

Prepared for:

Proexpress Distributor LLC

11011 GREENWOOD AVE.N APT 5, SEATTLE, WA 98103, United States

Prepared by: **Centre Testing International (Shenzhen) Corporation** Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan District, Shenzhen, China TEL: +86-755-3368 3919 FAX: +86-755-3368 3385 Tested by: Reviewed by: Date Jul. 24, 2015 Sheek Luo Lab supervisor Check No.: 1727804505 **Report Seal**

Page 2 of 72

2 Version

1	Version No.	Date	Description	(°)	
(00	Jul. 24, 2015	Original		(\mathcal{C}^{*})
			(A)	(A)	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Model No.: E10, E10X, E100, E10 PLUS, E10X PLUS, E100X, E100X PLUS, 1855

Only the Model E10 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for all above models. Only different on outer color and model names.

Ì

Page 4 of 72

1	COVER PAGE		•••••	•••••
2	VERSION			
3	TEST SUMMARY			
4	CONTENT	<u>v</u>		<u> </u>
5	TEST REQUIREMENT			
Ĩ	5.1 TEST SETUP			
	5.1.1 For Conducted test setup			
	5.1.2 For Radiated Emissions tes			
	5.1.3 For Conducted Emissions test			
	5.2 TEST ENVIRONMENT			
	5.3 TEST CONDITION			
6	GENERAL INFORMATION			
0				
	6.1 CLIENT INFORMATION			
	6.2 GENERAL DESCRIPTION OF EUT			
	6.3 PRODUCT SPECIFICATION SUBJE			
	6.4 DESCRIPTION OF SUPPORT UNIT			
	6.5 TEST LOCATION			
	6.6 TEST FACILITY			
	6.7 DEVIATION FROM STANDARDS			
	6.8 ABNORMALITIES FROM STANDAR			
	6.9 OTHER INFORMATION REQUESTE			
	6.10 MEASUREMENT UNCERTAINTY (S			
7	EQUIPMENT LIST			
8	RADIO TECHNICAL REQUIREMEN	NTS SPECIFICATION	<u> </u>	
	Appendix A): Conducted Average C	utput Power		
	Appendix B): 6dB Occupied Bandwi			
	Appendix C): Band-edge for RF Col			
	Appendix D): RF Conducted Spurio			
	Appendix E): Power Spectral Densit	ty		
	Appendix F) Antenna Requirement.		~ ~ ~	
	Appendix G) AC Power Line Condu	cted Emission		
	Appendix H) Restricted bands arour			
	Appendix I) Radiated Spurious Emis	ssions		

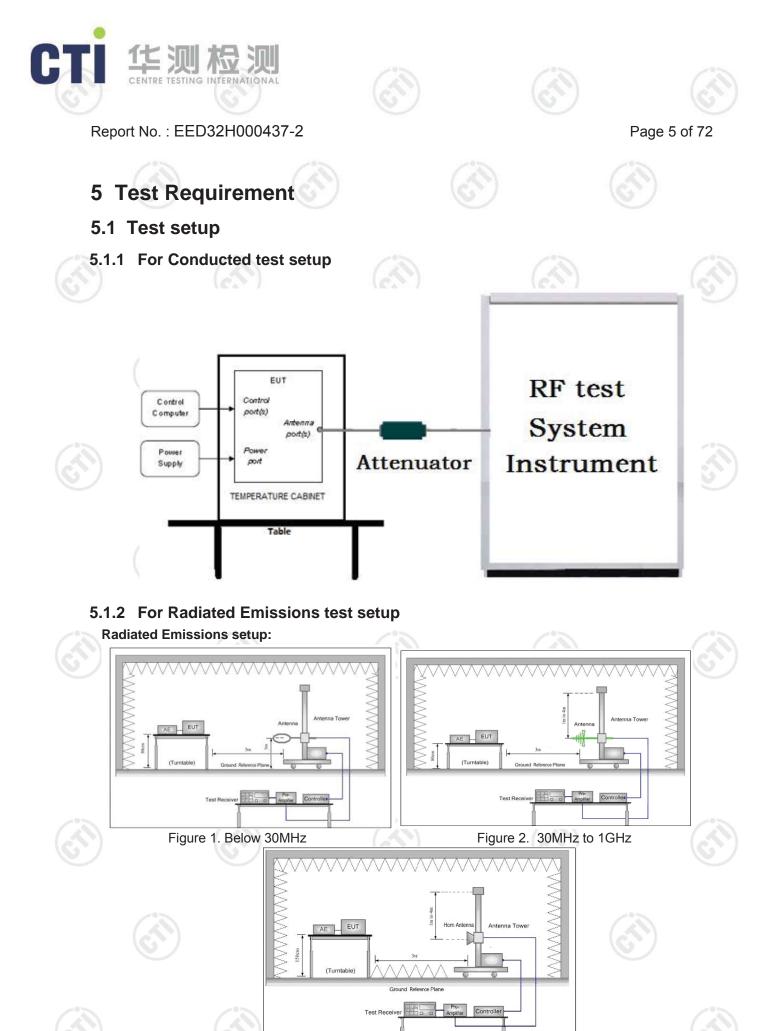
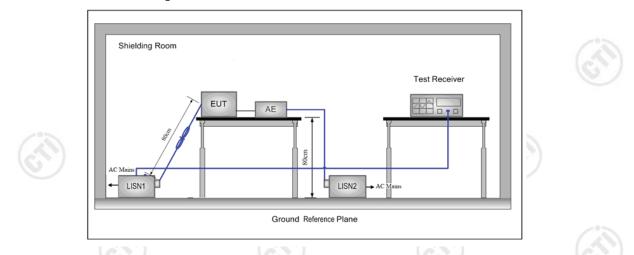
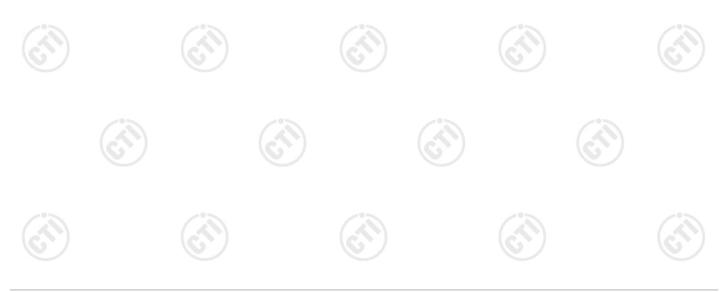


Figure 3. Above 1GHz



Page 6 of 72

5.1.3 For Conducted Emissions test setup Conducted Emissions setup



5.2 Test Environment

Operating Environment:							
Temperature:	25.0 °C	~					
Humidity:	53 % RH						
Atmospheric Pressure:	995mbar		V				

5.3 Test Condition

est channel:						
Test Mode	Ty/Dy	RF Channel				
	Tx/Rx	Low(L)	Middle(M)	High(H)		
000.11 h/s/s/(11700)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11		
802.11b/g/n(HT20)		2412MHz	2437MHz	2462MHz		
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.					

	Test mode	0									
					Powe	er (dBm) fo	r Data Rates	(Mbps)			
	Wi-Fi	Channel	1	2	5.5	11	/	/	/	/	
		1	3.32	3.29	3.31	3.37	/	/	/	1]
1	802.11b	6	3.82	3.83	3.82	3.87	/	I	/	1	1
6		11	3.89	3.98	4.00	4.01	/	(Cr)	/	1	5)
		Channel	6	9	12	18	24	36	48	54	
	000 44	1	3.43	3.42	3.34	3.31	3.23	3.22	3.19	3.18	1
	802.11g	6	3.87	3.84	3.82	3.78	3.77	3.71	3.66	3.65	1
		11	4.32	4.31	4.29	4.21	4.12	4.10	4.09	4.03	1
		Channel	6.5	13	19.5	26	39	52	58.5	65	
	802.11n	1	3.42	3.42	3.41	3.39	3.32	3.31	3.29	3.19	1
13	(HT20)	6	3.75	3.72	3.70	3.72	3.69	3.65	3.54	3.49	1
8		11	3.77	3.76	3.74	3.71	3.69	3.62	3.52	3.45	(\mathbf{S})
		Channel	13.5	27	40.5	54	81	108	121.5	135	
	802.11n	1	3.09	3.08	3.04	2.98	2.87	2.84	2.83	2.81	1
	(HT40)	4	3.75	3.72	3.71	2.69	2.59	2.55	2.51	2.49]
		7	3.78	3.73	3.70	2.66	2.55	2.54	2.49	2.43]

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n (HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

Page 8 of 72

6.1 Client Information

Applicant:	Proexpress Distributor LLC
Address of Applicant:	11011 GREENWOOD AVE.N APT 5, SEATTLE, WA 98103, United States
Manufacturer:	Proexpress Distributor LLC
Address of Manufacturer:	11011 GREENWOOD AVE.N APT 5, SEATTLE, WA 98103, United States

6.2 General Description of EUT

Product Name:	10.1" 3G Phone Tablet	1	10
Model No.(EUT):	E10	(C ^N)	(\mathcal{S})
Add Mode No.:	E10X, E100, E10 PLUS	6, E10X PLUS, E100X, E100X P	LUS, 1855
Trade Mark:	Dragon Touch, KingPa	d, KingSlim, SureTouch	
EUT Supports Radios application	GSM/GPRS 1900: Tx:1 Rx:1930.20 – 1989.80M WCDMA/HSDPA Band Tx:826.40 -846.60MHz WCDMA/HSDPA Band	d V: ;Rx: 871.40 – 891.60MHz d II: /IHz;Rx:1932.40 – 1987.60MHz dz	893.80MHz
	IEEE 802.11b/g/n(HT40	0): 2422 – 2452MHz	
Power Supply:	Adapter:	Input: AC 100V-240V 50-60Hz Output: DC 5.0V 2000mA	
	Battery:	DC3.7V (Li-on Rechargeable B	Battery)
Sample Received Date:	May 09, 2015		
Sample tested Date:	May 09, 2015 to Jul. 24	·, 2015	

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz	
	IEEE 802.11n(HT40): 2422MHz to 2452MHz	
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels	
	IEEE 802.11n HT40: 7 Channels	6
Channel Separation:	5MHz	S
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)	
	IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)	
	IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM,	
	QPSK,BPSK)	
Sample Type:	Portable production	
Antenna Type:	Integral	
Antenna Gain:	0dBi	13
(<i>C</i> 5) ((A) (A)	(2)

6	<u>)</u>		(6	>)	6	-(*		- (d d)
Operation	Freque	ency ead	ch of char	nel(802.11b/g/n	<u>HT20)</u>	/		1	Ś	
Channel	Freq	uency	Channe	I Frequency	Channel	Freq	uency	Chan	nel	Frequency
1	1 2412MHz		4	2427MHz	7	2442MHz		10)	2457MHz
2	2417	7MHz	5	2432MHz	8	2447	7MHz	11		2462MHz
3	3 2422MHz		6	2437MHz	9	2452MHz		6		e
Operation	Freque	ency ead	ch of char	nel(802.11n HT	10)					
Channe		Freque	ency	Channel	Frequence	су	Chan	nel	F	requency
1 2422M		ИНz	4	2437MHz 7		9	6	2452MHz		
2	2 2427M		ИНz	5	2442MHz					
3		2432	ЛНz	6	2447MH	z				

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International (Shenzhen) Corporation

Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan District, Shenzhen, China Telephone: +86 (0) 755 33683668Fax:+86 (0) 755 33683385 No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3061.01

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International (Shenzhen) Corporation EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International (Shenzhen) Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

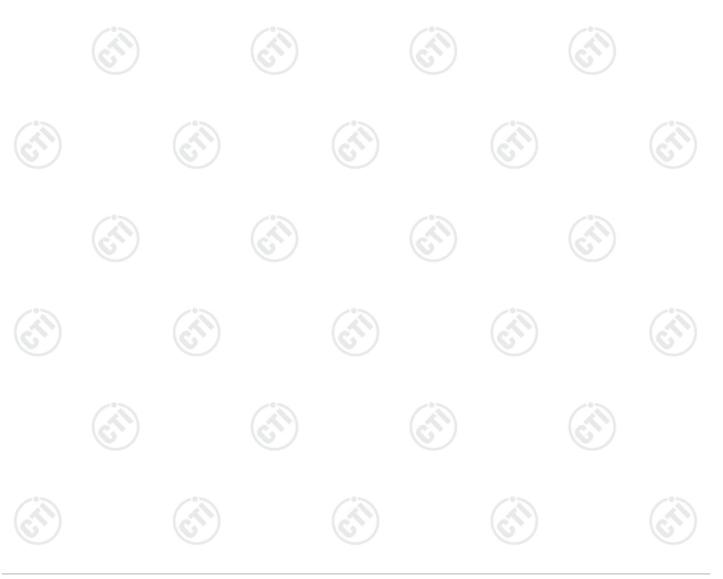
The Radiation 3 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer


None.

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
0		0.31dB (30MHz-1GHz)	
2	RF power, conducted	0.57dB (1GHz-18GHz)	
3	Dedicted Courieue emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
4	Conduction omission	3.6dB (9kHz to 150kHz)	
4	Conduction emission	3.2dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	2.8%	
7	DC power voltages	0.025%	

Page 12 of 72

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002	(F)	01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

	Radiated	Spurious Emission	& Radiated Er	nission	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3	/	06-02-2015	06-01-2016
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-617	07-14-2015	07-13-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2015	07-07-2016
Loop Antenna	ETS 🕓	6502	00071730	07-23-2015	07-22-2016
Spectrum Analyzer	R&S	FSP40	100416	07-09-2015	07-08-2016
Receiver	R&S	ESCI	100435	07-09-2015	07-08-2016
Multi device Controller	maturo	NCD/070/10711112	/	01-13-2015	01-12-2016
LISN	schwarzbeck	NNBM8125	81251547	07-09-2015	07-08-2016
LISN	schwarzbeck	NNBM8125	81251546	07-09-2015	07-08-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	5190	07-10-2015	07-09-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM1 2-0398-002	(\mathfrak{S})	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL12- 0395-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL12- 0393-001	(01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL12- 0396-002		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL12- 0394-001		01-13-2015	01-12-2016

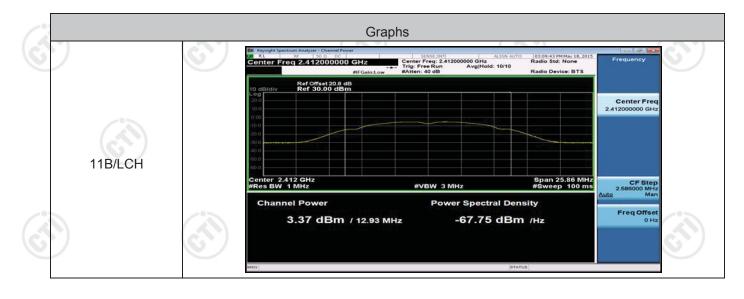
8 Radio Technical Requirements Specification

Reference documents for testing:

0	No.	Identity	Document Title
N)	1	FCC Part15C (2014)	Subpart C-Intentional Radiators
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

SI NESUIIS LISI.	1 2 2	(P. 7)		2 A A
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)


Page 15 of 72

Appendix A): Conducted Average Output Power

Mode	Channel	Meas.Level [dB	m]	Av.Power [dBm]	Verdict
11B	LCH	3.37		3.37	PASS
11B	MCH	3.87		3.87	PASS
11B	НСН	4.01		4.01	PASS
11G	LCH	3.43		3.43	PASS
11G	MCH	3.87	(2)	3.87	PASS
11G	НСН	4.32	e	4.32	PASS
11N20SISO	LCH	3.42		3.42	PASS
11N20SISO	MCH	3.75		3.75	PASS
11N20SISO	НСН	3.77		3.77	PASS
11N40SISO	LCH	3.09		3.09	PASS
11N40SISO	MCH	3.75		3.75	PASS
11N40SISO	НСН	3.78	202	3.78	PASS

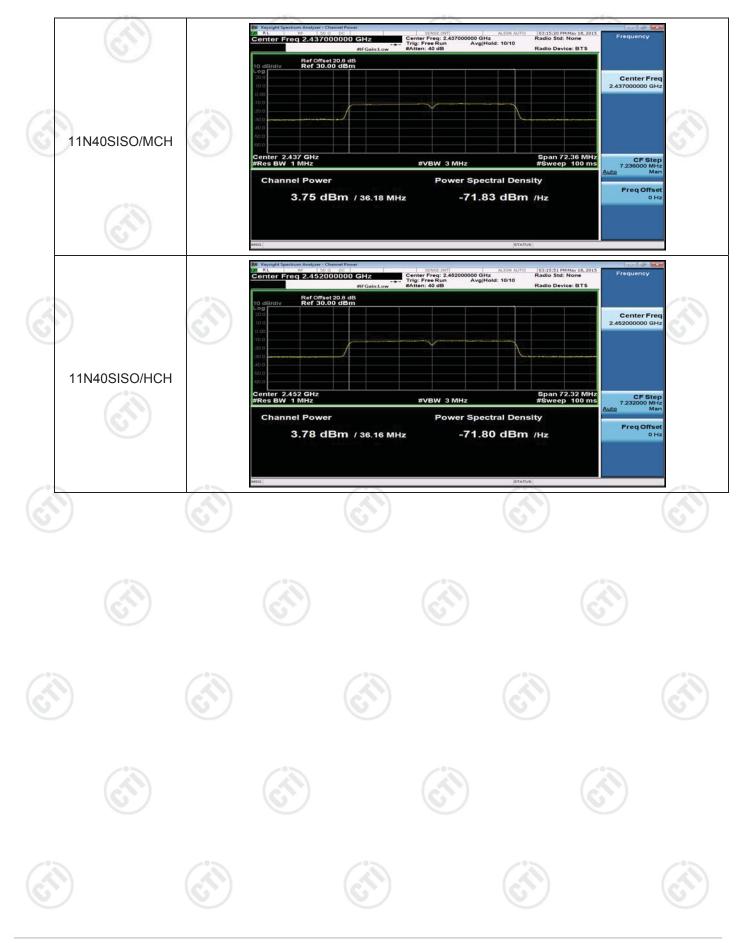
Test Graph



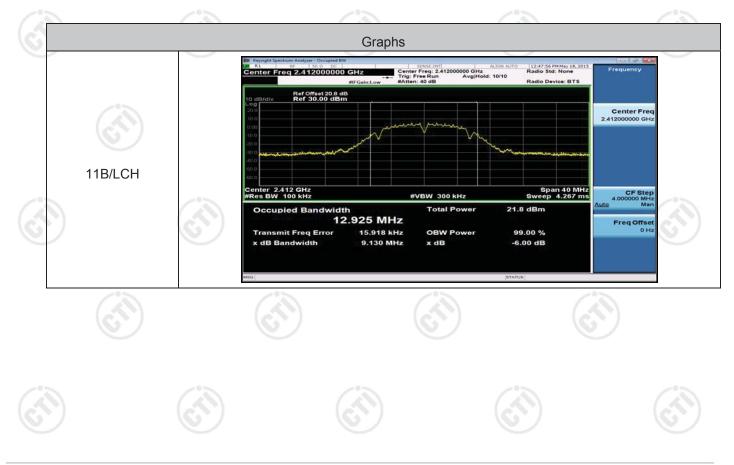
Page 16 of 72

Page 17 of 72

Page 18 of 72



Page 19 of 72



Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	9.13	12.93	PASS
11B	MCH	10.05	12.35	PASS
11B	НСН	9.13	12.94	PASS
11G	LCH	16.38	16.44	PASS
11G	MCH	16.40	16.44	PASS
11G	НСН	16.38	16.48	PASS
11N20SISO	LCH	17.60	17.62	PASS
11N20SISO	MCH	17.60	17.62	PASS
11N20SISO	нсн	17.59	17.62	PASS
11N40SISO	LCH	36.35	36.22	PASS
11N40SISO	MCH	36.30	36.18	PASS
11N40SISO	HCH	36.16	36.16	PASS
	11B 11B 11B 11G 11G 11G 11G 11N20SISO 11N20SISO 11N20SISO 11N20SISO 11N40SISO 11N40SISO	11B LCH 11B MCH 11B HCH 11B HCH 11G LCH 11G MCH 11G HCH 11G HCH 11G HCH 11N20SISO LCH 11N20SISO MCH 11N20SISO HCH 11N40SISO LCH 11N40SISO MCH	11B LCH 9.13 11B MCH 10.05 11B HCH 9.13 11G LCH 16.38 11G MCH 16.40 11G HCH 16.38 11G HCH 16.38 11G HCH 16.38 11N20SISO LCH 17.60 11N20SISO MCH 17.59 11N40SISO LCH 36.35 11N40SISO MCH 36.30	11B LCH 9.13 12.93 11B MCH 10.05 12.35 11B HCH 9.13 12.94 11G LCH 16.38 16.44 11G MCH 16.38 16.44 11G MCH 16.38 16.44 11G MCH 16.38 16.44 11G MCH 16.38 16.44 11G HCH 16.38 16.44 11G HCH 16.38 16.48 11N20SISO LCH 17.60 17.62 11N20SISO MCH 17.59 17.62 11N20SISO HCH 17.59 17.62 11N40SISO LCH 36.35 36.22 11N40SISO MCH 36.30 36.18

Test Graph

Page 21 of 72

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

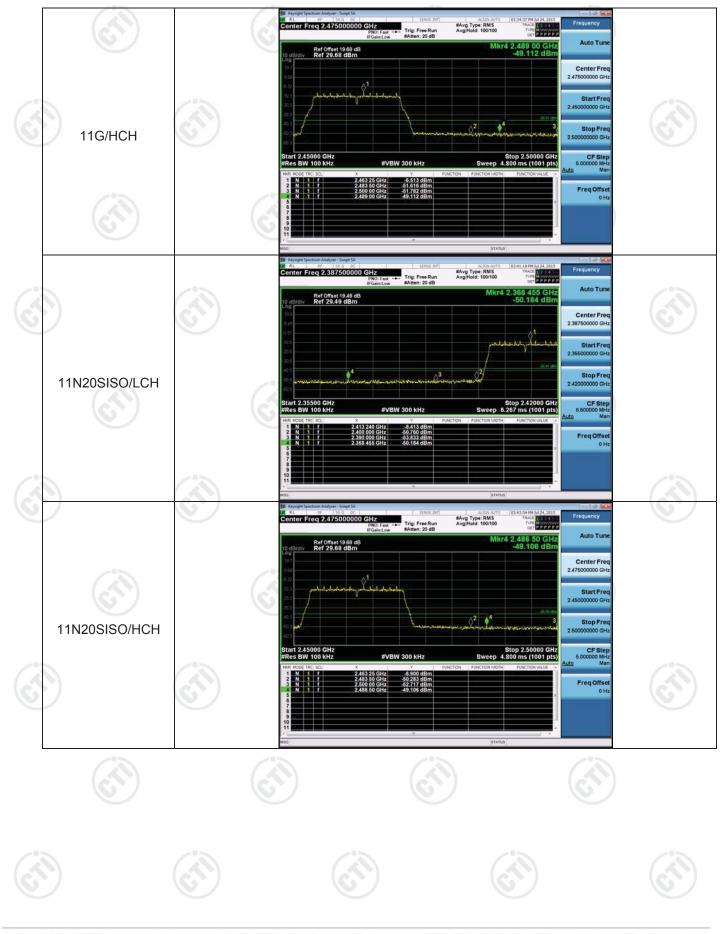
Page 22 of 72

Page 23 of 72

Page 24 of 72

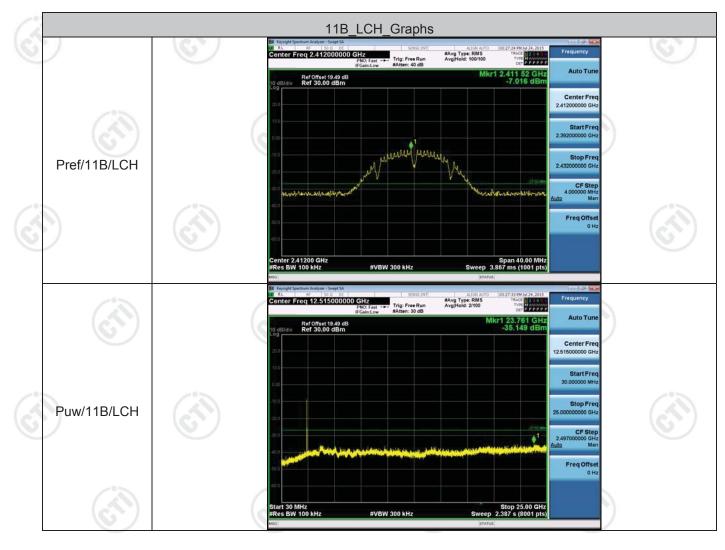
Page 25 of 72

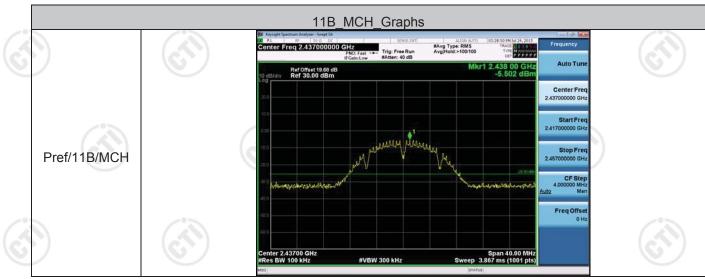
Appendix C): Band-edge for RF Conducted Emissions



Page 26 of 72

Page 27 of 72

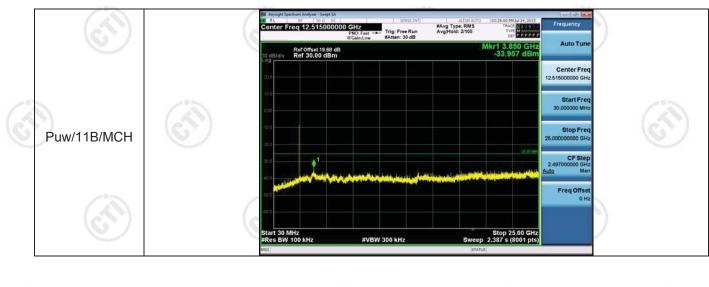




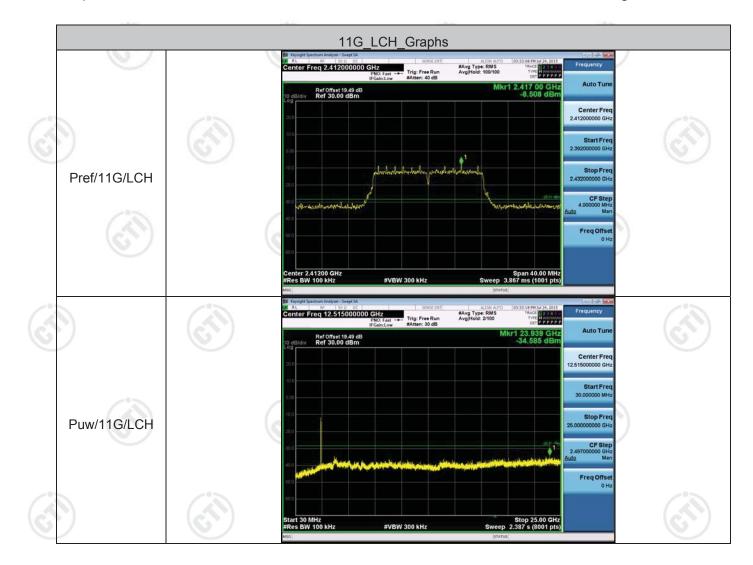
Page 28 of 72

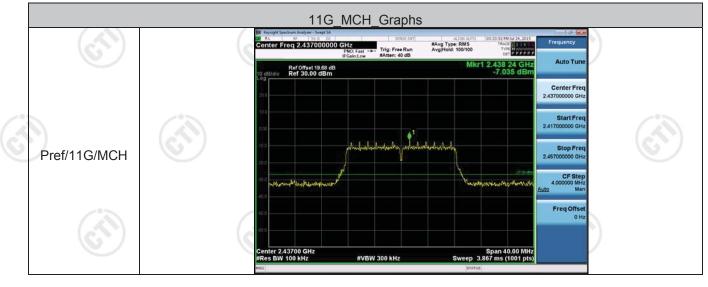
Appendix D): RF Conducted Spurious Emissions

Test Graph

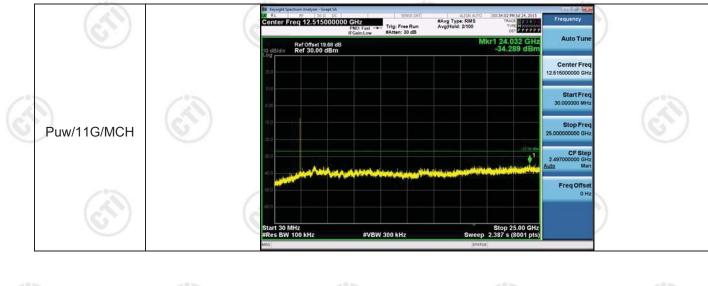


Page 29 of 72

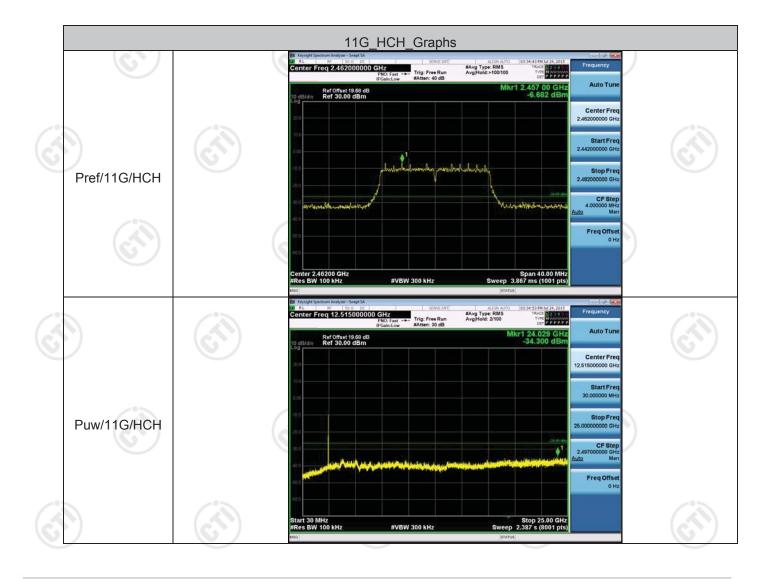


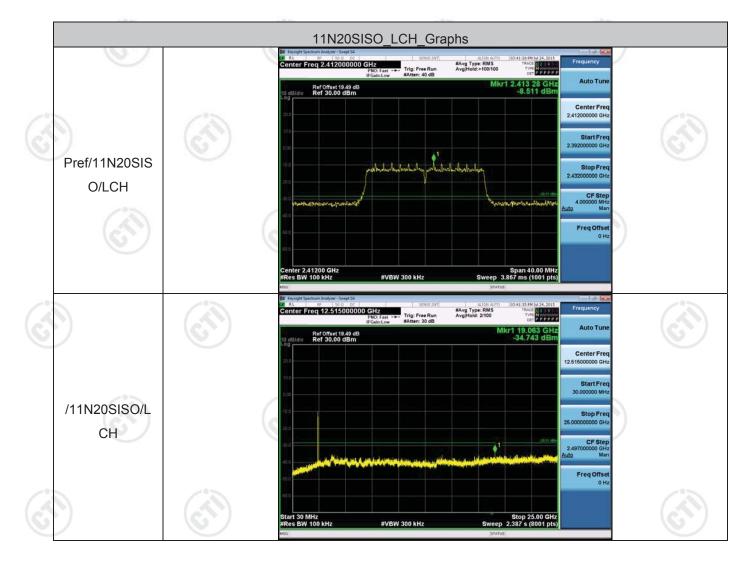


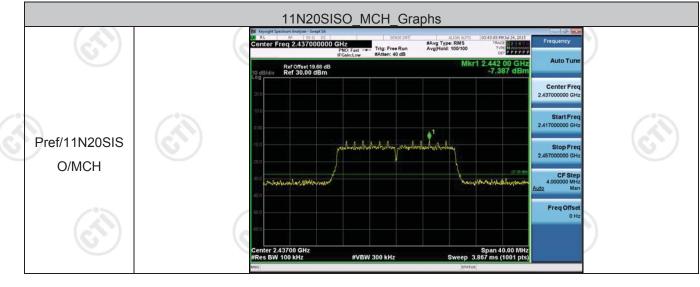
Page 30 of 72



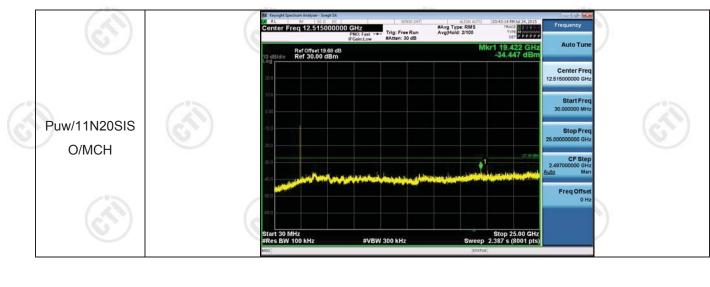
Page 31 of 72



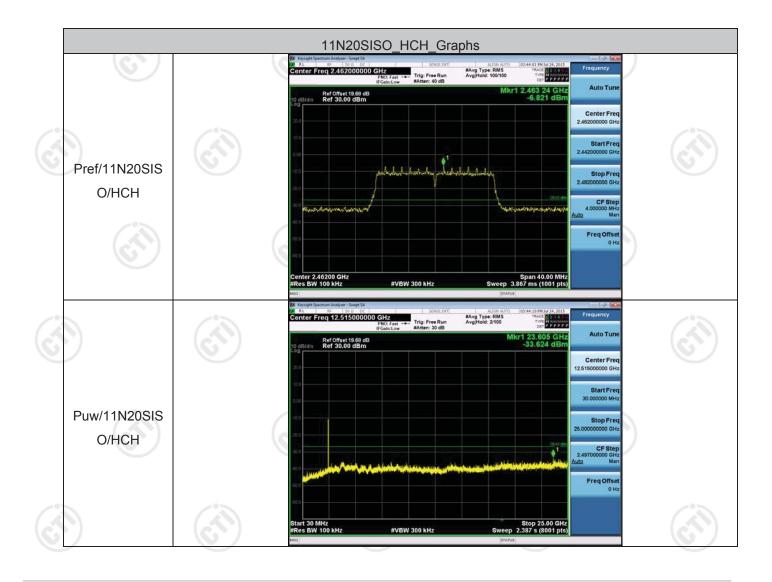


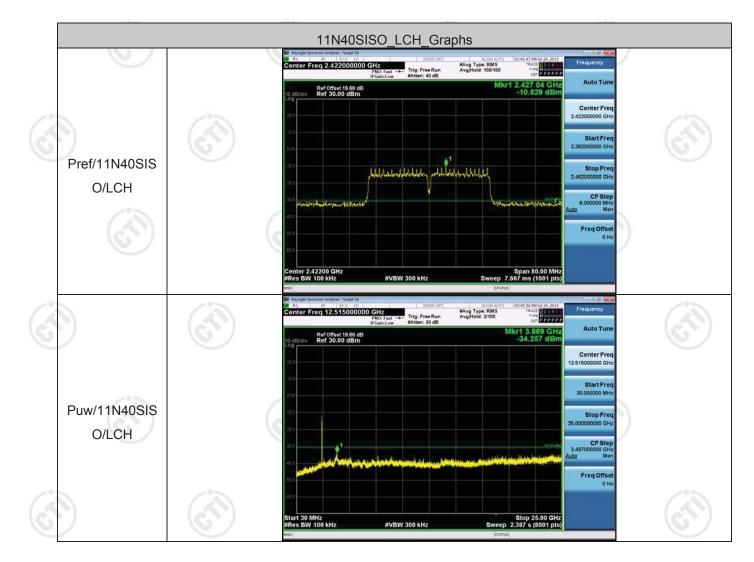


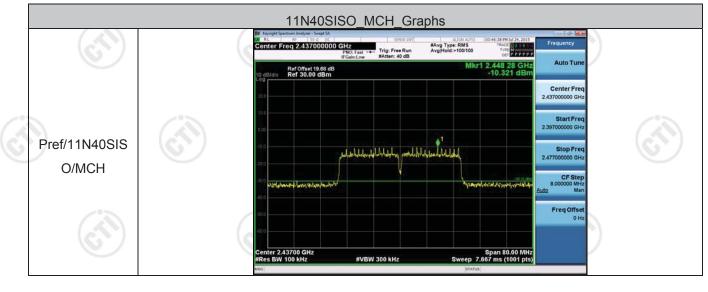
Page 32 of 72



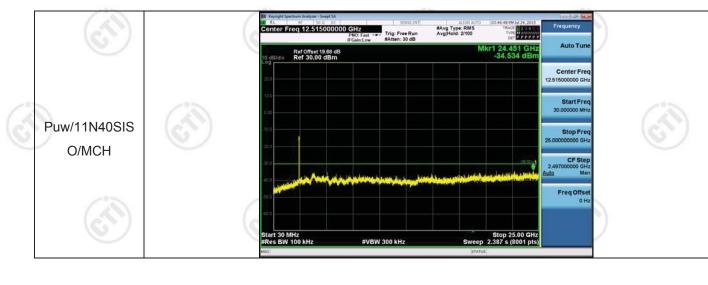
Page 33 of 72



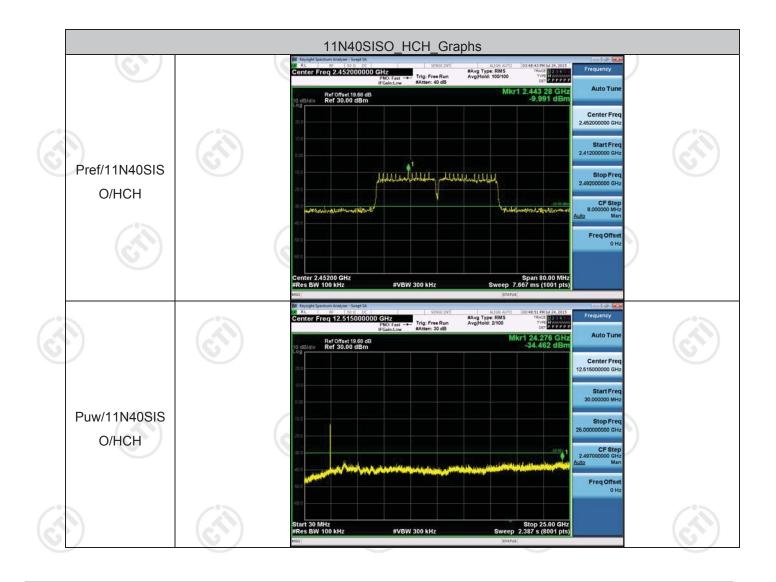


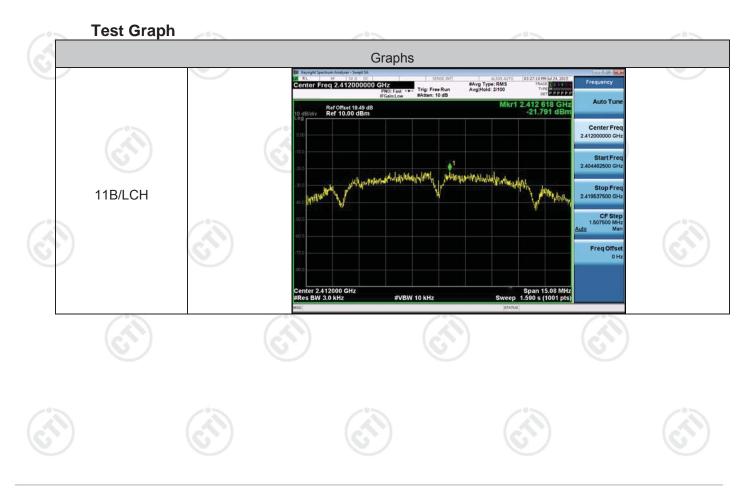


Page 34 of 72



Page 35 of 72





Page 36 of 72

Appendix E): Power Spectral Density

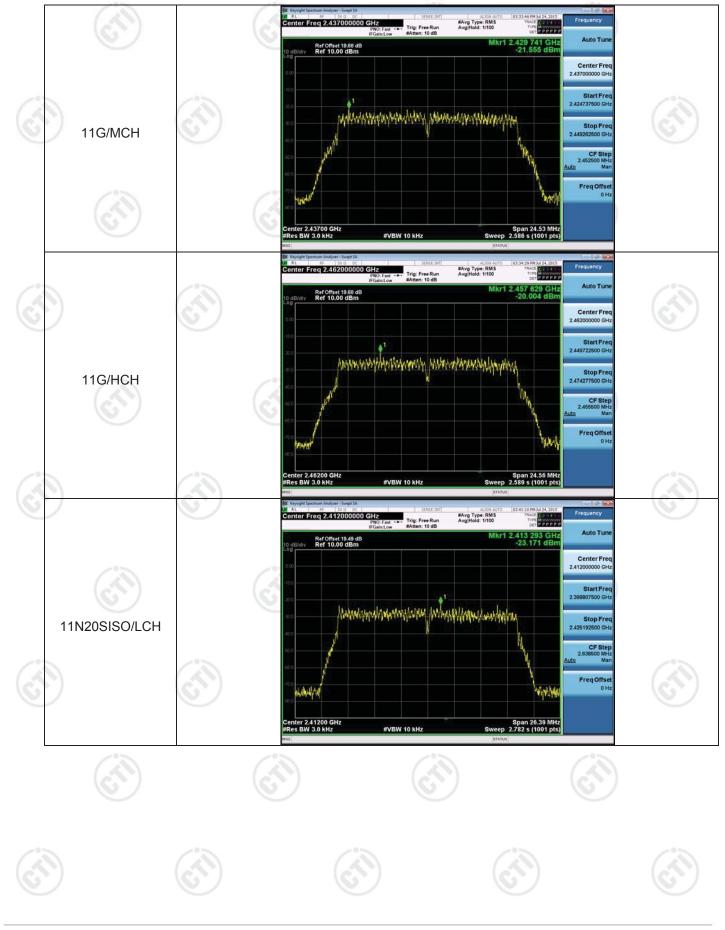
Channel	Power Spectral Density [dBm]	Verdict
LCH	-21.791	PASS
МСН	-17.975	PASS
НСН	-19.652	PASS
LCH	-23.078	PASS
МСН	-21.555	PASS
НСН	-20.004	PASS
LCH	-23.171	PASS
МСН	-21.646	PASS
НСН	-21.065	PASS
LCH	-25.597	PASS
MCH	-25.556	PASS
НСН	-24.901	PASS
	MCH HCH LCH MCH HCH LCH MCH HCH LCH LCH MCH	MCH -17.975 HCH -19.652 LCH -23.078 MCH -21.555 HCH -20.004 LCH -23.171 MCH -21.646 HCH -21.065 LCH -25.597 MCH -25.556

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



CTI 华烈极测 CENTRE TESTING INTERNATIONAL

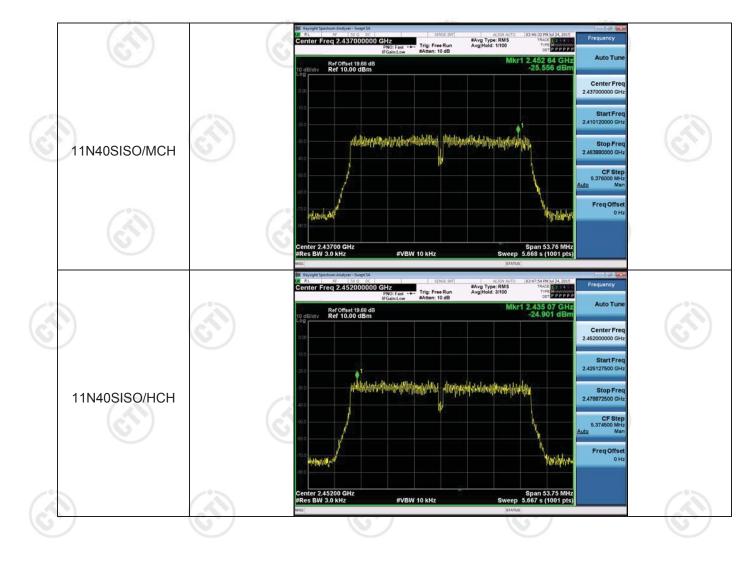
Report No. : EED32H000437-2


Page 37 of 72

Page 38 of 72

Page 39 of 72

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



CTI 华烈极测 CENTRE TESTING INTERNATIONAL

Report No. : EED32H000437-2

Page 40 of 72

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix F) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

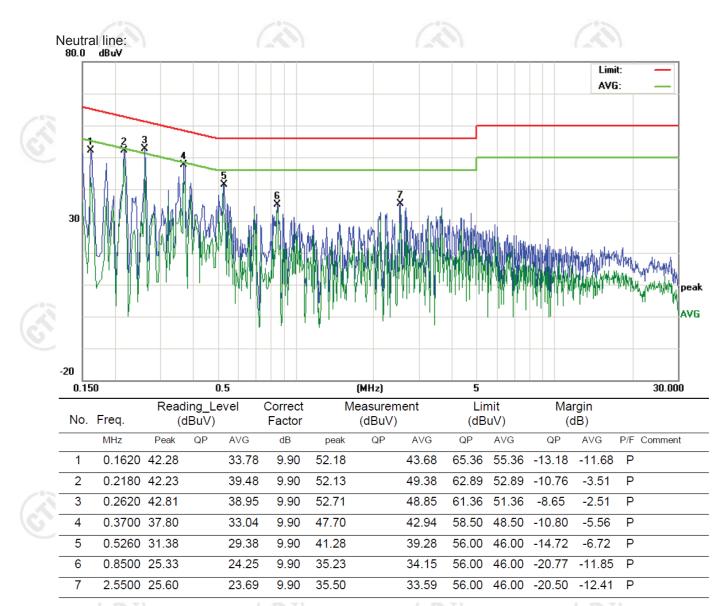
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Appendix G) AC Power Line Conducted Emission

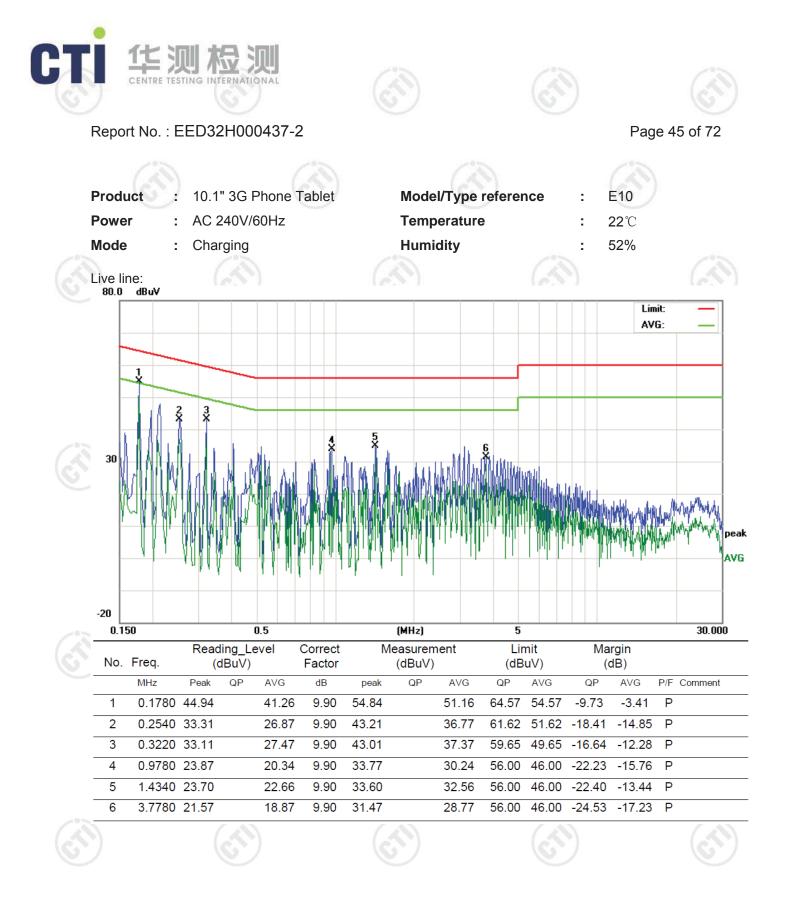
	Test Procedure:	Test frequency range :150KHz	-30MHz		
(C		 The mains terminal disturbation The EUT was connected to Stabilization Network) which power cables of all other unwhich was bonded to the grafor the unit being measured multiple power cables to a secceeded. The tabletop EUT was place reference plane. And for floor fl	AC power source through provides a 50Ω/50µH hits of the EUT were constructed ound reference plane in d. A multiple socket out ingle LISN provided the ed upon a non-metallic	igh a LISN 1 (Line 1 + 5Ω linear imper- onnected to a sec in the same way as tlet strip was used a rating of the LISI table 0.8m above	e Impedance edance. The ond LISN 2, s the LISN 1 d to connect N was not e the ground
		 horizontal ground reference 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonde 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT a LISN 2. 	plane, h a vertical ground reference d to the horizontal ground he boundary of the unit r LISNs mounted on etween the closest poin and associated equipment	erence plane. The nce plane. The ver nd reference plan it under test and top of the groun ts of the LISN 1 a nt was at least 0.8	rear of the rtical ground e. The LISN bonded to a d reference nd the EUT. 3 m from the
		 In order to find the maximum all of the interface cables conducted measurement. 			
	Limit:	Frequency range (MHz)	Limit (dB		1
S)			Quasi-peak	Average	(\sim)
		0.15-0.5	66 to 56*	56 to 46*	
		0.5-5	56	46	_
		5-30	60	50	
		* The limit decreases linearly w MHz to 0.50 MHz.	vith the logarithm of the	e frequency in the	e range 0.15
		NOTE : The lower limit is applied	able at the transition fr	equency	

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

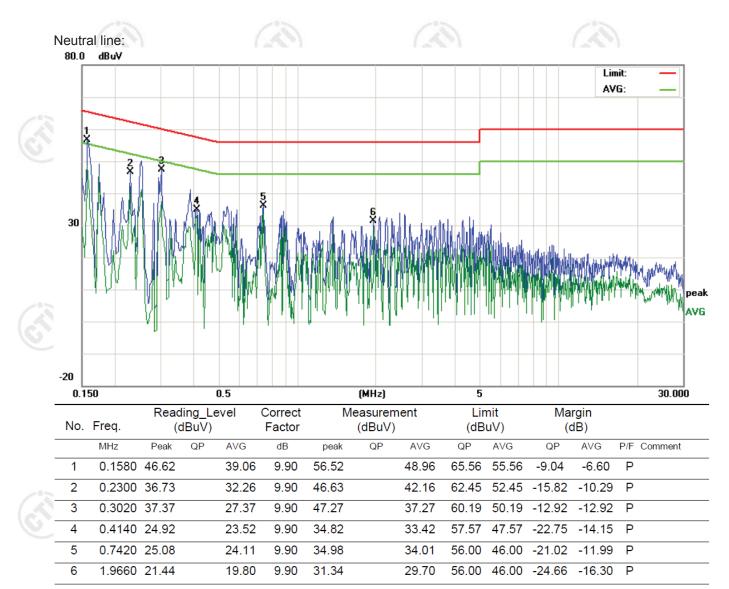
Produ					Tablet				e refere	nce):	E10		
Powe			120V/6					oeratui	e		:	22℃		
Mode		: Cha	arging				Hum	laity			:	52%		
Live lii 80.0														
													.imit: VG:	
30		NX X		5									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pe Av
0.15	50).5	0		(MHz)		5					30.000
No.	Freq.		ding_Le dBuV)	vei	Correct Factor	r	/leasuren (dBuV)	lent	(dB	nit uV)		argin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG		Comment
1	0.1500			44.07		54.13		53.97	65.99		-11.86	-2.02	P	
2	0.1940			30.86 36.48		50.25 51.32		40.76 46.38	63.86	53.86	-13.61 -9.80	-13.10 -4.74	P P	
4	0.3140			31.99		47.72		41.89			-12.14		-	
5		_						-	-	-				
	0.5560	23.68		21.89	9.90	33.58		31.79	56.00	46.00	-22.42	-14.21	Ρ	
6	0.9100			21.89 18.33		33.58 31.31		31.79 28.23			-22.42 -24.69			



Page 44 of 72

Notes:

The following Quasi-Peak and Average measurements were performed on the EUT:
 Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

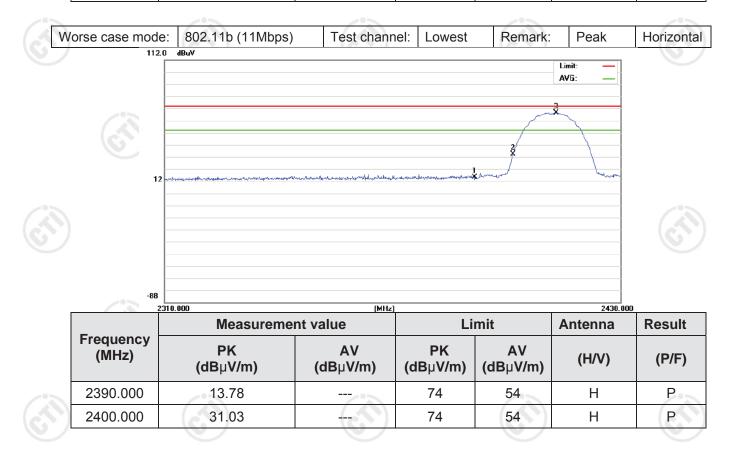


Page 46 of 72

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


Page 47 of 72

Appendix H) Restricted bands around fundamental frequency (Radiated)

	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak	13
		Above 1GHz	Peak	1MHz	3MHz	Peak	6
~		Above IGHZ	Peak	1MHz	10Hz	Average	~
	Test Procedure:	Below 1GHz test procedu	re as below:				
		 a. The EUT was placed or at a 3 meter semi-aneol determine the position of b. The EUT was set 3 met was mounted on the top c. The antenna height is v determine the maximum polarizations of the ante d. For each suspected em the antenna was tuned table was turned from 0 e. The test-receiver system Bandwidth with Maximu f. Place a marker at the e frequency to show com bands. Save the spectru for lowest and highest or 	the top of a rota hoic camber. The of the highest rac ters away from the of a variable-he raried from one n n value of the fiel enna are set to m tission, the EUT to heights from 1 degrees to 360 m was set to Pea im Hold Mode. nd of the restrict pliance. Also me um analyzer plot channel	e table wa diation. The interferen- eight anter neter to fo Id strength nake the n was arran I meter to degrees t ak Detect I ed band c asure any	s rotated 3 ence-recei na tower. ur meters h. Both hor heasureme ged to its 4 meters a o find the unction a losest to th remissions	360 degrees f iving antenna above the gro rizontal and v ent. worst case ar and the rotata maximum rea nd Specified ne transmit s in the restric	to ound ertica nd the able ading.
		 Above 1GHz test procedu g. Different between above to fully Anechoic Chambination 18GHz the distance is 1 	e is the test site, ber change form	table 0.8	metre to 1		
		 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedure 	vest channel , the nents are perforr I found the X axis	e Highest ned in X, s positioni	channel Y, Z axis p ng which i	t is worse cas	-
	Limit:	 h. Test the EUT in the low i. The radiation measurem Transmitting mode, and 	vest channel , the nents are perforr I found the X axis	e Highest med in X, s positioni encies me	channel Y, Z axis p ng which i asured wa	t is worse cas	-
	Limit:	 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedure 	vest channel , the nents are perforr I found the X axis res until all freque	e Highest med in X, s positioni encies me	channel Y, Z axis p ng which i asured wa Rer	t is worse cas as complete.	-
_	Limit:	 h. Test the EUT in the low i. The radiation measurem Transmitting mode, and j. Repeat above procedur Frequency 	vest channel , the nents are perforr I found the X axis res until all freque Limit (dBuV/n	e Highest med in X, s positioni encies me	channel Y, Z axis p ng which i asured wa Rer Quasi-pe	t is worse cas as complete. mark	-
	Limit:	 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 	vest channel , the nents are perform I found the X axis res until all freque Limit (dBuV/n 40.0	e Highest med in X, s positioni encies me	channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe	t is worse cas as complete. mark eak Value	-
	Limit:	h. Test the EUT in the low i. The radiation measurem Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz	vest channel , the nents are perforr I found the X axis res until all freque Limit (dBuV/n 40.0 43.5	e Highest med in X, s positioni encies me	channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe	t is worse cas as complete. mark eak Value eak Value	-
	Limit:	h. Test the EUT in the low i. The radiation measurem Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	vest channel , the nents are perform I found the X axis res until all freque Limit (dBuV/n 40.0 43.5 46.0	e Highest med in X, s positioni encies me	channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe	t is worse cas as complete. mark eak Value eak Value eak Value	-
	Limit:	h. Test the EUT in the low i. The radiation measurem Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	vest channel , the nents are perform found the X axis res until all freque Limit (dBuV/n 40.0 43.5 46.0 54.0	e Highest med in X, s positioni encies me	channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe Averag	t is worse cas as complete. mark eak Value eak Value eak Value eak Value	-

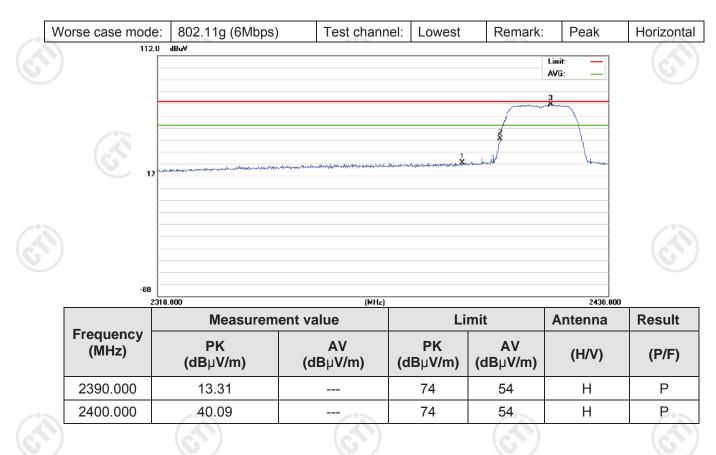
Test plot as follow:	s:		(\mathcal{A})			1
Worse case mode:	802.11b (11Mbps)	Test channel:	Lowest	Remark:	Peak	1.
2412MHz:						
112.0	dBu∀					
				Li	mit: —	1
				A	VG: —]
(*)						

D	-88	2310.000	(MHz)			2430.000	(C)
		Measureme	nt value Limit		Antenna	Result	
	Frequency (MHz)	PK (dBµV/m)	AV (dBµV/m)	PK (dBµV/m)	AV (dBµV/m)	(H/V)	(P/F)
	2390.000	13.82		74	54	V	Р
	2400.000	30.01		74	54	V	Р

Vertical

Page 49 0

Worse case mode: 802.11b (11Mbps) Test channel: Highest Remark: Peak Vertical 112.0 dBuV Limit AVG: 12 -88 2450.000 (MHz) 2500.000 Limit **Measurement value** Antenna Result Frequency PK AV PK AV (MHz) (P/F) (H/V) (dBµV/m) (dBµV/m) (dBµV/m) (dBµV/m) 2483.500 14.21 74 54 V Ρ ---Worse case mode: 802.11b (11Mbps) Horizontal Test channel: Highest Remark: Peak 112.0 dBu¥ Limit: AVG: 12 -88 2500.000 2450.000 (MHz) Limit Result **Measurement value** Antenna Frequency ΡK ΡK AV AV (MHz) (H/V) (P/F) (dBµV/m) (dBµV/m) (dBµV/m) (dBµV/m) 74 2483.500 15.25 ____ 54 Н Ρ



12

Worse case mode:	802.11g (6Mbps)	Test channel:	Lowest	Remark:	Peak
112.0	dBuV				
					mit: <u> </u>
				A	·u
				3	
2.1				. X	da a

	-88 2	310.000	(MHz)			2430.000	
\sim	-	Measurem	ent value	Li	mit	Antenna	Result
	Frequency (MHz)	PK (dBµV/m)	AV (dBµV/m)	PK (dBµV/m)	AV (dBµV/m)	(H/V)	(P/F)
	2390.000	14.34	· ()	74	54	V	Р
	2400.000	38.81	/	74	54	V	Р

Page 50 of 72

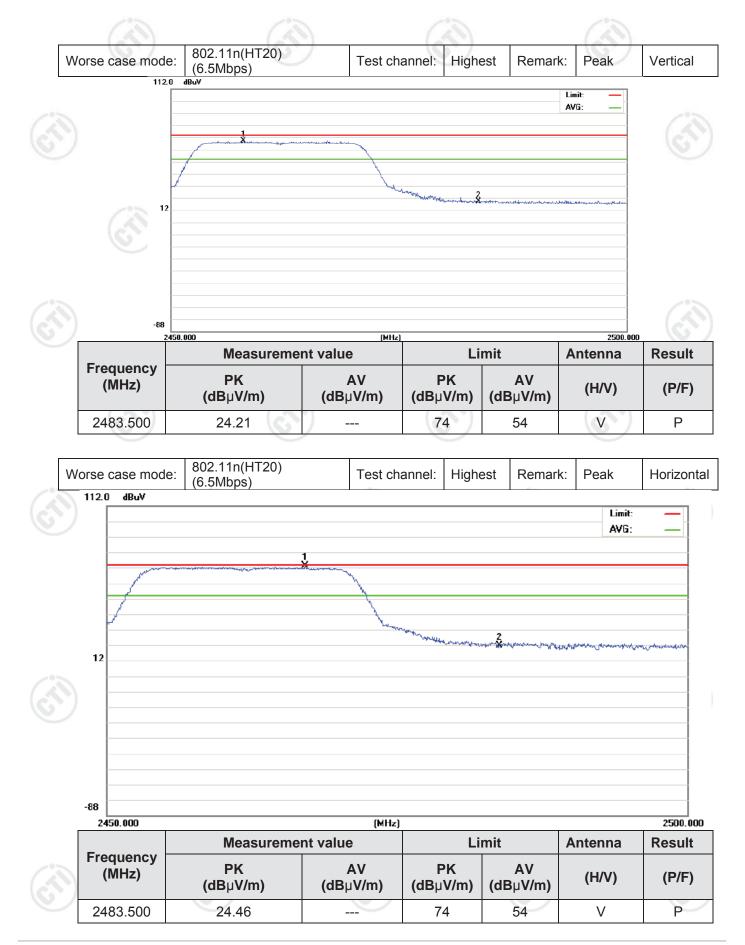
Vertical

Page 51 of 72

Worse case mode: 802.11g (6Mbps) Test channel: Highest Remark: Peak Vertical 112.0 dBu∀ Limit AVG: 12 -88 2450.000 (MHz) 2500.000 Limit **Measurement value** Antenna Result Frequency PK AV PK AV (MHz) (H/V) (P/F) (dBµV/m) (dBµV/m) (dBµV/m) (dBµV/m) 2483.500 22.61 74 54 V Ρ ___ 802.11g (6Mbps) Worse case mode: Test channel: Highest Remark: Peak Horizontal 112.0 dBuV Limit: AVG: 12 -88 2500.000 2450.000 (MHz) **Measurement value** Limit Antenna Result Frequency PK AV PK AV (MHz) (H/V) (P/F) (dBµV/m) (dBµV/m) (dBµV/m) (dBµV/m) 2483.500 25.64 74 54 H Ρ ---

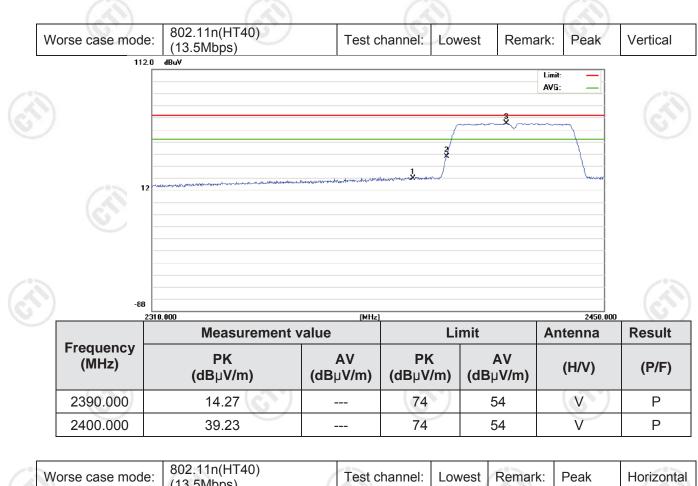
TERNATIONAL

华测


CT

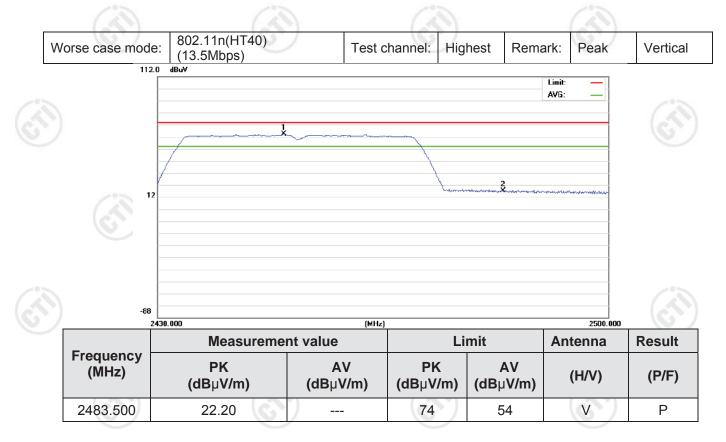
V	Vorse case mode:	802.11n(HT20) (6.5Mbps)	Test ch	annel: Lowe	st Remark	:: Peak	Vertical
	112.0						4
						Limit: — AVG: —	
					Z	3	
		ndelde-ore-errore-errore-errofisch-richterbellender-opt-richte		senensetus en esta ente			
	-88 2310		udy-usersered-southy-southy-	1 		2430.000	(T
	-88				mit	2430.000 Antenna	Result
	-88	.000			mit (dBµV/m)		
	-88 2310 Frequency	 Measurement v PK	alue AV	Li PK	AV	Antenna	Result

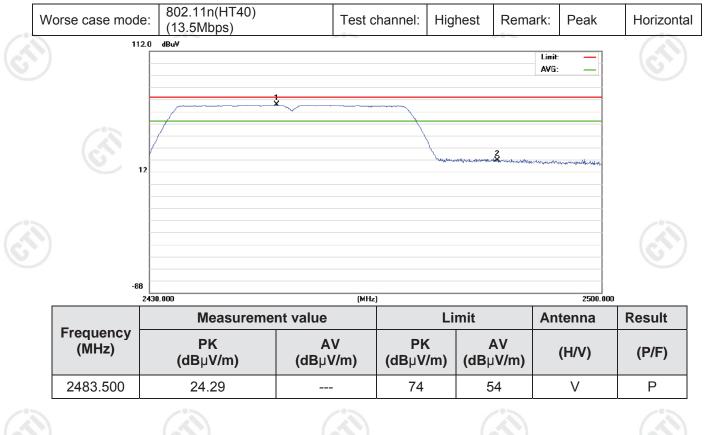
W	orse case mode:	802.11n(HT20) (6.5Mbps)	Test cha	nnel: Lowe	est Remar	k: Peak	Horizontal
	112.0	dBuV	ley di galan de setta de la facto de la conserva de des	1	ined when the	Limit: — AVG: —	
	-88 2310		(MHz)			2430.00	(th
		Measurement va		Li	imit	Antenna	Result
	Frequency (MHz)	PK (dBμV/m)	AV (dBµV/m)	PK (dBµV/m)	AV (dBµV/m)	(H/V)	(P/F)
1	2390.000	15.29		74	54	Н	P
(\mathcal{A})	2400.000	35.21		74	54	Н	Р


Page 53 of 72

华测

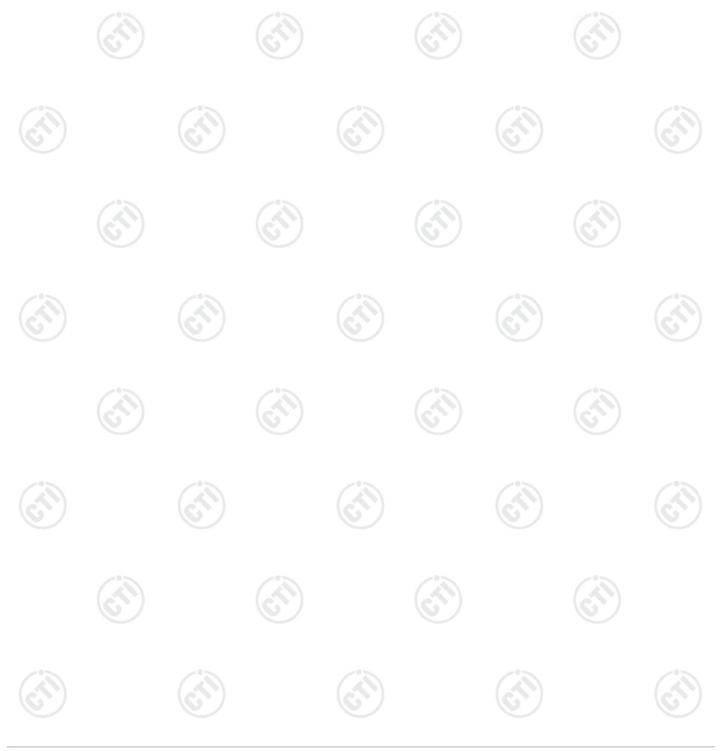
C


Page 54 of 72



W	orse case mode:	802.11n(HT40) (13.5Mbps)	Test o	hannel: Lov	vest Remark	:: Peak	Horizontal
	112.0	dBuV 			Ž	Limit: AVG:	
	-88						
	2310	Measurement	(MHz) value	Li	mit	Antenna	Result
	Frequency (MHz)	ΡK (dBµV/m)	AV (dBµV/m)	PK (dBµV/m)	AV (dBµV/m)	(H/V)	(P/F)
~	2390.000	13.98		74	54	Н	Р
(\mathcal{A})	2400.000	37.21		74	54	Н	Р

Page 55 of 72


Note:

1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

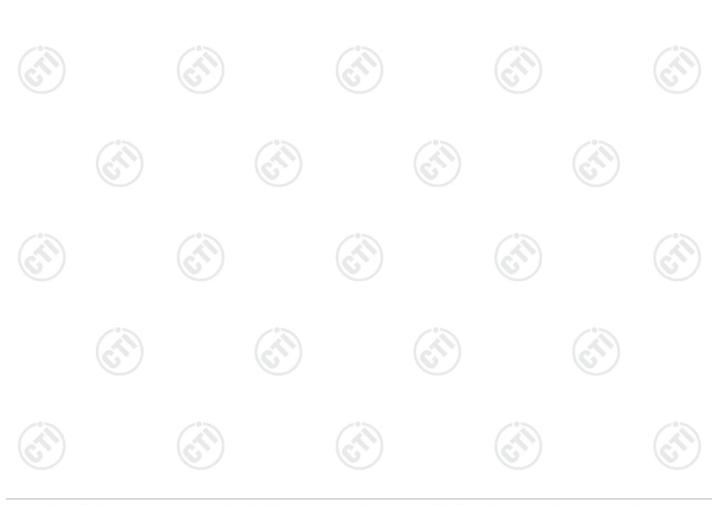
Appendix I) Radiated Spurious Emissions

Receiver Setup:		<u>.</u>				
2	Frequency	Detector	RBW	VBW	Remark	100
5)	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	N.
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
(All)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
A Contraction	Above IGHZ	Peak	1MHz	10Hz	Average	(3)
Test Procedure:		671		6.		105

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:


- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Page 58 of 72

			((B)			
	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
		0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
1ES		0.490MHz-1.705MHz	24000/F(kHz)	-		30	1
57		1.705MHz-30MHz	30	-	(G^{1})	30	6)
		30MHz-88MHz	100	40.0	Quasi-peak	3	
		88MHz-216MHz	150	43.5	Quasi-peak	3	
		216MHz-960MHz	200	46.0	Quasi-peak	3	
		960MHz-1GHz	500	54.0	Quasi-peak	3	
		Above 1GHz	500	54.0	Average	3	
		Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	3 above the maxir equipment under	num permi test. This p	itted average	emission limit	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Radiated Spurious Emissions test Data:

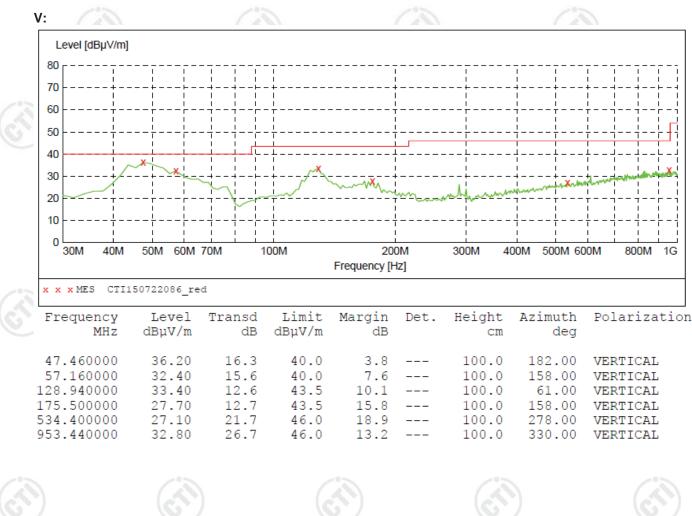

All the modes of operation (X, Y, Z) were investigated and the worst-case emissions are reported.

A. Below 30MHz:

No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

B. $30MHz \sim 1GHz$:

The test data of low channel, middle channel and high channel in IEEE 802.11b/g/n are almost same in frequency bands 30MHz to 1GHz and the data of low channel in IEEE 802.11b of 11Mbps are chosen as representative in below:



Page 60 of 72

(A)

Page 61 of 72

Report No. : EED32H000437-2

C. Above 1GHz:

The test data of worst case are below:

IEEE 802.11b, 11Mbps:

a	Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
0	1	Lov	v channel (2412M	Hz)		I A A
	4824.0	45.01	74	PK	Н	Р
	4824.0	43.81	74	PK	V	Р
		Mido	lle channel (2437N	1Hz)	(\mathcal{A})	
	4874.0	44.93	74	РК	H	Р
	4874.0	41.64	74	PK	V	Р
200		Hig	h channel (2462Mł	Hz)		
	4924.0	42.95	74	PK	Н	Р
C	4924.0	42.54	74	РК	V	Р

IEEE 802.11g, 6Mpbs:

TEEE OOE. TIG,	empeer	24			
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
	Low	v channel (2412MF	Hz)		•
4824.0	43.54	74	PK	Н	Р
4824.0	44.57	74	PK	V	Р
/	Midd	le channel (2437M	1Hz)		U
4874.0	43.51	74	PK	Н	Р
4874.0	42.68	74	PK	V	Р
$(\mathcal{C}^{(n)})$	Higl	n channel (2462Mł	Hz)	$(\mathcal{C}^{(n)})$	•
4924.0	44.36	74	РК	Н	Р
4924.0	43.26	74	PK	V	Р

Page 62 of 72

IEEE 802.11n	HT20, 6.5Mpbs:	(4	2		
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
	Lo	w channel (2412M	Hz)		100
4824.0	44.52	74	PK	Н	P
4824.0	41.66	74	РК	V	Р
	Mide	dle channel (2437M	1Hz)		·
4874.0	45.52	74	РК	Н	Р
4874.0	43.81	74	РК	V	Р
	Hig	h channel (2462MI	Hz)	V	•
4924.0	44.51	74	PK	Н	Р
4924.0	43.24	74	PK	V	Р
N					

IEEE 802.11n HT40, 13,5Mpbs:

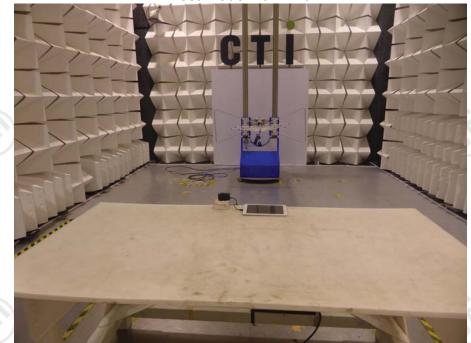
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)			
67)	Low channel (2422MHz)							
4844.0	40.51	74	PK	Н	Р			
4844.0	40.66	74	PK	V	Р			
6	Middle channel (2437MHz)							
4874.0	41.53	74	PK	Н	Р			
4874.0	40.84	74	PK	V	Р			
High channel (2452MHz)								
4904.0	41.57	74	PK	H	Р			
4904.0	40.27	74	РК	V	Р			

Remark:

The above tables show that the frequencies peak data are all below the average limit, so the average 1. data of these frequencies are deems to fulfill the average limits and not reported.

2. No emission found from 18GHz to 25GHz.

3. All outside of operating frequency band and restricted band specified are below 15.209.



PHOTOGRAPHS OF TEST SETUP

Test mode No.: E10

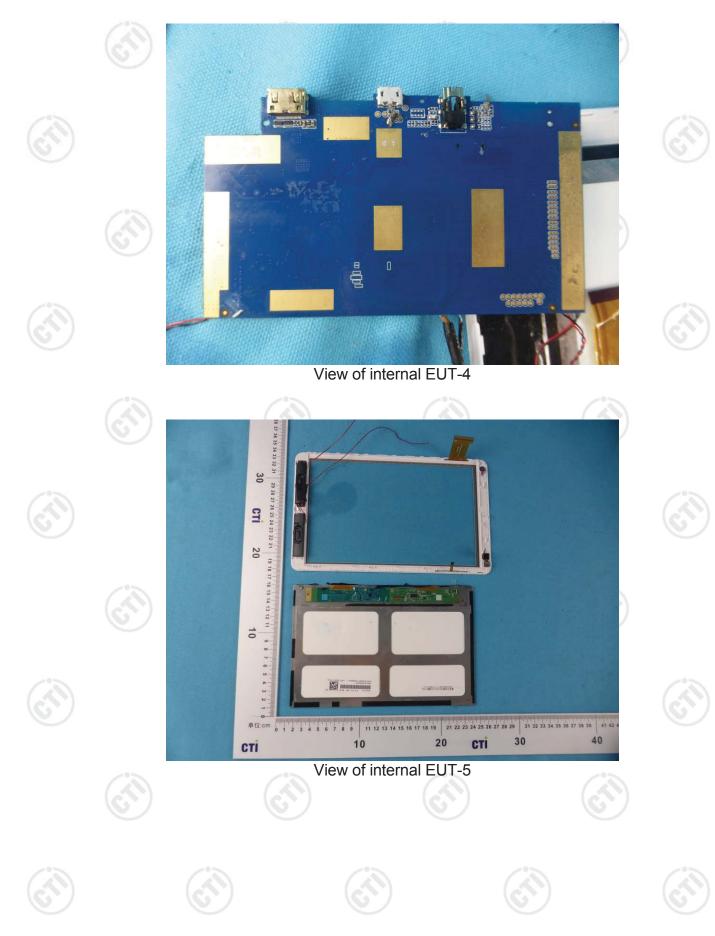
Radiated spurious emission Test Setup-1 (Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

CTI 华观检测 CENTRE TESTING INTERNATIONAL



Page 69 of 72


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 72 of 72

Report No. : EED32H000437-2

except in full.