV 40 dBµV 90 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	X Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
RBW Input 1 AC Att Level Max Peak Scan<	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	X Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	* Receiver	0 GHz
RBW Input 1 AC Att Level Max Peak Scan<	Spectrum 2 (CISPR) 120 kHz 10 dB dBμV 38.17	X Spect MT 100 Preamp	rum 3 💌	Spectrum 4 889RxCabBC 3 n CY	Receiver Receiver	0 GHz

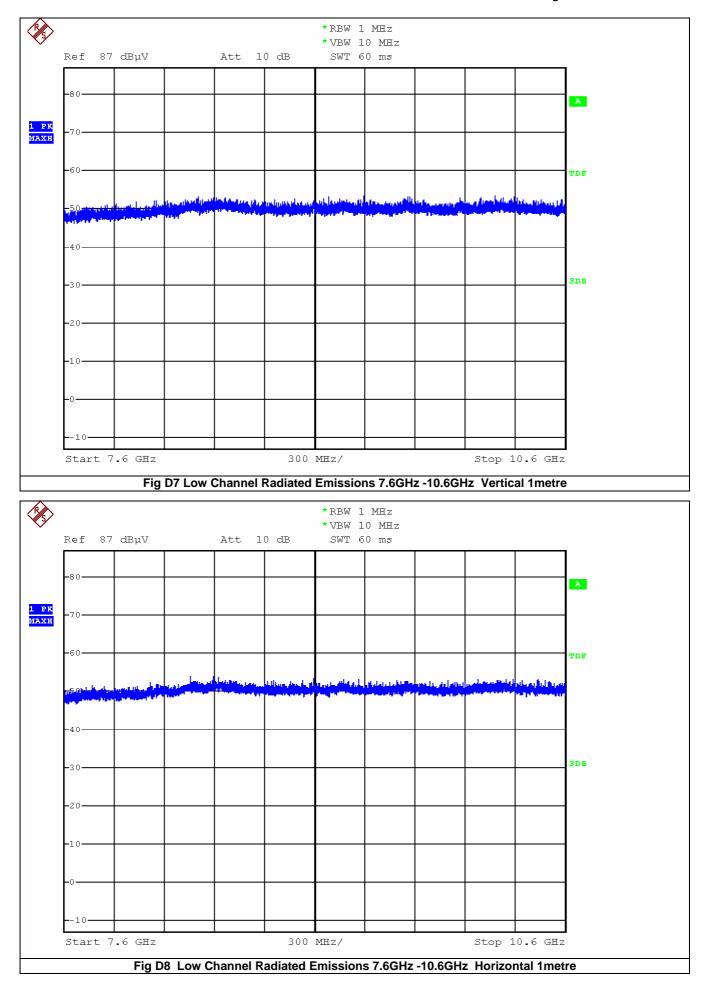

Report Ref: 16E6465-1b Page 33 of 49

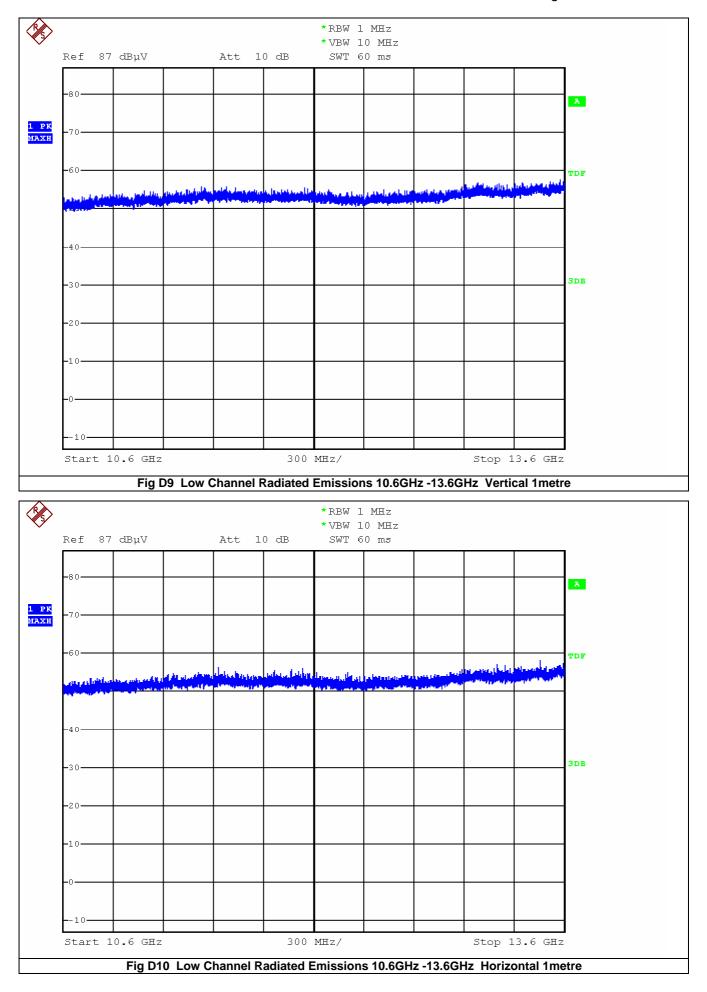

Spectrum	Spectrum 2		ctrum 3	Spectrur	n4 🗶 F	Receiver	്
	(CISPR) 1 MHz 10 dB	MT 100 Preamp	MS ON Step TD	655Rx Scan			
Level	dBµV		Freq	uency	3.60	00000	GHz
Max Peak	58.71	0	20	40		60	80
Scan O1Pk Clrw							
90 dBµV							
80 dBµV					1		
70 dBµV							
60 dBµV						when	
50 dBµV			- Andrewski	municipalities	of Louis and the second second		~
	name - Multimore						
40 dBµV							
30 dBµV							
20 dBµV							
10 dBµV							
							TF
Start 1.0 GHz	Fig C3 Low	Channel Rad	ated Emissio	ns 1GHz -3.6GH	Iz Vertical 3me		3.6 GHz
	~						
Spectrum	Spectrum 2		ctrum 3	Spectrur 655Rx		Receiver	⊗
RBW Input 1 AC Att	Spectrum 2 (CISPR) 1 MHz 10 dB		ctrum 3	Spectrur 655R×	m 4 🗙 🕅 F	Receiver	
RBW Input 1 AC Att	Spectrum 2 (CISPR) 1 MHz 10 dB dBµV	MT 100 Preamp	ctrum 3 ms ON Step TD	Spectrur 655R×	m 4 🗙 🕅 F		
RBW Input 1 AC Att	Spectrum 2 (CISPR) 1 MHz 10 dB dBµV	MT 100 Preamp	ctrum 3 ms ON Step TD	Scan	n 4 ® F	Receiver	
RBW Input 1 AC Att	Spectrum 2 (CISPR) 1 MHz 10 dB dBµV	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq	Scan Scan Scan	n 4 ® F	Receiver	GHZ
Input 1 AC Att Level Max Peak	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq	Scan Scan Scan	n 4 ® F	Receiver	GHZ
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Max 90 dBµV	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq	Scan Scan Scan	n 4 ® F	Receiver	GHZ
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Max 90 dBµV- 80 dBµV-	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq	Scan Scan Scan	n 4 ® F	Receiver	GHZ
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Max 90 dBµV	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq	Scan Scan Scan	n 4 ® F	Receiver	GHZ
RBW Input 1 AC Att Level Max Max Peak Scan ● 1Pk Max 90 dBµV	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq 20	Spectrur 655Rx Scan Uency 40	n 4 ® F	Receiver	GHZ 80
RBW Input 1 AC Att Level Max Max Peak Scan ● 1Pk Max 90 dBµV	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq 20	Spectrur 655Rx Scan Uency 40	n 4 ® F	Ceceiver	GHZ 80
RBW Input 1 AC Att Level Max Max Peak Scan ● 1Pk Max 90 dBµV	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq 20	Spectrur 655Rx Scan Uency 40	n 4 ® F	Ceceiver	GHZ 80
RBW Input 1 AC Att Level Max Scan ●1Pk Max 90 dBµV 80 dBµV 80 dBµV 60 dBµV 50 dBµV 50 dBµV 40 dBµV 40 dBµV	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq 20	Spectrur 655Rx Scan Uency 40	n 4 ® F	Ceceiver	GHZ 80
RBW Input 1 AC Att Level Max 90 dBµV 80 dBµV 80 dBµV 90 dBµV 60 dBµV 90 dBµV 40 dBµV 30 dBµV	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq 20	Spectrur 655Rx Scan Uency 40	n 4 ® F	Ceceiver	GHZ 80
RBW Input 1 AC Att Level Max Scan ●1Pk Max 90 dBµV 80 dBµV 80 dBµV 60 dBµV 50 dBµV 50 dBµV 40 dBµV 40 dBµV	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq 20	Spectrur 655Rx Scan Uency 40	n 4 ® F	Ceceiver	GHZ 80
RBW Input 1 AC Att Level Max 90 dBµV 80 dBµV 80 dBµV 90 dBµV 60 dBµV 90 dBµV 40 dBµV 30 dBµV	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq 20	Spectrur 655Rx Scan Uency 40	n 4 ® F	Ceceiver	GHZ 80
RBW Input 1 AC Att Level Max 90 dBµV 80 dBµV 80 dBµV 90 dBµV 60 dBµV 90 dBµV 50 dBµV 90 dBµV 30 dBµV 90 dBµV 20 dBµV 90 dBµV	Spectrum 2 (CISPR) 1 MHz 10 dB dBμV 59.07	MT 100 Preamp	ctrum 3 ^{ms} ON Step TD Freq 20	Spectrur 655Rx Scan Uency 40	n 4 ® F	000000	GHZ 80

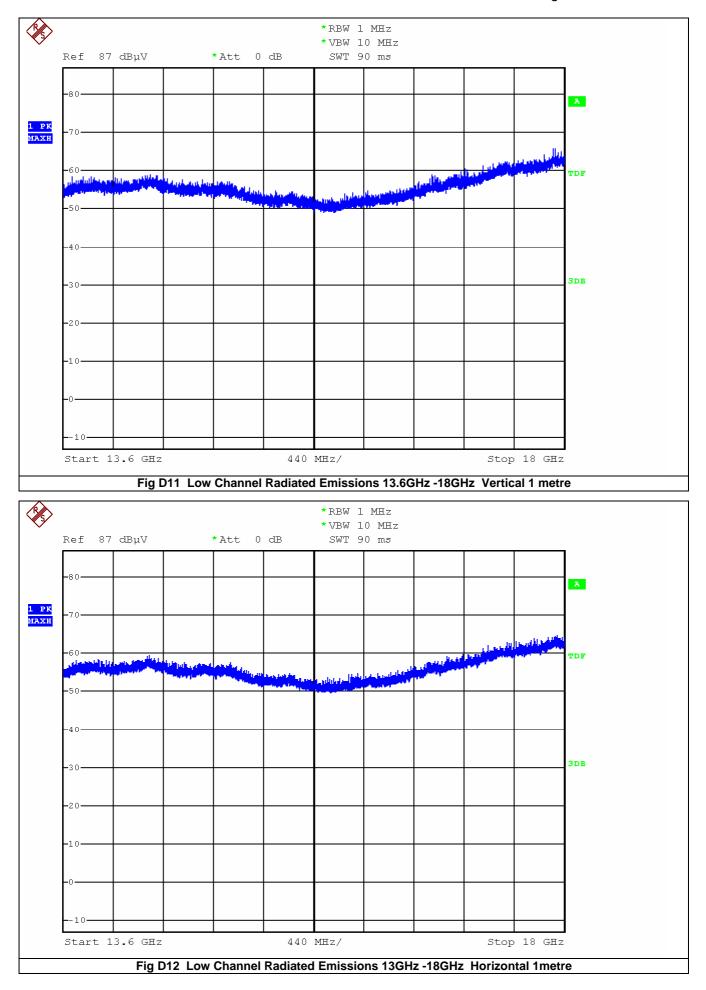


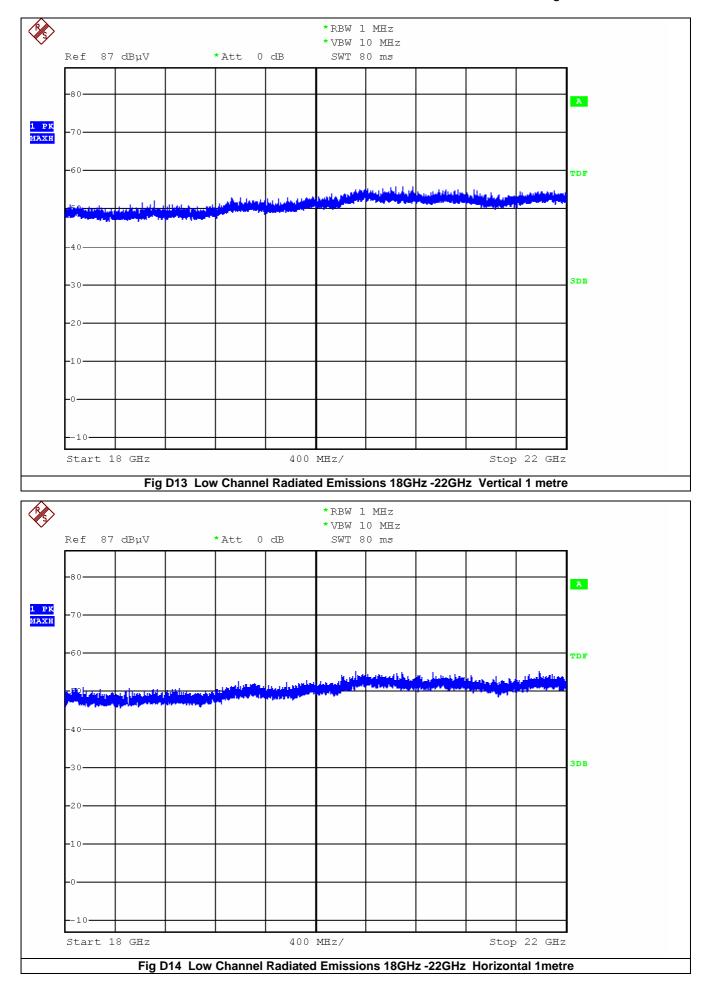
Appendix D

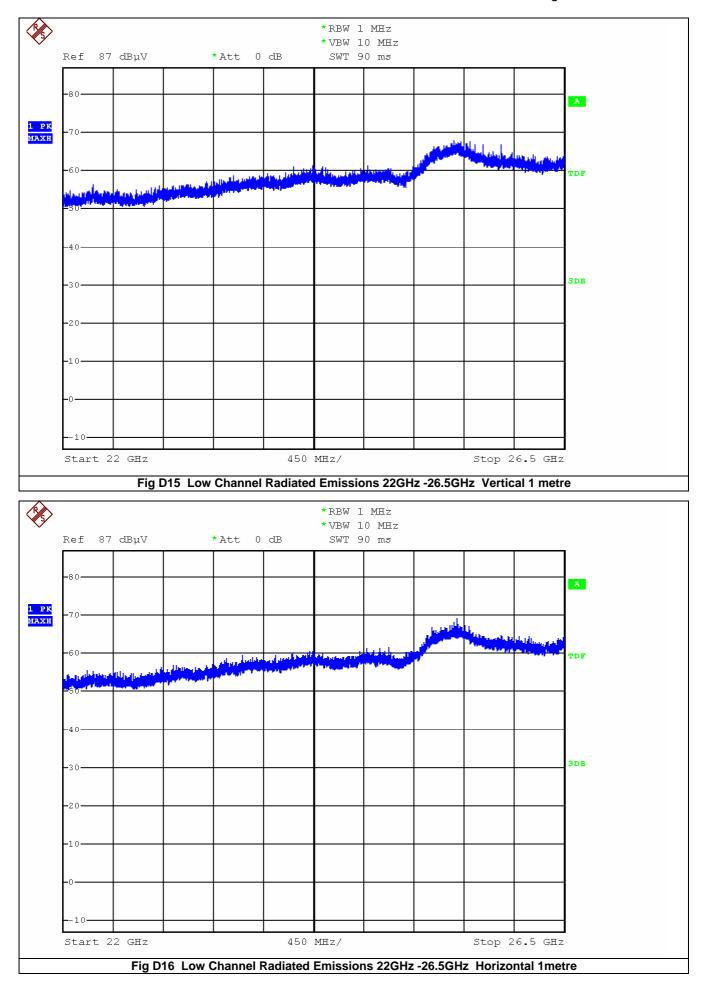

Radiated Spurious Emissions Radiated sample with Host internal antenna


Report Ref: 16E6465-1b Page 41 of 49


Spectrum	Spectrum 2		ctrum 3	Spectr		Receiver	```
RBW Input 1 AC Att	/ (CISPR) 120 kHz 10 dB	MT 10 Preamp	0 ms ON Step		RxCabBC 3m		
Level	dBµV		Freq	uency	1.	0000000) GHz
Max Peak	37.75 🖬	20	0	20	40	60	80
Scan 👴 1 Pk Clrw							
90 dBµV		100 MHz					
80 dBµV							
70 dBµV							
60 dBµV							
50 dBµV							
40 dBµV							when you when the
30 dBµV					Andrea more	and when when the same	
20 dBµV	mary humangle	Lambore w	manne	monter			
10 dBµV							
							TF
Start 30.0 MHz	Fig D1 Low C	hannol Padi	atod Emissi	ne 20MHz -1	GHz Vortical		op 1.0 GHz
	-						
Spectrum	Spectrum 2	X Spe	ctrum 3	Spectr	-um 4 🛛 🔇		(X) (X) (X) (X) (X) (X) (X) (X)
RBW Input 1 AC Att	Spectrum 2 (CISPR) 120 kHz 10 dB	X Spe		Spectr 8899	rum 4 🛛 🕅 RxCabBC 3m	Receiver	
Input 1 AC Att	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m		
Input 1 AC Att	Spectrum 2 (CISPR) 120 kHz 10 dB	X Spe MT 10 Preamp	ctrum 3 0 ms ON Step	Spectr 889f ID Scan	rum 4 🛛 🕅 RxCabBC 3m	Receiver	
Input 1 AC Att	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz
Input 1 AC Att Level Max Peak	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz
Input 1 AC Att Level Max Peak	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV 80 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV 80 dBµV 70 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV 80 dBµV 70 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV 80 dBµV 70 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV 80 dBµV 70 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV 80 dBµV 70 dBµV 60 dBµV 50 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV 0 80 dBµV 0 70 dBµV 0 50 dBµV 0 40 dBµV 0	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz
RBW Input 1 AC Att Level Max Peak Scan ●1Pk Clrw 90 dBµV 80 dBµV 80 dBµV 60 dBµV 50 dBµV 90 dBµV 40 dBµV 30 dBµV	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz
RBW Input 1 AC Att Level Max Peak Scan ● 1Pk Clrw 90 dBµV 0 0 80 dBµV 0 0 70 dBµV 0 0 50 dBµV 0 0 30 dBµV 0 0 20 dBµV 0 0	Spectrum 2 (CISPR) 120 kHz 10 dB dBµV 38.03	X Spe MT 10 Preamp	ctrum 3 ^{0 ms} ON Step Freq	Spectr 889 ID Scan Uency	rum 4 (X RxCabBC 3m	Receiver	D GHz


Report Ref: 16E6465-1b Page 42 of 49


Spectrum	Spectrum 2		ectrum 3	Spectrum	4 🕱	Receiver	
Input 1 AC Att	W (CISPR) 1 MHz 0 dB		0 ms ON Step T	655Rx D Scan			
Level	dBµV		Fred	luency	3.60	00000	GHz
Max Peak	48.56	-10	10	30		5 <mark>0</mark>	70
Scan O1Pk Max	{			;			
90 dBµV							
80 dBµV							
70 dBµV							
60 dBµV							
50 dBµV			107110715 J.(2014)	- unter the f	hammen	makener	man and a second second
40 dBµV	manutherman	wardenality	grade see grandly a drawlowed				
30 dBµV							
20 dBµV							
10 dBµV							
Start 1.0 GHz						Stop	TF 0 3.6 GHz
	Fig D3 Low	Channel Ra	diated Emissi	ons 1GHz -3.6GHz	Vertical 3m	etres	
Spectrum	Spectrum 2		ectrum 3	Spectrum	4 🗶	Receiver	⊗ 🕎
RB	W (CISPR) 1 MHz	MT 10	0 ms	655Rx	4 🗶		
	W (CISPR) 1 MHz O dB	· · · ·	0 ms ON Step T	655R× D Scan			
RB Input 1 AC Att	W (CISPR) 1 MHz O dB	MT 10 Preamp	0 ms ON Step T	655Rx		Receiver	
Input 1 AC Att	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	Oms ON Step T Frec	655Rx D Scan JUENCY 30		Receiver	GHZ 70
Input 1 AC Att Level Max Peak	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	Oms ON Step T Frec	655Rx D Scan JUENCY		Receiver	GHz
RBY Input 1 AC Att Level Max Peak Scan ●1Pk Max 90 dBµV	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	Oms ON Step T Frec	655Rx D Scan JUENCY 30 M1[1]		Receiver	GHZ 70 4.90 dBµV
RBY Input 1 AC Att Level Max Peak Scan ●1Pk Max 90 dBµV	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	Oms ON Step T Frec	655Rx D Scan JUENCY 30 M1[1]		Receiver	GHZ 70 4.90 dBµV
RBY Input 1 AC Att Level Max Peak Scan ●1Pk Max 90 dBµV	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	Oms ON Step T Frec	655Rx D Scan JUENCY 30 M1[1] 0.000 s	3.60	Receiver	GHZ 70 4.90 dBµV
RBY Input 1 AC Att Level Max Peak Scan ●1Pk Max 90 dBµV	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	Oms ON Step T Frec	655Rx D Scan JUENCY 30 M1[1]	3.60	Receiver	GHZ 70 4.90 dBµV
RBY Input 1 AC Att Level Max Peak Scan<	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	Oms ON Step T Frec	655Rx D Scan JUENCY 30 M1[1] 0.000 s	3.60	Receiver	GHZ 70 4.90 dBµV
RBV Input 1 AC Att Level Max Peak Scan 1Pk Max 90 dBµV 80 dBµV 80 dBµV 60 dBµV 50 dBµV 50 dBµV	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	Oms ON Step T Frec	655Rx D Scan JUENCY 30 M1[1] 0.000 s	3.60	Receiver	GHZ 70 4.90 dBµV
RBY Input 1 AC Att Level Max Scan ●1Pk 90 dBµV 80 dBµV 80 dBµV 60 dBµV 50 dBµV 50 dBµV	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	Oms ON Step T Frec	655Rx D Scan JUENCY 30 M1[1] 0.000 s	3.60	Receiver	GHZ 70 4.90 dBµV
RBV Input 1 AC Att Level Max Peak Scan 1Pk Max 90 dBµV 80 dBµV 80 dBµV 60 dBµV 50 dBµV 50 dBµV	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	Oms ON Step T Frec	655Rx D Scan JUENCY 30 M1[1] 0.000 s	3.60	Receiver	GHZ 70 4.90 dBµV
RBY Input 1 AC Att Level Max Scan 1Pk Max 90 dBµV 90 dBµV 80 dBµV 90 dBµV 70 dBµV 90 dBµV 60 dBµV 90 dBµV 30 dBµV 90 dBµV	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	O ms ON Step T Frec	655Rx D Scan JUENCY 30 M1[1] 0.000 s	3.60	Receiver	GHZ 70 4.90 dBµV
RBY Input 1 AC Att Level Max Max Peak Scan ●1Pk 90 dBµV 0 80 dBµV 0 70 dBµV 0 60 dBµV 0 50 dBµV 0 30 dBµV 0 20 dBµV 0	w (CISPR) 1 MHz 0 dB dBµV 48.95	MT 10 Preamp	O ms ON Step T Frec	655Rx D Scan JUENCY 30 M1[1] 0.000 s	3.60	Receiver	GHZ 70 4.90 dBµV



End of Report