

Test Report

Prepared for: Sierzega Elektronik GmbH

Model: SR7

Serial Number: 35057, 35058

Project No: p2440002

Test Results: Pass

То

FCC Part 15.249: 2024 and RSS-210: Issue 10 (December 2019)

Date of Issue: June 6, 2024

On the behalf of the applicant:

Sierzega Elektronik GmbH Valentinstr. 11 Thening, 4062, Austria

Attention of:

Prepared By:

Robert Sierzega, CEO Ph: +43 7221 64114 0 E-Mail: Robert.Sierzega@sierzega.com

Compliance Testing, LLC Mesa, AZ 85204 (480) 926-3100 phone / (480) 926-3598 fax <u>www.compliancetesting.com</u> ANAB Cert#: AT-2901 FCC Site Reg. #US2901 ISED Site Reg. #2044A-2

Reviewed / Authorized By:

Jeremiah Darden, Principal Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing. All results contained herein relate only to the sample tested. All samples were selected by the customer.

Test Results Summary

Test Date Range: May 23 - June 6, 2024

Specification		Toot Name	Pass,	Commente	
FCC	RSS	Test Name Fail, N/A		Comments	
15.249(a)	Annex B.10	Field Strength of Fundamental	Pass		
15.249(a), 15.249(d), 15.209(a), 15.205	Annex B.10, Section 7.1, 7.2, 7.3 / RSS-GEN 8.9 and 8.10	General Field Strength Emissions, Spurious Harmonic Emission, Restricted Bands	Pass		
15.215(c)	-	20dB Bandwidth of Emission	Pass		
-	Section 5 / RSS-Gen 6.7	99% Occupied Bandwidth	Complete		
15.207	RSS-GEN Section 8.8	A/C Powerline Conducted Emissions	Pass	Only DC power applicable	
Method Deviations/Additions: No					

Statements of conformity are reported as:

- Pass the measured value is below the acceptance limit, acceptance limit = test limit.
- Fail the measured value is above the acceptance limit, *acceptance limit = test limit*.

References/Methods	Description
ANSI C63.4-2014	Method and Measurements of Radio-Noise Emissions from low-Voltage Electrical and Electronic Equipment in the range 9kHz to 40GHz.
ANSI C63.10:2020	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
RSS-GEN Issue 5: 2018	General Requirements for Compliance of Radio Apparatus
ISO/IEC 17025:2017	General requirements for the Competence of Testing and Calibrations Laboratories

Table of Contents

Description

Page

Test Results Summary	2
Test Report Revision History	4
EUT Description	5
Test and Measurement Data	7
Test Setup and Modes of Operation	8
Field Strength of Fundamental	10
General Field Strength Emissions / Spurious Harmonic Emissions / Restricted Bands	14
20dB Bandwidth of Emission	34
99% Occupied Bandwidth	36
Powerline Conducted Emissions	38
Measurement Uncertainty	42

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	June 6, 2024	Jeremiah Darden	Original Document

Current revision of the test report replaces any prior versions. Only the current version of the test report is valid.

EUT Description

Model:	SR7
Serial:	35057, 35058
Firmware:	V1.0
Software:	N/A
Description:	Vehicle Traffic Counter
Additional Information:	Highest Frequency Generated: Non Radio Frequency <1250 MHz
	EUT operates at 12VDC.
	Radar 24GHz:
	FCC ID: S6P-SR7
	IC: 5792A-SR7
	Contains FCC ID's:
	BLE: QOQ-GM220P
	Cellular: XMR201910BG95M3
	Usage: Mounted near roads and streets
Receipt of Sample(s):	May 16, 2024
EUT Condition:	
	Visual Damage No
	State of Development Production/Production Equivalent

The applicant has been cautioned as to the following

15.21 - Information to User

The user's manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) - Special Accessories

Equipment marked to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer without an additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Authorization Requirements

Intentional Radios may require authorization covered under the following rule parts or standards:

-47 CFR Part 2 Subpart J

-RSS-Gen — General Requirements for Compliance of Radio Apparatus

Note: These notices are specific to the methods and standards related to the testing within this report. Customers should also consider and review additional legal regulations for import/export documentation and labeling for the countries and geographies under consideration by the manufacturer.

Test and Measurement Data

Subpart 2.1033(b)

All tests and measurement data shown were performed in accordance with FCC Rule Parts: 15.249.

All tests and measurement data shown are deemed satisfactory evidence of compliance with Industry Canada Radio Standards Specification RSS-Gen and RSS-210.

Standard Engineering Practices

Unless otherwise indicated, the procedures contained in ANSI C63.10 and ANSI C63.4 were observed during testing.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing. Measurement results, unless otherwise noted, are worst case measurement.

Standard Test Conditions and Engineering Practices

Unless otherwise indicated in the specific measurement results, the ambient temperature was maintained within the range of 10° to 40°C (50° to 104°F) and the relative humidity levels were in the range of 10% to 90%.

Environmental Conditions						
TemperatureHumidityBarometric Pressure(%)(mbar)						
26.56 - 27.22	26.5 – 27.6	963.9 – 966.9				

Test Setup and Modes of Operation

EUT Operation during Tests

EUT was connected to power and operated with the installed software for typical operation. 24GHz radio is operated at it's highest duty cycle for FMCW operation. EUT was powered by a 12VDC. Two EUT were used for testing. S/N 35057 and S/N 35058 are identical except for the antenna orientation and transmit phase. This represents one production unit that has two antennas inside the enclosure. They do not transmit simultaneously so two units were needed to capture the 19degree antenna angle/phase and the 25 degree angle/phase.

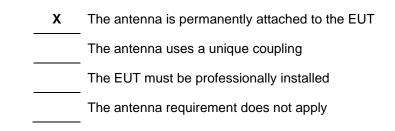
EUT:

Qty	Description	Manufacturer	Model	S/N
1	Traffic Counter	Sierzega	SR7	35057
1	Traffic Counter	Sierzega	SR7	35058

Accessories: N/A

Cables:

Qty	Description	Length (M)	Ferrites (Y/N)	Shielding Y/N	Shielded Hood Y/N	Termination / Connection
1	Power Cable	1.8	Ν	Ν	Ν	EUT to 12VDC


Software/Firmware:

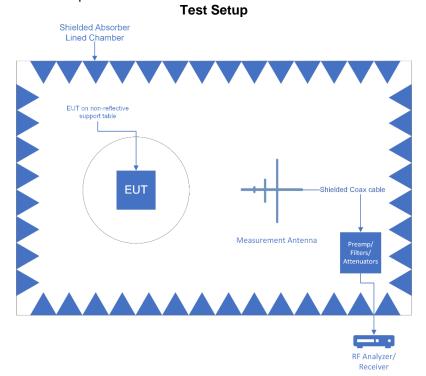
Name	Description	Version	Installation Info
SR7	System firmware	V1.0	Installed on EUT

Modifications to EUT(s) (Y/N): N

15.203: Antenna Requirement:

Antenna type stated by the manufacturer:

- 1 Tx Antenna with Beam Squint of 19° and 1x14 patch, 16dBi
- 1 Tx Antenna with Beam Squint of 25° and 1x14 patch, 16dBi
- 1 Rx Antenna with Beam Squint of 19° and 4x14 patch, 22.1dBi
- 1 Rx Antenna with Beam Squint of 25° and 1x14 patch, 16dBi


Field Strength of Fundamental

Engineer: Jeremiah Darden Test Date: May 23, 2024

Test Procedure

RADIATED METHOD

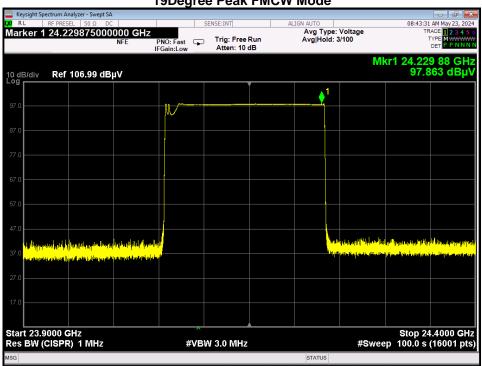
The EUT was setup in a semi-anechoic test chamber set 3m from the receiving antenna. The EUT was set to transmit on the lowest, middle and highest frequency of operation at the maximum power level. The EUT was tested, in 3 orthogonal axis, by rotating it 360° with the receive antenna in both the vertical and horizontal orientation while raised from 1 to 4 meters to ensure the TX signal levels were maximized. A spectrum analyzer was used to verify that the EUT met the requirements for Output Power.

The Spectrum Analyzer was set to the following:

 $RBW \ge 1MHz$ $VBW \ge 3 \times RBW$ $Span \ge FMCW BW$ $Sweep time > 2 \times (Signal Period) \times (Span) / (RBW)$ Detector = peakTrace Mode = max hold

Where applicable Desensitization Factor per ANSI C63.10 Annex L were used based on 250microsecond chirp time stated by manufacturer and a 177MHz chirp bandwidth as measured in this report.

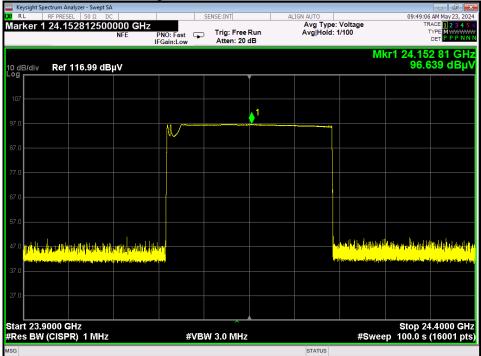
$$\alpha = \frac{1}{\sqrt{1 + \left(\frac{2 \ln (2)}{\pi}\right)^2 \left(\frac{BW_{Chip}}{T_{Chip}}B^2\right)^2}}$$

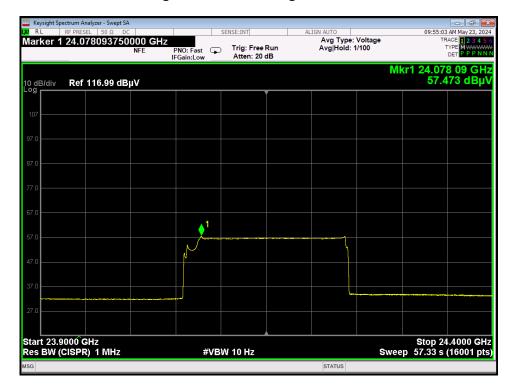

where

Tuned Frequency (GHz)	Mode of Operation	Measured (dBuV)	Factor (dB)	Desens Factor (dB)	Final Value (dBuV/m)	Specification Limit (dBuV/m)	Result
24.229	FMCW 19Degree PK	97.863	15.04	0.2	113.10	127.95	Pass
24.228	FMCW 19Degree AV	58.074	15.04	0.2	73.31	107.95	Pass
24.152	FMCW 25Degree PK	96.639	15.04	0.2	111.88	127.95	Pass
24.078	FMCW 25Degree AV	57.473	15.04	0.2	72.71	107.95	Pass
24.152	ČW 19Degree PK*	98.051	15.04	N/A	113.09	127.95	Complete
*Taken to verify Analyzer Sweep and RBW settings in FMCW mode and calculated desensitization factor.							

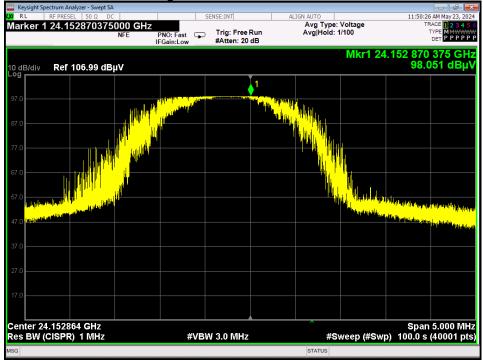
Field Strength of Fundamental Summary Table (worse case axis and polarity)

Field Strength of Fundamental Plots


19Degree Peak FMCW Mode


19Degree Average FMCW Mode

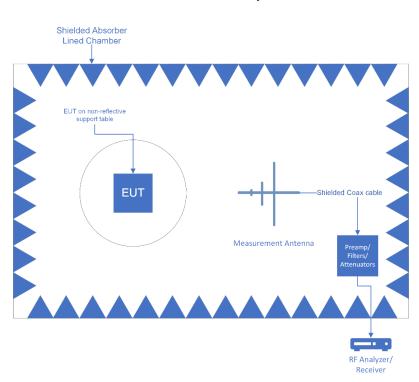
25Degree Antenna Peak FMCW Mode



25Degree Antenna Average FMCW Mode

19Degree Antenna Peak CW Mode

General Field Strength Emissions / Spurious Harmonic Emissions / Restricted Bands


Engineer: Jeremiah Darden

Test Date: May 22 - May 31, 2024

Test Procedure Radiated Spurious Emissions: 9kHz – 1000 MHz and Above 1GHz

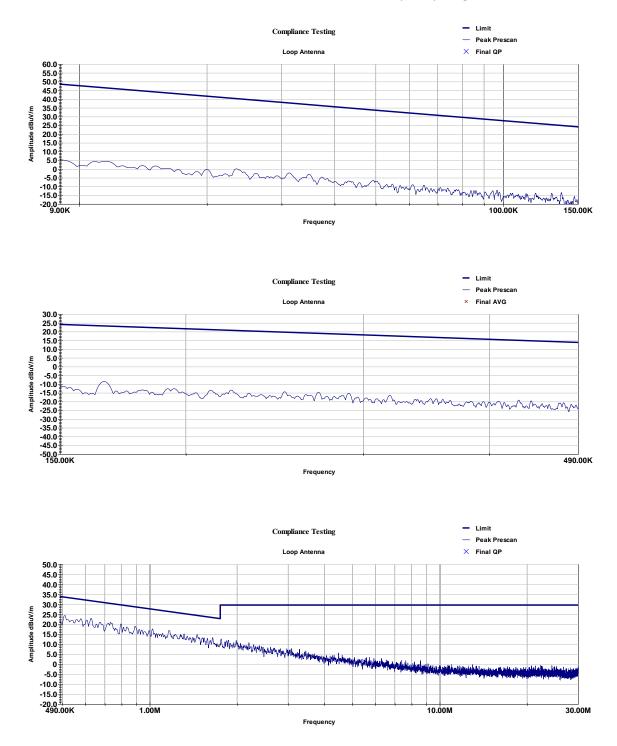
The EUT was setup in a semi-anechoic test chamber set 3m from the receiving antenna. The EUT was set to transmit on the lowest, middle and highest frequency of operation at the maximum power level into its permanently attached antenna. The EUT was tested, in 3 orthogonal axis, by rotating it 360° with the receive antenna in both the vertical and horizontal orientation while raised from 1 to 4 meters to ensure the TX signal levels were maximized. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Spurious Emissions. All emissions across the required range were evaluated.

Basic Test Setup

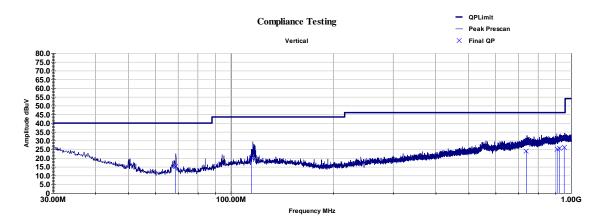
	Settings Below 1GHz	Settings Above 1GHz
RBW	120 kHz	1 MHz
VBW	300 kHz	3 MHz
Detector	Quasi Peak	Peak / Average

Sample Calculations

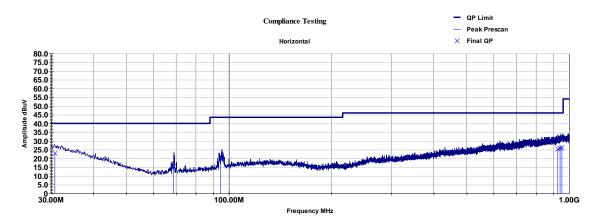
Corrected Value = Measured Value + Correction factor


Correction factor = Antenna Correction Factor + Cable loss + Preamp/Attenuator Factor

The Spectrum Analyzer was set to the following: $RBW \ge 1MHz$ $VBW \ge 3 \times RBW$ $Span \ge FMCW BW$ $Sweep time > 2 \times (Signal Period) \times (Span) / (RBW)$ Detector = peakTrace Mode = max hold


Radiated Emissions 9kHz-30MHz

No Emissions to measure within scanned frequency range



Radiated Emissions 30-1000MHz

Frequency	Azimuth	Height	Raw QP	Correction	Final QP	Limit	QP Margin
MHz	deg	cm	dBuV	dB	dBuV/m	dBuV/m	dB
68.748	5.00	100.00	43.70	-28.45	15.30	40.00	-24.70
115.122	164.00	121.00	42.99	-22.80	20.20	43.50	-23.30
738.397	316.00	151.00	33.61	-9.66	23.90	46.00	-22.10
909.746	352.00	196.00	33.41	-8.34	25.10	46.00	-20.90
923.494	253.00	359.00	33.42	-7.79	25.60	46.00	-20.40
953.923	124.00	364.00	33.34	-7.17	26.20	46.00	-19.80
Final = Raw + Path Loss							
Margin = Fi	nal - Limit						

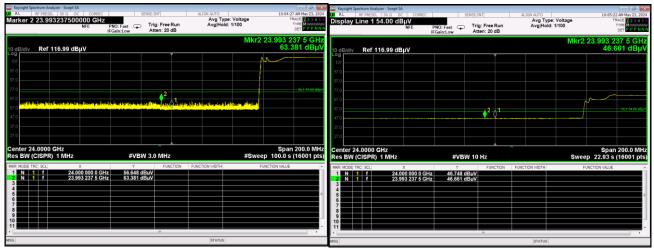
Frequency	Azimuth	Height	Raw QP	Correction	Final QP	Limit	QP Margin
MHz	deg	cm	dBuV	dB	dBuV/m	dBuV/m	dB
30.807	330.00	325.00	38.47	-15.65	22.80	40.00	-17.20
68.781	260.00	400.00	43.70	-28.52	15.20	40.00	-24.80
94.657	115.00	245.00	44.92	-25.24	19.70	43.50	-23.80
926.183	308.00	326.00	33.44	-8.05	25.40	46.00	-20.60
940.325	143.00	325.00	33.47	-7.47	26.00	46.00	-20.00
952.246	344.00	247.00	33.30	-7.17	26.10	46.00	-19.90
Final = Raw + Path Loss							
Margin = Fi	nal - Limit						

Radiated Emissions Above 1000MHz

Band Edge

Band Edge Summary Table

Tuned Frequency (MHz)	Mode of Operation	AVG Measured Value (dBuV/m)	PK Measured Value (dBuV/m)	AVG / PK Specification Limit (dBuV/m)	Result
23.993	FMCW – 19 Degree	46.55	64.63	54 / 74	Pass
24.252	FMCW – 19 Degree	48.75	64.65	54 / 74	Pass
23.993	FMCW – 25 Degree	46.75	63.38	54 / 74	Pass
24.253	FMCW – 25 Degree	48.85	65.63	54 / 74	Pass

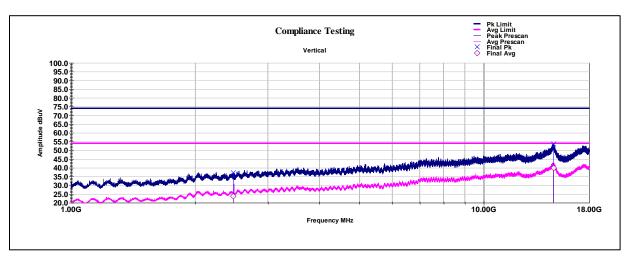

Band Edge – 19Degree Antenna FMCW LOW (Peak | AVG)

Keysight Spectrum Analyzer - Swept SA RL RF PRESEL 50 Ω DC CORREC SENSE:INT	ALIGN AUTO 09:01:36 AM May 23, 2024	Image: Comparison of the second sec	09:02:31 AM May 23, 2024
Marker 2 23.993787500000 GHz NFE PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB	Avg Type: Voltage TRACE 12343 Avg Hold: 1/100 TVPE M DET PPNNM	Sweep Time 22.9 s NFE PN0: Fast Trig: Free Run Avg Hold: 1 IFGaint.ow Atten: 20 dB	
10 dB/dlv Ref 116.99 dBµV	Mkr2 23.993 787 5 GHz 64.630 dBµV	10 dB/div Ref 116.99 dBµV	Mkr2 23.993 787 5 GHz 46.553 dBµV
Conter 24.0000 CHz	Span 200.0 MHz #Sweep 100.0 S (16001 pts)	Log 107 57 0 57	Span 200.0 MHz
#Res BW (CISPR) 1 MHz #VBW 3.0 MHz			Sweep 22.93 s (16001 pts)
INF HOGE TRC: SCI X Y FUNCTION I 1 N 1 f 240000 GHz 66.6502 GBWV 3 3 1 f 23.993 787 6Hz 64.630 GBuV 5 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5		Import NO T Y FUNCTION	FUNCTION VALUE
MSG	STATUS	MSG STATUS	

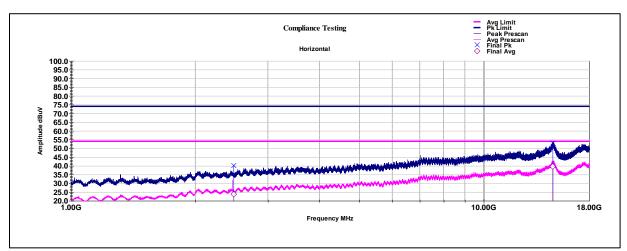
Band Edge – 19Degree Antenna FMCW High (Peak | AVG)

Keysight Spectrum Analyzer - Swept SA		📕 🛄 Keysight Spectrum Analyzer - Swept SA	
RL RF PRESEL 50 Ω DC CORREC SENSE:INT	ALIGN AUTO 09:05:39 AM May 23, 20		09:06:28 AM May 23, 2024
Marker 2 24.252625000000 GHz NFE PNO: Fast Trig: Fro IFGain:Low Atten: 2	Avg Type: Voltage TRACE 2 34 ree Run Avg Hold: 1/100 TYPE 20 dB DET PPNN	Avg Ty NFE PN0: Fast →→ Trig: Free Run Avg Hol IFGaint.cow Atten: 20 dB	Pe: Voltage TRACE 2 3 4 5 6 d: 1/100 TYPE M DET P.P.NNNN
10 dB/div Ref 116.99 dBµV	Mkr2 24.252 625 0 GH 64.646 dBµ	10 dB/div Ref 116.99 dBµV	Mkr2 24.252 625 0 GHz 48.749 dBμV
107			
87.0		87.0	
67.0			
47.0			DL1 54 60 x0µY
27.0		27.0	
Center 24.2500 GHz #Res BW (CISPR) 1 MHz #VBW 3.0 MH	Span 200.0 MH Hz #Sweep 100.0 s (16001 pt	Center 24.2500 GHz #Res BW (CISPR) 1 MHz #VBW 10 Hz	Span 200.0 MHz Sweep 22.93 s (16001 pts)
MKR MODE TRC SCL X Y F 1 N 1 f 24,250 000.0 GHz 60.088 dBuV 2 N 1 f 24,252 625.0 GHz 64.64 dBuV	FUNCTION FUNCTION WIDTH FUNCTION VALUE	INGR_MODE_TRC SCI X Y FUNCTION FUNCTION 1 N 1 f 24.250 000.0 GHz 48.757 dBuV FUNCTION FUNCTION WIDTH 2 N 1 f 24.252 525.0 GHz 48.749 dBuV FUNCTION	FUNCTION VALUE
3 4 6			
6 7 8			
9			
MSG	STATUS	MSG STATUS	

Band Edge – 25Degree Antenna FMCW LOW (Peak | AVG)

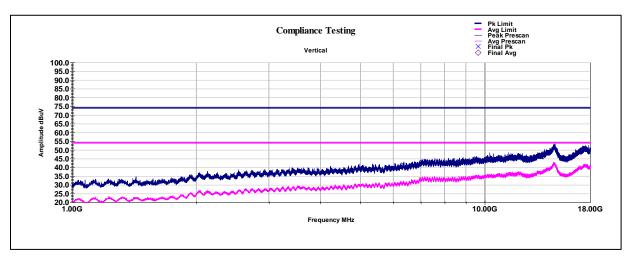

Band Edge – 25Degree Antenna FMCW High (Peak | AVG)

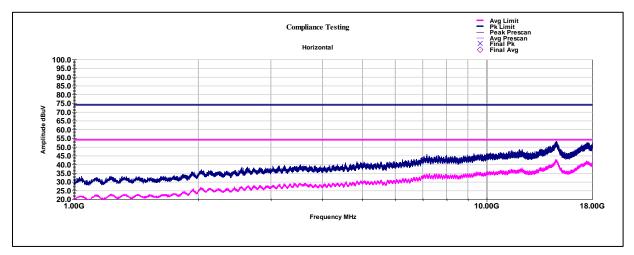
Keysight Spectrum Analyzer - Swegt SA ALLON AUTO ALLON AUTO R L InF PRESEL 30 0 OC CORREC SDIKE-INT ALLON AUTO Marker 2 24.253312500000 GHz NFE PNO: Fast Trig: Free Run IFGainLow Trig: Free Run Atten: 20 dB Avg Type: V			10:09:45 AM May 23, 2024 pe: Voltage TRACE 23 4-5 d: 2/100 TYPE Det P P NNN
10 dB/div Ref 116.99 dBµV	Mkr2 24.253 912 5 GHz 65.626 dBµV 10 dB/div Ref 116.99 dBµ	v	Mkr1 24.250 000 0 GHz 48.707 dBμV
107 97 D	97.0		
000 770 970	0L17460 dDyr 77.0 67.0		
270	uitz de duits entre anna de duitzent du	1,2	DL15460 xDpV
37 0 27 0	27.0		
Center 24.2500 GHz Res BW (CISPR) 1 MHz #VBW 3.0 MHz	Span 200.0 MHz #Sweep 100.0 s (16001 pts) Res BW (CISPR) 1 MHz	#VBW 10 Hz	Span 200.0 MHz Sweep 22.93 s (16001 pts)
MMR MORE TRC: X Y Function Function width 1 N 1 1 24,250,000.0 GHz 58,997 dBuV 2 1 1 24,253,912.5 GHz 65,626 dBuV 3 3 4 <th>FUNCTION VALUE - WWR NOE TRC: SCL X 1 N 1 7 24.250 3 1 7 24.253 4 4</th> <th>Y FUNCTION WIDTH FUNCTION WIDTH 912 5 GHz 48.850 dBuV</th> <th>FUNCTION VALUE</th>	FUNCTION VALUE - WWR NOE TRC: SCL X 1 N 1 7 24.250 3 1 7 24.253 4 4	Y FUNCTION WIDTH FUNCTION WIDTH 912 5 GHz 48.850 dBuV	FUNCTION VALUE
			-
	- 10 - 11 	m	



1-18GHz – FMCW Mode

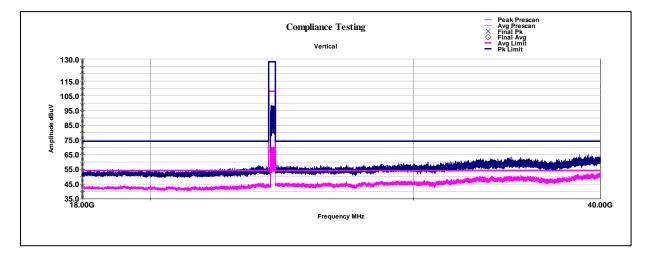
19Degree Antenna

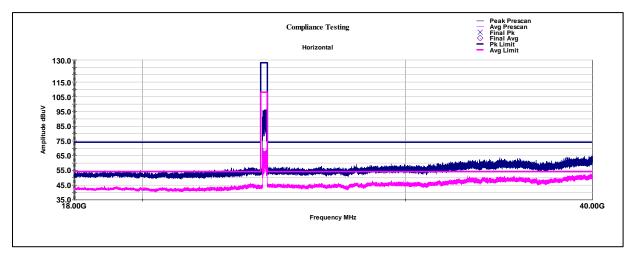

Frequency	Azimuth	Height	Raw Pk	Raw Avg	Correction	Final Pk	Pk Limit	Pk Margin	Final Avg	Avg Limit	Avg Margin
GHz	deg	cm	dBuV	dBuV	dB	dBuV/m	dBuV/m	dB	dBuV/m	dBuV/m	dB
2.47370175	281.00	372.00	49.16	35.72	-12.04	37.12	74.00	-36.88	23.68	54	-30.32
14.7587465	242.00	230.00	47.37	33.66	6.29	53.66	74.00	-20.34	39.95	54	-14.05
Final = Raw -	+ Path Los	s									
Margin = Fin	al - Limit										



Frequency	Azimuth	Height	Raw Pk	Raw Avg	Correction	Final Pk	Pk Limit	Pk Margin	Final Avg	Avg Limit	Avg Margin
GHz	deg	cm	dBuV	dBuV	dB	dBuV/m	dBuV/m	dB	dBuV/m	dBuV/m	dB
2.48021575	192.00	365.00	52.19	35.76	-11.98	40.21	74.00	-33.80	23.77	54	-30.23
14.702839	135.00	325.00	46.49	32.96	6.63	53.12	74.00	-20.88	39.60	54	-14.41
Final = Raw ·	+ Path Los	s									
Margin = Fin	al - Limit										

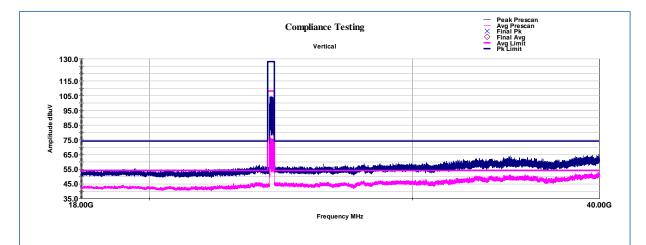
No Emissions to measure within 10dB of limit

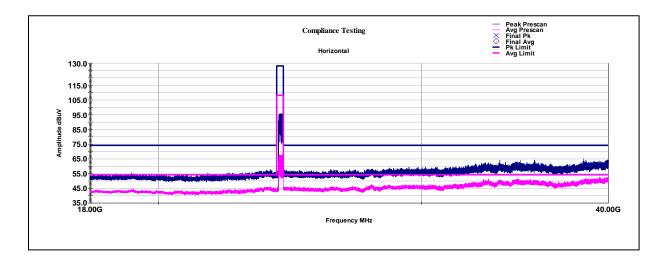




18-40GHz - FMCW Mode

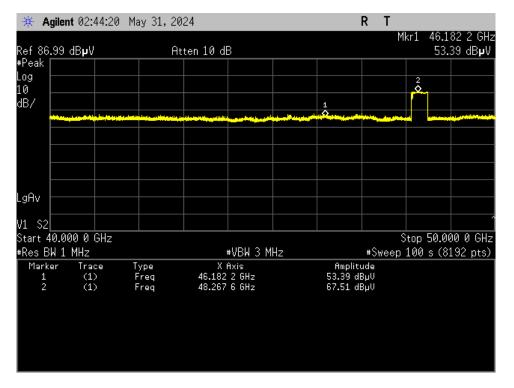
19Degree Antenna


No out of band emissions to measure.



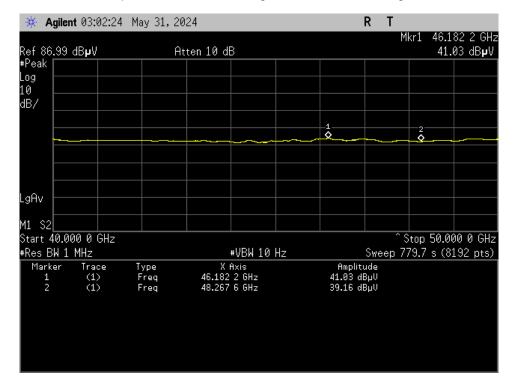
25degree Antenna

No out of band emissions to measure.

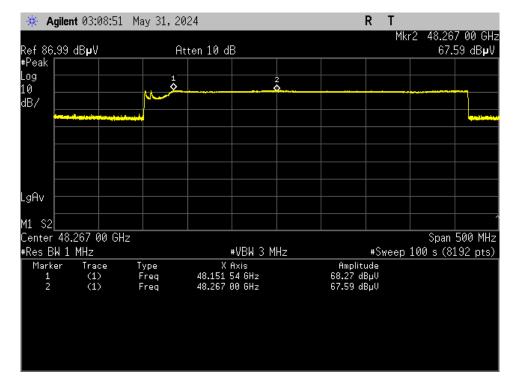


40-100GHz -	FMCW	Mode
-------------	------	------

Description	Det	Range (GHz)	Freq (GHz)	Amplitude (dBuV)	Limit Distance (m)	Measured Distance (m)	Correction (dB)	Cable Loss (dB)	Amp (dB)	Mixer (dB)	Antenna F (dB/m)	Field Strength (dBuV/m)	Limit (dBuV/m)	Margin	Compliance
Full Sweep 25deg	Peak	40 - 50	46.18	53.39	3.00	1.00	-9.54	15.64	42.6	0.00	40.14	57.03	74.00	-16.97	Pass
Full Sweep 25deg	AVG	40 - 50	46.18	41.03	3.00	1.00	-9.54	15.64	42.6	0.00	40.14	44.67	54.00	-9.33	Pass
2nd Harm 25deg	Peak	40 - 50	48.151	68.27	3.00	1.00	-9.54	16.62	43.1	0.00	40.48	72.73	87.95	-15.22	Pass
2nd Harm25deg	AVG	40 - 50	48.267	39.29	3.00	1.00	-9.54	16.62	43.1	0.00	40.48	43.75	67.95	-24.20	Pass
Full Sweep19deg	Peak	40 - 50	46.197	54.14	3.00	1.00	-9.54	15.64	42.6	0.00	40.14	57.78	74.00	-16.22	Pass
Full Sweep19deg	AVG	40 - 50	46.197	41.33	3.00	1.00	-9.54	15.64	42.6	0.00	40.14	44.97	54.00	-9.03	Pass
2nd Harm 19deg	Peak	40 - 50	48.3	62.21	3.00	1.00	-9.54	16.62	43.1	0.00	40.48	66.67	87.95	-21.28	Pass
2nd Harm19deg	AVG	40 - 50	48.301	39.27	3.00	1.00	-9.54	16.62	43.1	0.00	40.48	43.73	67.95	-24.22	Pass
Full Sweep 25deg Signal ID on*	Peak	50 - 75	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3rd harm 19deg**	Peak	50 - 75	72.137	16.32	3.00	1.00	-9.54	0.50	33.5	35.50	44.01	53.29	87.95	-34.66	Pass
3rd harm 19deg**	AVG	50 - 75	72.137	1.29	3.00	1.00	-9.54	0.50	33.5	35.50	44.01	38.26	67.95	-29.69	Pass
3rd harm 25deg**	Peak	50 - 75	72.128	14.87	3.00	1.00	-9.54	0.50	33.5	35.50	44.01	51.84	87.95	-36.11	Pass
3rd harm 25deg**	AVG	50 - 75	72.128	1.31	3.00	1.00	-9.54	0.50	33.5	35.50	44.01	38.28	67.95	-29.67	Pass
Full Sweep 19deg signal ID on*	Peak	75 - 100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4th harm 19deg**	Peak	75 - 100	96.103	14.73	3.00	1.00	-9.54	1.50	38.4	41.50	46.60	56.42	87.95	-31.53	Pass
4th harm 19deg**	AVG	75 - 100	96.141	3.93	3.00	1.00	-9.54	1.50	38.4	41.50	46.60	45.62	67.95	-22.33	Pass
4th harm 25deg**	Peak	75 - 100	96.141	15.90	3.00	1.00	-9.54	1.50	38.4	41.50	46.60	57.59	87.95	-30.36	Pass
4th harm 25deg**	AVG	75 - 100	96.141	3.94	3.00	1.00	-9.54	1.50	38.4	41.50	46.60	45.63	67.95	-22.32	Pass
*Measurement **Noise Floor	s with Sig	gnal ID ima	age suppres	ssion activate	d on measu	rement equip	ment used to	identify a	pplicable	e signals.	No signals a	bove noise fl	oor identified		

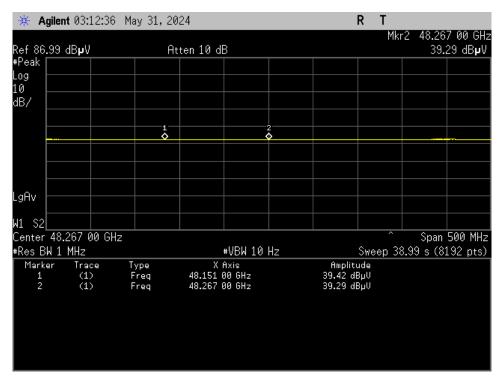


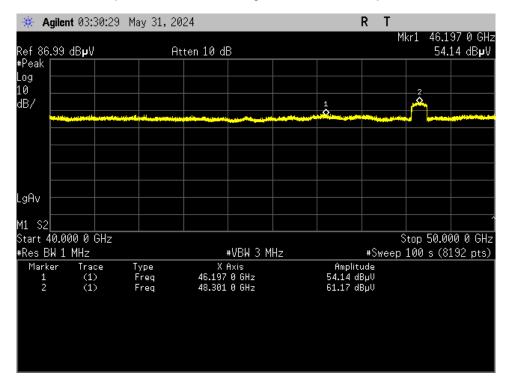
40-100GHz Captures



Spurious Harmonic 25deg 15_249 40-50GHz peak

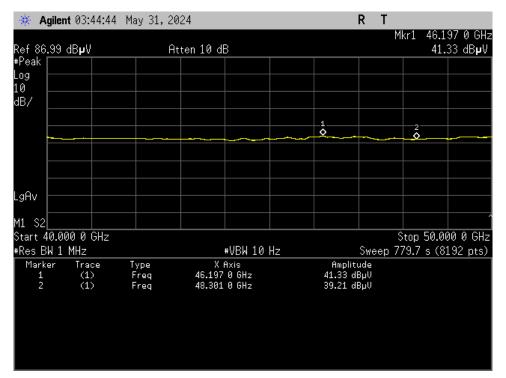
Spurious Harmonic 25deg 15_249 40-50GHz avg

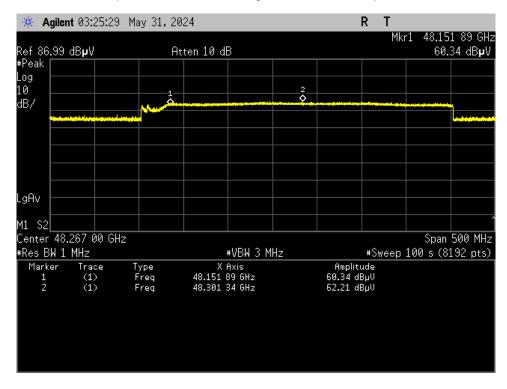




Spurious Harmonic 25deg 15_249 2nd harm peak

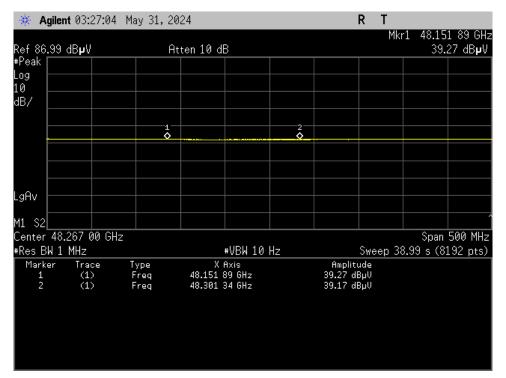
Spurious Harmonic 25deg 15_249 2nd harm avg

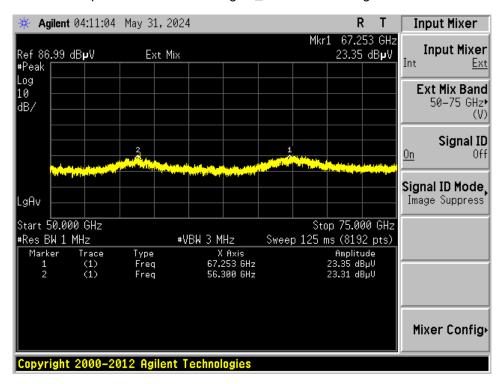




Spurious Harmonic 19deg 15_249 40-50GHz peak

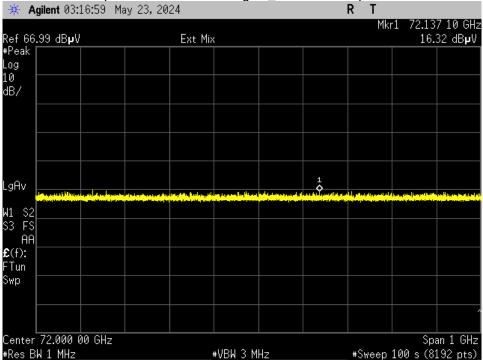
Spurious Harmonic 19deg 15_249 40-50GHz avg





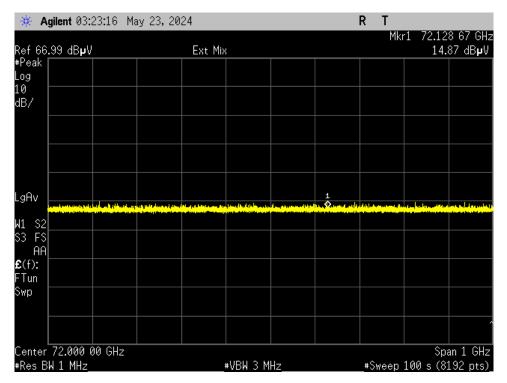
Spurious Harmonic 19deg 15_249 2nd harm peak

Spurious Harmonic 19deg 15_249 2nd harm avg



Spurious Harmonic 25deg 15_249 50-75GHz signal id on

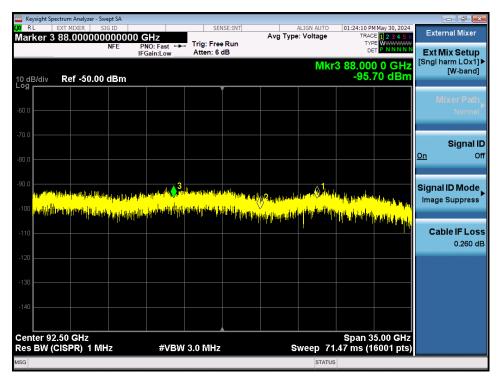
Spurious Harmonic 19deg	15_249 3rd harm peak
-------------------------	----------------------



🗱 Agilent 03:18:55	May 23, 2024				R	Т	Sw	еер
ef 66.99 dB µ V	Ext Mix			Mkr1 7	2.137 1.29	L0 GHz dB µ V	Swe	ep Tim 77.97
Peak							<u>Auto</u>	Ма
og Ø								Swee
В́/							<u>Single</u>	Con
							Auto	Swee
								Time
							Norm	Acc
								Gate
gAv							On	<u>0f</u>
1 \$2								
3 FS							Gate	e Setup
AA								
(f):								Points
Tun wp								819;
mh								
enter 72.000 00 GH:		NI 10 II-	¢			1 GHz^		
Res BW 1 MHz	#V[3W 10 Hz	Sweep	77.97	s (819,	z pts)		

Spurious Harmonic 19deg 15_249 3rd harm w presel avg

Spurious Harmonic 25deg 15_249 3rd harm Peak



ef 66.99 dB µ V	Ext Mi	x		Mkr		8 67 GI 31 dB µ
Peak						or app
og						
2,						
3/						
βAv						
L S2 3 FS			1			
AA						
(f):						
Tun						
wp						
enter 72.000 00 GHz				^	Spa	an 1 G⊦

Spurious Harmonic 25deg 15_249 3rd harm avg

Spurious Harmonic 25deg 15_249 75-100GHz signal id on

RL	pectrum Analyzer - Swept S/ EXT MIXER			SENSE:INT	AL	IGN AUTO			0 PM May 22, 20
arker	1 96.103875000	NFE I	PNO: Fast ↔ Gain:Low	. Trig: Free F	Run	Avg Type: Avg Hold: 1			TYPE MWWW DET PNNN
dB/div	Ref 56.99 dBµ	v					Mkr1	96.103 8 14.7	75 0 GF 732 dBµ
^{yg}									
7.0									
7.0									
7.0									
7.0 providence	landa aranga ti ing ar ting manakara	a na san ing kanalan kanalan kana	and af interaction of the second	and the participation of the second			Parately survey in princip	a a standard	A state of the state
99						in it officient bits to all ones the	han a set had on a set had on a set of a large barrier of the set		
01									
3.0									
3.0									
3.0									
	6.0000 GHz (CISPR) 1 MHz		#VB	W 3.0 MHz			#Swee	Span p 100.0 s	1.000 GH (16001 pt
3						STATUS			

Spurious Harmonic 19deg 15_249 4th harm peak

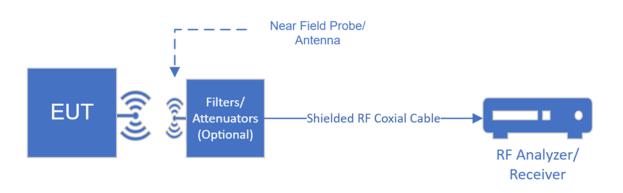
Spurious Harmonic 19deg 15_249 4th harm avg

RL	ectrum Analyzer - Swept S EXT MIXER			SENSE:INT	ALIGN			12:55:34	PM May 22, 20
larker 1	96.14100000	NFE	PNO: Fast 🖵 IFGain:Low	Trig: Free R		vg Type: Vo vg Hold: 1/1			ACE 1 2 3 4 5 TYPE MWWW DET PNNN
) dB/div	Ref 56.99 dBj	١V					Mkr1	96.141 0 15.8	00 0 GH 898 dBµ
				Ĭ					
7.0									
7.0									
7.0						. 1			
7.0 <mark>alternation</mark>			la baina rikan mila dan		un en set til der filler en se				arkiner blere oppfik
.99									
.01									
3.0									
3.0									
3.0									
	0.0000 GHz (CISPR) 1 MHz		#VB	W 3.0 MHz			#Swee	Span p 100.0 s	1.000 GH (16001 pt
G						STATUS			

Spurious Harmonic 25deg 15_249 4th harm peak

Spurious Harmonic 25deg 15_249 4th harm avg

20dB Bandwidth of Emission

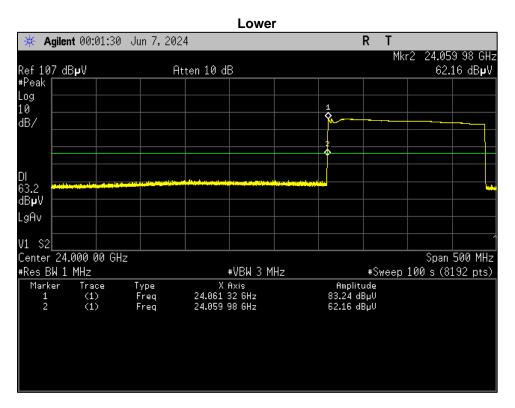

Engineer: Jeremiah Darden Test Date: June 6, 2024

Test Procedure

CONDUCTED METHOD

An antenna probe was placed next to the permanently attached antenna and then connected to a short shielded coax Cable. A spectrum analyzer was directly connected to this cable. The EUT was set to transmit at the full FMCW bandwidth at the maximum power level. The analyzer was offset to read the maximum power measured from radiated field strength measurements. A spectrum analyzer was used to verify that the EUT met the Bandwidth requirements.

The Spectrum Analyzer was set to the following:


 $\begin{array}{l} \mathsf{RBW} = 1 \ \mathsf{MHz} \\ \mathsf{VBW} \geq 3 \ \mathsf{x} \ \mathsf{RBW} \\ \mathsf{Peak} \ \mathsf{Detector} \\ \mathsf{Trace} \ \mathsf{mode} = \mathsf{max} \ \mathsf{hold} \\ \mathsf{Sweep} > 2 \ \mathsf{x} \ (\mathsf{Signal} \ \mathsf{Period}) \ \mathsf{x} \ (\mathsf{Span}) \ / \ (\mathsf{RBW}) \\ \mathsf{Span} \geq 1.5 \ \mathsf{x} \ \mathsf{EBW} \\ \mathsf{Marker} = \mathsf{Placed} \ \mathsf{at} \ -\mathsf{20dB} \ \mathsf{point} \ \mathsf{from} \ \mathsf{fundamental} \ \mathsf{peak}. \end{array}$

Frequency Evaluated (GHz)	Mode of Operation	Frequency Range at -20dB (MHz)	Specification Limit (GHz)	Result
24.00	FMCW	24.059	≥ 24.00	Pass
24.25	FMCW	24.236	≤ 24.25	Pass

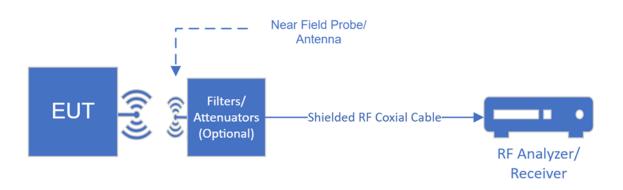
20 dB Bandwidth of Emission Summary

20 dB Spectrum Plots

Upper

🔆 Agilen	🔆 Agilent 00:06:08 Jun 7, 2024						₹Т		
Ref 107 dE	β μ V	A	itten 10 d	В			Mki		6 74 GHz 08 dB µ V
#Peak Log									
10 📖	1								
dB/	\$~~			<u> </u>					
				2					
DI 63.1	dette second de						1		
dBµV									
LgAv -									
V1 S2 Center 24.	 250 00 GH	7						Snan	500 MHz
#Res BW 1				₩VBW 3 №	1Hz		#Sweep	100 s (8)	
Marker 1	Trace (1)	Type Freg	X 24.060	Ĥxis 62 GHマ		Amplitu 83.14 dB			
2	(1)	Freq	24.236	74 GHz		63.08 dB			

99% Occupied Bandwidth


Engineer: Jeremiah Darden Test Date: June 6, 2024

Test Procedure

CONDUCTED METHOD

An antenna probe was placed next to the permanently attached antenna and then connected to a short shielded coax Cable. A spectrum analyzer was directly connected to this cable. The EUT was set to transmit at the full FMCW bandwidth at the maximum power level. The analyzer was offset to read the maximum power measured from radiated field strength measurements. A spectrum analyzer was used to verify that the EUT met the Bandwidth requirements.

Test Setup

The Spectrum Analyzer was set to the following:

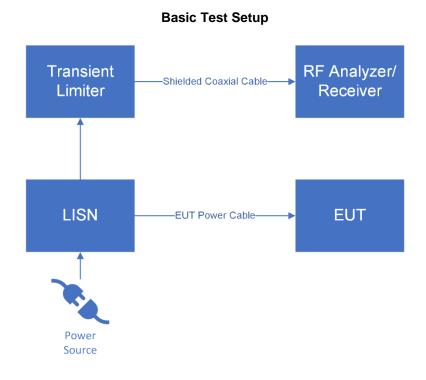
 $\begin{array}{l} \mathsf{RBW} = 1\text{-}3\% \text{ of OBW} \\ \mathsf{VBW} \geq 3 \times \mathsf{RBW} \\ \mathsf{Peak \ Detector} \\ \mathsf{Trace \ mode} = \mathsf{max \ hold} \\ \mathsf{Sweep} > 2 \times (\mathsf{Signal \ Period}) \times (\mathsf{Span}) \, / \, (\mathsf{RBW}) \\ \mathsf{Span} >= 1.5 \times \mathsf{EBW} \end{array}$

99% Bandwidth Summary

Frequency (GHz)	Mode of Operation	Measured Bandwidth (MHz)	Result
24.00-24.25	FMCW	176.3	Complete

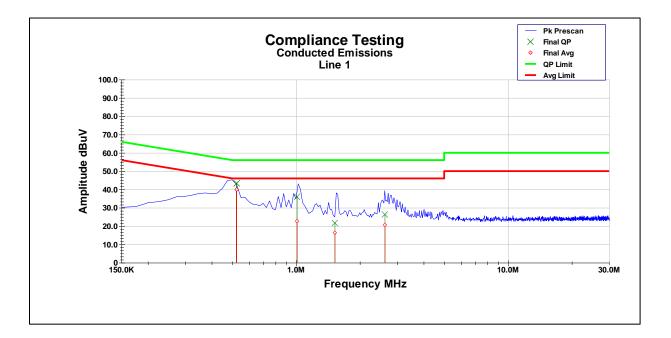
99% Bandwidth Plots

	FM	CW Mode		
🔆 Agilent 00:17:56 J	un 7,2024		RT	
Ref 98.99 dB µ V	#Atten 2 dB			
#Peak Log 10 今				
dB/				
LgAv				
M1 S2 Center 24.150 230 GHz #Res BW 3 MHz	#V	BW 50 MHz	#Sweep 10	Span 200 MHz)0 s (8192 pts)
Occupied Bandw 176	idth 5.3120 MHz			⊲r 99.00 % 1B –26.00 dB
Transmit Freq Error x dB Bandwidth	-3.371 MHz 183.143 MHz			

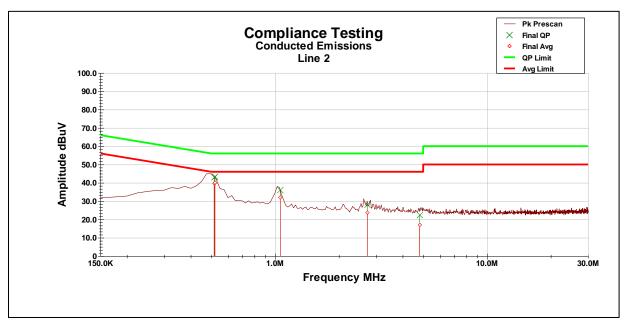


Powerline Conducted Emissions

Engineer: Jeremiah Darden Test Date: May 31, 2024


Test Procedure

The EUT power cable was connected to a LISN and the monitored output of the LISN was connected to a transient limiter, which then connected directly to a spectrum analyzer. The conducted emissions from 150 kHz to 30 MHz were measured and compared to the specification limits.



DC Powerline Conducted Emissions. (12VDC)

Frequency	Raw QP	Raw Avg	Path Loss	Final QP	Final Avg	QP Limit	QP Margin	Avg Limit	Avg Margin
-	dBuV	dBuV	dB	dBuV	dBuV	dBuV	dB	dBuV	dB
523.13 KHz	33.10	29.90	10.10	43.20	40.00	56.00	-12.80	46.00	-6.00
524.38 KHz	33.30	29.90	10.10	43.30	40.00	56.00	-12.70	46.00	-6.00
1.0118 MHz	25.90	12.70	10.10	36.00	22.80	56.00	-20.00	46.00	-23.20
1.526 MHz	11.70	6.10	10.10	21.80	16.20	56.00	-34.20	46.00	-29.80
2.6281 MHz	16.20	10.60	10.10	26.30	20.80	56.00	-29.70	46.00	-25.20
Final = Raw + Path Loss									
Margin = Fir	al - Limit								

Frequency	Raw QP	Raw Avg	Path Loss	Final QP	Final Avg	QP Limit	QP Margin	Avg Limit	Avg Margin
-	dBuV	dBuV	dB	dBuV	dBuV	dBuV	dB	dBuV	dB
516.13 KHz	32.86	29.50	10.00	42.90	39.60	56.00	-13.10	46.00	-6.40
520.38 KHz	33.14	29.80	10.00	43.20	39.90	56.00	-12.80	46.00	-6.10
1.0586 MHz	25.86	21.90	10.10	35.90	31.90	56.00	-20.10	46.00	-14.10
2.7244 MHz	17.75	13.50	10.10	27.80	23.60	56.00	-28.20	46.00	-22.40
4.8119 MHz	12.34	7.00	10.10	22.50	17.10	56.00	-33.50	46.00	-28.90
Final = Raw + Path Loss									
Margin = Fir	al - Limit								

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Horn Antenna	ARA	DRG-118/A	i00271	8/11/22	8/11/24
ultra wideband LNA 10MHz- 45GHz	RF-Lambda USA	RLNA00M45GA	i00555	02/19/24	02/19/25
RF Amplifier 10MHz-50GHz, 40dB gain amp.	Eravant	SBB-0115034019-2F2F-E3	i00722	02/7/24	02/7/25
temperature/humi dity/pressure probe	Omega Engineering, Inc.	iBTHX-W-5	i00629	01/25/23	01/24/25
temperature/humi dity/pressure probe	Omega Engineering, Inc.	iBTHX-W	i00686	01/25/23	01/24/25
Bi-Log Antenna	Schaffner	CBL 6111D	i00349	2/7/23	2/7/25
Active Loop Antenna 1 kHz - 30 MHz	EMCO	6507	100326	11/21/23	11/21/25
Harmonic Mixer	Hewlett Packard	11970V	00463	8/11/21	8/11/24
Harmonic Mixer	Hewlett Packard	11970W	00464	8/11/21	8/11/24
PSA Spectrum Analyzer	Agilent	E4445A	i00471	1/5/24	1/5/25
Horn Antenna standard gain	СМІ	H06R	i00475	NR	NR
Horn Antenna, standard gain	СМІ	H010R	i00476	NR	NR
Horn Antenna standard gain	СМІ	Ho15R	i00477	NR	NR
Harmonic Mixer	OML	M06HWD	i00480	8/18/21	8/18/24
Harmonic Mixer	OML	M06HWD	i00480	8/18/21	8/18/24
Horn Antenna, standard gain	СМІ	H022R	i00484	NR	NR
MXE EMI receiver	Keysight	N9038A	i00552	03/01/24	03/01/25
Network analyzer	HP	8753D	i00505	11/03/23	11/02/24
'Antenna, Horn 18-40GHz	EMCO	3116	100085	03/14/23	03/13/25
LNA (50-75GHz), 35 dB gain	Eravant	SBL-5037533550-1515-E1	100588	Verified on: 5/15/24	
Horn, Pyramidal WR4	Omi	H04R	100473	NR	
WR-04 harmonic Mixer	OML	M04HWD	100481	Verified on: 5/15/24	
WR4.3 amplifier	Virginia Diodes	WR4.3AMP	100682	Verified on: 5/15/24	
Preselector 50- 75GHz	Agilent/HP	11974V	100726	Verified	on: 5/15/24
LNA	Eravant	SBL-7531143550-1010-E1	i00589	Verified	on: 5/15/24

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Harmonic Mixer	Hewlett Packard	11970Q	i00621	8/10/21 8/10/24	
ultra wideband LNA 10MHz- 45GHz	RF-Lambda USA	RLNA00M45GA I00555 Ve		Verified	on: 4/9/24
RF Amplifier 10MHz-50GHz, 40dB gain amp.	Eravant	SBB-0115034019-2F2F-E3	100722	Verified	on: 2/7/24
LNA	Eravant	SBL-1141743065-0606-E1	i00658	Verified	on: 5/15/24

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

Measurement Uncertainty

Measurement Uncertainty for Compliance Testing is listed in the table below.

Measurement	U _{lab}				
Radio Frequency	± 3.3 x 10 ⁻⁸				
RF Power, conducted	± 1.5 dB				
RF Power Density, conducted	± 1.0 dB				
Conducted Emissions	± 1.8 dB				
Radiated Emissions 9kHz-30MHz	± 3.6 dB				
Radiated Emissions 30MHz-1000MHz	± 4.25 dB				
Radiated Emissions – 1GHz-18GHz	± 4.5 dB				
Temperature	± 1.5 deg C				
Humidity	± 4.3 %				
DC voltage	± 0.20 VDC				
AC Voltage	± 1.2 VAC				

The reported expanded uncertainty +/- $U_{lab}(dB)$ has been estimated at a 95% confidence level (k=2) U_{lab} is less than or equal to U_{EMC} therefore;

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit.
- Non-Compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

END OF TEST REPORT