

Report No.: EED32I00213901 Page 1 of 81

TEST REPORT

Product : 8"Tablet PC

Trade mark : DragonTouch, KINGPAD, KINGSLIM, AKASO Model/Type reference : S8, S80, S8 PLUS, S8 PRO, S8X, S8 KIDS

Serial Number : N/A

Report Number : EED32I00213901

FCC ID : S5V-D08S80

Date of Issue : Aug. 24, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Proexpress Distributor LLC 11011 GREENWOOD AVE.N APT 5,SEATTLE,WA 98103

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

kevin lan

Reviewed by:

Date:

Aug. 24, 2016

Jimmy Li

Lab manager

Check No.: 2384337805

2 Version

Version No.	Date	Description
00	Aug. 24, 2016	Original

Page 3 of 81

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
			-	

Remark

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

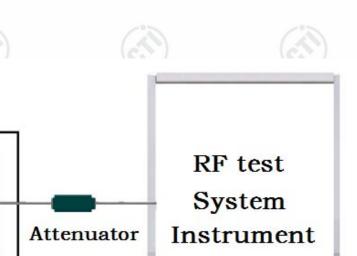
Model No.: S8, S80, S8 PLUS, S8 PRO, S8X, S8 KIDS

Only the model S8 was tested, since the PCB, Schematic, Hardware etc were identical for the above models, S8, S80, S8 PLUS, S8 PRO, S8X, S8 KIDS are named differently due to difference agent and marketing purposes.

4 Content

1 COVER PAGE			1
2 VERSION			2
3 TEST SUMMARY			3
4 CONTENT	•••••	•••••	4
5 TEST REQUIREMENT		•••••	5
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT			5 5 6
5.3 Test Condition			
6 GENERAL INFORMATION			7
6.1 CLIENT INFORMATION	STANDARD TOMER NCE LEVELS, K=2)		
7 EQUIPMENT LIST			11
8 RADIO TECHNICAL REQUIREMENTS SPECIFI	CATION		13
Appendix A): 20dB Occupied Bandwidth	missionsons oing Sequencesion	diated)	
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUCTIONAL D	ETAILS		66

Page 4 of 81


5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

Control

Supply

Page 5 of 81

Radiated Emissions setup:

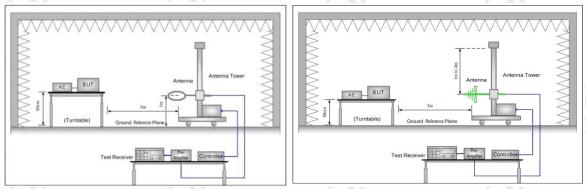


Figure 1. Below 30MHz

EUT

TEMPERATURE CABINET

port(b)

Control

Figure 2. 30MHz to 1GHz

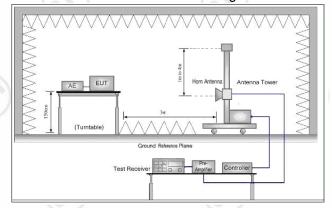
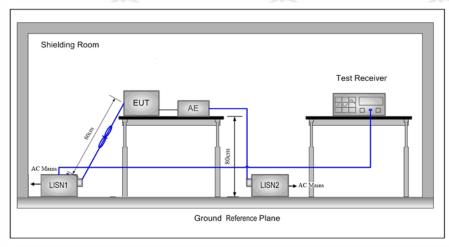


Figure 3. Above 1GHz



Page 6 of 81

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:		(31)	
Temperature:	21 °C		0
Humidity:	54% RH		
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

	Test Mode	Tv		RF Channel	annel	
	rest wode	Tx	Low(L)	Middle(M)	High(H)	
(GFSK/π/4DQPSK/	2402MH=- 2490 MH=	Channel 1	Channel 40	Channel79	
	8DPSK(DH1,DH3,DH5)	2402MHz~2480 MHz	2402MHz	2441MHz	2480MHz	

Test mode:

Pre-scan under all rate at Highest channel 79

Mode		GFSK	
packets	1-DH1	1-DH3	1-DH5
Power(dBm)	0.281	0.288	0.289

Mode	π/4DQPSK				
packets	2-DH1 2-DH3 2-DH5				
Power(dBm)	0.899 0.905 0.		0.907		
Mode	8DPSK				
packets	3-DH1 3-DH3 3-DH				
Power(dBm)	0.840 0.842 0.85		0.850		

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of π/4DQPSK, 3-DH5 packet the power is the worst case of 8DPSK.

Report No. : EED32I00213901 Page 7 of 81

6 General Information

6.1 Client Information

Applicant:	Proexpress Distributor LLC
Address of Applicant:	11011 GREENWOOD AVE.N APT 5,SEATTLE,WA 98103
Manufacturer:	Proexpress Distributor LLC
Address of Manufacturer:	11011 GREENWOOD AVE.N APT 5,SEATTLE,WA 98103
Factory:	Proexpress Distributor LLC
Address of Factory:	11011 GREENWOOD AVE.N APT 5,SEATTLE,WA 98103

6.2 General Description of EUT

Product Name:	8"Tablet PC	
Mode No.:	S8, S80, S8 PLUS, S8 PRO, S8X, S8 KIDS	in a
Test Mode No.:	S8	(7.)
Trade Mark:	DragonTouch, KINGPAD, KINGSLIM, AKASO	
EUT Supports Radios application:	Bluetooth V3.0+EDR	
AC adapter:	Model: UBP-623-052000 Input: 100-240VAC 50/60Hz Output: DC 5V2000mA	Cil
USB Line:	100cm(Unshield)	
Sample Received Date:	Jul. 27, 2016	
Sample tested Date:	Jul. 27, 2016 to Aug. 24, 2016	in .

6.3 Product Specification subjective to this standard

Operation	Frequency:	2402MH	2402MHz~2480MHz				
Bluetooth	Version:	3.0+EDR	3.0+EDR				
Modulatio	n Technique:	Frequen	Frequency Hopping Spread Spectrum(FHSS)				
Modulatio	n Type:	GFSK, π	·/4DQPSK, 8DI	PSK	(C))	(C)
Number o	f Channel:	79					
Hopping (Channel Type:	Adaptive	Frequency Ho	pping syster	ns		
Sample T	уре:	Portable	production	73		/3	
Test power	er grade:	BT3.0: 3	(manufacturer	declare)	•)	(6.7)	")
Test softw	are of EUT:	SoFia RI	TestTool V1.1	(manufactur	er declare)		
Antenna 7	Antenna Type: PIFA antenna						
Antenna (Gain:	2dBi		1			-0-
Test Volta	ige:	AC 120V	′/60Hz		641)	(4)
Operation	Frequency ea	ch of channe					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz

Report No. : EED32I00213901 Page 8 of 81

	-							
	8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
	9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
	10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
	11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
	12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
	13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
\	14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
	15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
	16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
	17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
	18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
	19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
	20	2421MHz	40	2441MHz	60	2461MHz		

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

Report No.: EED32I00213901 Page 9 of 81

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has be

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563. Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

Report No. : EED32I00213901 Page 10 of 81

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE novem conducted	0.31dB (30MHz-1GHz)
	RF power, conducted	0.57dB (1GHz-18GHz)
0	Dedicted Courieus assissive toot	4.5dB (30MHz-1GHz)
3 Rad	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4		3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 11 of 81

7 Equipment List

RF test system								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017			
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017			
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017			
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017			
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017			
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017			
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017			
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017			

Conducted disturbance Test								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017			
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017			
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017			
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017			
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017			
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017			
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017			
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017			

Report No. : EED32I00213901 Page 12 of 81

	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	(C)	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112	(6,7)	01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4	·-	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	(4)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-12-2016	01-11-2017

Report No.: EED32I00213901 Page 13 of 81

8 Radio Technical Requirements Specification

Reference documents for testing:

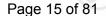
No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

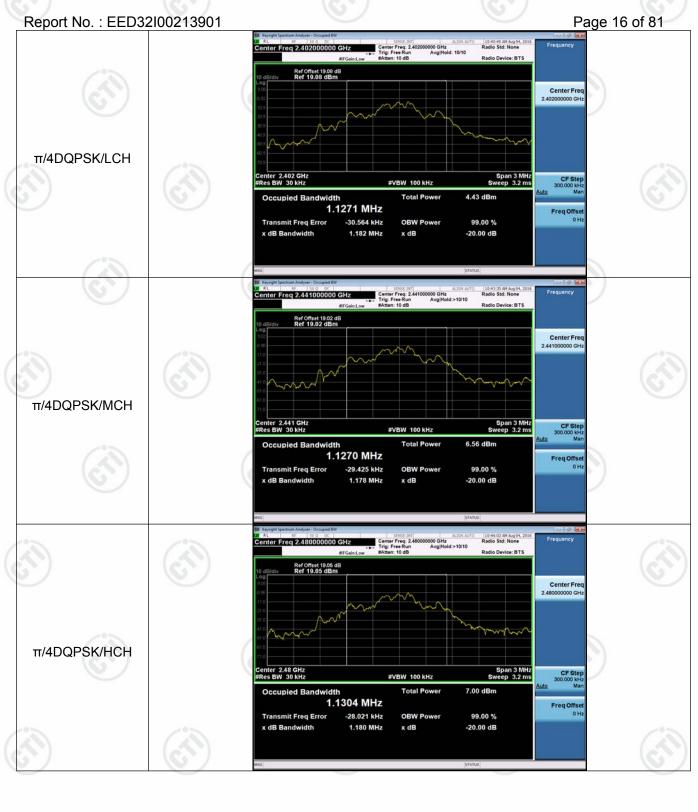
 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint Call: 0755-33681700 \\ Call: 0755-336817$

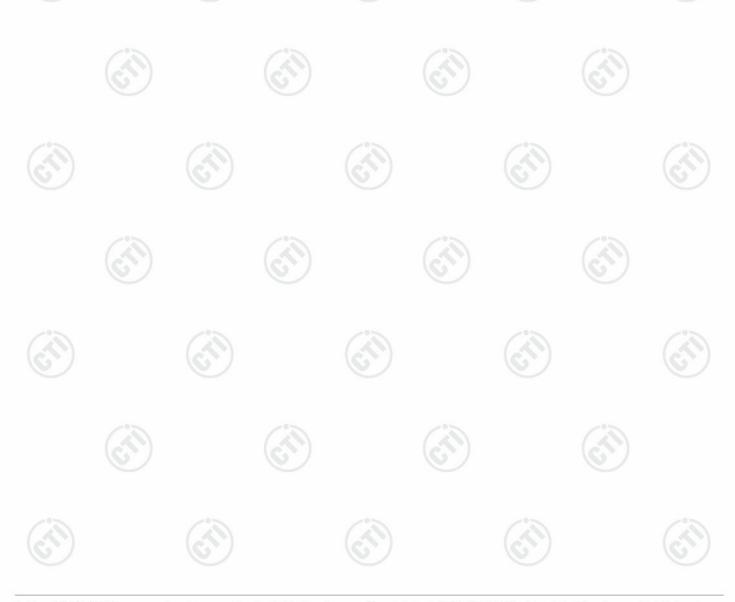
Report No.: EED32I00213901 Page 14 of 81


Appendix A): 20dB Occupied Bandwidth

Test Result

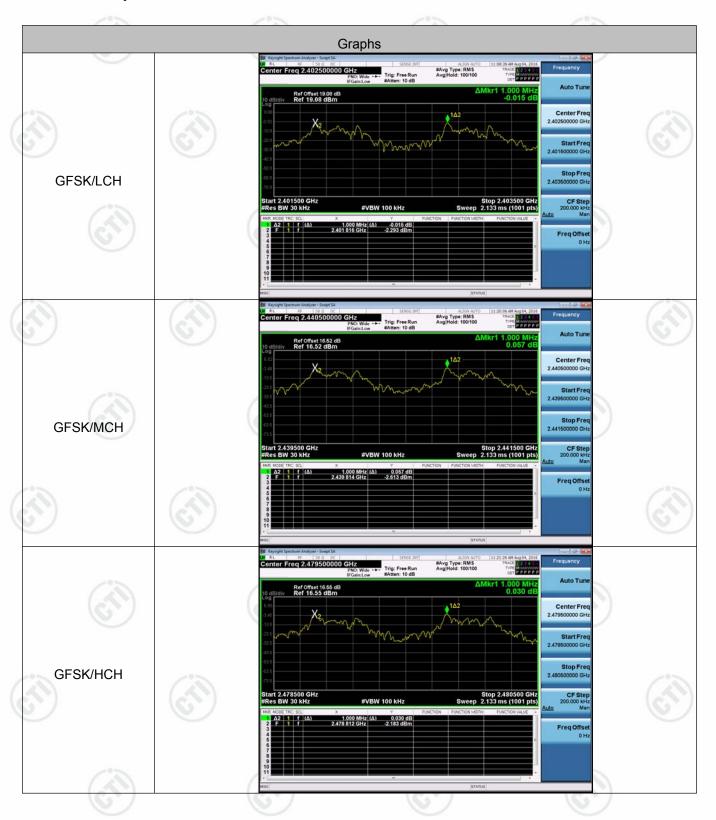
Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	0.7634	0.80033	PASS	
GFSK	MCH	0.7623	0.79519	PASS	
GFSK	НСН	0.7543	0.80020	PASS	
π/4DQPSK	LCH	1.182	1.1271	PASS	
π/4DQPSK	МСН	1.178	1.1270	PASS	Peak
π/4DQPSK	НСН	1.180	1.1304	PASS	detector
8DPSK	LCH	1.172	1.1097	PASS	
8DPSK	MCH	1.163	1.1119	PASS	
8DPSK	НСН	1.159	1.1072	PASS	(67)



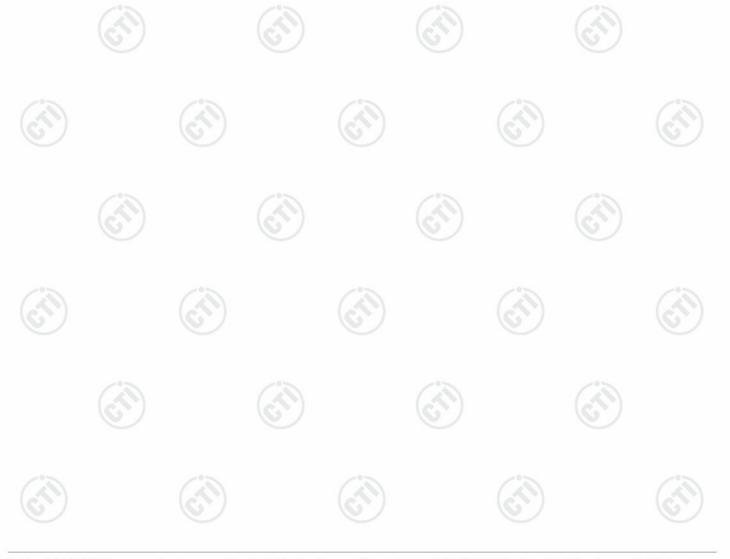


Report No. : EED32I00213901 Page 18 of 81

Appendix B): Carrier Frequency Separation

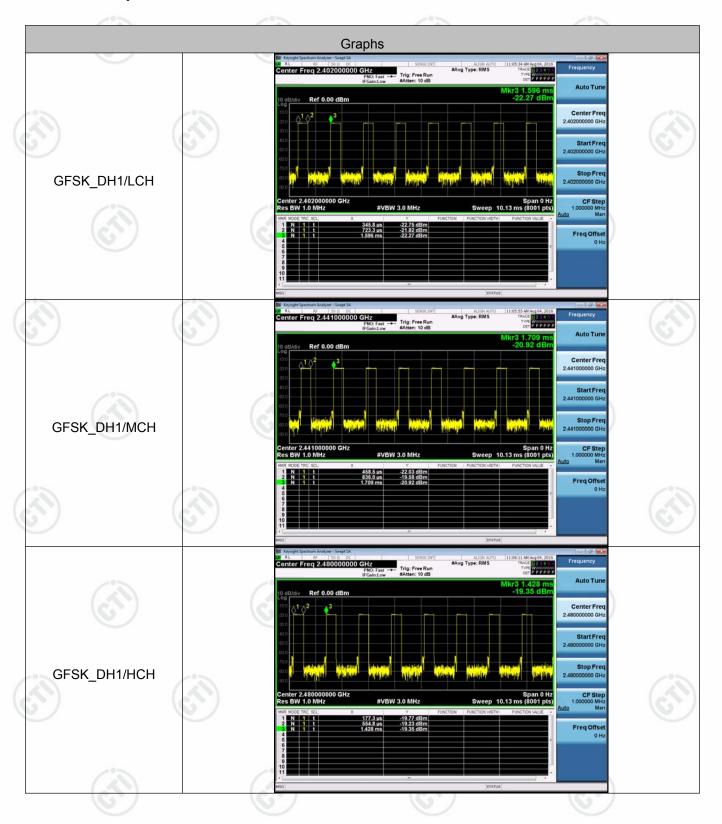

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.000	PASS
GFSK	MCH	1.000	PASS
GFSK	HCH	1.000	PASS
π/4DQPSK	LCH	0.998	PASS
π/4DQPSK	MCH	0.998	PASS
π/4DQPSK	HCH	1.000	PASS
8DPSK	LCH	1.000	PASS
8DPSK	MCH	1.000	PASS
8DPSK	HCH	1.000	PASS


Report No. : EED32I00213901 **Appendix C): Dwell Time**

Page 22 of 81

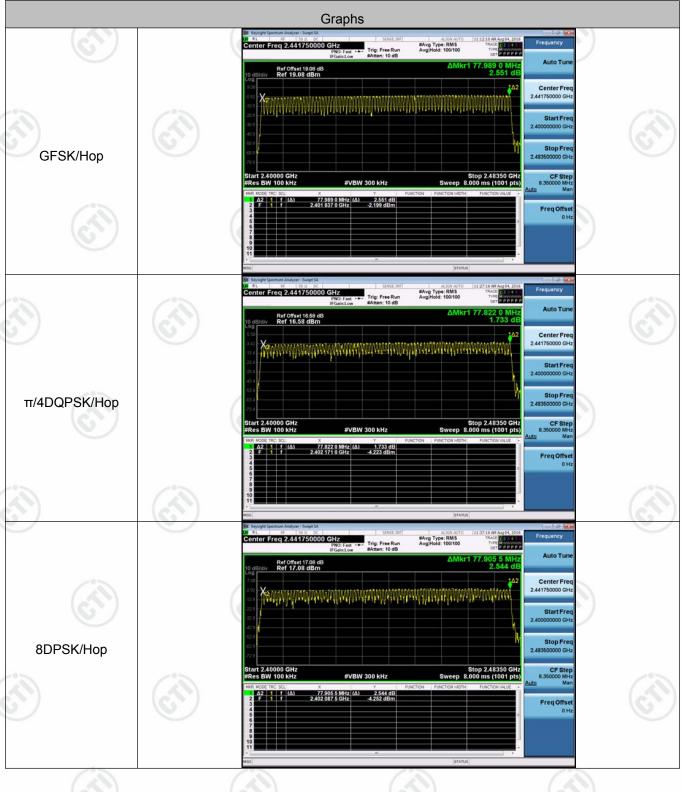
Result Table


Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.377467	320	0.121	0.30	PASS
GFSK	DH1	MCH	0.377467	320	0.121	0.30	PASS
GFSK	DH1	нсн	0.377467	320	0.121	0.30	PASS
GFSK	DH3	LCH	1.634	160	0.261	0.65	PASS
GFSK	DH3	MCH	1.63273	160	0.261	0.65	PASS
GFSK	DH3	НСН	1.632733	160	0.261	0.65	PASS
GFSK	DH5	LCH	2.8804	106.7	0.307	0.77	PASS
GFSK	DH5	MCH	2.88166	106.7	0.307	0.77	PASS
GFSK	DH5	НСН	2.8804	106.7	0.307	0.77	PASS

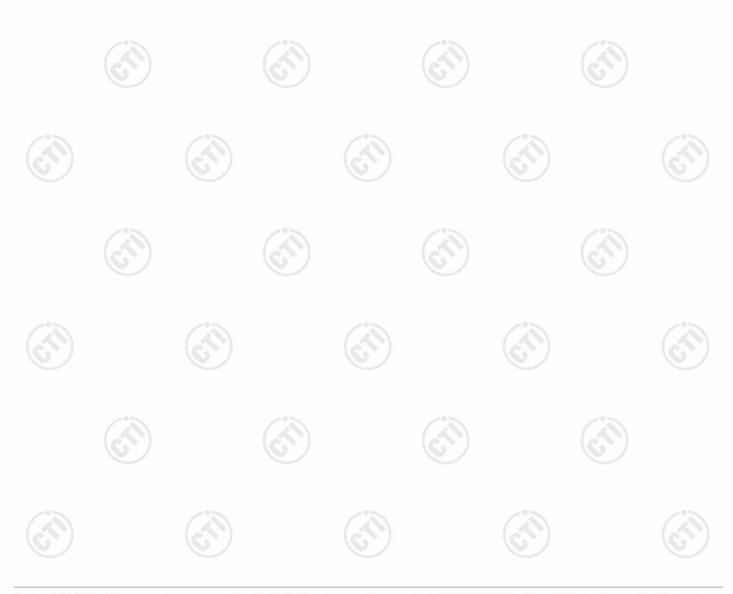
Remark: All modes are tested, only the worst mode GFSK is reported.

Page 26 of 81

Appendix D): Hopping Channel Number

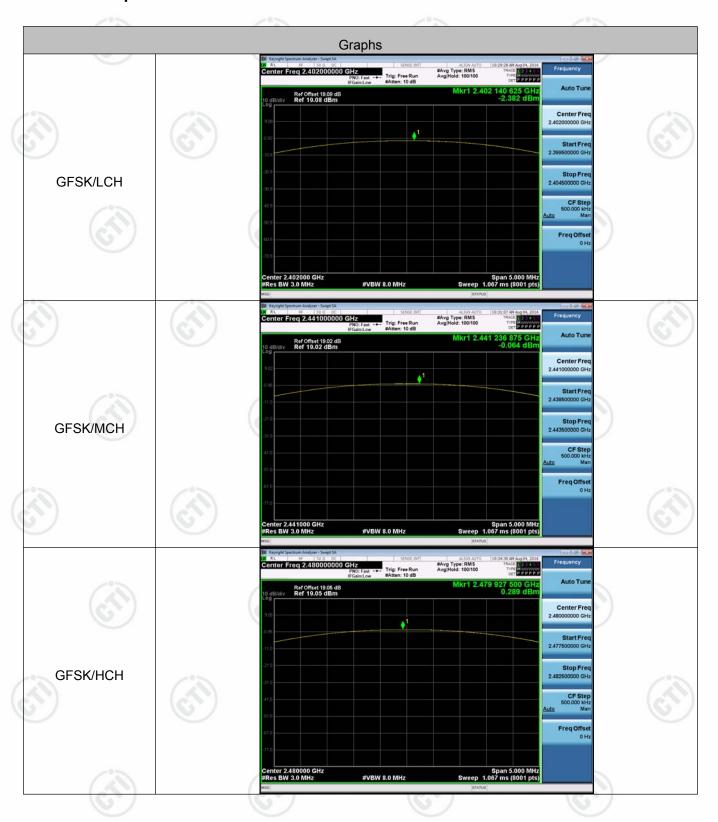

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

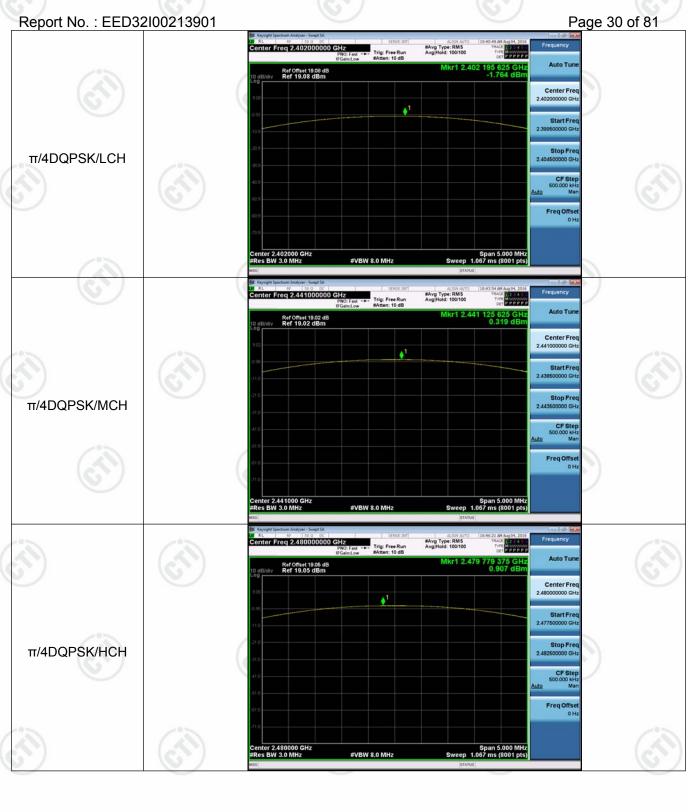


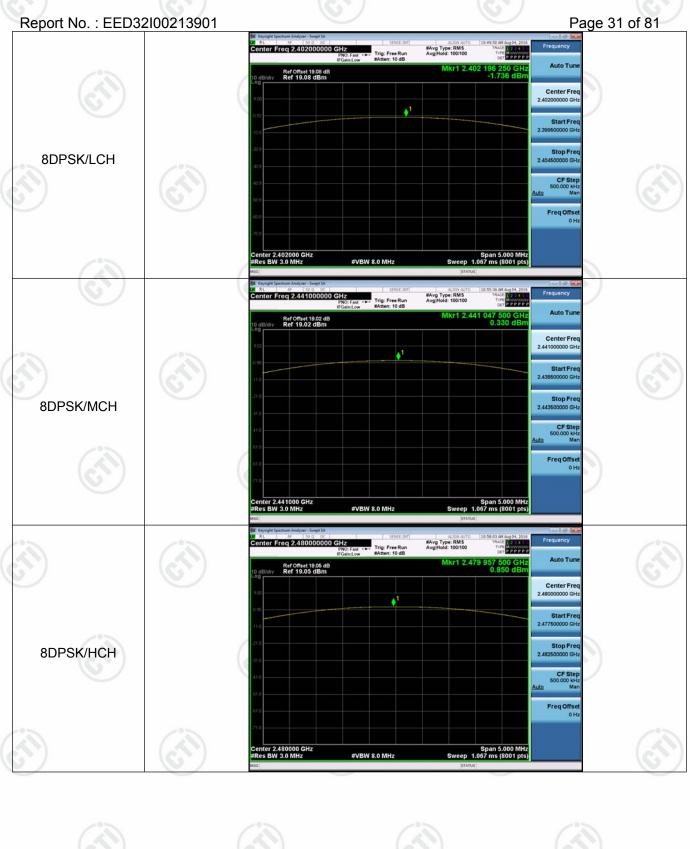
Report No. : EED32I00213901 Page 28 of 81

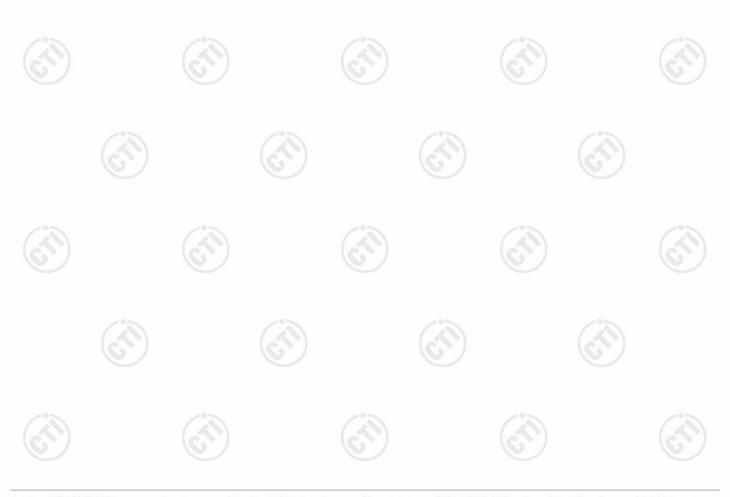
Appendix E): Conducted Peak Output Power


Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	-2.382	PASS
GFSK	MCH	-0.064	PASS
GFSK	нсн	0.289	PASS
π/4DQPSK	LCH	-1.764	PASS
π/4DQPSK	MCH	0.319	PASS
π/4DQPSK	НСН	0.907	PASS
8DPSK	LCH	-1.736	PASS
8DPSK	MCH	0.330	PASS
8DPSK	HCH	0.850	PASS

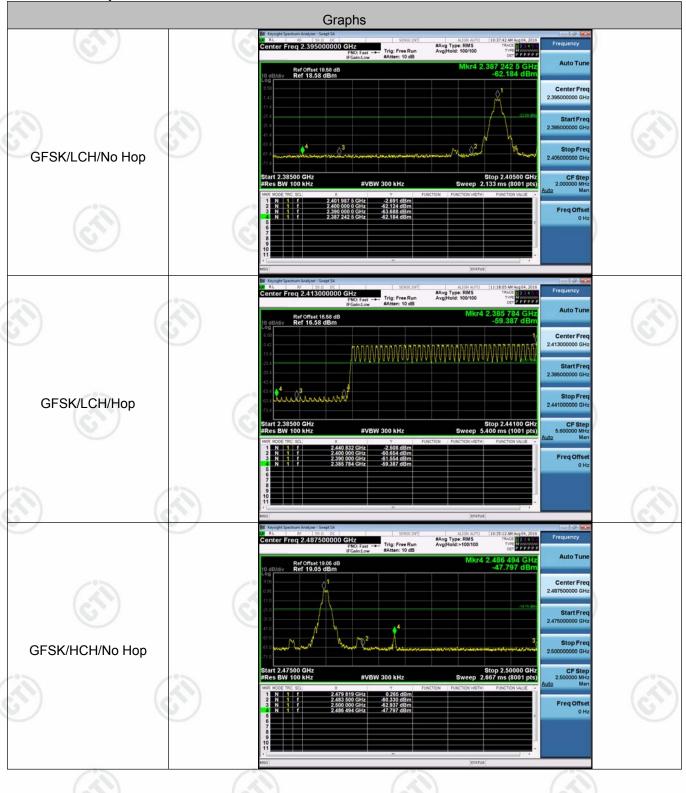




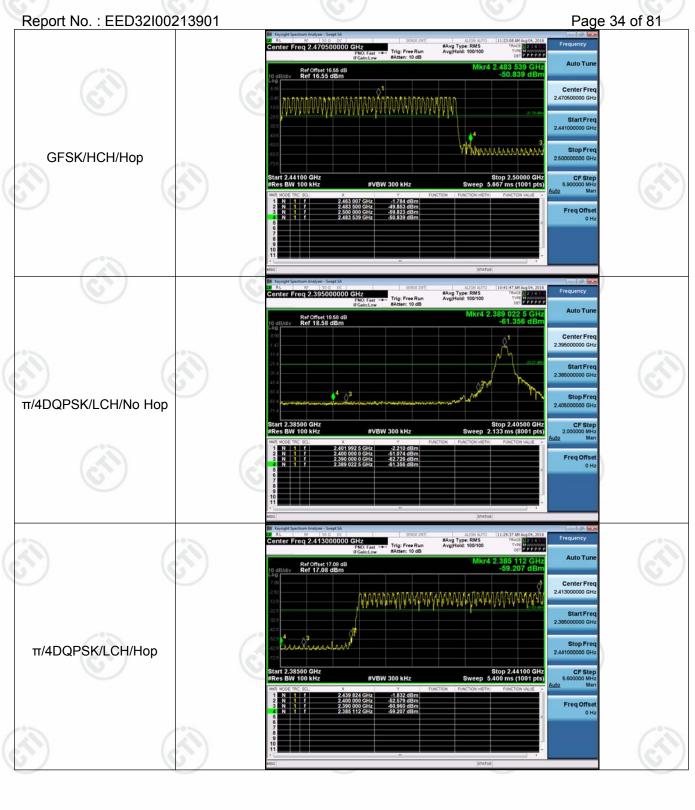


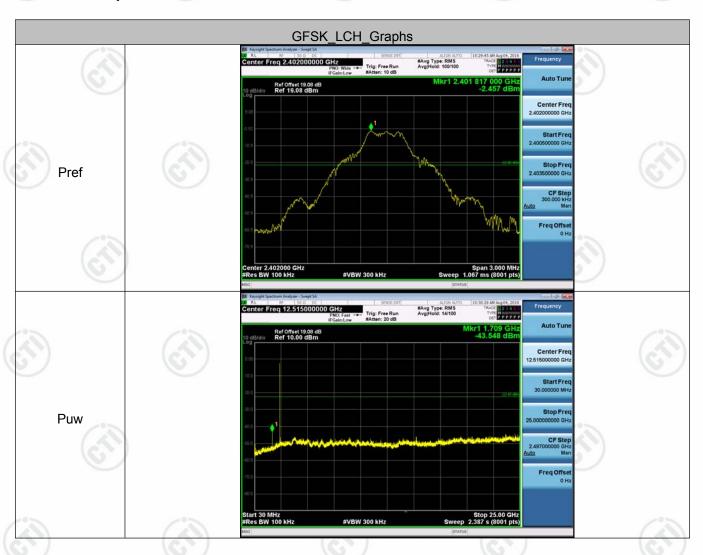
Report No. : EED32l00213901 Page 32 of 81

Appendix F): Band-edge for RF Conducted Emissions


Result Table

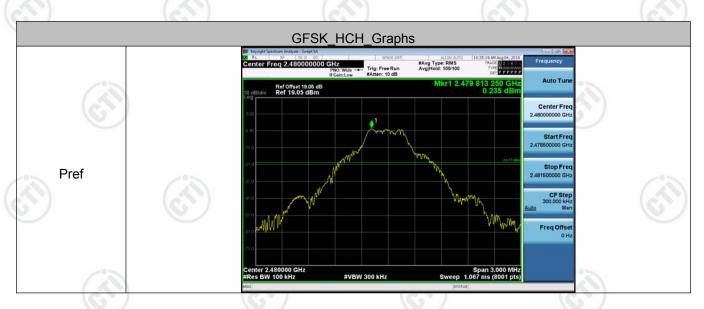
Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
	/		-2.691	Off	-62.184	-22.69	PASS
GFSK	LCH	2402	-2.508	On	-59.387	-22.51	PASS
			0.265	Off	-47.797	-19.74	PASS
GFSK	K HCH 24	2480	-1.784	On	-50.839	-21.78	PASS
450504			-2.210	Off	-61.356	-22.21	PASS
π/4DQPSK	LCH	2402	-1.832	On	-59.207	-21.83	PASS
			0.449	Off	-47.444	-19.55	PASS
π/4DQPSK	HCH	2480	-0.893	On	-51.607	-20.89	PASS
	(-2.156	Off	-60.583	-22.16	PASS
8DPSK LCH	2402	-2.006	On	-58.836	-22.01	PASS	
appol(0.400	0.348	Off	-47.242	-19.65	PASS
8DPSK	HCH	2480	-1.108	On	-49.183	-21.11	PASS



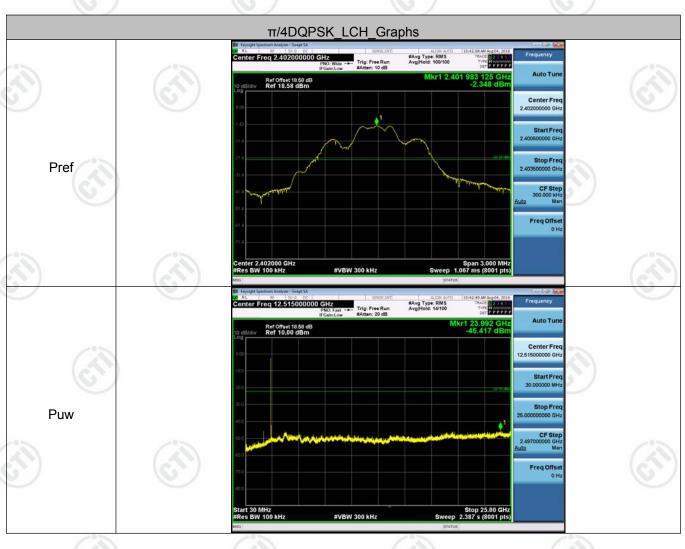

Report No.: EED32I00213901 Page 37 of 81

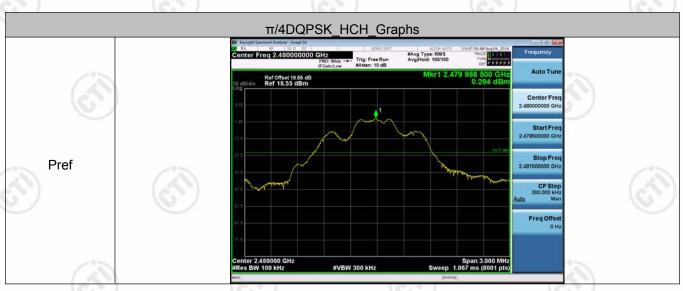
Appendix G): RF Conducted Spurious Emissions

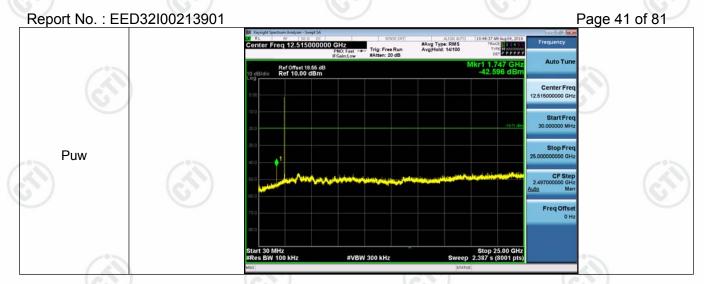
Result Table


(C.)		$(c_{J_{J_{j}}})$	$(c_{j,j})$	$(c_{j,j})$
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	-2.457	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	-0.114	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	0.235	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-2.348	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	0.225	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	НСН	0.294	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-2.293	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	0.236	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	0.278	<limit< td=""><td>PASS</td></limit<>	PASS

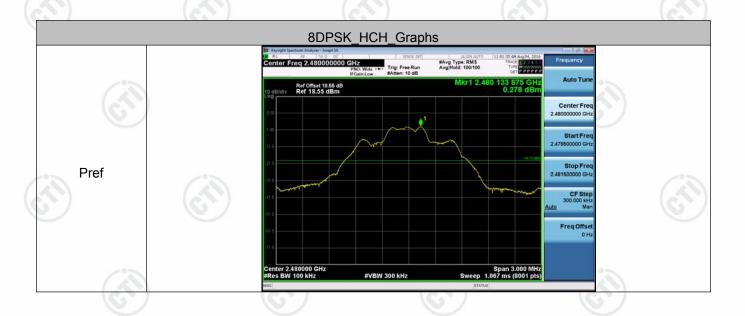
Test Graph

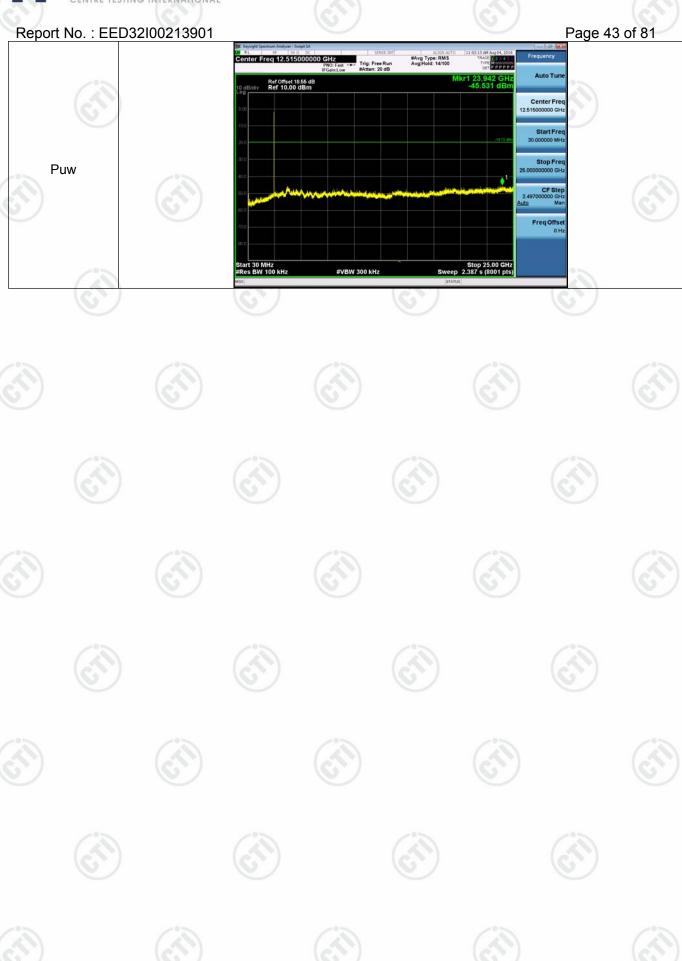






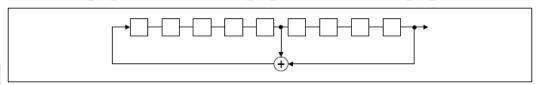






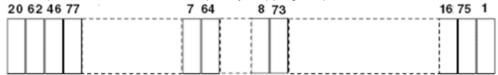
Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

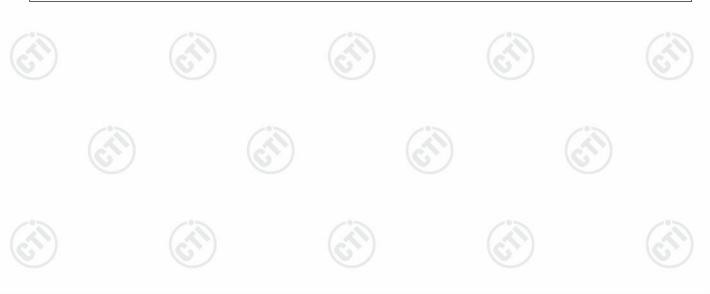
Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence


An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32I00213901 Page 45 of 81

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA antenna and no consideration of replacement. The best case gain of the antenna is 2dBi.

Page 46 of 81 Report No.: EED32I00213901

Appendix J):	AC Power Line Conducted Emission
Test Procedure:	Test frequency range :150KHz-30MHz 1)The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
_°>	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT.
	All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fraguency range (MHz)	Limit (d	dΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

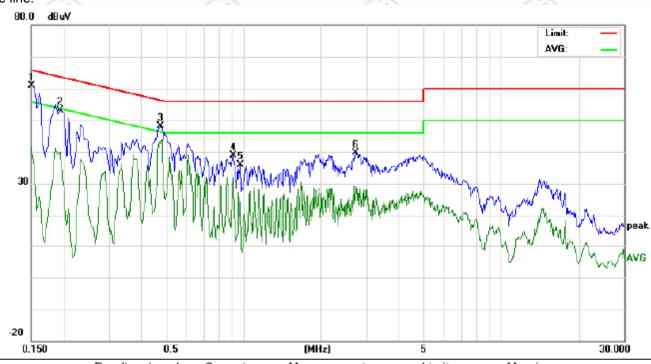
^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

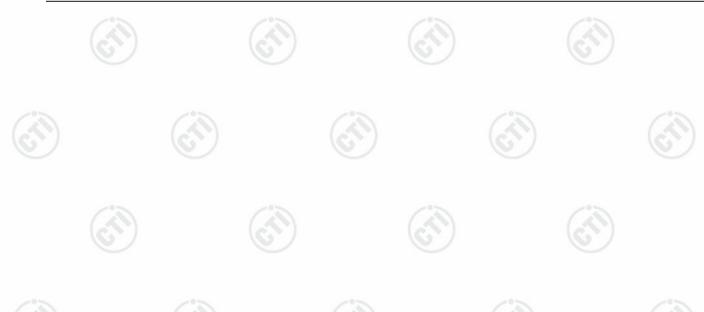
NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

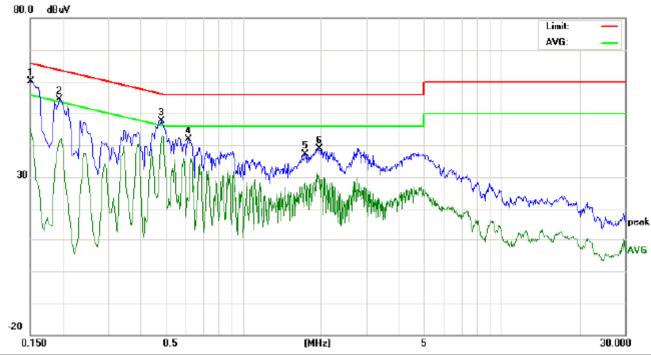
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.




AC 120V/60Hz

Live line:

N	lo.	Freq.		ling_Le dBuV)	evel	Correct Factor	M	(dBuV)		Lin (dB			rgin dB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
-	1	0.1500	51.06		31.89	9.80	60.86		41.69	65.99	55.99	-5.13	-14.30	Р	
	2	0.1940	43.25		30.06	9.80	53.05		39.86	63.86	53.86	-10.81	-14.00	Р	
:	3	0.4780	38.13		33.15	9.90	48.03		43.05	56.37	46.37	-8.34	-3.32	Р	
4	4	0.9100	28.76		21.77	10.00	38.76		31.77	56.00	46.00	-17.24	-14.23	Р	
	5	0.9740	25.96		14.15	10.00	35.96		24.15	56.00	46.00	-20.04	-21.85	Р	
(6	2.7220	29.51		18.76	10.00	39.51		28.76	56.00	46.00	-16.49	-17.24	Р	



Page 48 of 81

Neutral line:

No.	Freq.		ling_Le BuV)	evel	Correct Factor	М	easuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1499	50.29		35.69	9.80	60.09		45.49	66.00	56.00	-5.91	-10.51	Р	
2	0.1940	44.54		31.61	9.80	54.34		41.41	63.86	53.86	-9.52	-12.45	Р	
3	0.4820	37.83		32.68	9.90	47.73		42.58	56.30	46.30	-8.57	-3.72	Р	
4	0.6140	32.03		12.75	9.90	41.93		22.65	56.00	46.00	-14.07	-23.35	Р	
5	1.7380	27.21		18.23	10.00	37.21		28.23	56.00	46.00	-18.79	-17.77	Р	
6	1.9780	28.94		20.28	10.00	38.94		30.28	56.00	46.00	-17.06	-15.72	Р	

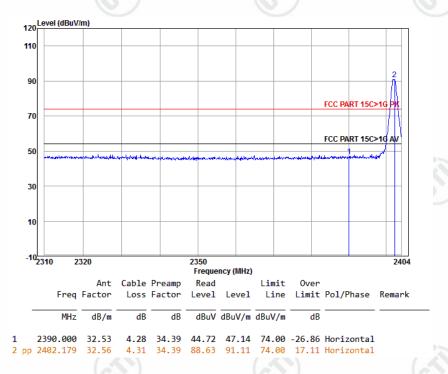
Notes:

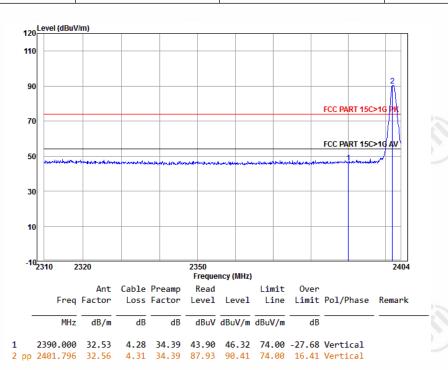
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32I00213901 Page 49 of 81

Appendix K): Restricted bands around fundamental frequency (Radiated)

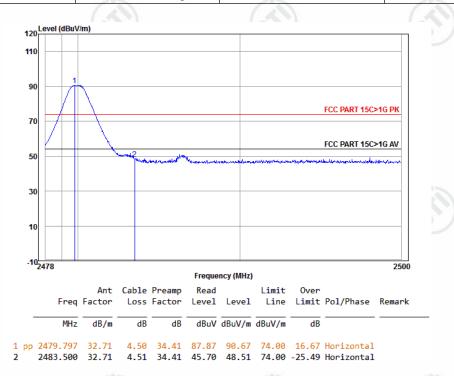
Receiver Setup:	Free	quency	Detector	RBW	VBW	Remark
	30MF	lz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	A I	- 10U-	Peak	1MHz	3MHz	Peak
	Abov	e 1GHz	Peak	1MHz	10Hz	Average
est Procedure:	Below 1GH	z test proced	dure as below:	(2)		
	at a 3 m determing b. The EU was more c. The ante determing polariza d. For each the ante table was e. The test Bandwid f. Place a frequency bands. S for lowe Above 1GH g. Different to fully A meter(A h. b. Test to i. The radi Transmi	eter semi-and the the position I was set 3 munted on the enna height is the the maximations of the and suspected of the maximation was tuned from the enna was tuned from the enna was tuned from the entary to show consider the special between above 18 GHz the EUT in the entary mode, a string mode, a set the entary mode.	on the top of a rechoic camber. To of the highest rate top of a variables varied from one um value of the fintenna are set to emission, the EUT ed to heights from 0 degrees to 36 tem was set to Pomum Hold Mode. The manalyzer plate the distance is 1 the distance is	he table was adiation. the interfer height anter to for height strength make the right of the height and the he	ence-receinna tower. bur meters h. Both hor neasuremenged to its v 4 meters a co find the r Function a closest to the remissions for each por rom Semi- e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	above the groundizontal and verticent. worst case and and the rotatable maximum reading and Specified and the restricted and the restricted and the restricted and specified are transmit as in the restricted and module and specified are transmit as in the restricted and module and specified are transmit as in the restricted and module and specified are transmit as in the restricted and module and specified are transmit as in the restricted and module and specified are transmit as in the restricted are transmit
_imit:	Fre	quency	Limit (dBµV	/m @3m)	Rer	mark
	30MF	Iz-88MHz	40.	0	Quasi-pe	eak Value
	88MH	z-216MHz	43.	5	Quasi-pe	eak Value
	216MH	Iz-960MHz	46.	0	Quasi-pe	eak Value
	960M	Hz-1GHz	54.	0	Quasi-pe	eak Value
		401:	54.	0	Averag	je Value
	Abo	ve 1GHz	7.4	0 201		
			74.	0	reak	Value

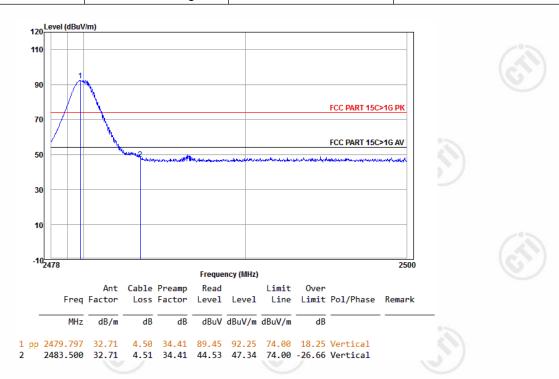



Page 50 of 81

Test plot as follows:

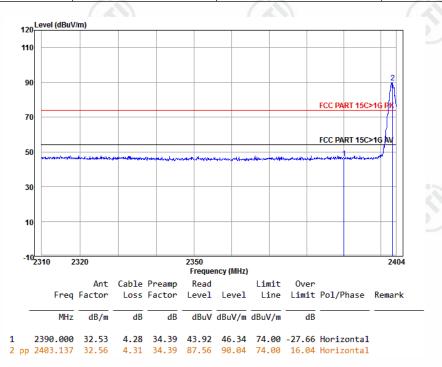
Worse case mode:	GFSK(1-DH5)		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

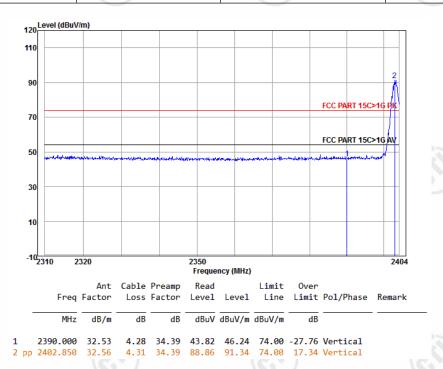

Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



Page 51 of 81

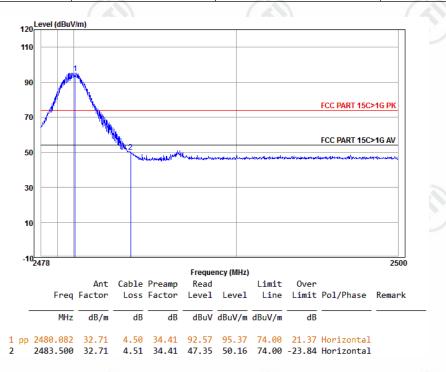
Worse case mode:	GFSK(1-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

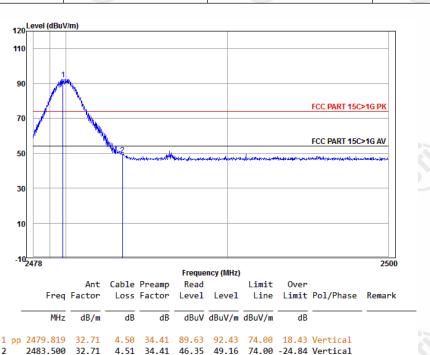

Worse case mode:	GFSK(1-DH5)	(27)	(27)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Page 52 of 81

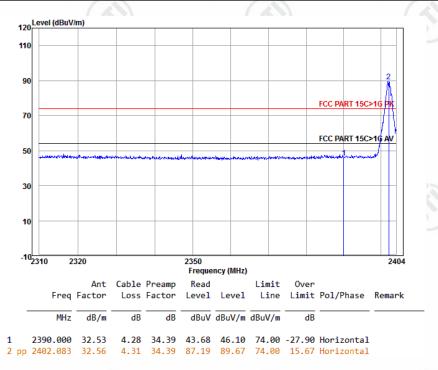
Wo	rse case mode:	π/4DQPSK(2-DH5)		
Fre	quency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

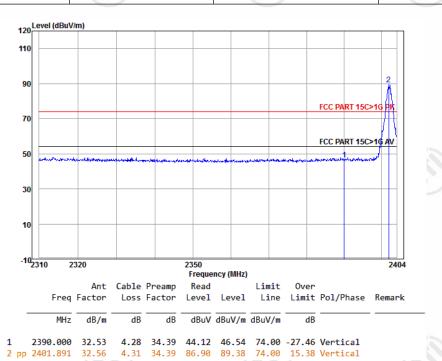

Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



Page 53 of 81

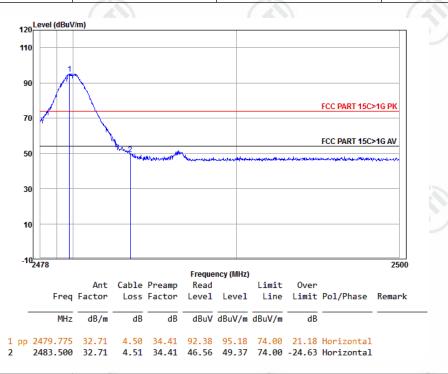
Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

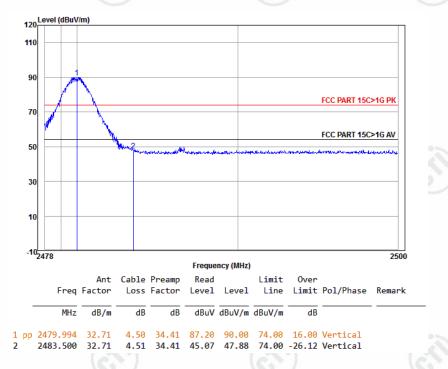

Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Page 54 of 81

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak


Worse case mode:	8DPSK(3-DH5)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	



Page 55 of 81

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	8DPSK(3-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Note:

- 1) Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Report No.: EED32I00213901 Page 56 of 81

Appendix L): Radiated Spurious Emissions

Receiver	Setup:
----------	--------

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 10Uz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

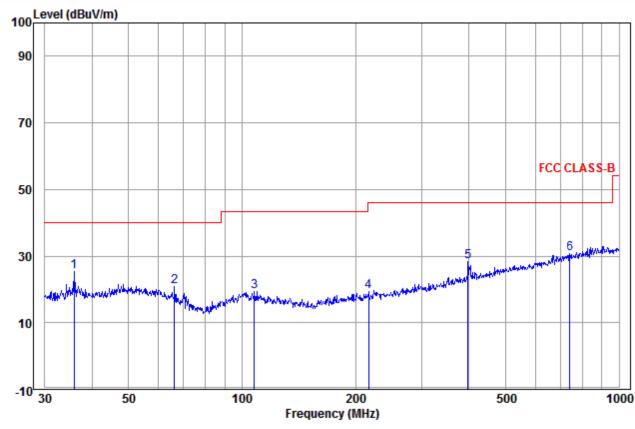
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Limit:

Frequency	Frequency Field strength (microvolt/meter)		Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



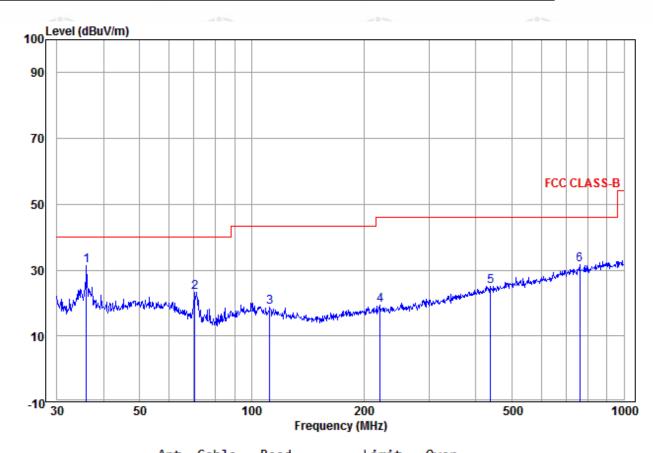
Page 57 of 81

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

30MHz~1GHz (QP)			
Test mode:	Transmitting	Horizontal	6.

	Freq		Cable Loss					Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 pp	35.875	13.56	0.78	10.97	25.31	40.00	-14.69	Horizontal	
2	66.266	11.61	1.44	7.93	20.98	40.00	-19.02	Horizontal	
3	107.888	12.54	1.57	5.34	19.45	43.50	-24.05	Horizontal	
4	216.783	11.89	2.26	5.07	19.22	46.00	-26.78	Horizontal	
5	397.633	16.23	2.80	9.32	28.35	46.00	-17.65	Horizontal	
6	739.661	20.94	3.99	5.93	30.86	46.00	-15.14	Horizontal	



Page 58 of 81

		Test mode:	Transmitting	Vertical
--	--	------------	--------------	----------

	Erea		Cable				Over	Pol/Phase	Romank
	пец	ractor	LUSS	Level	rever	LINE	LIMIC	roi/rilase	Kelliark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 p	р 36.001	13.58	0.77	17.11	31.46	40.00	-8.54	Vertical	
2	70.337	10.34	1.45	11.54	23.33	40.00	-16.67	Vertical	
3	111.738	12.24	1.57	5.04	18.85	43.50	-24.65	Vertical	
4	221.392	11.96	2.27	5.14	19.37	46.00	-26.63	Vertical	
5	438.655	16.93	2.95	5.18	25.06	46.00	-20.94	Vertical	
6	760.704	21.13	3.97	6.65	31.75	46.00	-14.25	Vertical	

Page 59 of 81

Transmitter Emission above 1GHz

Worse case	mode:	GFSK(1-DI	H5)	Test char	nnel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1638.585	31.12	2.95	34.56	43.88	43.39	74	-30.61	Pass	Н
3728.625	33.00	5.48	34.58	43.66	47.56	74	-26.44	Pass	- Н
4804.000	34.69	5.11	34.35	41.68	47.13	74	-26.87	Pass	H
6299.178	36.06	7.13	34.49	41.17	49.87	74	-24.13	Pass	H
7206.000	36.42	6.66	34.90	39.86	48.04	74	-25.96	Pass	Н
9608.000	37.88	7.73	35.08	37.61	48.14	74	-25.86	Pass	Н
1273.572	30.40	2.60	34.89	45.54	43.65	74	-30.35	Pass	V
1948.245	31.62	3.19	34.33	42.96	43.44	74	-30.56	Pass	V
3552.582	33.13	5.51	34.56	42.02	46.10	74	-27.90	Pass	V
4804.000	34.69	5.11	34.35	41.38	46.83	74	-27.17	Pass	V
7206.000	36.42	6.66	34.90	39.74	47.92	74	-26.08	Pass	V
9608.000	37.88	7.73	35.08	37.95	48.48	74	-25.52	Pass	V

	Worse case	mode:	GFSK(1-D	GFSK(1-DH5)		nnel:	Middle	Remark: Peak		
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
	1357.254	30.58	2.69	34.80	46.42	44.89	74	-29.11	Pass	Н
	1889.633	31.54	3.15	34.37	47.26	47.58	74	-26.42	Pass	Н
4	3709.691	33.01	5.49	34.57	44.65	48.58	74	-25.42	Pass	Н
2	4882.000	34.85	5.08	34.33	41.09	46.69	74	-27.31	Pass	Øн⁄
	7323.000	36.43	6.77	34.90	39.82	48.12	74	-25.88	Pass	Н
	9764.000	38.05	7.60	35.05	37.73	48.33	74	-25.67	Pass	Н
	1286.606	30.43	2.61	34.87	45.45	43.62	74	-30.38	Pass	V
	3003.173	33.60	5.62	34.50	42.56	47.28	74	-26.72	Pass	V
	4882.000	34.85	5.08	34.33	41.51	47.11	74	-26.89	Pass	V
	5125.515	35.21	5.37	34.30	40.48	46.76	74	-27.24	Pass	V
0 3	7323.000	36.43	6.77	34.90	41.49	49.79	74	-24.21	Pass	V
3	9764.000	38.05	7.60	35.05	38.42	49.02	74	-24.98	Pass	V

Report No. : EED32I00213901 Page 60 of 81

Worse case	mode:	GFSK(1-D	H5)	Test chann	nel:	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1395.796	30.66	2.73	34.77	44.69	43.31	74	-30.69	Pass	Н
3428.206	33.23	5.54	34.55	43.11	47.33	74	-26.67	Pass	Н
4960.000	35.02	5.05	34.31	40.51	46.27	74	-27.73	Pass	_•H
5646.079	35.63	6.63	34.30	39.30	47.26	74	-26.74	Pass	H
7440.000	36.45	6.88	34.90	40.07	48.50	74	-25.50	Pass	Н
9920.000	38.22	7.47	35.02	37.49	48.16	74	-25.84	Pass	Н
1283.335	30.42	2.61	34.88	43.29	41.44	74	-32.56	Pass	V
1759.638	31.33	3.05	34.47	45.22	45.13	74	-28.87	Pass	V
3644.175	33.06	5.50	34.57	42.48	46.47	74	-27.53	Pass	V
4960.000	35.02	5.05	34.31	41.22	46.98	74	-27.02	Pass	V
7440.000	36.45	6.88	34.90	39.68	48.11	74	-25.89	Pass	V
9920.000	38.22	7.47	35.02	38.74	49.41	74	-24.59	Pass	V

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nnel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1319.777	30.50	2.65	34.84	43.57	41.88	74	-32.12	Pass	Н
1889.633	31.54	3.15	34.37	43.31	43.63	74	-30.37	Pass	Н
3266.346	33.36	5.57	34.53	43.87	48.27	74	-25.73	Pass	Н
4804.000	34.69	5.11	34.35	41.28	46.73	74	-27.27	Pass	Н
7206.000	36.42	6.66	34.90	40.13	48.31	74	-25.69	Pass	O H
9608.000	37.88	7.73	35.08	38.76	49.29	74	-24.71	Pass	Н
1518.111	30.90	2.84	34.66	47.46	46.54	74	-27.46	Pass	V
3333.545	33.31	5.55	34.54	45.13	49.45	74	-24.55	Pass	V
4804.000	34.69	5.11	34.35	41.44	46.89	74	-27.11	Pass	V
5420.742	35.45	6.10	34.30	41.93	49.18	74	-24.82	Pass	V
7206.000	36.42	6.66	34.90	41.01	49.19	74	-24.81	Pass	V
9608.000	37.88	7.73	35.08	37.63	48.16	74	-25.84	Pass	V

Report No. : EED32I00213901 Page 61 of 81

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nnel:	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1461.238	30.79	2.79	34.71	45.67	44.54	74	-29.46	Pass	Н
3534.541	33.14	5.52	34.56	42.74	46.84	74	-27.16	Pass	Н
4882.000	34.85	5.08	34.33	42.07	47.67	74	-26.33	Pass	→ #
6396.125	36.11	7.03	34.55	40.76	49.35	74	-24.65	Pass	Н
7323.000	36.43	6.77	34.90	40.42	48.72	74	-25.28	Pass	Н
9764.000	38.05	7.60	35.05	37.51	48.11	74	-25.89	Pass	Н
1360.714	30.59	2.69	34.80	47.49	45.97	74	-28.03	Pass	V
1750.702	31.32	3.04	34.47	43.44	43.33	74	-30.67	Pass	V
3570.714	33.12	5.51	34.56	43.26	47.33	74	-26.67	Pass	V
4882.000	34.85	5.08	34.33	42.15	47.75	74	-26.25	Pass	V
7323.000	36.43	6.77	34.90	39.43	47.73	74	-26.27	Pass	V
9764.000	38.05	7.60	35.05	37.24	47.84	74	-26.16	Pass	V

Worse case	mode:	π/4DQPSK	((2-DH5)	Test char	nnel:	Highest	Remark: Pe	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1267.104	30.38	2.59	34.89	43.90	41.98	74	-32.02	Pass	Н
1837.456	31.46	3.11	34.41	44.47	44.63	74	-29.37	Pass	Н
3644.175	33.06	5.50	34.57	43.13	47.12	74	-26.88	Pass	Н
4960.000	35.02	5.05	34.31	40.47	46.23	74	-27.77	Pass	Н
7440.000	36.45	6.88	34.90	39.87	48.30	74	-25.70	Pass	ÜН
9920.000	38.22	7.47	35.02	37.80	48.47	74	-25.53	Pass	Н
1309.737	30.48	2.64	34.85	45.42	43.69	74	-30.31	Pass	V
2034.405	31.78	3.33	34.31	44.35	45.15	74	-28.85	Pass	V
3963.520	32.83	5.45	34.60	42.67	46.35	74	-27.65	Pass	V
4960.000	35.02	5.05	34.31	40.62	46.38	74	-27.62	Pass	V
7440.000	36.45	6.88	34.90	39.30	47.73	74	-26.27	Pass	V
9920.000	38.22	7.47	35.02	38.44	49.11	74	-24.89	Pass	V

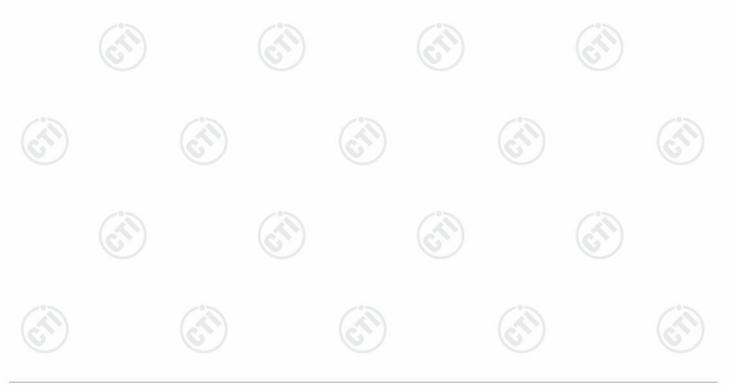
Report No. : EED32I00213901 Page 62 of 81

Worse case	mode:	8DPSK(3-E	DH5)	Test char	nnel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1357.254	30.58	2.69	34.80	47.06	45.53	74	-28.47	Pass	Н
3249.760	33.38	5.57	34.53	45.03	49.45	74	-24.55	Pass	Н
4804.000	34.69	5.11	34.35	41.48	46.93	74	-27.07	Pass	/∘ #
5560.500	35.57	6.43	34.30	40.34	48.04	74	-25.96	Pass	H
7206.000	36.42	6.66	34.90	39.53	47.71	74	-26.29	Pass	Ť
9608.000	37.88	7.73	35.08	37.69	48.22	74	-25.78	Pass	Н
1254.268	30.35	2.58	34.91	45.12	43.14	74	-30.86	Pass	V
1993.395	31.69	3.23	34.30	43.85	44.47	74	-29.53	Pass	V
3350.560	33.29	5.55	34.54	43.50	47.80	74	-26.20	Pass	V
4804.000	34.69	5.11	34.35	40.24	45.69	74	-28.31	Pass	V
7206.000	36.42	6.66	34.90	38.64	46.82	74	-27.18	Pass	V
9608.000	37.88	7.73	35.08	37.62	48.15	74	-25.85	Pass	V

Worse case	mode:	8DPSK(3-E	DH5)	Test chann	nel:	Middle	Remark: Pe	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1222.743	30.28	2.54	34.94	46.37	44.25	74	-29.75	Pass	Н
1973.201	31.66	3.21	34.32	45.03	45.58	74	-28.42	Pass	Н
3598.087	33.09	5.51	34.56	45.23	49.27	74	-24.73	Pass	Н
4882.000	34.85	5.08	34.33	40.97	46.57	74	-27.43	Pass	Н
7323.000	36.43	6.77	34.90	41.34	49.64	74	-24.36	Pass	O H
9764.000	38.05	7.60	35.05	37.74	48.34	74	-25.66	Pass	Н
1238.405	30.32	2.56	34.92	45.29	43.25	74	-30.75	Pass	V
1894.450	31.54	3.15	34.37	43.34	43.66	74	-30.34	Pass	V
3419.491	33.24	5.54	34.55	42.81	47.04	74	-26.96	Pass	V
4882.000	34.85	5.08	34.33	41.72	47.32	74	-26.68	Pass	V
7323.000	36.43	6.77	34.90	41.04	49.34	74	-24.66	Pass	V
9764.000	38.05	7.60	35.05	38.06	48.66	74	-25.34	Pass	V

Report No.: EED32I00213901 Page 63 of 81

Worse case	mode:	8DPSK(3-E	DH5)	Test char	nnel:	Highest	Remark: Pe	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1247.899	30.34	2.57	34.91	42.97	40.97	74	-33.03	Pass	Н
1973.201	31.66	3.21	34.32	43.97	44.52	74	-29.48	Pass	Н
3700.260	33.02	5.49	34.57	43.04	46.98	74	-27.02	Pass	Н
4960.000	35.02	5.05	34.31	41.18	46.94	74	-27.06	Pass	H
7440.000	36.45	6.88	34.90	40.00	48.43	74	-25.57	Pass	Ŧ
9920.000	38.22	7.47	35.02	37.51	48.18	74	-25.82	Pass	Н
1247.899	30.34	2.57	34.91	44.61	42.61	74	-31.39	Pass	V
1860.992	31.49	3.13	34.39	43.31	43.54	74	-30.46	Pass	V
4960.000	35.02	5.05	34.31	40.27	46.03	74	-27.97	Pass	V
5617.407	35.61	6.57	34.30	40.66	48.54	74	-25.46	Pass	V
7440.000	36.45	6.88	34.90	39.65	48.08	74	-25.92	Pass	V
9920.000	38.22	7.47	35.02	37.31	47.98	74	-26.02	Pass	V

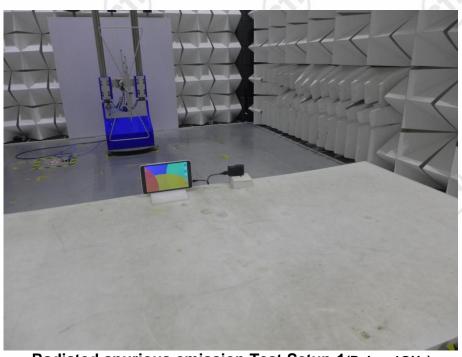

Note

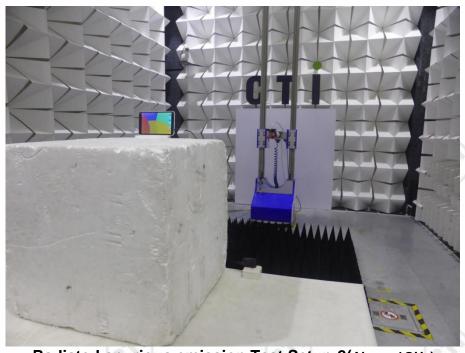
- 1) Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



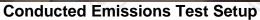

Report No. : EED32I00213901 Page 64 of 81

PHOTOGRAPHS OF TEST SETUP

Test mode No.: S8

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

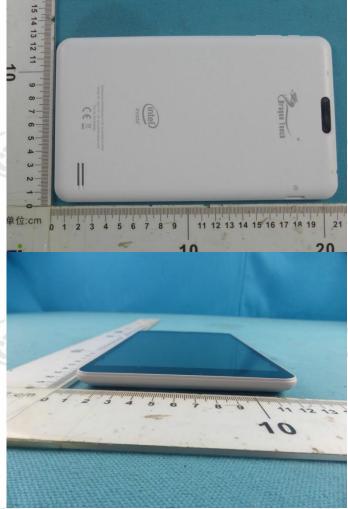


Report No. : EED32I00213901 Page 66 of 81

PHOTOGRAPHS OF EUT Constructional Details

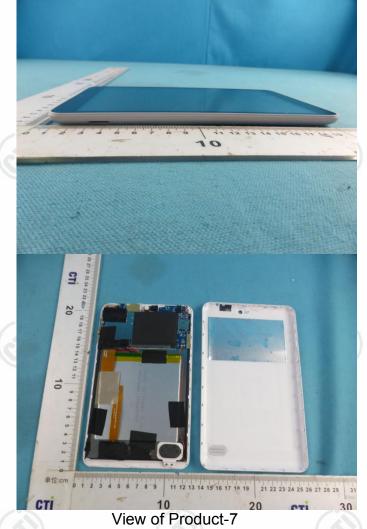
Test mode No.: S8

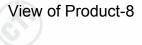
View of Product-2

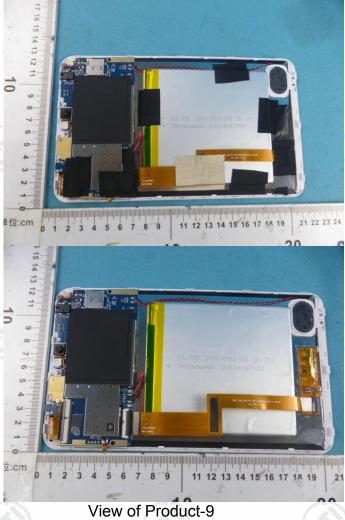


Page 68 of 81

View of Product-5

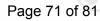


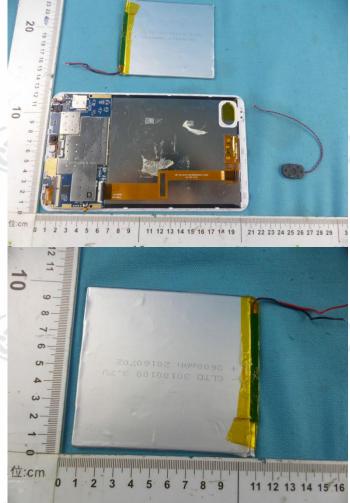




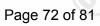
Page 70 of 81

View of Product-10





View of Product-11

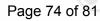


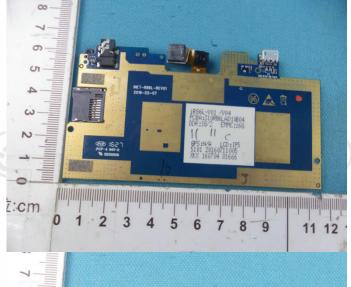


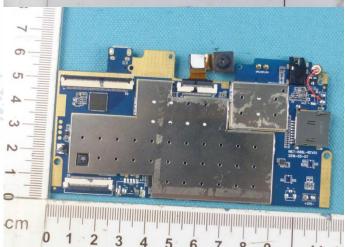
Page 73 of 81

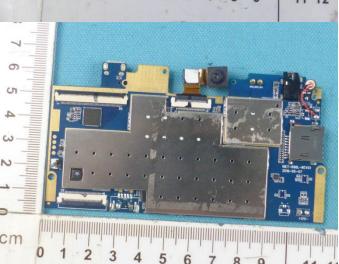
View of Product-15

View of Product-16

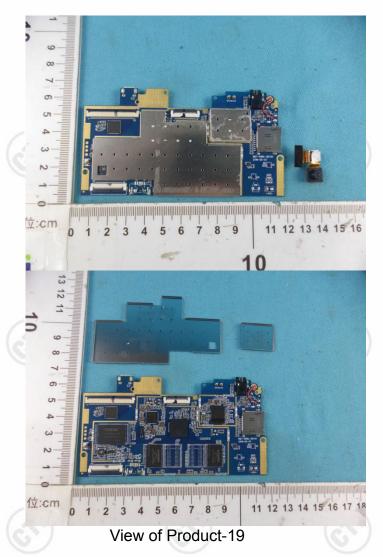


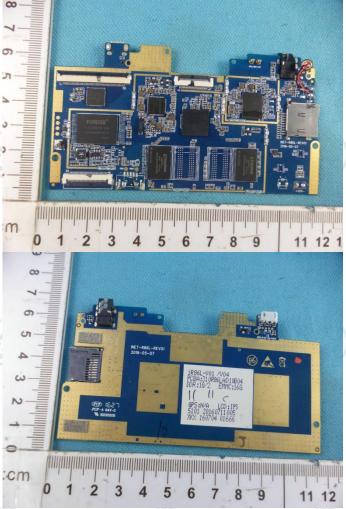


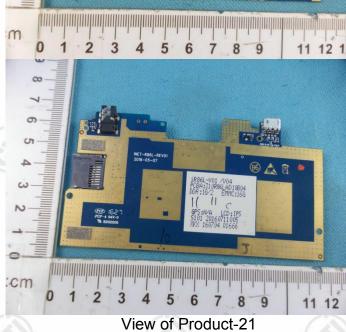


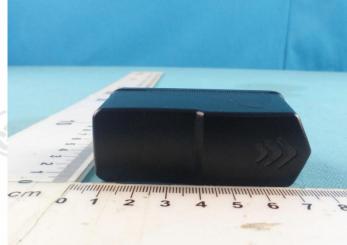


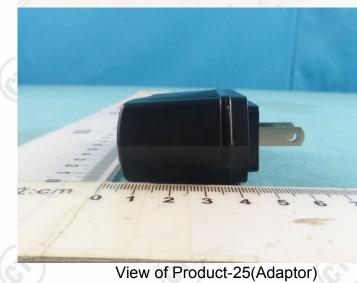
View of Product-17



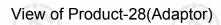


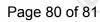




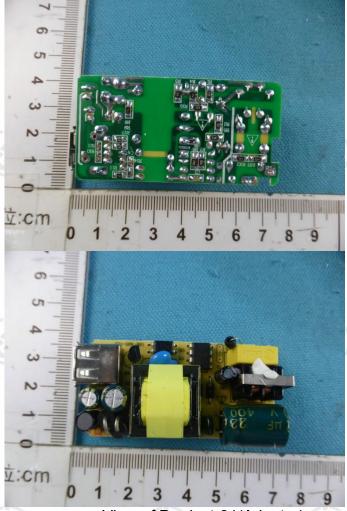


View of Product-27(Adaptor)





View of Product-29(Adaptor)



View of Product-31(Adaptor)

View of Product-32(Adaptor)

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

