

Report No.: EED32H000437-3 Page 1 of 46

TEST REPORT

Product : 10.1" 3G Phone Tablet

Trade mark : Dragon Touch, KingPad, KingSlim,

SureTouch

Model/Type reference : E10, E10X, E100, E10 PLUS, E10X

PLUS, E100X, E100X PLUS, 1855

Serial Number : N/A

Report Number : EED32H000437-3

FCC ID : S5V-D10E10

Date of Issue: : Jul. 24, 2015

Test Standards : 47 CFR Part 15 Subpart C(2014)

Test result : PASS

Prepared for:

Proexpress Distributor LLC
11011 GREENWOOD AVE.N APT 5, SEATTLE, WA 98103, United States

Prepared by:

Centre Testing International (Shenzhen) Corporation
Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan
District, Shenzhen, China

TEL: +86-755-3368 3919 FAX: +86-755-3368 3385

Tested by:

Report Seal

Mare Xm 🤍

Reviewed by:

Revin San

Sheek Luo

Lab supervisor

Jul. 24, 2015

Check No.: 1727804505

Page 2 of 46

2 Version

Version No.	Date	Description		
00	Jul. 24, 2015	Original		
			=	

Page 3 of 46

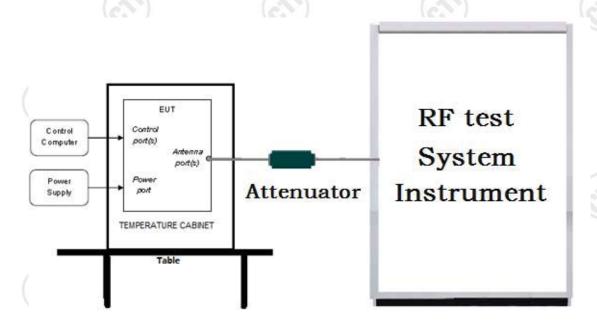
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Model No.: E10, E10X, E100, E10 PLUS, E10X PLUS, E100X, E100X PLUS, 1855

Only the Model E10 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for all above models. Only different on outer color and model names.

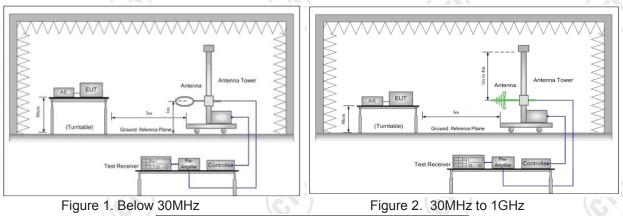
4 Content

3 TEST SUMMARY	1	COVER PAGE	•••••	 1
4 CONTENT	2	VERSION		 2
5 TEST REQUIREMENT 5 5.1 TEST SETUP 5 5.1.1 For Conducted test setup 5 5.1.2 For Radiated Emissions test setup 5 5.1.3 For Conducted Emissions test setup 6 5.2 TEST ENVIRONMENT 6 5.3 TEST CONDITION 6 6 GENERAL INFORMATION 7 6.1 CLIENT INFORMATION 7 6.2 GENERAL DESCRIPTION OF EUT 7 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 7 6.4 DESCRIPTION OF SUPPORT UNITS 8 6.5 TEST LOCATION 8 6.6 TEST FACILITY 8 6.7 DEVIATION FROM STANDARDS 9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth 4 Appendix D): RF Conducted Peak Output Power 5 Appendix D): RF Conducted Spurious Emissions 17 Appendix E): Power Spectral Density 20	3	TEST SUMMARY		 3
5.1 TEST SETUP 5 5.1.1 For Conducted test setup 5 5.1.2 For Radiated Emissions test setup 5 5.1.3 For Conducted Emissions test setup 6 5.2 TEST ENVIRONMENT 6 5.3 TEST CONDITION 6 6 GENERAL INFORMATION 7 6.1 CLIENT INFORMATION 7 6.2 GENERAL DESCRIPTION OF EUT 7 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 7 6.4 DESCRIPTION OF SUPPORT UNITS 8 6.5 TEST LOCATION 8 6.6 TEST FACILITY 8 6.7 DEVIATION FROM STANDARDS 9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth	4	CONTENT		 4
5.1.1 For Conducted test setup 5 5.1.2 For Radiated Emissions test setup 6 5.1.3 For Conducted Emissions test setup 6 5.2 TEST ENVIRONMENT 6 5.3 TEST CONDITION 6 6 GENERAL INFORMATION 7 6.1 CLIENT INFORMATION 7 6.2 GENERAL DESCRIPTION OF EUT 7 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 7 6.4 DESCRIPTION OF SUPPORT UNITS 8 6.5 TEST LOCATION 8 6.6 TEST FACILITY 8 6.7 DEVIATION FROM STANDARDS 9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth 14 Appendix B): Conducted Peak Output Power 15 Appendix D): RF Conducted Spurious Emissions	5	TEST REQUIREMENT	•••••	 5
5.1.3 For Conducted Emissions test setup				
5.2 TEST ENVIRONMENT 66 5.3 TEST CONDITION 66 6 GENERAL INFORMATION .7 6.1 CLIENT INFORMATION .7 6.2 GENERAL DESCRIPTION OF EUT .7 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD .7 6.4 DESCRIPTION OF SUPPORT UNITS .8 6.5 TEST LOCATION .8 6.6 TEST FACILITY .8 6.7 DEVIATION FROM STANDARDS .9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS .9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER .9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) .10 7 EQUIPMENT LIST .11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION .13 Appendix A): 6dB Occupied Bandwidth .14 Appendix B): Conducted Peak Output Power .15 Appendix B): Conducted Spurious Emissions .17 Appendix D): RF Conducted Spurious Emissions .18 Appendix F): Power Spectral Density .20 Appendix F): Antenna Requirement .22 </td <td></td> <td></td> <td></td> <td></td>				
5.3 TEST CONDITION 6 6 GENERAL INFORMATION 7 6.1 CLIENT INFORMATION 7 6.2 GENERAL DESCRIPTION OF EUT 7 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 7 6.4 DESCRIPTION OF SUPPORT UNITS 8 6.5 TEST LOCATION 8 6.6 TEST FACILITY 8 6.7 DEVIATION FROM STANDARDS 9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth 14 Appendix B): Conducted Peak Output Power 15 Appendix D): RF Conducted Spurious Emissions 17 Appendix D): RF Conducted Spurious Emissions 18 Appendix E): Power Spectral Density 20 Appendix G) AC Power Line Conducted Emission 23 Appendix H) Restricted bands around fundamental frequency (Radiated) </td <td></td> <td></td> <td>•</td> <td></td>			•	
6 GENERAL INFORMATION 7 6.1 CLIENT INFORMATION 7 6.2 GENERAL DESCRIPTION OF EUT 7 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 7 6.4 DESCRIPTION OF SUPPORT UNITS 8 6.5 TEST LOCATION 8 6.6 TEST FACILITY 8 6.7 DEVIATION FROM STANDARDS 9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth 14 Appendix B): Conducted Peak Output Power 15 Appendix D): RF Conducted Spurious Emissions 17 Appendix D): RF Conducted Spurious Emissions 18 Appendix F) Antenna Requirement 22 Appendix F) Antenna Requirement 22 Appendix H) Restricted bands around fundamental frequency (Radiated) 28 Appendix I) Radiated Spurious Emissions				
6.1 CLIENT INFORMATION 7 6.2 GENERAL DESCRIPTION OF EUT 7 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 7 6.4 DESCRIPTION OF SUPPORT UNITS 8 6.5 TEST LOCATION 8 6.6 TEST FACILITY 8 6.7 DEVIATION FROM STANDARDS 9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth 14 Appendix B): Conducted Peak Output Power 15 Appendix D): RF Conducted Spurious Emissions 17 Appendix D): RF Conducted Spurious Emissions 18 Appendix E): Power Spectral Density 20 Appendix F) Antenna Requirement 22 Appendix A): Restricted bands around fundamental frequency (Radiated) 28 Appendix I) Radiated Spurious Emissions 32 PHOTOGRAPHS OF TEST SETUP 3	6			
6.2 GENERAL DESCRIPTION OF EUT 7 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 7 6.4 DESCRIPTION OF SUPPORT UNITS 8 6.5 TEST LOCATION 8 6.6 TEST FACILITY 8 6.7 DEVIATION FROM STANDARDS 9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth 14 Appendix B): Conducted Peak Output Power 15 Appendix C): Band-edge for RF Conducted Emissions 17 Appendix C): Band-edge for RF Conducted Emissions 17 Appendix D): RF Conducted Spurious Emissions 18 Appendix F) Antenna Requirement 22 Appendix G) AC Power Line Conducted Emission 23 Appendix H) Restricted bands around fundamental frequency (Radiated) 28 Appendix I) Radiated Spurious Emissions 32 PHOTOGRAPHS OF T)			
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 7 6.4 DESCRIPTION OF SUPPORT UNITS 8 6.5 TEST LOCATION 8 6.6 TEST FACILITY 8 6.7 DEVIATION FROM STANDARDS 9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth 14 Appendix B): Conducted Peak Output Power 15 Appendix C): Band-edge for RF Conducted Emissions 17 Appendix D): RF Conducted Spurious Emissions 18 Appendix E): Power Spectral Density 20 Appendix F) Antenna Requirement 22 Appendix G) AC Power Line Conducted Emission 23 Appendix H) Restricted bands around fundamental frequency (Radiated) 28 Appendix I) Radiated Spurious Emissions 32 PHOTOGRAPHS OF TEST SETUP 37				
6.5 TEST LOCATION 8 6.6 TEST FACILITY 8 6.7 DEVIATION FROM STANDARDS 9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth 14 Appendix B): Conducted Peak Output Power 15 Appendix B): Conducted Peak Output Power 15 Appendix C): Band-edge for RF Conducted Emissions 17 Appendix D): RF Conducted Spurious Emissions 18 Appendix E): Power Spectral Density 20 Appendix F) Antenna Requirement 22 Appendix G) AC Power Line Conducted Emission 23 Appendix H) Restricted bands around fundamental frequency (Radiated) 28 Appendix I) Radiated Spurious Emissions 32 PHOTOGRAPHS OF TEST SETUP 37				
6.6 TEST FACILITY 8 6.7 DEVIATION FROM STANDARDS 9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth 14 Appendix B): Conducted Peak Output Power 15 Appendix C): Band-edge for RF Conducted Emissions 17 Appendix D): RF Conducted Spurious Emissions 18 Appendix E): Power Spectral Density 20 Appendix F) Antenna Requirement 22 Appendix G) AC Power Line Conducted Emission 23 Appendix H) Restricted bands around fundamental frequency (Radiated) 28 Appendix I) Radiated Spurious Emissions 32 PHOTOGRAPHS OF TEST SETUP 37				
6.7 DEVIATION FROM STANDARDS 9 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 9 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth 14 Appendix B): Conducted Peak Output Power 15 Appendix C): Band-edge for RF Conducted Emissions 17 Appendix D): RF Conducted Spurious Emissions 18 Appendix E): Power Spectral Density 20 Appendix F) Antenna Requirement 22 Appendix G) AC Power Line Conducted Emission 23 Appendix H) Restricted bands around fundamental frequency (Radiated) 28 Appendix I) Radiated Spurious Emissions 32 PHOTOGRAPHS OF TEST SETUP 37				
6.8 ABNORMALITIES FROM STANDARD CONDITIONS				
6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 9 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST 11 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 13 Appendix A): 6dB Occupied Bandwidth 14 Appendix B): Conducted Peak Output Power 15 Appendix C): Band-edge for RF Conducted Emissions 17 Appendix D): RF Conducted Spurious Emissions 18 Appendix E): Power Spectral Density 20 Appendix F) Antenna Requirement 22 Appendix G) AC Power Line Conducted Emission 23 Appendix H) Restricted bands around fundamental frequency (Radiated) 28 Appendix I) Radiated Spurious Emissions 32 PHOTOGRAPHS OF TEST SETUP 37				
6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 10 7 EQUIPMENT LIST				
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION				
Appendix A): 6dB Occupied Bandwidth	7	EQUIPMENT LIST		 11
Appendix A): 6dB Occupied Bandwidth	8	RADIO TECHNICAL REQUIREMENTS	SPECIFICATION	13
Appendix B): Conducted Peak Output Power				
Appendix C): Band-edge for RF Conducted Emissions				
Appendix E): Power Spectral Density				
Appendix F) Antenna Requirement				
Appendix G) AC Power Line Conducted Emission		Appendix E): Power Spectral Density		 20
Appendix H) Restricted bands around fundamental frequency (Radiated)				
Appendix I) Radiated Spurious Emissions				
PHOTOGRAPHS OF TEST SETUP37				
	Pi			
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS39				
	PI	HOTOGRAPHS OF EUT CONSTRUCTION	AL DETAILS	 39



Report No.: EED32H000437-3 Page 5 of 46

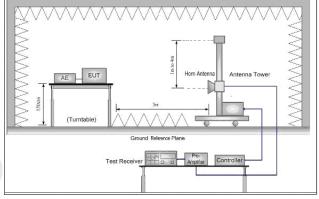
5 Test Requirement

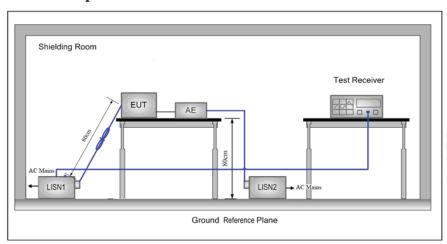

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:			/°>
Temperature:	25.0 °C		
Humidity:	53 % RH		
Atmospheric Pressure:	995mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest wode	TX/FX	Low(L)	Middle(M)	High(H)	
OFOK	2400MU = 2400 MU =	Channel 1	Channel 40	Channel79	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

6 General Information

6.1 Client Information

Applicant:	Proexpress Distributor LLC
Address of Applicant:	11011 GREENWOOD AVE.N APT 5, SEATTLE, WA 98103, United States
Manufacturer:	Proexpress Distributor LLC
Address of Manufacturer:	11011 GREENWOOD AVE.N APT 5, SEATTLE, WA 98103, United States

6.2 General Description of EUT

Product Name:	10.1" 3G Phone Tablet		(3)			
Model No.(EUT):	E10	(C.J.)	(0,0)			
Add Mode No.:	E10X, E100, E10 PLUS	S, E10X PLUS, E100X, E100X PI	LUS, 1855			
Trade Mark:	Dragon Touch, KingPa	Dragon Touch, KingPad, KingSlim, SureTouch				
EUT Supports Radios application	GSM/GPRS 850: Tx:824.20 - 848.80MHz;Rx: 869.20 - 893.80MHz GSM/GPRS 1900: Tx:1850.20 - 1909.80MHz; Rx:1930.20 - 1989.80MHz WCDMA/HSDPA Band V: Tx:826.40 -846.60MHz;Rx: 871.40 - 891.60MHz WCDMA/HSDPA Band II: Tx:1852.40 - 1907.60MHz;Rx:1932.40 - 1987.60MHz BT4.0: 2402 - 2480MHz					
	IEEE 802.11b/g/n(HT20 IEEE 802.11b/g/n(HT40	,				
Power Supply:	Adapter:	Input: AC 100V-240V 50-60Hz Output: DC 5.0V 2000mA	(cl)			
	Battery:	DC3.7V (Li-on Rechargeable B	attery)			
Sample Received Date:	May 09, 2015					
Sample tested Date:	May 09, 2015 to Jul. 24	, 2015				

6.3 Product Specification subjective to this standard

	_		
Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	4.0		
Modulation Type:	GFSK		
Number of Channel:	40	(6.)	6.
Sample Type:	Portable production		
Antenna Type:	Integral	* 50	
Antenna Gain:	0dBi		

Report No. : EED32H000437-3 Page 8 of 46

Operation F	requency eac	h of channe	<u> </u>	6		6	/
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International (Shenzhen) Corporation

Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan District, Shenzhen, China

Telephone: +86 (0) 755 33683668Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3061.01

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International (Shenzhen) Corporation EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). Theacceptance letter from the FCC is maintained in our files. Registration 565659.

Report No.: EED32H000437-3 Page 9 of 46

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International (Shenzhen) Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dadioted Courious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 11 of 46

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002	(4)	01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2	(A)	04-01-2015	03-31-2016

Page 12 of 46

	Raulateu	Spurious Emission	& Raulateu El		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	/	06-02-2015	06-01-2016
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-617	07-14-2015	07-13-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2015	07-07-2016
Loop Antenna	ETS	6502	00071730	07-23-2015	07-22-2016
Spectrum Analyzer	R&S	FSP40	100416	07-09-2015	07-08-2016
Receiver	R&S	ESCI	100435	07-09-2015	07-08-2016
Multi device Controller	maturo	NCD/070/10711112	/	01-13-2015	01-12-2016
LISN	schwarzbeck	NNBM8125	81251547	07-09-2015	07-08-2016
LISN	schwarzbeck	NNBM8125	81251546	07-09-2015	07-08-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	5190	07-10-2015	07-09-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM1 2-0398-002		01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL12- 0395-001	- /	01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL12- 0393-001	\	01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL12- 0396-002		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL12- 0394-001		01-13-2015	01-12-2016

8 Radio Technical Requirements Specification

Reference documents for testing:

N	lo.	Identity	Document Title	
1		FCC Part15C (2014)	Subpart C-Intentional Radiators	
2		ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices	

Test Results List:

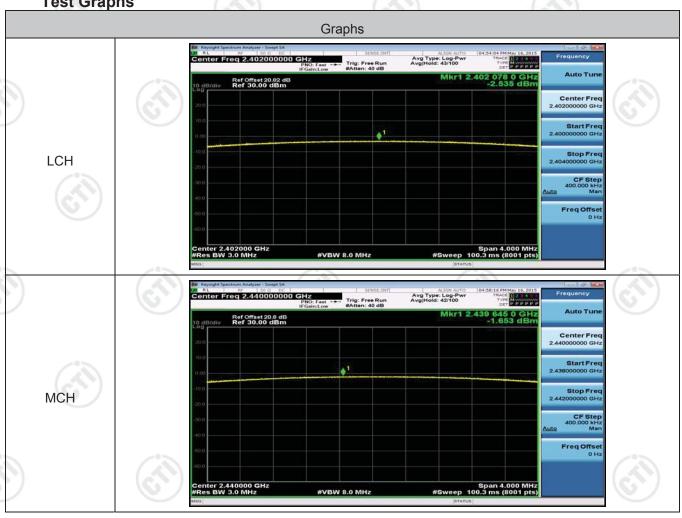
est Results List.	/ 400	(& 3)		71
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)
	- 0.5	- 675		- 0.0

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.68	1.51	PASS
BLE	MCH	0.69	1.25	PASS
BLE	НСН	0.69	1.29	PASS

Test Graphs


Report No.: EED32H000437-3 Page 15 of 46

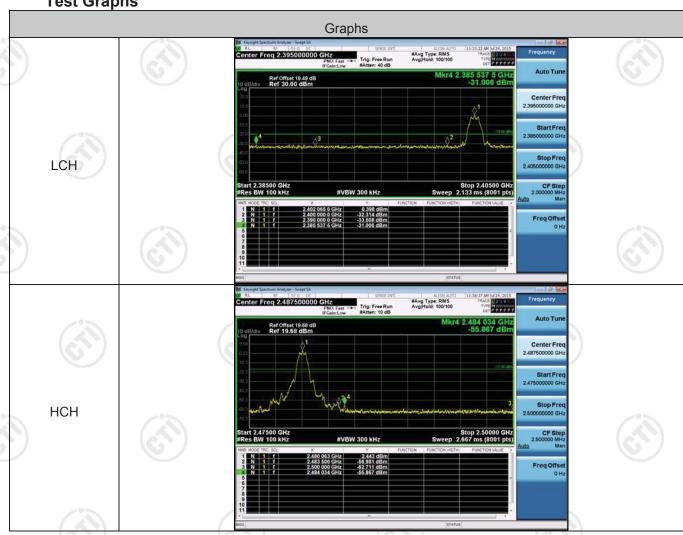
Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-2.535	PASS
BLE	MCH	-1.653	PASS
BLE	HCH	-1.679	PASS

Test Graphs

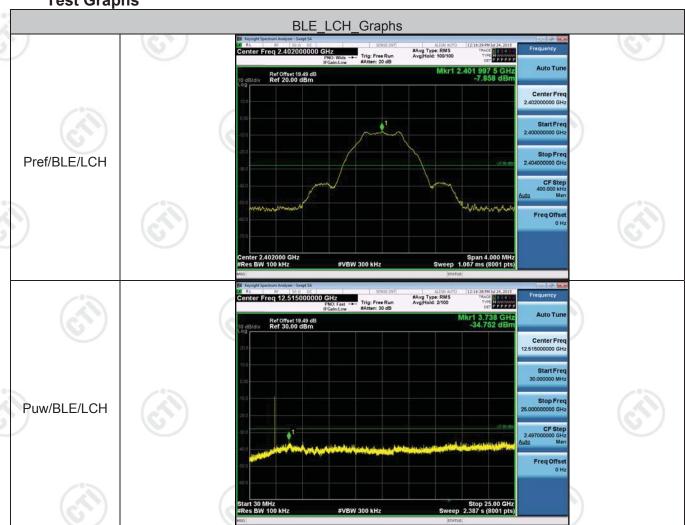
Page 16 of 46

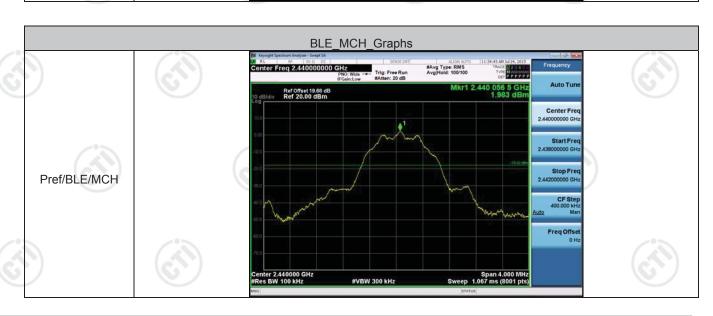


Report No.: EED32H000437-3 Page 17 of 46

Appendix C): Band-edge for RF Conducted Emissions

Test Graphs

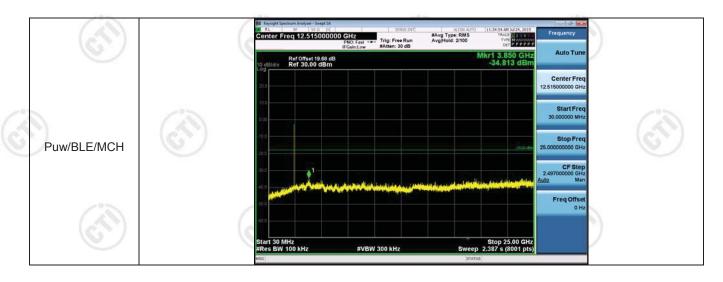




Report No.: EED32H000437-3 Page 18 of 46

Appendix D): RF Conducted Spurious Emissions

Test Graphs

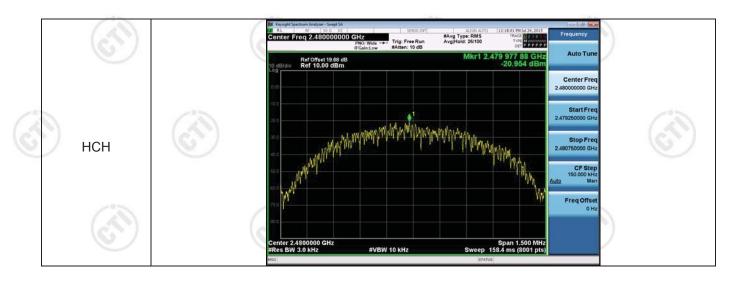


Appendix E): Power Spectral Density

Result Table

	Mode	Channel	PSD [dBm]	Verdict
9	BLE	LCH	-22.297	PASS
	BLE	MCH	-21.005	PASS
	BLE	НСН	-20.954	PASS

Test Graphs



Page 21 of 46

Report No.: EED32H000437-3 Page 22 of 46

Appendix F) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

		 The mains terminal disturba The EUT was connected to Stabilization Network) which power cables of all other un which was bonded to the gr for the unit being measured multiple power cables to a sexceeded. The tabletop EUT was place reference plane. And for flood horizontal ground reference 	AC power source three provides a 50Ω/50 points of the EUT were ound reference planed. A multiple socket or single LISN provided the dupon a non-metal or-standing arrangement.	ough a LISN 1 (Line μ H + 5Ω linear impersonmented to a sector in the same way as butlet strip was used the rating of the LISN lic table 0.8m above	e Impedar edance. To ond LISN is the LISI d to conn N was no
		Stabilization Network) which power cables of all other unwhich was bonded to the gray for the unit being measured multiple power cables to a sexceeded. 3) The tabletop EUT was place reference plane. And for floor	h provides a 50Ω/50µ nits of the EUT were ound reference plane d. A multiple socket of single LISN provided to ed upon a non-metal or-standing arrangem	μ H + 5Ω linear imperconnected to a sector in the same way as butlet strip was used the rating of the LISN lic table 0.8m above	edance. Tond LISN is the LISN if to conn in was not ethe ground.
		The tabletop EUT was placed reference plane. And for floor	or-standing arrangem		
		The test was performed with EUT shall be 0.4 m from the control of the contr	h a vertical ground re		
		reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was been all other units of the EUT at LISN 2. 5) In order to find the maximum all of the interface cables conducted measurement.	the boundary of the user LISNs mounted of the closest point associated equipment emission, the relation	unit under test and bon top of the ground into the LISN 1 are nent was at least 0.8 ive positions of equiversity.	bonded to d referer nd the El 3 m from uipment a
I	_imit:		Limit (c	dBuV)	
		Frequency range (MHz)	Quasi-peak	Average	
		0.15-0.5	66 to 56*	56 to 46*	
		0.5-5	56	46	
		5-30	60	50	1
		* The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is application.	(6.)	(6.)	− ⊧range 0

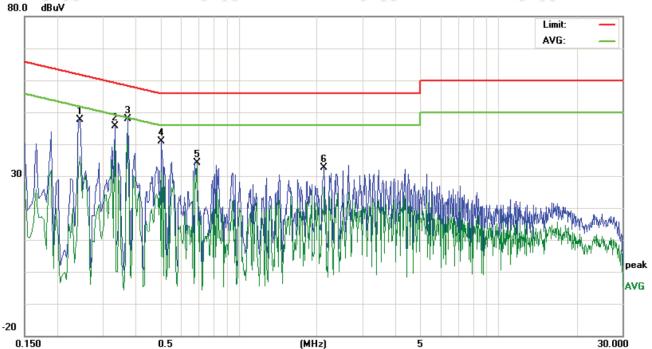
Report No.: EED32H000437-3 Page 24 of 46

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were

E10


detected.

Product : 10.1" 3G Phone Tablet Model/Type reference :

Power : AC 120V/60Hz Temperature : 22° C

Mode : Charging Humidity : 52%

Live line:

No.	Freq.		ling_Le dBuV)	evel	Correct Factor	M	easuren (dBuV)		Lir (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2460	37.45		26.30	9.90	47.35		36.20	61.89	51.89	-14.54	-15.69	Р	
2	0.3339	35.83		29.64	9.90	45.73		39.54	59.35	49.35	-13.62	-9.81	Р	
3	0.3740	37.86		33.80	9.90	47.76		43.70	58.41	48.41	-10.65	-4.71	Р	
4	0.5060	30.86		21.20	9.90	40.76		31.10	56.00	46.00	-15.24	-14.90	Р	
5	0.6900	24.29		23.83	9.90	34.19		33.73	56.00	46.00	-21.81	-12.27	Р	
6	2.1340	22.72		16.76	9.90	32.62		26.66	56.00	46.00	-23.38	-19.34	Р	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Neutral line: 80.0 dBuV Limit: AVG: peak AVG -20 0.150 0.5 (MHz) 5 30.000 Correct Reading_Level Measurement Limit Margin No. Freq. (dBuV) Factor (dBuV) (dB) (dBuV) MHz dB QP AVG QP Peak AVG QP AVG AVG P/F Comment peak 0.1660 46.09 55.99 49.26 65.15 55.15 -5.89 Ρ 39.36 9.90 -9.16 0.2180 41.33 38.79 9.90 52.89 -4.20 2 51.23 48.69 62.89 -11.66 0.2620 41.78 34.94 9.90 51.68 44.84 61.36 51.36 -9.68 -6.52 Ρ Ρ 0.5860 24.32 23.96 9.90 34.22 46.00 -21.78 -12.14 33.86 56.00 5 1.2740 21.95 18.90 9.90 31.85 28.80 56.00 46.00 -24.15 -17.20 Ρ

Notes:

3.8220 24.06

6

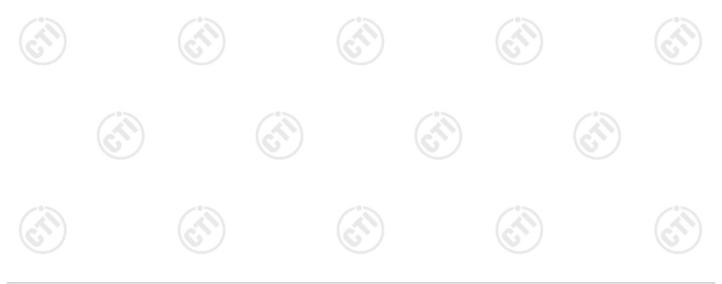
1. The following Quasi-Peak and Average measurements were performed on the EUT:

32.78

56.00

46.00

-22.04


-13.22

33.96

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

9.90

22.88

Page 26 of 46

E10

Product: 10.1" 3G Phone Tablet

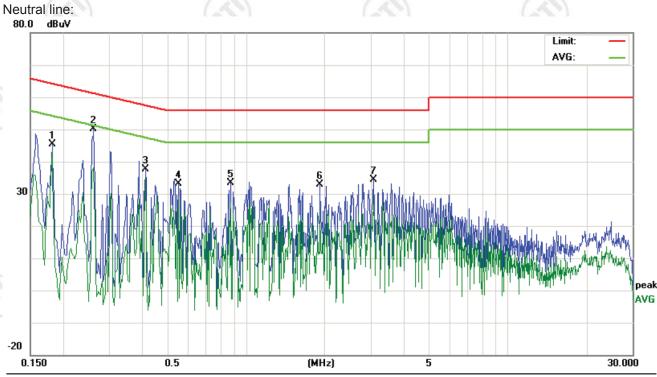
Power : AC 240V/60Hz Temperature : 22°

Mode : Charging Humidity : 52%

Live line: 80.0 dBuV

Model/Type reference

No.	Freq.		ling_Le dBuV)	vel	Correct Factor	Me	easurem (dBuV)		Lin (dB			rgin IB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2140	40.98		28.66	9.90	50.88		38.56	63.04	53.04	-12.16	-14.48	Р	
2	0.3620	28.60		25.37	9.90	38.50		35.27	58.68	48.68	-20.18	-13.41	Р	
3	0.5299	23.47		19.88	9.90	33.37		29.78	56.00	46.00	-22.63	-16.22	Р	
4	1.0060	24.07		22.32	9.90	33.97		32.22	56.00	46.00	-22.03	-13.78	Р	
5	1.9060	23.70		22.65	9.90	33.60		32.55	56.00	46.00	-22.40	-13.45	Р	
6	3.3460	19.98		16.61	9.90	29.88		26.51	56.00	46.00	-26.12	-19.49	Р	



 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

No.	Freq.		ling_Le dBuV)	evel	Correct Factor	М	easurem (dBuV)		Lir (dB	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1819	35.45		33.72	9.90	45.35		43.62	64.39	54.39	-19.04	-10.77	Р	
2	0.2620	40.22		28.26	9.90	50.12		38.16	61.36	51.36	-11.24	-13.20	Р	
3	0.4140	27.81		25.53	9.90	37.71		35.43	57.57	47.57	-19.86	-12.14	Р	
4	0.5540	23.27		18.96	9.90	33.17		28.86	56.00	46.00	-22.83	-17.14	Р	
5	0.8780	23.59		17.27	9.90	33.49		27.17	56.00	46.00	-22.51	-18.83	Р	
6	1.9260	22.87		14.75	9.90	32.77		24.65	56.00	46.00	-23.23	-21.35	Р	
7	3.0740	24.44		19.63	9.90	34.34		29.53	56.00	46.00	-21.66	-16.47	Р	

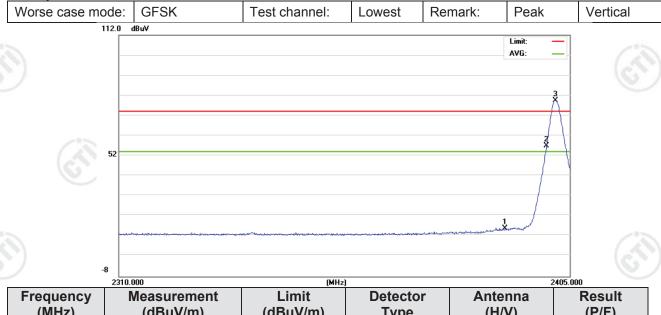
Notes:

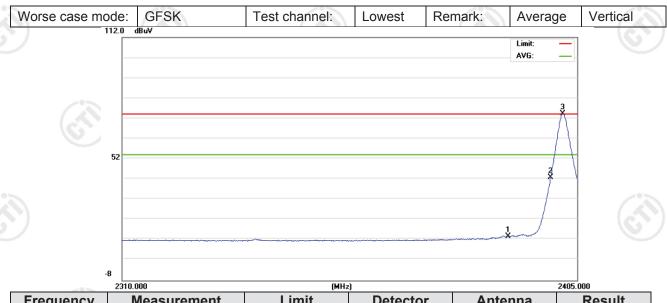
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32H000437-3 Page 28 of 46

Appendix H) Restricted bands around fundamental frequency (Radiated)

	Б : 6 1						
	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak	130
			Peak	1MHz	3MHz	Peak	
		Above 1GHz	Peak	1MHz	10Hz	Average	
9	Test Procedure:	a. The EUT was placed on at a 3 meter semi-anech determine the position ob. The EUT was set 3 meter was mounted on the top c. The antenna height is variete determine the maximum polarizations of the antend. For each suspected emit the antenna was tuned to table was turned from 0	the top of a ro- loic camber. The f the highest ra- ers away from the of a variable-haried from one value of the figure nna are set to ussion, the EUT o heights from degrees to 360	ne table wand idiation. The interfer deight anter meter to found it is a strength make the name arran in meter to degrees to	ence-receinna tower. ur meters n. Both horneasurement ged to its value of find the i	above the ground above the ground and vent. worst case are and the rotate maximum rea	o, whic ound t ertical ad thea
		e. The test-receiver system Bandwidth with Maximur	n was set to Pe m Hold Mode.	ak Detect I	Function a	nd Specified	
		f. Place a marker at the er frequency to show comp bands. Save the spectru for lowest and highest ch	oliance. Also me ım analyzer plo	easure any	emission	s in the restric	
		frequency to show comp bands. Save the spectru	oliance. Also man analyzer plot annel The as below: The is the test site of the change form and table west channel, the channel, the channel are perfound the X ax	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, iis positioni	emissions for each por form Semi- metre to 1 tre). channel Y, Z axis p ng which i	s in the restriction of the control	ambei ove
)	Limit:	frequency to show complete bands. Save the spectrus for lowest and highest characteristics. Above 1GHz test procedurg. Different between above to fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measurem Transmitting mode, and j. Repeat above procedure.	oliance. Also man analyzer plot annel re as below: e is the test site per change form meter and table vest channel, the inents are performent and the X axes until all frequents.	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, is positioni uencies me	emissions for each position of each position of the community of the commu	s in the restriction of the control	ambei ove
	Limit:	frequency to show complete bands. Save the spectrus for lowest and highest characteristics. Above 1GHz test procedures. Different between above to fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measurem Transmitting mode, and	oliance. Also man analyzer plot annel The as below: The is the test site of the change form and table west channel, the channel, the channel are perfound the X ax	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 med the Highest rmed in X, tis positioni uencies med m @3m)	remissions for each portion Semi-metre to 1 tre). It channel Y, Z axis programming which is easured ware reached to the semi-metre to 2 tree to 2	Anechoic Ch .5 metre(Abo positioning for t is worse cas as complete.	ambe ove
	Limit:	frequency to show complete bands. Save the spectrum for lowest and highest control of the same state of lowest and highest control of the same state of the	oliance. Also man analyzer plot annel re as below: e is the test site over change form meter and table vest channel, to the test site of the test sare performents are performents are performent the X axions and the X axions until all frequency. Limit (dBuV/40.0)	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met he Highest rmed in X, its positioni uencies me m @3m)	remissions for each portion Semi-metre to 1 tre). channel Y, Z axis pag which it easured war Rer Quasi-pe	Anechoic Ch. 5 metre(Abordistioning for t is worse cases complete.	ambe ove
	Limit:	frequency to show complete bands. Save the spectrus for lowest and highest characters of lowest and highest characters. Above 1GHz test procedure. G. Different between above to fully Anechoic Chamber 18GHz the distance is 1. h. Test the EUT in the lower in the radiation measurement. Transmitting mode, and j. Repeat above procedure. Frequency 30MHz-88MHz 88MHz-216MHz	oliance. Also man analyzer plot annel re as below: e is the test site per change form meter and table vest channel, the inents are performents are performental frequents. Limit (dBuV/40.0.0.43.5.	easure any ot. Repeat for table 0.8 e is 1.5 met the Highest rmed in X, tis positioni uencies med m @3m)	remissions or each por com Semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa Rer Quasi-pe	Anechoic Ch .5 metre(Abo cositioning for t is worse cas as complete. mark eak Value eak Value	ambe ove
	Limit:	frequency to show complete bands. Save the spectrum for lowest and highest control of the same state of lowest and highest control of the same state of the	oliance. Also man analyzer plot annel re as below: e is the test site over change form meter and table vest channel, to the test site of the test sare performents are performents are performent the X axions and the X axions until all frequency. Limit (dBuV/40.0)	easure any ot. Repeat for table 0.8 e is 1.5 met the Highest rmed in X, its positioniquencies med m @3m)	rom Semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe	Anechoic Ch. 5 metre(Above and mocoositioning for t is worse cases complete. mark eak Value eak Value	ambe ove
	Limit:	frequency to show complete bands. Save the spectrum for lowest and highest classification. Save the spectrum for lowest and highest classification. Save the spectrum of the second of t	oliance. Also man analyzer plot annel re as below: e is the test site over change form meter and table vest channel, the interest are performents are performents are performent all frequents (dBuV/40.043.54.06).	easure any ot. Repeat for table 0.8 e is 1.5 met in X, is positioni uencies me m @3m)	remissions for each portion of each portion of each portion of the control of the	Anechoic Ch .5 metre(Abo cositioning for t is worse cas as complete. mark eak Value eak Value eak Value	ambe ove
	Limit:	frequency to show complete bands. Save the spectrum for lowest and highest control of the same state of lowest and highest control of the same state of the	oliance. Also man analyzer plot annel re as below: e is the test site of	easure any ot. Repeat for table 0.8 e is 1.5 met he Highest rmed in X, tis positioni uencies med m @3m)	remissions for each por each each each each each each each each	Anechoic Ch. 5 metre(Above and mocoositioning for t is worse cases complete. mark eak Value eak Value	ambei ove

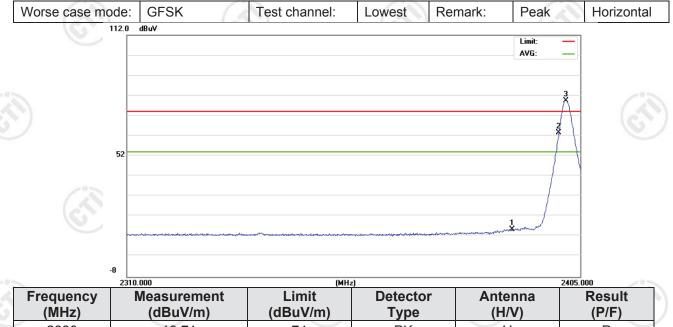



Page 29 of 46

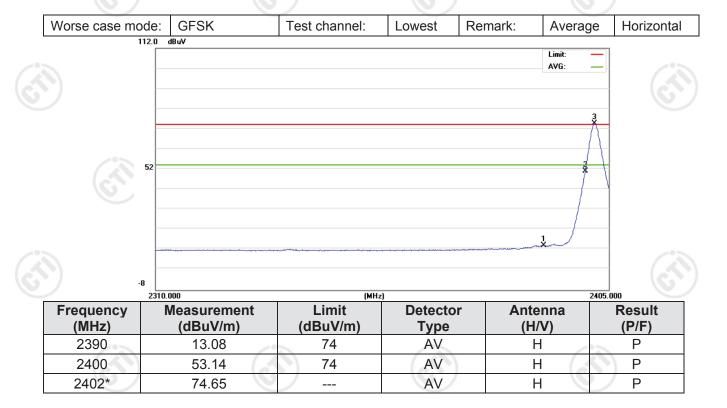
Test plot as follows:

	2310.000	(MI12,	J	2403.000			
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)		
2390	14.78	74	PK	V	Р		
2400	56.21	74	PK	V	Р		
2402*	79.57	/	PK	V	Р		

^{*:} fundamental frequency

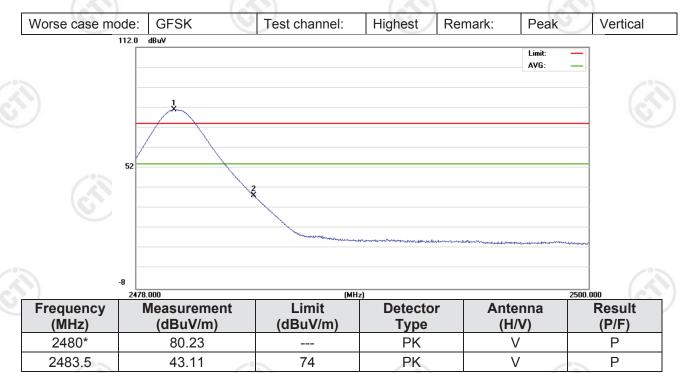

and the latest section of the latest section	2310.000	(PILIZ	·J	2403.000			
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)		
2390	12.12	74	AV	V	Р		
2400	43.22	74	AV	V	Р		
2402*	74.91		AV	V	Р		

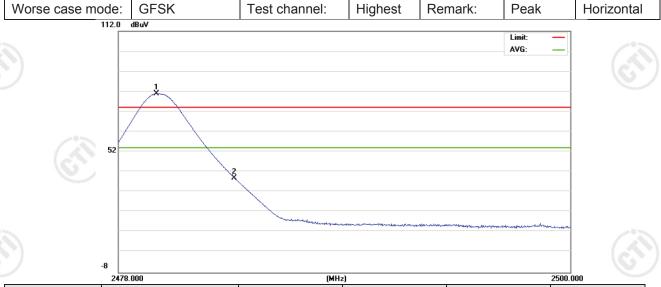
^{*:} fundamental frequency



(MHz)	(dBuV/m)	(dBuV/m)	Type	(H/V)	(P/F)
2390	13.71	74	PK	Н	Р
2400	56.24	74	PK	Н	Р
2402*	79 55		PK	Н	Р

^{*:} fundamental frequency





Page 31 of 46

^{*:} fundamental frequency

Frequency (MHz)	Measurement (dBuV/m)	nt Limit Detector (dBuV/m) Type		Antenna (H/V)	Result (P/F)
2480*	80.78		PK	H /	Р
2483.5	41.18	74	PK	Н	P

^{*:} fundamental frequency

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32H000437-3 Page 32 of 46

Appendix I) Radiated Spurious Emissions

Receiver Setup:						_
·	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	6
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	16
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak	
	Ab av a 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
	4.31	W 241		40.00	,	

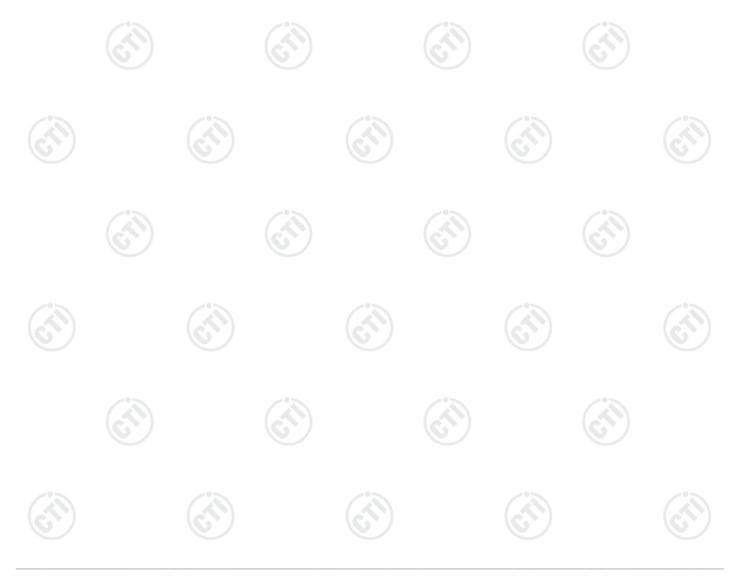
Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.



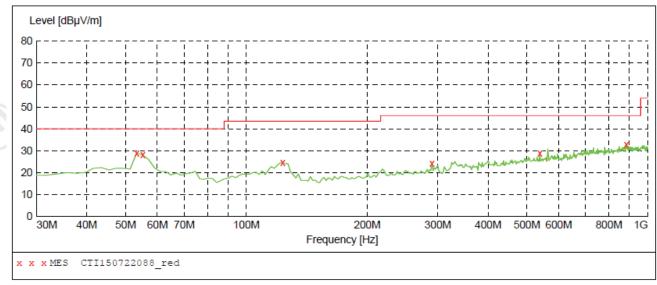
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	(3)	30
	1.705MHz-30MHz	30	-	(0)	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32H000437-3 Page 34 of 46

Radiated Spurious Emissions test Data:

All the modes of operation (X, Y, Z) were investigated and the worst-case emissions are reported.


A. Below 30MHz:

No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

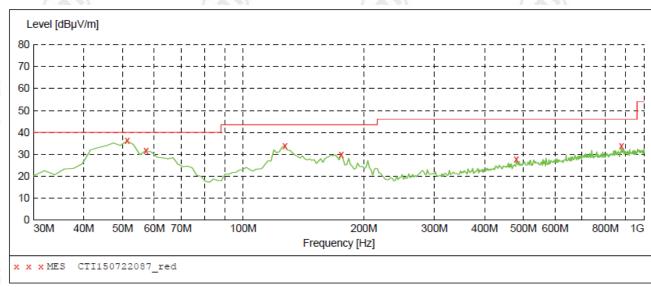
B. $30MHz \sim 1GHz$:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel (GFSK mode) are chosen as representative in below:

H:

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
53.280000	28.90	16.1	40.0	11.1		100.0	300.00	HORIZONTAL
55.220000	28.10	15.8	40.0	11.9		100.0	169.00	HORIZONTAL
123.120000	24.70	13.0	43.5	18.8		100.0	101.00	HORIZONTAL
289.960000	24.10	15.7	46.0	21.9		100.0	290.00	HORIZONTAL
538.280000	28.90	21.7	46.0	17.1		100.0	181.00	HORIZONTAL
883.600000	32.70	26.5	46.0	13.3		100.0	118.00	HORIZONTAL





Page 35 of 46

Frequency MHz				Margin dB	Height cm	Azimuth deg	Polarization
51.340000	36.20	16.3	40.0	3.8	 100.0	186.00	VERTICAL
57.160000	31.70	15.6	40.0	8.3	 100.0	134.00	VERTICAL
127.000000	33.90	12.7	43.5	9.6	 100.0	282.00	VERTICAL
175.500000	29.90	12.7	43.5	13.6	 100.0	347.00	VERTICAL
480.080000	27.90	21.0	46.0	18.1	 100.0	94.00	VERTICAL
877.780000	33.80	26.5	46.0	12.2	 100.0	67.00	VERTICAL

Report No.: EED32H000437-3 Page 36 of 46

C. Above 1GHz:

Test Results-(Measurement Distance: 3m)_Channel low_2402MHz_GFSK mode:

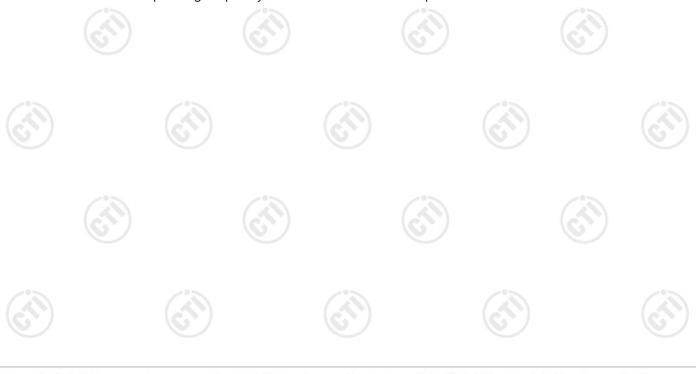
Frequency Measurement (MHz) (dBµV/m)		Limit (dBµV/m)	Detector Type	Antenna (H/V)	Result (P/F)
4804.0	38.01	74	PK	Н	Р
4804.0	40.21	74	PK	V	P W

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m) Channel middle 2440MHz GFSK mode:

Frequency (MHz)	Measurement (dBµV/m)	Limit (dBµV/m)	Detector Type	Antenna (H/V)	Result (P/F)	
4880.0	40.28	74	PK	Н	Р	
4880.0	40.69	74	PK	V	Р	

^{*:} fundamental frequency

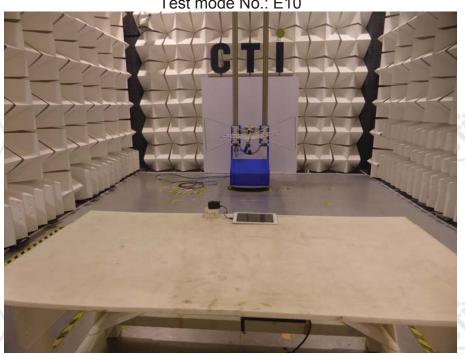

Test Results-(Measurement Distance: 3m)_Channel high_2480MHz_GFSK mode:

Frequency (MHz)	Measurement (dBμV/m)	Limit (dBµV/m)	Detector Type	Antenna (H/V)	Result (P/F)
4960.0	41.11	74	PK	н	Р
4960.0	41.19	74	PK	V	Р

^{*:} fundamental frequency

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. No emission found from 18GHz to 25GHz.
- 3. All outside of operating frequency band and restricted band specified are below 15.209.



PHOTOGRAPHS OF TEST SETUP

Test mode No.: E10

Radiated spurious emission Test Setup-1 (Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 38 of 46

Conducted emission Test Setup

Report No.: EED32H000437-3 Page 39 of 46

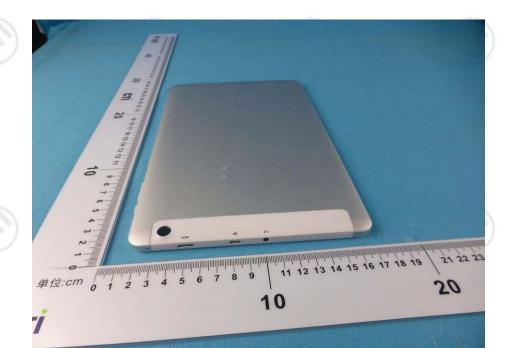
PHOTOGRAPHS OF EUT Constructional Details

View of external EUT-2

Page 40 of 46

View of external EUT-3

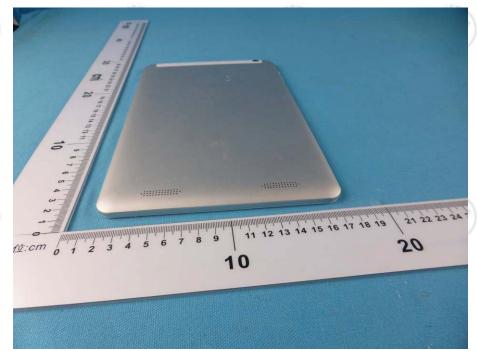
View of external EUT-4



Page 41 of 46

View of external EUT-5

View of external EUT-6





Page 42 of 46

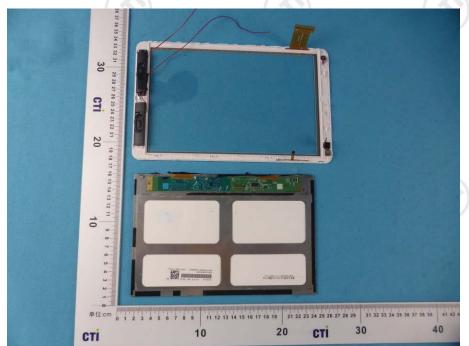
View of external EUT-7

View of internal EUT-1

Page 43 of 46

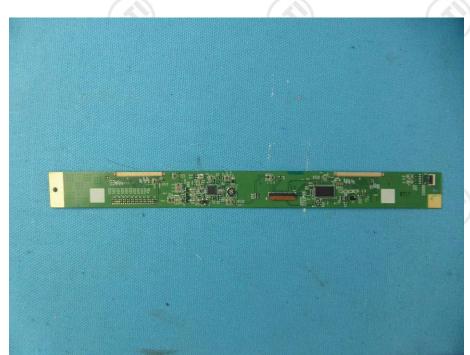
View of internal EUT-2

View of internal EUT-3



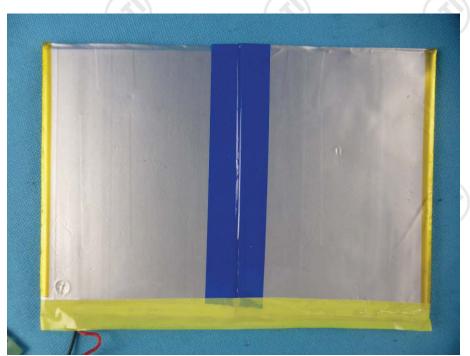
View of internal EUT-4

View of internal EUT-5



View of internal EUT-6

View of internal EUT-7



View of internal EUT-8

View of internal EUT-9

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.