

	Table	of contents		
1 Gene	ral information			
1 1	Notos			
1.1	Application details	,		
1.2	Statement of Compliance			
1.0	FIIT Information			
1.5	Test standard/s	~		
1.6	RF exposure limits	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••
1.0	SAR Definition	202		
1.8	Testing laboratory			
1.9	Test Environment	<u> </u>		<u> </u>
1.10	Applicant and Manufacturer			
SAR	Measurement System Description and Se	tup		
2.1	The Measurement System Description			
2.2	Probe description			
2.3	Data Acquisition Electronics description			
2.4	SAM Twin Phantom description			
2.5	ELI4 Phantom description			
2.6	Device Holder description			
SAR	Test Equipment List		••••••	
SAR	Measurement Procedures			
4.1	Spatial Peak SAR Evaluation		(\sim)	(2)
4.2	Data Storage and Evaluation			
4.3	Data Storage and Evaluation			
SAR	Verification Procedure	<">>		~
				(\mathcal{S})
5.1	Tissue Verification			
5.2	System check procedure			••••••
5.3	System check results		••••••	
SAR	Measurement variability and uncertainty			
6.1	SAR measurement variability	57	67	
6.2	SAR measurement uncertainty			
SAR	Test Configuration		,	
7.1	GSM Test Configurations			
7.2	UMTS Test Configurations			
7.3	WIFI 2.4G Test Configurations			
SAR	Test Results	-		

Report No.: EED32H0097805 8.1

8.1.1

8.1.2

8.1.3

8.1.4

8.1.5

华测险

Page 3 of 53

Modified History

F	REV.	Modifica	ation Descri	ption	lssu	ed Date	Re	emark
RE	EV.1.0	Initial Tes	st Report R	elesse	Jan.	06, 2016		
(F)				(crit)				
			Ì				(i)	
(Crit)				(crit)		(cri)		(A)

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

1.1 Notes

The test results of this test report relate exclusively to the test item specified in this test report. Centre Testing International Group Co., Ltd. does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report is not to be reproduced or published in full without the prior written permission.

Page 5 of 53

1.2 Application details

1.3 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Proexpress

Distributor LLC, Model Name: E97 are as below:

Band	Test Position	Max Reported 1-g SAR (W/kg)
GSM850	Body (0mm)	0.437
GSM1900	Body (0mm)	0.803
UMTS Band V	Body (0mm)	0.887
UMTS Band II	Body (0mm)	0.899
WiFi 2.4G	Body (0mm)	0.480
The highe	st simultaneous SAR is 1.379W/kg	g per KDB 690783 D01
0.		

Note:

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits according to the FCC rule §2.1093, the ANSI/IEEE C95.1:1992, the NCRP Report Number 86 for uncontrolled environment, according to the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013

1.4 EUT Information

Device Information:					
Product Type:	9.7 inch 3 G Phon	e Tablet	U		
Model:	E97, E97 PRO, E97 ULTIMATE	E97, E97 PRO, E97X, E97 PLUS, E970, E97 ULTIMATE			
Model Difference:	Only the model ES circuit design, layo wiring were identio difference being m	97 was tested, sin out, components ι cal for the above r nodel name and b	ce the electrical used and internal models, with rand name.		
FCC ID:	S5V-D970E1				
SN:	N/A	0			
Device Type:	Portable device)	e.		
Exposure Category:	y: uncontrolled environment / general populati				
Hardware version:	N/A				
Software version :	N/A		6		
Antenna Type :	internal antenna	e e	J.		
Device Operating Configurations:	- 11				
Supporting Mode(s) :	GSM850/1900, UI	MTS Band V/II, W	/iFi 2.4G(tested), B⊺		
Duty Cycle used for SAR testing	WiFi: 100%	(9)			
Modulation:	GMSK,QPSK, DS GFSK, π/4DQPSk	SS,OFDM, K, 8DPSK			
	Band	TX(MHz)	RX(MHz)		
	GSM850	824-849	869-894		
	GSM1900	1850-1910	1930-1990		
Operating Frequency Range(s)	UMTS Band V	824-849	869-894		
	UMTS Band II	1850-1910	1930-1990		
	WIFI 2.4G	241	2~2462		
	ВТ	240	2~2480		
GPRS class level:	GPRS class 12				
	128-190-251 (GS	/1850)			
	512-661-810 (GSI	/1900)	6		
Test Channels (low-mid-high):	4132-4182-4233 (UMTS Band V)	(C)		
rest channels (low-mid-mgn).	9262-9400-9538 (UMTS Band II)			
	1-6-11 (WiFi 2.4G)			
	0-39-78 (BT)	E C			
Power Source:	Li-ion 3.7V/6000m	AH			

Remark: The tested sample(s) and the sample information are provided by the client.

1.5 Test standard/s

	Safety Levels with Respect to Human Exposure to Radio Frequency				
AINSI Sta C95.1-1992	Electromagnetic Fields, 3 kHz to 300 GHz.				
	Recommended Practice for Determining the Peak Spatial-Average				
IEEE Std 1528-2013	Specific Absorption Rate (SAR) in the Human Head from Wireless				
	Communications Devices: Measurement Techniques				
D00 400	Radio Frequency Exposure Compliance of Radiocommunication				
RSS-102	Apparatus (All Frequency Bands (Issue 5 of March 2015)				
KDB941225 D01	3G SAR Procedures v03r01				
KDB447498 D01	General RF Exposure Guidance v06				
KDB616217 D04	SAR for laptop and tablets v01r02				
KDB248227 D01	SAR guidance for IEEE 802.11(Wi-Fi) transmitters v02r02				
KDB865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04				
KDB865664 D02	RF Exposure Reporting v01r02				
KDB690783 D01	SAR Listings on Grants v01r03				

1.6 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain/Body/Arms/Legs)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

The limit applied in this test report is shown in bold letters

Notes:

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Average value of the SAR averaged over the whole body. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.

1.7 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

where:

 $SAR = \frac{\sigma |E|}{2}$

 σ = conductivity of the tissue (S/m) ρ = mass density of the tissue (kg/m³) E = rms electric field strength (V/m)

1.8 Testing laboratory

6) (C) (C) (C) (C)
Test Site	Centre Testing International Group Co., Ltd.
Test Location	Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China
Telephone	+86 (0) 755 3368 3668
Fax	+86 (0) 755 3368 3385

1.9 Test Environment

Required	Actual
18 – 25 °C	21.5 ± 2.0 °C
18 – 25 °C	21.5 ± 2.0 °C
30 – 70 %	30 – 70 %
	Required 18 – 25 °C 18 – 25 °C 30 – 70 %

1.10 Applicant and Manufacturer

Applicant/Client Name	Proexpress Distributor LLC
Applicant Address	11011 GREENWOOD AVE. N APT 5, SEATTLE, WA 98103.
Manufacturer Name	Proexpress Distributor LLC
Manufacturer Address	11011 GREENWOOD AVE. N APT 5, SEATTLE, WA 98103.

2 SAR Measurement System Description and Setup

2.1 The Measurement System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli TX/RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 profesional operating system and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.2 **Probe description**

Dosimetric Probes: These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor(±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant				
Construction					
	to organic solvents, e.g., DGBE)				
Calibration	ISO/IEC 17025 calibration service available.				
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB				
Probe Overall Length	337mm				
Probe Body Diameter	10mm				
Tip Length	9mm				
Tip Diameter	2.5mm				
Dynamic range	5 μW/g to 100 mW/g; Linearity: ± 0.2 dB				

Page 13 of 53

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

2.3 Data Acquisition Electronics description

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Batteries: The DAE works with either two standard 9V batteries or two 9V (actually 8.4V or 9.6 V) rechargeable batteries. Because the electronics automatically power-down unused components during braking or between measurements, the battery lifetime depends on system usage. Typical lifetimes are >20 hours for batteries and >10 hours for accus. Remove the batteries if you do not plan to use the DAE for a long period of time.

2.4 SAM Twin Phantom description

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region,

where shell thickness increases to 6 mm). The phantom has three measurement areas:

- Left hand
- Right hand

The phantom table for the DASY systems have the size of 100 x 50 x 85 cm (L xWx H). these tables are reinforced for mounting of the robot onto the table. For easy dislocation these tables have fork lift cut outs at the bottom.

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

The ELI4 phantom is intended for compliance testing of handheld and body mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids.

Page 16 of 53

ELI4 has been optimized regarding its performance and can be integrated into a SPEAG standard phantom table. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids,

by teaching three points

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

Page 17 of 53

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP).Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3 SAR Test Equipment List

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

	Manufacturer	Device Type	Type(Model)	Serial number	Date of last calibration	Valid period
\square	SPEAG	E-Field Probe	EX3DV4	7328	2015-02-06	One year
	SPEAG	835 MHz Dipole	D835V2	4d193	2015-02-02	Three years
	SPEAG	1750 MHz Dipole	D1750V2	1134	2015-02-05	Three years
	SPEAG	1900 MHz Dipole	D1900V2	5d198	2015-02-06	Three years
	SPEAG	2000 MHz Dipole	D2000V2	1078	2015-02-05	Three years
	SPEAG	2450 MHz Dipole	D2450V2	959	2015-02-05	Three years
	SPEAG	2600 MHz Dipole	D2600V2	1101	2015-02-05	Three years
	SPEAG	5 GHz Dipole	D5GHzV2	1208	2015-02-03	Three years
	SPEAG	DAKS probe	DAKS-3.5	1052	2015-01-27	Three years
	SPEAG	Planar R140 Vector Reflectometer	DAKS-VNA R140	0200514	2015-01-27	Three years
	SPEAG	Data acquisition electronics	DAE4	1458	2015-01-03	One year
\square	SPEAG	Software	DASY 5	NA	NCR	NCR
\square	SPEAG	Twin Phantom	SAM V5.0	1875	NCR	NCR
\square	SPEAG	Flat Phantom	ELI V6.0	2024	NCR	NCR
\boxtimes	BALUN	Power Amplifier and directional coupler	SU319W	BLSZ1550140	NCR	NCR
	R&S	Universal Radio Communication Tester	CMU200	101553	2015-05-20	One year
\square	Agilent	Signal Generator	E4438C	MY45095744	2015-01-15	One year
\square	Agilent	Power Meter	E4418B	MY45104044	2015-12-01	One year
	Agilent	Power Meter Sensor	E9300A	MY41496140	2015-12-01	One year
\square	Agilent	Power Meter	PM2002	312901	2015-01-13	One year
	Agilent	Power Meter Sensor	51011A- EMC	36252	2015-01-13	One year

Note:

1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three-year extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement.
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement.

4 SAR Measurement Procedures

4.1 Spatial Peak SAR Evaluation

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. The base for the evaluation is a "cube" measurement in a volume of 30mm³ (7x7x7 points). The measured volume must include the 1 g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the Postprocessing engine (SEMCAD X). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location. The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD X). This system always gives the maximum values for the 1 g and 10 g cubes.

Page 19 of 53

The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. generation of a high-resolution mesh within the measured volume
- 4. interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. calculation of the averaged SAR within masses of 1 g and 10 g

4.2 Data Storage and Evaluation

Data Storage

The DASY5 software stores the measured voltage acquired by the Data Acquisition Electronics (DAE) as raw data together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and communication system parameters) in measurement files with the extension .da5x. The postprocessing software evaluates the data every time the data is visualized or exported. This allows the verification and modification of the setup after completion of the measurement. For example, if a measurement has been performed with an incorrect crest factor, the parameter can be corrected afterwards and the data can be reevaluated.

Page 20 of 53

To avoid unintentional parameter changes or data manipulations, the parameters in measured files are locked. In the administrator access mode of the software, the parameters can be unlocked. After changing the parameters, the measured scans can be reevaluated in the postprocessing engine. The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., E-field, H-field, SAR). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The fields and SAR are calculated from the measured voltage (probe voltage acquired by the DAE) and the following parameters:

Probe parameters:

normi, ai0, ai1, ai2

- Sensitivity

- Conversion Factor		convFi
- Diode Compression Point	dcpi	
- Probe Modulation Response Factors	a _i , b _i ,c _i , d	
- Frequency		f
- Crest factor		cf
- Conductivity		σ
- Relative Permittivity		ρ

This parameters are stored in the DASY5 V52 measurement file.

dcpi

These parameters must be correctly set in the DASY5 V52 software setup. They are available as configuration file and can be imported into the measurement file. The values displayed in the multimeter window are assessed using the parameters of the actual system setup. In the scan visualization and export modes, the parameters stored in the measurement file are used. The measured voltage is not proportional to the exciting. It must be first linearized. Approximated Probe Response Linearization using Crest Factor.

Page 21 of 53

This linearization method is enabled when a custom defined communication system is measured. The compensation applied is a function of the measured voltage, the detector diode compression point and the crest factor of the measured signal.

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$

$$V_{i} = \text{linearized voltage of channel i (uV)} \quad (i = x, y, z)$$

$$U_{i} = \text{measured voltage of channel i (uV)} \quad (i = x, y, z)$$

$$cf = \text{crest factor of exciting field} \quad (DASY \text{ parameter})$$

$$diode \text{ compression point of channel i (uV)} \quad (Probe \text{ parameter, i = x, y, z})$$

Field and SAR Calculation The primary field data for each channel are calculated using the linearized voltage: $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$ E - fieldprobes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ fieldprobes : н with Vi linearized voltage of channel i (i = x, y, z)sensor sensitivity of channel i Norm_i (i = x,y,z)uV/(V/m)² for E-field Probes ConvF sensitivity enhancement in solution sensor sensitivity factors for H-field probes aii f carrier frequency [GHz] Ei electric field strength of channel i in V/m magnetic field strength of channel i in A/m

The RMS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

local specific absorption rate in mW/g
 total field strength in V/m
 conductivity in [mho/m] or [Siemens/m]

equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Spatial Peak SAR for 1 g and 10 g

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. The base for the evaluation is a "cube" measurement at the points of the fine cube grid consisting of 5 x 5 x 7 points(with 8mm horizontal resolution) or 7 x 7 x 7 points(with 5mm horizontal resolution) or 8 x 8 x 7 points(with 4mm horizontal resolution). The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD X). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

Page 23 of 53

- 1. extraction of the measured data (grid and values) from the Zoom Scan.
- 2. calculation of the SAR value at every measurement point based on all stored data (A/D values
 - and measurement parameters).
- 3. generation of a high-resolution mesh within the measured volume.
- 4. interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface.
- 6. calculation of the averaged SAR within masses of 1 g and 10 g.

4.3 Data Storage and Evaluation

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

Step 1: Power reference measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. By default, the Minimum distance of probe sensors to surface is 4 mm. This distance can be modified by the user, but cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties. The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hotspot. The sophisticated interpolation routines implemented in DASY5 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

The Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The default Zoom Scan is defined in the following table. DASY5 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Α	rea scan a	nd Zoom	scan resc	olutions per	FCC K	CDB Public	cation 865664	4 D01:	

	Maximun	Maximun Zoom	Maximun Z	atial resolution	Minimum	
Fraguanay	Area Scan	Scan spatial	Uniform Grid Gra		ded Grad	zoom scan
Frequency	resolution	resolution	A. (p)	Δ- , (1)*	A-7 (p>1)*	volume
	$(\Delta x_{Area}, \Delta y_{Area})$	$(\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}})$	ΔZ _{Zoom} (Π)	ΔZ _{Zoom} (I)	$\Delta Z_{Zoom}(\Pi > \Gamma)$	(x,y,z)
≤ 2GHz	≤ 15mm	≤ 8mm	≤ 5mm	≤ 4mm 🤇	≤1.5*∆z _{Zoom} (n-1)	≥ 30mm
2-3GHz	≤ 12mm	≤ 5mm	≤ 5mm	≤ 4mm	≤1.5*∆z _{Zoom} (n-1)	≥ 30mm
3-4GHz	≤ 12mm	≤ 5mm	≤ 4mm	≤ 3mm	≤1.5*∆z _{Zoom} (n-1)	≥ 28mm
4-5GHz	≤ 10mm	≤ 4mm	≤ 3mm	≤ 2.5mm	≤1.5*∆z _{Zoom} (n-1)	≥ 25mm
5-6GHz	≤ 10mm	≤ 4mm	≤ 2mm	≤ 2mm	≤1.5*∆z _{Zoom} (n-1)	≥ 22mm

Step 4: Power Drift Monitoring

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. If the value changed by more than 5%, the evaluation should be retested.

5 SAR Verification Procedure

5.1 Tissue Verification

The following materials are used for producing the tissue-equivalent materials.

(Liquids used for tests are marked with \boxtimes):

Ingredients (% of weight)	(\mathbf{r})		(C)		
frequency band	⊠ 835	□ 1750	⊠ 1900	⊠ 2450	□ 2600
Water	52.5	69.91	69.91	73.20	64.50
Salt (NaCI)	1.40	0.13	0.13	0.04	0.02
Sugar	45.0	0.0	0.0	0.0	0.0
HEC	1.0	0.0	0.0	0.0	0.0
Bactericide	0.1	0.0	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0
DGBE	0.0	29.96	29.96	26.76	35.48

Salt: 99+% Pure Sodium Chloride Water: De-ionized, $16M\Omega$ + resistivity Sugar: 98+% Pure Sucrose HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Tissue simulating liquids: parameters:

Tissue	Measured	Target	Tissue	Measur	ed Tissue	Liquid	Test Date	
Туре	Frequency (MHz)	ε _r (+/-5%)	σ (S/m) (+/-5%)	٤r	σ (S/m)	Temp.		
3	825	55.52 (52.44~57.96)	0.97 (0.92~1.02)	54.39	0.951		(\mathcal{A})	
835 Body	835	55.52 (52.44~57.96)	0.97 (0.92~1.02)	54.30	0.960 21.6°C		2015/12/18	
	850	55.52 (52.44~57.96)	0.99 (0.94~1.04)	54.19	0.969			
	1850	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.56	1.465	(\mathbf{S})		
1000 Body	1880	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.41	1.500	21 5°C	2015/12/22	
1900 Body	1900	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.42	1.515	_ 21.5 C		
\odot	1910	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.38	1.525			
	2410	52.80 (50.16~55.44)	1.91 (1.814~2.005)	53.23	1.875			
2450 Body	2435	52.70 (50.07~55.34)	1.94 (1.843~2.037)	53.18	1.920	21.0°C	2015/12/19	
2400 DOUY	2450	52.70 (50.07~55.34)	1.95 (1.852~2.047)	53.12	1.941	21.0 0	2013/12/10	
	2460	52.70 (50.07~55.34)	1.96 (1.862~2.058)	53.13	1.966			
20	(4	1						

 ε_r = Relative permittivity, σ = Conductivity

Page 27 of 53

5.2 System check procedure

The System check is performed by using a System check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the System check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

5.3 System check results

The system Check is performed for verifying the accuracy of the complete measurement system and performance of the software. The following table shows System check results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A).

	Torget SAD (1\\\\\ (+/ 100/ \	Meas	ured SAR			
System Check	Target SAR (100) (+/-10%)	(Norma	lized to 1W)	Liquid	Test Date	
(MHz)	1-g (mW/g)	10-g (mW/g)	1-g (mW/g)	10-g (mW/g)	Temp.	Test Date	
D835V2 Body	9.30 (8.37~10.23)	6.10 (5.49~6.71)	9.72	6.44	21.6°C	2015-12-18	
D1900V2 Body	41.00 (36.90~45.10)	21.70 (19.53~23.87)	41.20	21.68	21.5°C	2015-12-22	
D2450V2 Body	51.20 (46.08~56.32)	23.96 (21.56~26.36)	50.40	23.76	21.8°C	2015-12-18	
\sim	values are norma	alized to 1	W forward po	wer.	(

6 SAR Measurement variability and uncertainty

6.1 SAR measurement variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

6.2 SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04,when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

7 SAR Test Configuration

7.1 GSM Test Configurations

SAR tests for GSM850 and GSM1900, a communication link is set up with a base station by air link.

Using CMU200 the power lever is set to "5" and "0" in SAR of GSM850 and GSM1900. The tests in the

band of GSM850 and GSM1900 are performed in the mode of GPRS/EGPRS function. Since the

GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink,

the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

7.2 UMTS Test Configurations

1) RMC

As the SAR body tests for WCDMA Band II/V, we established the radio link through call processing. The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:

- 1) 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to 'all 1'.
- 2) Test loop Mode 1.

For the output power, the configurations for the DPCCH and DPDCH₁ are as followed (EUT do not support the DPDCH_{2-n})

					-	
	Channel Bit	Channel Symbol	Spreading	Spreading	Bits/Slot	
	Rate (kbps)	Rate (ksps)	Factor	Code Number		
DPCCH	15	15	256	0	10	
(6	15	15	256	64	10	
	30	30	128	32	20	
	60	60	64	16	40	
DPDCH	120	120	32	8	80	
1	240	240	16	4	160	
Ú.	480	480	8	2	320	
	960	960	4	1	640	
DPDCH	960	960	4	1, 2, 3	640	
n						

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCHn, when supported by the EUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCHn configuration, are less than ¹/₄ dB higher than those measured in 12.2 kbps RMC.

2) HSDPA

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average outputs of each RF channel with HSDPA active is at ¼ dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to UE category of a test device. The number of HS-DSCH/ HS-PDSCHs, HAPRQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. The β_c and β_d gain factors for DPCCH and DPDCH were set according to the values in the below table, β_{hs} for HS-DPCCH is set automatically to the correct value when Δ ACK, Δ NACK, Δ CQI = 8. The variation of the β_c / β_d ratio causes a power reduction at sub-tests 2 - 4.

Sub-	bβc	bβd	bβ _d (SF)	bβ _c /β _d	bβ _{hs} (1)	CM(dB)(2	MPR (dB)
test	10000		0.25)	
1	2/15	15/15	64	2/15	4/15	0.0	0
2	12/15(3	15/15(3	64	12/15(3)	24/15	1.0	0
))					
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8Þ A_{hs} = β_{hs}/β_c = 30/15Þ β_{hs} = 30/15 * β_c Note 2 : CM=1 for $\beta_c/\beta_{d=}$ 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH,DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 11/15 and β_d = 15/15

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value			
Nominal average inf. bit rate	534 kbit/s	67		$\langle \mathcal{O} \rangle$
Inter-TTI Distance	3 TTI's			
Number of HARQ Processes	2 Processes			
Information Bit Payload	3202 Bits			
MAC-d PDU size	336 Bits		(\mathcal{C})	
Number Code Blocks	1 Block		J	
Binary Channel Bits Per TTI	4800 Bits			
Total Available SMLs in UE	19200 SMLs	~		~
Number of SMLs per HARQ Process	9600 SMLs			
Coding Rate	0.67	S		
Number of Physical Channel Codes	5			

Note: settings of required H-Set 1 QPSK acc. to 3GPP 34.121

HS-DSCH Category	Maximum HS-DSCH Codes Received		Maximum HS-DSCH Transport Block Bits/HS- DSCH TTI	Total Soft Channel Bits
1 🛃	1 5		7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1 14411		115200
8	10	13	14411	134400
9 🔇	15		25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

3) HSUPA

Page 33 of 53

Body SAR is also measured for HSDPA when the maximum average outputs of each RF channel with HSDPA active is at ¼ dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-set 1 and QPSK for FRC and 12.2kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.

Due to inner loop power control requirements in HSDPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSDPA should be configured according to the b values indicated below as well as other applicable procedures described in the 'UMTS Handset' and 'Release 5 HSDPA Data Device' sections of 3G device.

Sub			βd		(D		βe	β_{ed}	CM(2)	MP R	AG ⁽	E-
- test	bβc	bβd	(SF)	bβ _c /β _d	$b\beta_{hs}^{(1)}$	bβ _{ec}	bβ _{ed}	(S F)	(cod e)	(dB)	(dB)	Inde x	TFC I
1	11/15 ⁽ ³⁾	15/15 ⁽ 3)	64	11/15 ⁽³⁾	22/15	209/2 25	1039/ 225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} :4 7/15 β _{ed2:} 4 7/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽ 4)	15/15 ⁽ 4)	64	15/15 ⁽⁴⁾	30/15	24/15	134/1 5	4	1	1.0	0.0	21	81

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 \triangleright A_{hs} = β _{hs}/ β _c = 30/15 \triangleright β _{hs} = 30/15 * β _c

Note 2: CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference

- Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$
- Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 14/15 and β_d = 15/15
- Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g
- Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximu m E- DCH Transpor t Block Bits	Max Rate (Mbps)
		4	10	4	7110	0.7296
C	2	8	2	4	2798	1 4502
2	2	4	10	4	14484	1.4592
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	10	205282055	11484	5.76
(No DPDCH)	4	4	2	4	20000	2.00
7	4	8	2	20528205	22996	?
(No DPDCH)	4	4	10	4	20000	?
NOTE: When	4 codes are transmit	ted in parallel, t	wo codes s	hall be transm	nitted with S	F2 and

two with SF4. UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

7.3 WIFI 2.4G Test Configurations

For WiFi SAR testing, a communication link is set up with the testing software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. The RF signal utilized in SAR measurement has 100% duty cycle and its crest factor is 1. The test procedures in KDB 248227D01 v02r02 are applied.

Per KDB 248227 D01 802.11 Wi-Fi SAR v02r02, SAR Test Reduction criteria are as follows:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test

Page 35 of 53

position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The relative SAR levels of multiple exposure test positions can be established by area scan measurements on the highest measured output power channel to determine the *initial test position*. The area scans must be measured using the same SAR measurement configurations, including test channel, maximum output power, probe tip to phantom distance, scan resolution etc.

When the *reported* SAR for the *initial test position* is:

- ≤0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- 2) > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
- 3) For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test channels are considered.

SAR is not required for the following 2.4 GHz OFDM conditions.

1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

8 SAR Test Results

8.1 Conducted Power Measurements

1.For the measurements a Rohde & Schwarz Radio Communication Tester CMU200 was used.

- 2.Establish communication link between emulator and EUT and set EUT to operate at maximum output power all the time.
- 3.Source-based Time Averaged Burst Power Calculation:

For TDMA, the following duty cycle factor was used to calculate the Source-based Time Averaged power.

Number of Time slot	1	2	3	4
Duty cycle	1:8.3	1:4.1	1:2.77	1:2.08
Duty cycle factor	-9.19	-6.13	-4.42	-3.18

8.1.1 Conducted Power of GSM850

GSM850		Burst-Averaged output Power (dBm)			Division	Source Based time Average Power(dBm)		
		128CH	190CH	251CH	Faciois	128CH	190CH	251CH
5	1 Tx Slot	31.70	31.60	31.40	-9.19	22.51	22.41	22.21
GPRS	2 Tx Slots	28.00	27.80	27.80	-6.13	21.87	21.67	21.67
(GMSK)	3 Tx Slots	26.80	26.70	26.40	-4.42	22.38	22.28	21.98
	4 Tx Slots	25.70	25.60	25.50	-3.18	22.52	22.42	22.32

Note: 1) The conducted power of GSM850 is measured with RMS detector.

2) Source Based time Average Power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timeslots.

3) The bolded GPRS 4Tx slots mode was selected for SAR testing according the highest Source Based time Average Power table.

4) channel /Frequency: 128/824.2,190/836.6,251/848.8

8.1.2 Conducted Power of GSM1900

	(a)		(a^{1})		(2)		(2)			
		Burs	t-Averageo	l output	Division	Source	Source Based time Average			
GSM1900		F	Power (dBr	n)	Eactors	Power(dBm)				
		512CH	661CH	810CH	Faciois	512CH	661CH	810CH		
	1 Tx Slot	28.50	28.00	27.90	-9.19	19.31	18.81	18.71		
GPRS	2 Tx Slots	25.60	25.40	25.10	-6.13	19.47	19.27	18.97		
(GMSK)	3 Tx Slots	24.00	23.80	23.50	-4.42	19.58	19.38	19.08		
	4 Tx Slots	22.90	22.60	22.30	-3.18	19.72	19.42	19.12		

Note: 1) The conducted power of GSM1900 is measured with RMS detector.

2) Source Based time Average Power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timeslots.

3) The bolded GPRS 4Tx slots mode was selected for SAR testing according the highest Source Based time Average Power table.

4) channel /Frequency: 512/1850.2,661/1880,810/1909.8

8.1.3 Conducted Power of UMTS Band II

	Pond II		Conducted Power (dB	m)
UNITS		9262CH	9400CH	9538CH
	12.2kbps RMC	22.56	22.87	22.77
	64kbps RMC	22.50	22.97	22.65
VVCDIVIA	144kbps RMC	22.53	22.88	22.74
S	384kbps RMC	22.51	22.65	22.42
	Subtest 1	22.52	22.86	22.62
Церра	Subtest 2	22.23	22.66	22.53
пзрра	Subtest 3	22.41	22.54	22.65
0	Subtest 4	22.35	22.75	22.48

Note: 1) channel /Frequency: 9262/1852.4,9400/1800,9538/1907.6

8.1.4 Conducted Power of UMTS Band V

			Conducted Power (dB	m)		
UMITS	UMTS Band V AVCDMA MCDMA 12.2kbps RMC 64kbps RMC 144kbps RMC 384kbps RMC 384kbps RMC Subtest 1 Subtest 2 Subtest 3	4132CH	4182CH	4233CH		
(*)	12.2kbps RMC	22.60	22.85	22.61		
	64kbps RMC	22.55	22.77	22.59		
WCDMA	144kbps RMC	22.58	22.84	22.58		
	384kbps RMC	22.56	22.84	22.51		
67)	Subtest 1	22.41	22.56	22.42		
	Subtest 2	22.23	22.65	22.13		
NODLA	Subtest 3	22.11	22.44	22.65		
	Subtest 4	22.35	22.46	22.28		

8.1.5 Conducted Power of WiFi 2.4G

The output power of WiFi 2.4G is as following:

Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Tune-up	Average Power(dBm)	SAR Test (Yes/No)
1	1	2412		14.0	13.22	Yes
802.11b	6	2437		14.0	13.37	Yes
	11	2462		14.0	13.42	Yes
	1	2412		13.0	Not Required	No
802.11g	6	2437	6	13.0	Not Required	No
	11	2462		13.0	Not Required	No
	1	2412		12.0	Not Required	No
802.11n	6	2437	6.5	12.0	Not Required	No
(HT20)	11	2462		12.0	Not Required	No
	3	2422	(\mathbf{c})	11.0	Not Required	No
802.11n	6	2437	13.5	11.0	Not Required	No
(H140)	9	2452		11.0	Not Required	No

Note: 1) An entry of "Not Required" means power measurement is not required according to the default power measurement procedures in KDB248227D01.

Report No.: EED32H0097805

8.1.6 Conducted Power of BT

The output power of BT antenna is as following:

For BT 3.0:

Average Conducted Power(dBm)												
Channel	0CH	39CH	78CH									
GFSK	-8.64	-3.98	-0.76									
π/4DQPSK	-8.67	-4.16	-0.97									
8DPSK	-8.55	-4.03	-0.88									

Note: 1) channel /Frequency:0/2402,39/2441,78/2480

For BT 4.0:

Average Conducted Power(dBm)												
Channel	ОСН	19CH	39CH									
BT	-3.42	-2.78	-2.99									

Note: 1) channel /Frequency:0/2402,19/2440,39/2480.

2) According to the KDB447498D01 the formula. calculate the EIRP test result:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

[√f(GHz)]

General RF Exposure = (0.8395mW / 5 mm) x $\sqrt{2.480}$ GHz = 0.2601 (1)

SAR requirement:

S= 3.0

1)<2).

So the SAR is not required.

8.2 SAR test results

Notes:

1) Per KDB447498 D01v06, the SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the scaled SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

2) Per KDB447498 D01v06, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

3) Per KDB447498 D01v06, All measurement SAR result is scaled-up to account for tune-up tolerance is compliant.

4) Per KDB865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is \geq 0.8W/Kg; if the deviation among the repeated measurement is \leq 20%, and the measured SAR <1.45W/Kg, only one repeated measurement is required.

5) Per KDB865664 D02v01r02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing (Refer to appendix B for details).

8.2.1 Results overview of GSM850

							(25)			
Test position of	Test channel	Test	SAR Value t (W/kg)		Power Drift	Conducted	Tune- up	Scaled	Liquid	
Body with 0mm	/Frequency	Mode	1-g	10-g	(%)	(dBm)	power (dBm)	(W/kg)	Temp.	
Back Side 190/836.6		GPRS 4TS	0.399	0.206	0.090	25.60	26.00	0.437	21.7°C	
Right Side	190/836.6	GPRS 4TS	0.035	0.021	0.050	25.60	26.00	0.038	21.7°C	
Top Side	190/836.6	GPRS 4TS	0.232	0.130	-0.140	25.60	26.00	0.254	21.7°C	
Left Side	190/836.6	GPRS 4TS	0.010	0.008	-0.180	25.60	26.00	0.011	21.7°C	
Bottom Side	190/836.6	GPRS 4TS	0.005	0.002	-0.160	25.60	26.00	0.005	21.7°C	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

8.2.2 Results overview of GSM1900

	(~ 1)		(\sim)		6	N*)	(2	\mathbb{N}^{1}			
Test position of Body with 0mm	Test channel /Frequency	Test Mode	SAR ValueTest(W/kg)Mode1-g10-g		Power Drift (%)	Conducted Power (dBm)	Tune- up power (dBm)	Scaled SAR _{1-g} (W/kg)	Liquid Temp.		
Right Side	512/1850.2	GPRS 4TS	0.148	0.076	0.110	22.90	23.00	0.151	21.5°C		
Top Side	512/1850.2	GPRS 4TS	0.598	0.321	-0.020	22.90	23.00	0.612	21.5°C		
Back Side	512/1850.2	GPRS 4TS	0.785	0.388	0.000	22.90	23.00	0.803	21.5°C		
Left Side	512/1850.2	GPRS 4TS	0.004	0.002	-0.140	22.90	23.00	0.004	21.5°C		
Back Side	661/1880	GPRS 4TS	0.715	0.352	-0.020	22.60	23.00	0.784	21.5°C		
Back Side	810/1909.8	GPRS 4TS	0.578	0.283	-0.140	22.30	23.00	0.679	21.5°C		

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

8.2.3 Results overview of UMTS Band V

Test position of	Test	Test	SAR (W/	Value ′kg)	Power	Conducted	Tune- up	Scaled	Liquid	
Body with 0mm	/Frequency	Mode	1-g	10-g	(%)	(dBm)	power (dBm)	(W/kg)	Temp.	
Back Side	4182/836.4	RMC	0.857	0.401	0.160	22.85	23.00	0.887	21.7°C	
Right Side	4182/836.4	RMC	0.063	0.036	-0.130	22.85	23.00	0.065	21.7°C	
Top Side	e 4182/836.4 F		0.500	0.246	0.080	22.85	23.00	0.518	21.7°C	
Back Side	4132/826.4	RMC	0.646	0.309	-0.120	22.60	23.00	0.708	21.7°C	
Back Side	4233/846.6	RMC	0.727	0.341	0.130	22.61	23.00	0.795	21.7°C	
Back Side -Repeated	4182/836.4	RMC	0.823	0.388	-0.040	22.85	23.00	0.852	21.7°C	
10-		D THE OWNER		207		_0>			100	

8.2.4 Results overview of UMTS Band II

Test position of	Test channel	Test	SAR (W/	Value /kg)	Power Drift	Conducted	Tune- up	Scaled	Liquid			
Body with 0mm	/Frequency	Mode	1-g	10-g	(%)	(dBm)	power (dBm)	(W/kg)	Temp.			
Back Side	9400/1800	RMC	0.818	0.395	0.080	22.87	23.00	0.843	21.5°C			
Right Side	9400/1800	RMC	0.123	0.062	-0.110	22.87	23.00	0.127	21.5°C			
Top Side	9400/1800	RMC	0.648	0.342	-0.090	22.87	23.00	0.668	21.5°C			
Back Side	9262/1852.4	RMC	0.729	0.355	-0.190	22.56	23.00	0.807	21.5°C			
Back Side	9538/1907.6	RMC	0.819	0.393	-0.150	22.77	23.00	0.864	21.5°C			
Back Side - Repeated	9538/1907.6	RMC	0.853 0.407		-0.010	22.77	23.00 0.899		21.5°C			

Test position of	Test	Test	SAR Value (W/kg)		Power Drift	Conducted	Tune- up	Scaled	Liquid	
Body with 0mm	/Frequency	Mode	1-g	10-g	(%)	(dBm)	power (dBm)	(W/kg)	Temp.	
Top Side	11/2462	802.11b	0.222	0.082	0.050	13.42	14.00	0.254	21.8°C	
Left Side	11/2462	802.11b	0.065	0.026	-0.010	13.42	14.00	0.074	21.8°C	
Back Side	11/2462	802.11b	0.420	0.154	0.160	13.42	14.00	0.480	21.8°C	
Back Side	1/2412	802.11b	0.329	0.123	-0.140	13.22	14.00	0.394	21.8°C	
Back Side	6/2437	802.11b	0.365	0.134	-0.090	13.37	14.00	0.422	21.8°C	

Page 45 of 53

Note: Per KDB248227D01:

1) SAR is measured for 2.4 GHz 802.11b DSSS using initial test position procedure.

- 2) As the highest reported SAR for DSSS is adjusted by the ratio of OFDM 802.11g to DSSS specified maximum output power and the adjusted SAR is < 1.2 W/kg, so SAR for OFDM 802.11g is required
- 3) As the highest reported SAR for DSSS is adjusted by the ratio of OFDM 802.11n(20MHz and 40MHz) to DSSS specified maximum output power and the adjusted SAR is < 1.2 W/kg, so SAR for OFDM 802.11n(20MHz and 40MHz) is required</p>

8.3 Multiple Transmitter Information

The location of the antennas inside E97 is shown as below picture:

Per FCC KDB 447498D01:

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

Page 47 of 53

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine

SAR test exclusion.

2) At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:

a) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50

mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz

b) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50

mm) \cdot 10] mW at > 1500 MHz and \leq 6 GHz

(Antennas <50mm to adjacent sides)

	Exposure			Pmax	1	Seperatio	on Distar	nce (mm	i)		Cal	culated V	/alve		SAR Test (Yes or No)										
Band	Condition	f(GHz)	dBm	m\//	Back	Left	Right	Тор	Bottom	Back	Left	Right	Тор	Bottom	Back	Left	Right	Тор	Bottom						
	Condition	lion	UDITI	UDITI	UDITI	UDITI	UDITI	UDITI	UDITI	THVV	side	side	side	side	side	side	side	side	side	side	side	side	side	side	side
GSM850	Body 0mm	0.850	32.00	1584.89	5.0	110.0	35.0	5.0	225.0	292.24	>50mm	41.75	292.24	>50mm	Yes	>50mm	Yes	Yes	>50mm						
GSM1900	Body 0mm	1.900	29.00	794.33	5.0	110.0	35.0	5.0	225.0	218.98	>50mm	31.28	218.98	>50mm	Yes	>50mm	Yes	Yes	>50mm						
UMTS B5	Body 0mm	0.850	23.00	199.53	5.0	110.0	35.0	5.0	225.0	36.79	>50mm	5.26	36.79	>50mm	Yes	>50mm	Yes	Yes	>50mm						
UMTS B2	Body 0mm	1.900	23.00	199.53	5.0	110.0	35.0	5.0	225.0	55.01	>50mm	7.86	55.01	>50mm	Yes	>50mm	Yes	Yes	>50mm						
WiFi 2.40	Body 0mm	2.450	13.00	19.95	5.0	30.0	120.0	5.0	225.0	6.25	1.04	>50mm	6.25	>50mm	Yes	Yes	>50mm	Yes	>50mm						
BT	Body 0mm	2.450	2.00	1.58	5.0	30.0	120.0	5.0	225.0	0.50	0.08	>50mm	0.50	>50mm	No	No	>50mm	No	>50mm						

(Antennas >50mm to adjacent sides)

								,						-		0 4 D 7			
	Exposure		Pmax	Pmax		Seperation	on Distar	nce (mm	1)		Cal	culated V	alve			SAR I	est (Yes	or No)	
Band	Condition	f(GHz)	dBm	mW	Back	Left	Right	Тор	Bottom	Back	Left	Right	Тор	Bottom	Back	Left	Right	Тор	Bottom
	Condition		dDiff	11100	side	side	side	side	side	side	side	side	side	side	side	side	side	side	side
GSM850	Body 0mm	0.850	32.00	1584.89	5.0	110.0	35.0	5.0	225.0	<50mm	498.00	<50mm	<50mm	1138.17	<50mm	Yes	<50mm	<50mm	Yes
GSM1900	Body 0mm	1.900	29.00	794.33	5.0	110.0	35.0	5.0	225.0	<50mm	709.00	<50mm	<50mm	1859.00	<50mm	Yes	<50mm	<50mm	No
UMTS B5	Body 0mm	0.850	23.00	199.53	5.0	110.0	35.0	5.0	225.0	<50mm	498.00	<50mm	<50mm	1138.17	<50mm	No	<50mm	<50mm	No
UMTS B2	Body 0mm	1.900	23.00	199.53	5.0	110.0	35.0	5.0	225.0	<50mm	709.00	<50mm	<50mm	1859.00	<50mm	No	<50mm	<50mm	No
WiFi 2.4G	Body 0mm	2.450	13.00	19.95	5.0	30.0	120.0	5.0	225.0	<50mm	<50mm	796.00	<50mm	1846.00	<50mm	<50mm	No	<50mm	No
BT	Body 0mm	2.450	2.00	1.58	5.0	30.0	120.0	5.0	225.0	<50mm	<50mm	796.00	<50mm	1846.00	<50mm	<50mm	No	<50mm	No
	10.2	1			10.					10.	S 1.				10.				

Hotline: 400-6788-333

www.cti-cert.com

CENTRE TESTING INTERNATIONAL

Page 48 of 53

Report No.: EED32H0097805

3) When the standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)]·[$\sqrt{f}(GHz)/x$] W/kg for test separation distances \leq 50 mm, where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine

SAR test exclusion.

Mode	Position	Pmax(dBm)	Pmax(mW)	Distance(mm)	f(GHz)	x	Estimated
							SAR(W/Rg)
BT	Body 0mm	2	1.58	5.00	2.45	7.50	0.066

4) When the minimum test separation distance is > 50 mm, the estimated SAR value is 0.4 W/kg. For conditions where the estimated SAR is overly conservative for certain conditions, the test lab may choose to perform standalone SAR measurements and use the measured SAR to determine simultaneous transmission SAR test exclusion.

	Evenoure		Pmax	Pmax		Seperation Distance (mm)				Estimated 1-g SAR Value(W/kg)				
Band	Condition	f(GHz)	dBm	m\//	Back	Left	Right	Тор	Bottom	Back	Left	Right	Тор	Bottom
	Condition		ubm	11144	side	side	side	side	side	side	side	side	side	side
GSM850	Body 0mm	0.850	32.00	1584.89	5.0	110.0	35.0	5.0	225.0	Measure	Measure	Measure	Measure	Measure
GSM1900	Body 0mm	1.900	29.00	794.33	5.0	110.0	35.0	5.0	225.0	Measure	Measure	Measure	Measure	0.400
UMTS B5	Body 0mm	0.850	23.00	199.53	5.0	110.0	35.0	5.0	225.0	Measure	0.400	Measure	Measure	0.400
UMTS B2	Body 0mm	1.900	23.00	199.53	5.0	110.0	35.0	5.0	225.0	Measure	0.400	Measure	Measure	0.400
WiFi 2.4G	Body 0mm	2.450	13.00	19.95	5.0	30.0	120.0	5.0	225.0	Measure	Measure	0.400	Measure	0.400
BT	Body 0mm	2.450	2.00	1.58	5.0	30.0	120.0	5.0	225.0	0.066	0.066	0.400	0.066	0.400

Note: maximum possible output power(including tune-up tolerance) declared by manufacturer

8.5 Simultaneous Transmission Possibilities

The Simultaneous Transmission Possibilities of this device are as below:

Simultaneous Tx Combination	Configuration	Body
	GPRS + WiFi 2.4G	YES
2	GPRS + BT	YES
3	UMTS + WiFi 2.4G	YES
4	UMTS + BT	YES

Note: The device does not support simultaneous BT and WiFi 2.4G, because the BT and WiFi 2.4G

share the same antenna and can't transmit simultaneously.

8.6 SAR Summation Scenario

	Teet Desition	Scaled	SAR _{Max}			
lest Position		GSM850	WIFI		SFLSF	
~°>>	Back side	0.437	0.480	0.917	NA	
Dedu	Left side	0.011	0.074	0.085	NA	
Omm	Right side	0.038	0.400	0.438	NA	
Unin	Top side	0.254	0.254	0.508	NA	
	Bottom side	0.005	0.400	0.405	NA	

Note: Simultaneous Tx Combination of GSM850 and WIFI

	Test Position	Scaled	SAR _{Max}			
lest Position		GSM1900 WIFI			57157	
1	Back side	0.803	0.480	1.283	NA	
Dedu	Left side	0.004	0.074	0.078	NA	
Omm	Right side	0.151	0.400	0.551	NA	
Unin	Top side	0.612	0.254	0.866	NA	
	Bottom side	0.400	0.400	0.800	NA	

Note: Simultaneous Tx Combination of GSM1900 and WIFI

		Scaled S	SAR _{Max}		
	Test Position	WCDMA	WIFI	∑ _{1-g} SAR	SPLSP
		850			
	Back side	0.887	0.480	1.367	NA
Dedu	Left side	0.400	0.074	0.474	NA
Omm	Right side	0.065	0.400	0.465	NA
Unin	Top side	0.518	0.254	0.772	NA
	Bottom side	0.400	0.400	0.800	NA

Note: Simultaneous Tx Combination of WCDMA850 and WIFI

		Scaled	SAR _{Max}		
	Test Position	WCDMA	WIFI	∑ _{1-g} SAR	SPLSP
	Back side	0.899	0.480	1 379	NΑ
1	Left side	0.400	0.074	0.474	NA
Body	Right side	0.127	0.400	0.527	NA
Umm	Top side	0.668	0.254	0.922	NA
	Bottom side	0.400	0.400	0.800	NA

Note: Simultaneous Tx Combination of WCDMA1900 and WIFI

Test Position		Scaled	SAR _{Max}	Z. SAD	SDI SD	
		GSM850 BT		∑1-g SAR	SFLSF	
	Back side	0.437	0.066	0.505	NA	
Dedu	Left side	0.011	0.066	0.077	NA	
Body Omm	Right side	0.038	0.400	0.438	NA	
omm	Top side	0.254	0.066	0.320	NA	
\mathcal{S}	Bottom side	0.005	0.400	0.405	NA	

Page 51 of 53

Note: Simultaneous Tx Combination of GSM850 and BT

Test Position		Scaled	SAR _{Max}			
		GSM1900 BT			SFLSF	
	Back side	0.803	0.066	0.869	NA	
Dedu	Left side	0.004	0.066	0.070	NA	
Douy Omm	Right side	0.151	0.400	0.551	NA	
Unin	Top side	0.612	0.066	0.678	NA	
(\mathbf{C})	Bottom side	0.400	0.400	0.800	NA	

Note: Simultaneous Tx Combination of GSM1900 and BT

		Scaled	SAR _{Max}		
	Test Position	WCDMA	BT	∑ _{1-g} SAR	SPLSP
		050			
	Back side	0.887	0.066	0.953	NA
Dedu	Left side	0.400	0.066	0.466	NA
Body	Right side	0.065	0.400	0.465	NA
	Top side	0.518	0.066	0.584	NA
	Bottom side	0.400	0.400	0.800	NA

Note: Simultaneous Tx Combination of WCDMA850 and BT

		Scaled	SAR _{Max}		
	Test Position	WCDMA	BT	∑ _{1-g} SAR	SPLSP
		1900			
	Back side	0.899	0.066	0.965	NA
Dedu	Left side	0.400	0.066	0.466	NA
Omm	Right side	0.127	0.400	0.551	NA
UIIIII	Top side	0.668	0.066	0.734	NA
	Bottom side	0.400	0.400	0.800	NA

Note: Simultaneous Tx Combination of WCDMA1900 and BT

8.7 Simultaneous Transmission Conlcusion

The above numeral summed SAR results is sufficient to determine that simultaneous transmission

cases will not exceed the SAR limit and therefore simultaneous transmission SAR with Volume Scans

is not required per KDB 447498 D01v06

Report Number: EED32H00097805

Appendix A:SAR System performance Check Plots

Table of contents
System Performance Check-D835-Body
System Performance Check-D1900-Body
System Performance Check-D2450-Body

System Performance Check- 835-Body

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d193

Communication System: UID 0, CW (0); Communication System Band: D835(835.0 MHz); Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.96 S/m; ϵ_r = 54.299; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7328; ConvF(9.31, 9.31, 9.31); Calibrated: 2/6/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- · Electronics: DAE4 Sn1458; Calibrated: 1/26/2015
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:xxxx
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/System check,Pin=250 mW,/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.69 W/kg

Configuration/System check,Pin=250 mW,/Zoom Scan (7x7x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 57.93 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.50 W/kg SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.04 W/kg

System Performance Check- 1900-Body

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d198

Communication System: UID 0, CW (0); Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.515$ S/m; $\epsilon_r = 52.424$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7328; ConvF(7.67, 7.67, 7.67); Calibrated: 2/6/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1458; Calibrated: 1/26/2015
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/d=10mm, Pin=250 mW/Area Scan (8x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 9.59 W/kg

Configuration/d=10mm, Pin=250 mW/Zoom Scan (7x7x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 98.98 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.42 W/kg Maximum value of SAR (measured) = 14.5 W/kg

System Performance Check- 2450-Body

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:959

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.941$ S/m; $\epsilon_r = 53.117$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7328; ConvF(7.37, 7.37, 7.37); Calibrated: 2/6/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1458; Calibrated: 1/26/2015
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/d=10mm, Pin=250 mW/Area Scan (10x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 13.3 W/kg

Configuration/d=10mm, Pin=250 mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.38 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 25.4 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.94 W/kg Maximum value of SAR (measured) = 19.0 W/kg

Report Number:EED32H00097805

Appendix B:SAR Measurement results Plots

Table of contents
GSM850-Body
GSM1900-Body
UMTS Band II-Body
UMTS Band V-Body
WiFi 802.11b-Body

E97 GSM850 GPRS 4TS 190CH Back side 0mm

DUT: E97; Type: Tablet; Serial: SAR1

Communication System: UID 0, GPRS 4TS (0); Communication System Band: GSM850 GPRS 4TS; Frequency: 836.6 MHz;Duty Cycle: 1:2.0797 Medium parameters used: f = 837 MHz; $\sigma = 0.959$ S/m; $\epsilon_r = 54.313$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7328; ConvF(9.31, 9.31, 9.31); Calibrated: 2/6/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- · Electronics: DAE4 Sn1458; Calibrated: 1/26/2015
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/GSM850/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.499 W/kg

Configuration/GSM850/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.376 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.832 W/kg SAR(1 g) = 0.399 W/kg; SAR(10 g) = 0.206 W/kg Maximum value of SAR (measured) = 0.630 W/kg

E97 GSM1900 GPRS 4TS 512CH Back side 0mm

DUT: E97; Type: Tablet; Serial: SAR1

Communication System: UID 0, GPRS 4TS (0); Communication System Band: GSM1900 GPRS 4TS; Frequency: 1850.2 MHz;Duty Cycle: 1:2.0797 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.465$ S/m; $\epsilon_r = 52.558$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7328; ConvF(7.67, 7.67, 7.67); Calibrated: 2/6/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1458; Calibrated: 1/26/2015
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/GSM1900/Area Scan (10x10x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.933 W/kg

Configuration/GSM1900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.518 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.42 W/kg SAR(1 g) = 0.785 W/kg; SAR(10 g) = 0.388 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.14 W/kg

E97 UMTS Band II 9400CH Back side 0mm

DUT: E97; Type: Tablet; Serial: SAR1

Communication System: UID 0, UMTS-FDD(WCDMA) (0); Communication System Band: Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ S/m; $\epsilon_r = 52.41$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7328; ConvF(7.67, 7.67, 7.67); Calibrated: 2/6/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1458; Calibrated: 1/26/2015
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/WCDMA1900/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.15 W/kg

Configuration/WCDMA1900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.859 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.59 W/kg SAR(1 g) = 0.853 W/kg; SAR(10 g) = 0.407 W/kg Maximum value of SAR (measured) = 1.25 W/kg

E97 UMTS Band V 4182CH Back side 0mm

DUT: E97; Type: Tablet; Serial: SAR1

Communication System: UID 0, UMTS-FDD(WCDMA) (0); Communication System Band: Band V; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.959$ S/m; $\epsilon_r = 54.293$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7328; ConvF(9.31, 9.31, 9.31); Calibrated: 2/6/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- · Electronics: DAE4 Sn1458; Calibrated: 1/26/2015
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/WCDMA850/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.18 W/kg

Configuration/WCDMA850/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.854 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 2.09 W/kg SAR(1 g) = 0.857 W/kg; SAR(10 g) = 0.401 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.19 W/kg

WiFi 802.11b 11CH Back side 0mm

DUT: E97; Type: Tablet; Serial: SAR1

Communication System: UID 0, WiFi 802.11 b/g/n (0); Communication System Band: WiFi; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.963$ S/m; $\epsilon_r = 53.117$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7328; ConvF(7.37, 7.37, 7.37); Calibrated: 2/6/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1458; Calibrated: 1/26/2015
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/WiFi/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.620 W/kg

Configuration/WiFi/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.289 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.420 W/kg; SAR(10 g) = 0.154 W/kg Maximum value of SAR (measured) = 0.752 W/kg

Report Number:EED32H00097805

Appendix C: Calibration reports

Table of contents
Probe EX3DV4 SN:7328
DAE4 SN:1458
Dipole D835V2 SN:4d193
Dipole D1900V2-SN:5d198
Dipole D2450V2-SN:959

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

化化学 化

Client Dgieie (Vitec) Certificate No: EX3-7328_Feb15

Object	EX3DV4 - SN:7328	EX3DV4 - SN:7328								
Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes										
Calibration date:	February 6, 2015									
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration)										
Primary Standards		Cal Date (Certificate No.)	Scheduled Calibration							
Power meter F4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15							
Power sensor F4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15							
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15							
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15							
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15							
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15							
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16							
Secondary Standards	ID	Check Date (in house)	Scheduled Check							
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16							
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15							
Calibrated by:	Calibrated by: Name Function Signature Laboratory Technician									
Approved by:	Katja Pokovic Technical Manager									
Issued: February 10, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.										

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Accreditation No.: SCS 0108

- S Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization
 ⁹ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7328_Feb15

Probe EX3DV4

SN:7328

Manufactured: December 11, 2014 Calibrated: February 6, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7328

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm $(\mu V/(V/m)^2)^A$	0.40	0.43	0.46	± 10.1 %	
DCP (mV) ^B	103.2	99.6	98.9		

Modulation Calibration Parameters

UID	Communication System Name		A	B	С	D	VR mV	Unc ^E (k=2)
			ab	ασγμν				(14 -/
0	CW	X	0.0	0.0	1.0	0.00	145.7	±3.0 %
		Y	0.0	0.0	1.0		145.4	
		Z	0.0	0.0	1.0		150.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the second secon field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7328

	Delethre	Conductivity				ł	Danth G	Unct
f (MHz) ^C	Permittivity ^F	(S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	(mm)	(k=2)
- (()						
835	41.5	0.90	9.86	9.86	9.86	0.25	1.36	± 12.0 %
1750	40.1	1.37	8.24	8.24	8.24	0.37	0.82	± 12.0 %
1900	40.0	1.40	8.02	8.02	8.02	0.80	0.56	± 12.0 %
2000	40.0	1.40	7.94	7.94	7.94	0.52	0.74	± 12.0 %
2450	39.2	1.80	7.21	7.21	7.21	0.29	0.93	± 12.0 %
2600	39.0	1.96	7.04	7.04	7.04	0.37	0.86	± 12.0 %
5200	36.0	4.66	5.32	5.32	5.32	0.35	1.80	± 13.1 %
5300	35.9	4.76	5.11	5.11	5.11	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.80	4.80	4.80	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.57	4.57	4.57	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.59	4.59	4.59	0.40	1.80	± 13.1 %

Calibration	Parameter	Determined i	n Head	Tissue	Simulating	Media
-------------	------------------	---------------------	--------	---------------	------------	-------

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

The quericles below 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip

diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7328

					•			
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
835	55.2	0.97	9.31	9.31	9.31	0.24	1.48	± 12.0 %
1750	53.4	1.49	7.94	7.94	7.94	0.69	0.67	± 12.0 %
1900	53.3	1.52	7.67	7.67	7.67	0.78	0.60	± 12.0 %
2000	53.3	1.52	7.77	7.77	7.77	0.43	0.79	± 12.0 %
2450	52.7	1.95	7.37	7.37	7.37	0.80	0.50	± 12.0 %
2600	52.5	2.16	7.03	7.03	7.03	0.80	0.57	± 12.0 %
5200	49.0	5.30	4.47	4.47	4.47	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.25	4.25	4.25	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.89	3.89	3.89	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.82	3.82	3.82	0.50	1.90	± 13.1 %
5800	48.2	6.00	3.89	3.89	3.89	0.55	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to \pm 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7328

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-61
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

s p e a q

1454

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the **exa**ct values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

Accreditation No.: SCS 0108

- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Dgieie (Vitec) Client

Certificate No: DAE4-1458_Jan15

CALIBRATION CERTIFICATE

Object	DAE4 - SD 000 D	04 BM - SN: 1458	
Calibration procedure(s)	QA CAL-06.v29 Calibration proced	lure for the data acquisition electron	ics (DAE)
Calibration date:	January 26, 2015		
This calibration certificate documer The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE	nts the traceability to natio ainties with confidence pro ad in the closed laboratory E critical for calibration)	nal standards, which realize the physical units of obbability are given on the following pages and are facility: environment temperature $(22 \pm 3)^{\circ}$ C and	measurements (SI). part of the certificate. humidity < 70%.
Primary Standards	ID # SN: 0810278	Cal Date (Certificate No.)	Scheduled Calibration
			00110
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	06-Jan-15 (in house check)	In house check: Jan-16
Calibrator Box V2.1	SE UMS 006 AA 1002	06-Jan-15 (in house check)	In house check: Jan-16
	Name	Function	Signature
Calibrated by:	Dominique Steffen	Technician	Re
Approved by:	Fin Bomholt	Deputy Technical Manager	:N.S. Queur
This calibration certificate shall not	be reproduced except in f	ull without written approval of the laboratory	Issued: January 26, 2015

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv

DAE data acquisition electronics information used in DASY system to align probe sensor X to the robot Connector angle coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle • mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a • result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

Calibration Factors	X	Y	Z
High Range	404.204 ± 0.02% (k=2)	404.192 ± 0.02% (k=2)	404.176 ± 0.02% (k=2)
Low Range	3.98442 ± 1.50% (k=2)	3.94567 ± 1.50% (k=2)	3.95696 ± 1.50% (k=2)

Connector Angle

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199992.08	-2.20	-0.00
Channel X + Input	20001.53	0.88	0.00
Channel X - Input	-19999.10	1.77	-0.01
Channel Y + Input	199992.70	-1.29	-0.00
Channel Y + Input	19999.54	-1.07	-0.01
Channel Y - Input	-19998.16	2.77	-0.01
Channel Z + Input	199992.59	-1.63	-0.00
Channel Z + Input	20000.42	-0.23	-0.00
Channel Z - Input	-20000.25	0.77	-0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.01	0.27	0.01
Channel X + Input	200.04	-1.08	-0.53
Channel X - Input	-199.10	-0.33	0.17
Channel Y + Input	2000.73	-0.05	-0.00
Channel Y + Input	200.16	-0.97	-0.48
Channel Y - Input	-199.22	-0.42	0.21
Channel Z + Input	2000.00	-0.61	-0.03
Channel Z + Input	200.15	-0.88	-0.44
Channel Z - Input	-199.39	-0.56	0.28

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	15.49	13.78
	- 200	-13.34	-15.31
Channel Y	200	-11.23	-11.44
	- 200	9.38	9.05
Channel Z	200	-22.39	-23.09
	- 200	21.21	21.23

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Υ (μV)	Channel Z (μV)
Channel X	200	-	-0.66	-4.21
Channel Y	200	8.18	-	1.87
Channel Z	200	10.14	5.23	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16018	14018
Channel Y	16443	16607
Channel Z	16740	17207

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-1.30	-2.37	0.22	0.61
Channel Y	-0.58	-2.04	0.43	0.48
Channel Z	0.65	-1.50	2.31	0.66

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage С **Engineering AG** Servizio svizzero di taratura Zeughausstrasse 43, 8004 Zurich, Switzerland S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Dgiele (Vitec) Client Certificate No: D835V2-4d193 Feb15 **CALIBRATION CERTIFICATE** 1.5.1.121 1.5 24 H. Object D835V2 - SN: 4d193 Calibration procedure(s) QA CAL-05.v9 ANT MARKE Calibration procedure for dipole validation kits above 700 MHz Calibration date: February 02, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Reference Probe ES3DV3 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 US37390585 S4206 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic **Technical Manager** Issued: February 6, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TO	
ISL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.13 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.96 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.8 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.30 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.56 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.10 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 3.4 jΩ
Return Loss	- 28.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω - 5.3 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2014

DASY5 Validation Report for Head TSL

Date: 02.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d193

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 56.28 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.50 W/kg SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.52 W/kg Maximum value of SAR (measured) = 2.74 W/kg

0 dB = 2.74 W/kg = 4.38 dBW/kg

DASY5 Validation Report for Body TSL

Date: 02.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d193

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 55.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 54.46 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.55 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **Dgieie (Vitec)**

Certificate No:	D1900V2-5d19	8 Feb15
------------------------	--------------	---------

CALIBRATION CERTIFICATE

Object	D1900V2 - SN: 5	id198	
Calibration procedure(s)	QA CAL-05.v9	dure for disclosur lide time titue t	700 144
	Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	February 06, 201	5	
		-	
This calibration certificate docume	ents the traceability to nati	onal standards, which realize the physical un	its of measurements (SI).
The measurements and the unce	tainties with confidence p	robability are given on the following pages ar	nd are part of the certificate.
All calibrations have been conduc	ted in the closed laborator	y facility: environment temperature (22 ± 3)°(C and humidity < 70%.
		· · · · · · · · · · · · · · · · · · ·	
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205 Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	A Q
			Te
Approved by:	Katja Pokovic	Technical Manager	Relly
This collibusion or difference of all second			Issued: February 9, 2015

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664. "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. .
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	41.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω + 4.5 jΩ
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.4 Ω + 5.7 jΩ
Return Loss	- 24.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 06, 2014

DASY5 Validation Report for Head TSL

Date: 06.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d198

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ S/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 98.65 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.39 W/kg Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

DASY5 Validation Report for Body TSL

Date: 06.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d198

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 53.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.22 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.43 W/kg Maximum value of SAR (measured) = 13.0 W/kg

0 dB = 13.0 W/kg = 11.14 dBW/kg

Client

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Dgiele (Vitec)

Accreditation No.: SCS 0108

Certificate No: D2450V2-959_Feb15

CALIBRATION CERTIFICATE W. Surdies L'Antonia de Martin Martin Object D2450V2 - SN:959 QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: February 05, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Reference Probe ES3DV3 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Function Signature Calibrated by: Israe Elnaouq Laboratory Technician Laene Approved by: Katja Pokovic **Technical Manager** Issued: February 6, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2 Ω + 0.5 jΩ
Return Loss	- 27.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.9 Ω + 5.1 jΩ
Return Loss	- 25.4 dB

General Antenna Parameters and Design

1 1
1.158 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured on	
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 04.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:959

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.88$ S/m; $\epsilon_r = 39.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 101.6 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.31 W/kg Maximum value of SAR (measured) = 18.1 W/kg

0 dB = 18.1 W/kg = 12.58 dBW/kg

DASY5 Validation Report for Body TSL

Date: 05.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:959

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.03 S/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.40 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.4 W/kg **SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6 W/kg** Maximum value of SAR (measured) = 17.3 W/kg

0 dB = 17.3 W/kg = 12.38 dBW/kg

Report Number: EED32H00097805

Appendix D: Photo documentation

