

	EST REPORT
Product	7"Tablet PC
Trade mark	DragonTouch, KINGPAD, KINGSLIM, AKASO
Model/Type reference	S7, S70, S7 PLUS, S7 PRO, S7X, S7 KIDS
Serial Number	N/A ()
Report Number	EED32100225101
FCC ID	S5V-D07S70
Date of Issue	Oct. 27, 2016
Test Standards	47 CFR Part 15 Subpart C (2015)
Test result	PASS

PROEXPRESS DISTRIBUTOR LLC 11011 Greenwood Ave N 11011 Greenwood Ave N, Seattle Washington **United States**

Prepared for:

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tom- che

DW

Tom chen (Test Project)

Kevin lan (Reviewer)

Oct. 27, 2016

lan

Compiled by:

Approved by:

Kevin yang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.: 2496558845

Hotline: 400-6788-333

2 Voreion

Version No.	Date	13	Description	6
00	Oct. 27, 2016	(j)	Original)
	15			
	<n< td=""><td></td><td></td><td>(</td></n<>			(

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	
20dB Occupied Bandwidth	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
emark:			10

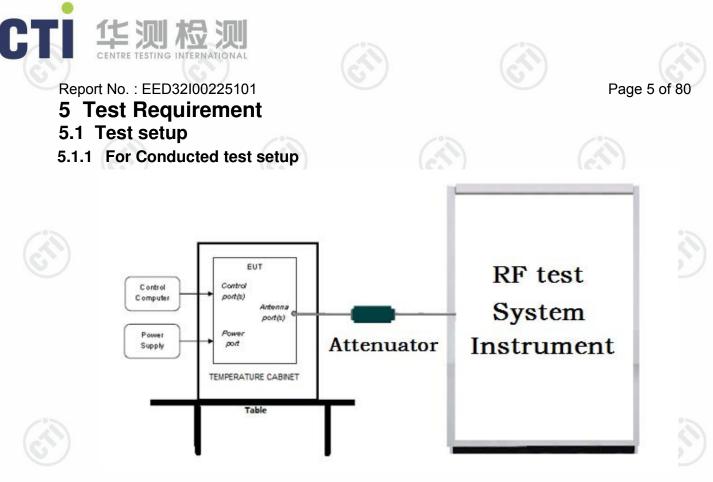
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

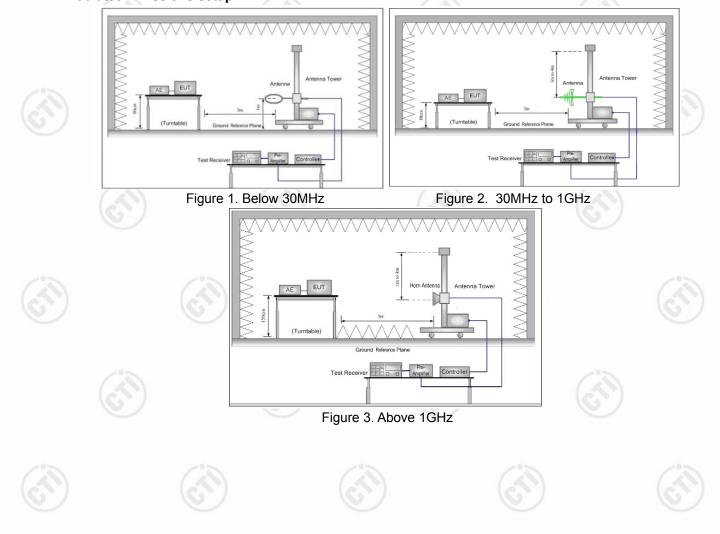
The tested sample and the sample information are provided by the client.

Model No.: S7, S70, S7 PLUS, S7 PRO, S7X, S7 KIDS

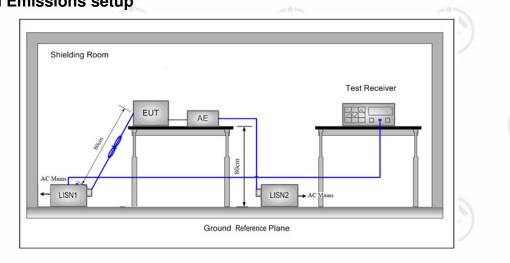
Only the model S7 was tested, the PCB, Schematic, Hardware etc were identical for the above models, Only different model name due to difference agent and marketing purposes.



Page 4 of 80


Report No. : EED32l00225101 4 Content

2 VERSION			
3 TEST SUMMARY			
4 CONTENT			
5 TEST REQUIREMENT			
5.1 TEST SETUP			
5.1.1 For Conducted test setup			
5.1.2 For Radiated Emissions test setup			
5.1.3 For Conducted Emissions test setup			
5.2 TEST ENVIRONMENT 5.3 TEST CONDITION			
6 GENERAL INFORMATION			•••••
6.1 CLIENT INFORMATION			
6.2 GENERAL DESCRIPTION OF EUT			
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO TH			
6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION			
6.6 TEST FACILITY			
6.7 DEVIATION FROM STANDARDS			
6.8 ABNORMALITIES FROM STANDARD CONDITION			
6.9 OTHER INFORMATION REQUESTED BY THE C			
6.10 MEASUREMENT UNCERTAINTY (95% CONFIL			
7 EQUIPMENT LIST	<u> </u>	<u> </u>	1
8 RADIO TECHNICAL REQUIREMENTS SPEC			1
Appendix A): 20dB Occupied Bandwidth			1
Appendix B): Carrier Frequency Separation			
Appendix C): Dwell Time			
Appendix D): Hopping Channel Number			2
Appendix E): Conducted Peak Output Powe			
Appendix F): Band-edge for RF Conducted			
Appendix G): RF Conducted Spurious Emi			
Appendix H): Pseudorandom Frequency Ho			
Appendix I): Antenna Requirement Appendix J): AC Power Line Conducted En			
Appendix J): AC Power Line Conducted En Appendix K): Restricted bands around fund			
Appendix R): Restricted bands around fund Appendix L): Radiated Spurious Emissions			
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUCTIONAL			



5.1.2 For Radiated Emissions test setup Radiated Emissions setup:

Report No. : EED32I00225101 5.1.3 For Conducted Emissions test setup **Conducted Emissions setup**

Page 6 of 80

5.2 Test Environment

Operating Environment:			
Temperature:	21°C	()	0
Humidity:	54% RH		
Atmospheric Pressure:	10105mbar		

5.3 Test Condition

Test Mode		RF Channel		
Test Mode	Tx	Low(L)	Middle(M)	High(H)
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79
8DPSK(DH1,DH3,DH5)		2402MHz		2480MHz
Transmitting mode:	Keep the EUT at Transm	nit mode.	(cs)	(2)

Test mode:

Pre-scan under all rate at Lowest channel 1

Mode	GFSK				
packets	1-DH1	1-DH3	1-DH5		
Power(dBm)	0.588	0.591	0.595		

Mode	π/4DQPSK				
packets	2-DH1	2-DH5			
Power(dBm)	1.461	1.550	1.554		
Mode	U	8DPSK	J		
packets	3-DH1	3-DH3	3-DH5		
Power(dBm)	1.399	1.405	1.410		

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$, 3-DH5 packet the power is the worst case of 8DPSK.

6 General Information 6.1 Client Information

Applicant:PROEXPRESS DISTRIBUTOR LLCAddress of Applicant:11011 Greenwood Ave N 11011 Greenwood Ave N, Seattle Washington
United StatesManufacturer:PROEXPRESS DISTRIBUTOR LLCAddress of Manufacturer:11011 Greenwood Ave N 11011 Greenwood Ave N, Seattle Washington
United StatesFactory:PROEXPRESS DISTRIBUTOR LLCAddress of Factory:11011 Greenwood Ave N 11011 Greenwood Ave N, Seattle Washington
United StatesFactory:PROEXPRESS DISTRIBUTOR LLCAddress of Factory:11011 Greenwood Ave N 11011 Greenwood Ave N, Seattle Washington
United States

6.2 General Description of EUT

7"Tablet PC
S7, S70, S7 PLUS, S7 PRO, S7X, S7 KIDS
S7
DragonTouch, KINGPAD, KINGSLIM, AKASO
Bluetooth V3.0+EDR, Bluetooth V4.0 BLE, WiFi b/g/n(HT20), GSM/GPRS/EDGE 850/1900, WCDMA/HSDPA HSUPA 850/1900
Model: UBP-623-052000 Input: 100-240V~ 50/60Hz Output: 5.0V2000mA
Li-ion 3.7V 2700mAH
Aug. 11, 2016
Aug. 11, 2016 to Oct. 27, 2016

6.3 Product Specification subjective to this standard

2402MHz~2480MHz			
3.0+EDR			
GFSK, π/4DQPSK, 8DPSK			
79			
Portable production		6	
N/A			
WLAN Test Version:1.0.4			
Integral			
0.39dBi	((\mathbf{C})
AC 120V/60Hz & AC 230V/50Hz	\sim		
	3.0+EDRGFSK, π/4DQPSK, 8DPSK79Portable productionN/AWLAN Test Version:1.0.4Integral0.39dBi	3.0+EDR GFSK, π/4DQPSK, 8DPSK 79 Portable production N/A WLAN Test Version:1.0.4 Integral 0.39dBi	3.0+EDR GFSK, π/4DQPSK, 8DPSK 79 Portable production N/A WLAN Test Version:1.0.4 Integral 0.39dBi

Report No. : EED32I00225101 Operation Frequency each of channel

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	1.	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
	2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
	3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
	4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
2	5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
Ϊ	6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
	7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
	8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
	9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
	10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
	11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
	12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
~	13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
)	14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
	15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
	16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
	17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
	18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
	19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
	20	2421MHz	40	2441MHz	60	2461MHz		

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005

Page 8 of 80

General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

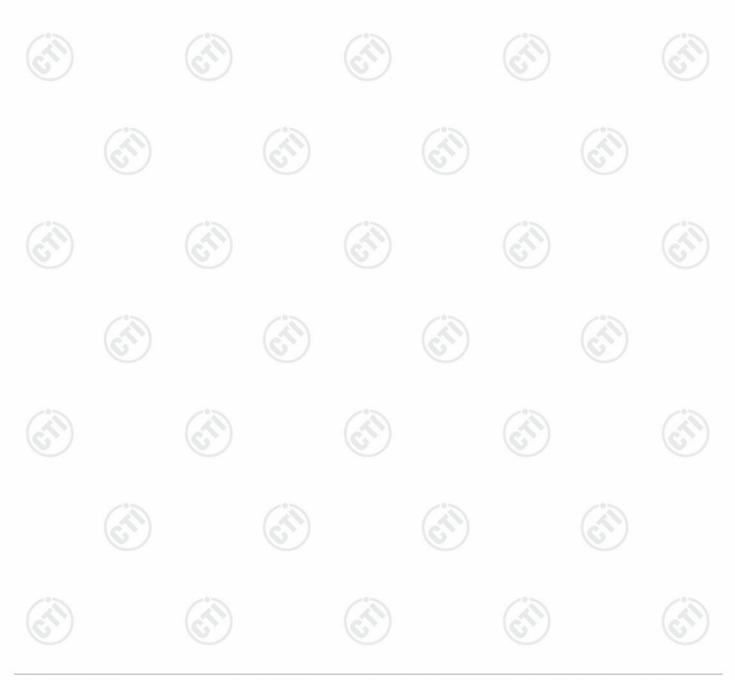
None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.



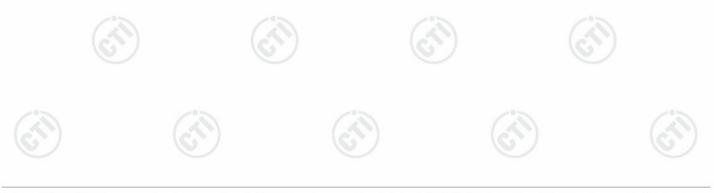
6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2		0.31dB (30MHz-1GHz)	
Ζ	RF power, conducted	0.57dB (1GHz-18GHz)	
<u> </u>	Dedicted Sourious emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
4	Conduction emission	3.6dB (9kHz to 150kHz)	
4	Conduction emission	3.2dB (150kHz to 30MHz	
5	Temperature test 0.64°		
6	Humidity test	2.8%	
7	DC power voltages	0.025%	

Report No. : EED32I00225101
7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(F)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	<u>e</u>	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d	-	04-01-2016	03-31-2017
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017

Conducted disturbance Test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017	
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017	
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017	
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017	
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017	
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017	
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017	
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017	
					1	


Г

3M Semi/full-anechoic Chamber					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
3M Chamber & Accessory Equipment	трк	SAC-3	0	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017

8 Radio Technical Requirements Specification

etere	ence documents for to	esting:		- (3	<u></u>
No.	Identity	S)	Document Title	6	<u>)</u>
1	FCC Part15C (2015)	Subpart C-Intentio	Subpart C-Intentional Radiators		
2	ANSI C63.10-2013	American Nationa	American National Standard for Testing Unlices		
st R	lesults List:	(3)			13
	Test requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B
Part	15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C
	Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D
	Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E
(Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F
	Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G
Part	15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H
	Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
(Part15C Section	ANSI 63.10	AC Power Line Conducted	PASS	Appendix J

Hotline: 400-6788-333

15.207

Part15C Section

15.205/15.209

Part15C Section

15.205/15.209

ANSI 63.10

ANSI 63.10

PASS

PASS

Appendix K)

Appendix L)

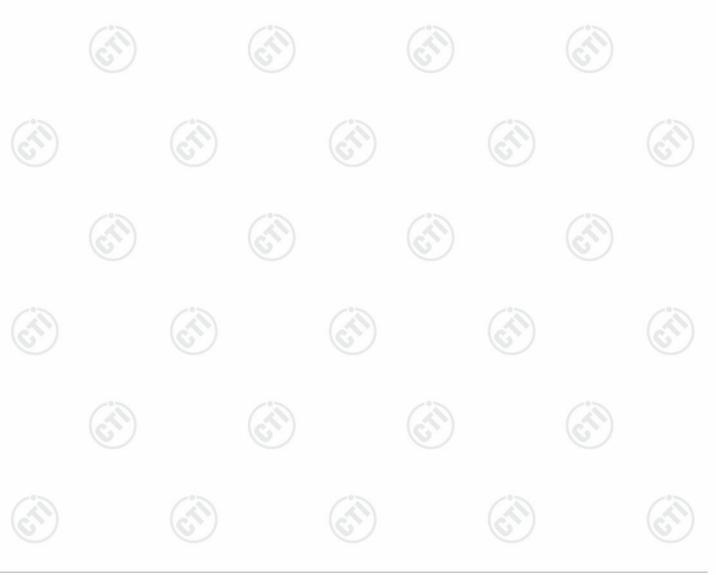
Emission Restricted bands around

fundamental frequency

(Radiated) Emission)

Radiated Spurious

Emissions



Test Result

	Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
6	GFSK	LCH	0.7697	0.80390	PASS	
C	GFSK	MCH	0.7650	0.79708	PASS	
	GFSK	НСН	0.7622	0.80400	PASS	
	π/4DQPSK	LCH	1.187	1.1309	PASS	
	π/4DQPSK	MCH	1.181	1.1216	PASS	Peak
	π/4DQPSK	НСН	1.183	1.1356	PASS	detector
	8DPSK	LCH	1.177	1.1024	PASS	
13	8DPSK	MCH	1.176	1.1092	PASS	
6	8DPSK	НСН	1.172	1.1140	PASS	(\mathcal{S})

Page 14 of 80

Test Graph

Page 15 of 80

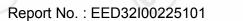
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix B): Carrier Frequency Separation

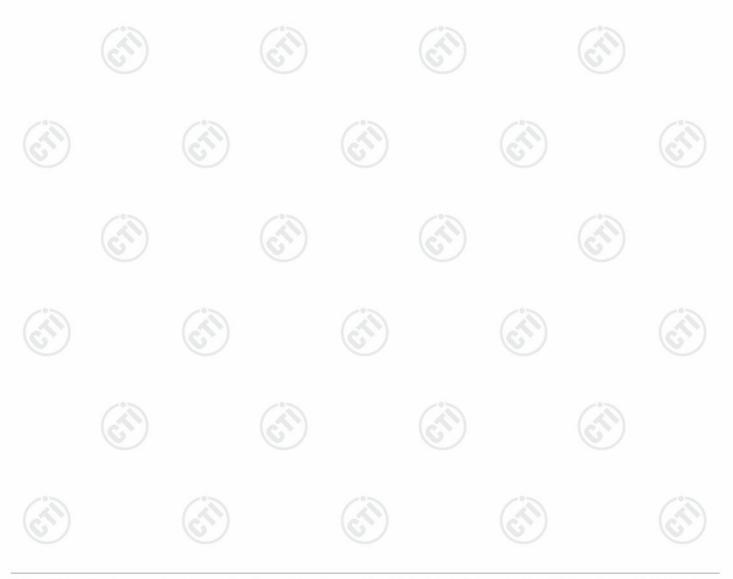
Result Table

Channel.	Carrier Frequency Separation [MHz]	Verdict
LCH	1.000	PASS
МСН	1.000	PASS
Снсн	1.000	PASS
LCH	1.000	PASS
МСН	1.000	PASS
нсн	1.000	PASS
LCH	1.002	PASS
МСН	1.002	PASS
НСН	1.000	PASS
	HCH LCH MCH HCH LCH MCH	HCH 1.000 LCH 1.000 MCH 1.000 HCH 1.000 LCH 1.000 HCH 1.002 MCH 1.002 MCH 1.002

Test Graph



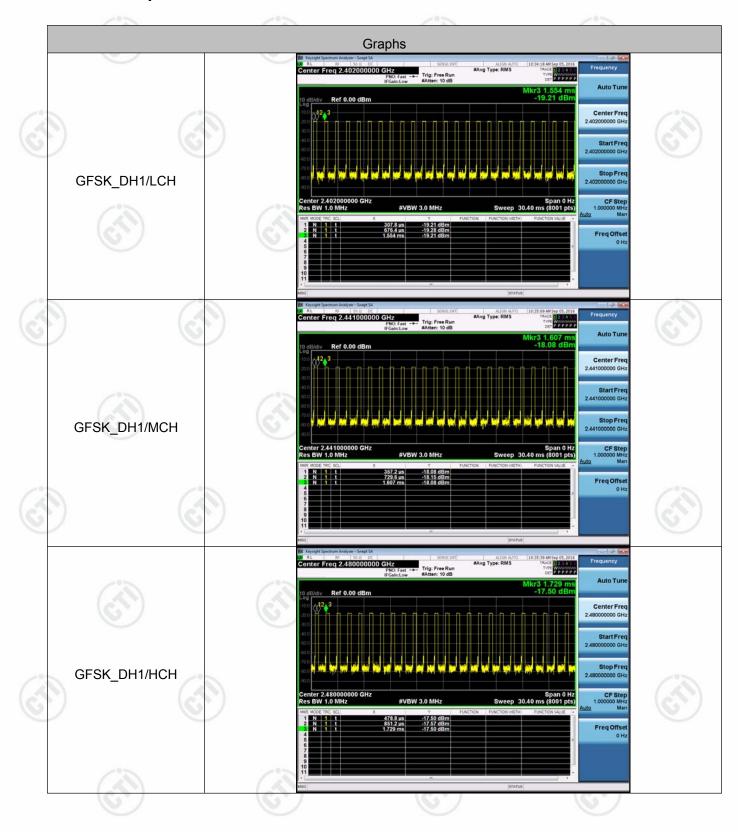
Page 21 of 80 Report No. : EED32l00225101 #Avg Type: RMS Avg Hold: 100/100 nter Freq 2.40250 0 GHz Trig: Free Run PPPPI Auto Tu 0.017 d Ref Offset 19.98 dB Ref 19.98 dBm 142 Center Fre Start Fre Stop Fr 8DPSK/LCH art 2.401500 GHz les BW 30 kHz Stop 2.403500 GH CFS #VBW 100 kHz 0.017 dE 1.002 MHz (Δ) 2.402 000 GHz Freq Off #Avg Type: RMS Avg|Hold: 100/100 r Freq 2.44050 0 GHz Trig: Free Run #Atten: 10 dB PPPPI Ref Offset 19.92 dB Ref 19.92 dBm 0.021 ●1∆2 Center Fre Start Fre Stop Fr 8DPSK/MCH 2.44 tart 2.439500 GHz Res BW 30 kHz Stop 2.441500 GHz 2.133 ms (1001 pts) CFS 1.002 MHz (Δ) 2.440 000 GHz 0.021 dE -0.181 dBm r Freq 2.479500000 GHz #Avg Type: RMS Avg Hold: 100/100 Trig: Free Run PPPP Auto Tu 1.000 MH 0.018 d Ref Offset 19.95 dB Ref 19.95 dBm 142 Center Fre 2.0 Start Fr 2 47 Stop Fr 8DPSK/HCH art 2.478500 GHz Stop 2.480500 GHz 2.133 ms (1001 pts CFS #VBW 100 kHz 0.018 dB 0.743 dBm 1.000 MHz (Δ) 2.479 002 GHz Freq Offs


Report No. : EED32l00225101 Appendix C): Dwell Time

Result Table

	Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
12	GFSK	DH1	LCH	0.3686	320	0.118	0.30	PASS
C	GFSK	DH1	МСН	0.3724	320	0.119	0.30	PASS
	GFSK	DH1	НСН	0.3724	320	0.119	0.30	PASS
	GFSK	DH3	LCH	1.6264	160	0.26	0.65	PASS
	GFSK	DH3	МСН	1.6264	160	0.26	0.65	PASS
	GFSK	DH3	НСН	1.6302	160	0.261	0.65	PASS
	GFSK	DH5	LCH	2.8766	106.7	0.307	0.77	PASS
10	GFSK	DH5	MCH	2.8766	106.7	0.307	0.77	PASS
6	GFSK	DH5	нсн	2.8728	106.7	0.307	0.77	PASS

Remark : All modes are tested, only the worst mode GFSK is reported.



Test Graph

Page 23 of 80



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32100225101 Appendix D): Hopping Channel Number

Result Table

	(C)		<u>(`)</u>
Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Test Graph

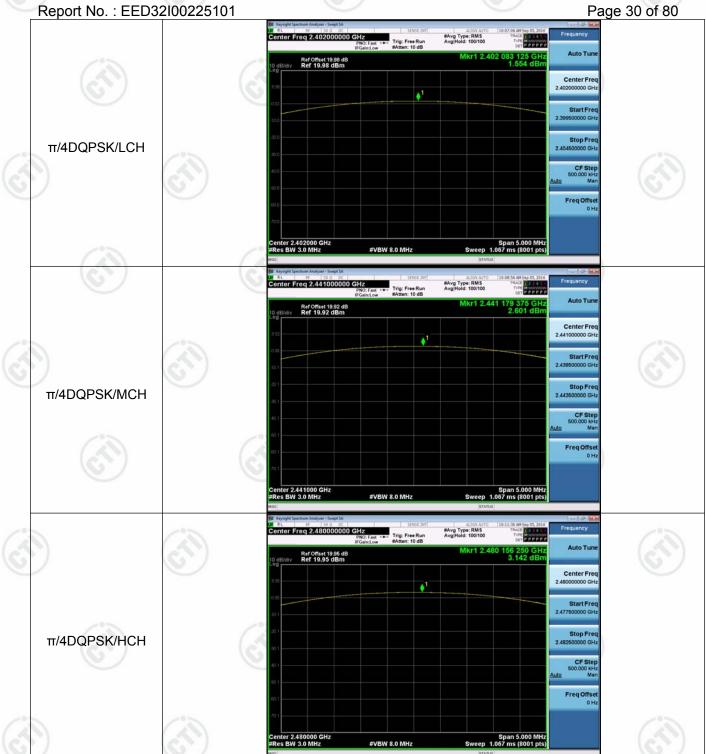
		Graphs	
	9	Knyper Spectram Analyzer - Snerg 5. Knyper Statuter - Snerg 5. Knyper Snerg 5. Knyper Snerg 5. Snerg 2.441750000 GHz PROIS Fast - Trig: Free Run Snerg 5. Snerg 5.	
*		Op dEbids AMKP1 78,150 MHZ 10 dEbids 1.796 dB 0 dEbids 1.796 dB	
<u>5</u>)	(ST)	300 Start Freq 300 2.40000000 GHz 400 9	
GFSK/Hop		Stop 2,43350 GHz Stop 2,43350 GHz Start 2,40000 GHz Stop 2,43350 GHz Bart 2,40000 GHz Stop 2,43350 GHz Start 2,40000 GHz Stop 2,43350 GHz Base BW 100 kHz #VBW 300 kHz Sweep 8,000 ms (1001 pts) 8,35000 MHz	
(T)		#Res BW 100 kHz #VBW 300 kHz Sweep 8.000 ms (1011 pts) 8.35000 MHz More roce the: Section Sectin Secting Sectin Section Section Section Sectin Section Secting S	
2		10 11 15 16 17 17 17 17 17 17 17 17 17 17	
39	S	Ref Offset 19:99 dB Auto Tune 10 dBJdiv Ref 19:98 dBm 1.580 dB 90 2.42 Center Freq 90 2.42 2.41750000 GHz 90 2.41750000 GHz 2.441750000 GHz	
π/4DQPSK/Hop		001 Start Freq 400 240000000 GHz 400 Start Freq 400 Start Freq <	
		Start 2.40000 CH2 Stop 2.48350 CH7 CF Step 2.48350 CF Step 2.483500 CF Step 2.4835000 CF Step 2.483500 CF Step 2	
3	(i)		

Report No. : EED32I00225101 Appendix E): Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	0.595	PASS
GFSK	мсн	1.880	PASS
GFSK	НСН	2.492	PASS
π/4DQPSK	LCH	1.554	PASS
π/4DQPSK	МСН	2.601	PASS
π/4DQPSK	нсн	3.142	PASS
8DPSK	LCH 🔍	1.410	PASS
8DPSK	МСН	2.459	PASS
8DPSK	НСН	3.016	PASS

Test Graph

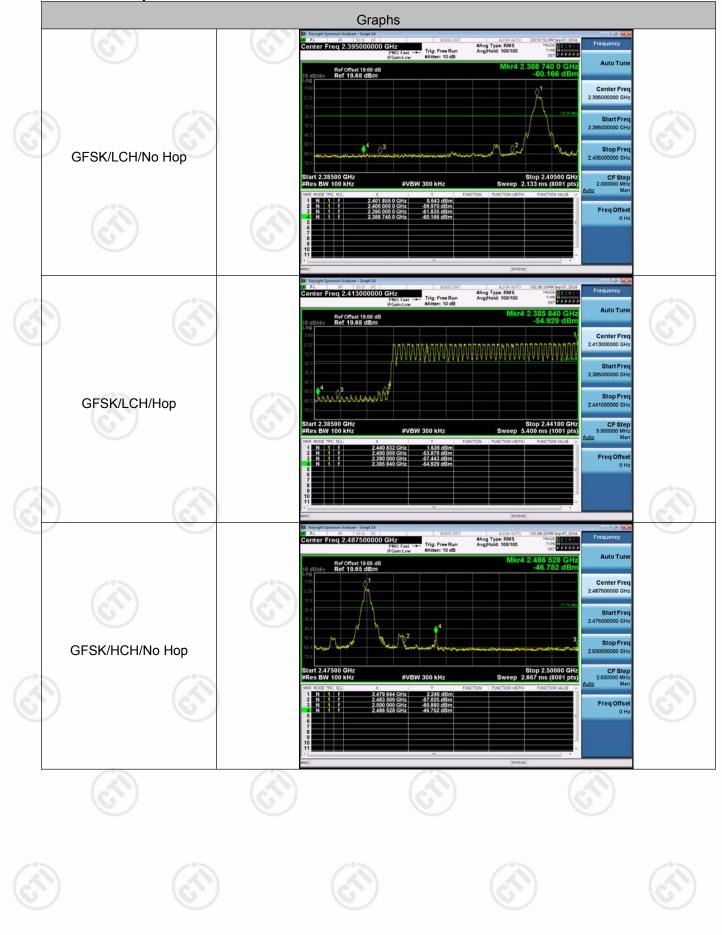


Page 31 of 80 Report No. : EED32I00225101 #Avg Type: RMS Avg|Hold: 100/100 er Freq 2.40200 PNO: Fast ---- Trig: Free Run #Atten: 10 dB PPPPI Auto Tu 63 125 G Ref Offset 19.98 dB Ref 19.98 dBm Center Fre ¢¹ Start Fre Stop Fr 8DPSK/LCH Freq O r 2.402000 GHz BW 3.0 MHz Span 5.000 MH 1.067 ms (8001 pt N 8.0 MH r Freq 2.44100 #Avg Type: RMS Avg|Hold: 100/100 PNO: Fast ----BRO: Fast ----BRO: Fast ----BAtten: 10 dB 1kr1 2.441 215 00 2 45 Auto Ti Ref Offset 19.92 dB Ref 19.92 dBm Center Fre 2.441000000 GH 1 Start Fre Stop Fr 8DPSK/MCH 2.44 CFS er 2.441000 GHz BW 3.0 MHz Span 5.000 MH 1.067 ms (8001 pts W 8.0 MH Freq 2.480000000 GHz PNO: Fast ---- Trig: Free Run #Atter: 10 dB #Avg Type: RMS Avg|Hold: 100/100 PPPP Auto Tu kr1 2.479 924 375 GH 3.016 dB Ref Offset 19.95 dB Ref 19.95 dBm Center Fre Start Fre 2 477 Stop Fr 8DPSK/HCH CFS Freq Of enter 2.480000 GHz Res BW 3.0 MHz Span 5.000 MH eep 1.067 ms (8001 pt #VBW 8.0 MHz

Appendix F): Band-edge for RF Conducted Emissions

C.	Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
	GFSK	LCH	2402	0.643	Off	-60.166	-19.36	PASS
				1.639	On	-54.929	-18.36	PASS
	GFSK	НСН	2480	2.246	Off	-46.752	-17.75	PASS
				-9.020	On	-45.421	-29.02	PASS
S	π/4DQPSK	LCH	2402	1.263	Off	-60.080	-18.74	PASS
				1.918	On	-55.545	-18.08	PASS
	π/4DQPSK	нсн	2480	2.436	Off	-46.310	-17.56	PASS
				2.973	On	-45.391	-17.03	PASS
	8DPSK	LCH	2402	0.849	Off	-60.840	-19.15	PASS
				2.380	On	-55.075	-17.62	PASS
	00001/		2480	2.611	Off	-46.024	-17.39	PASS
	8DPSK	НСН		2.863	On	-45.563	-17.14	PASS

(B)

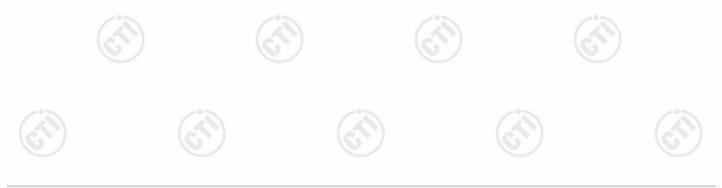


Page 33 of 80

Test Graph

Page 34 of 80

Page 35 of 80




Appendix G): RF Conducted Spurious Emissions

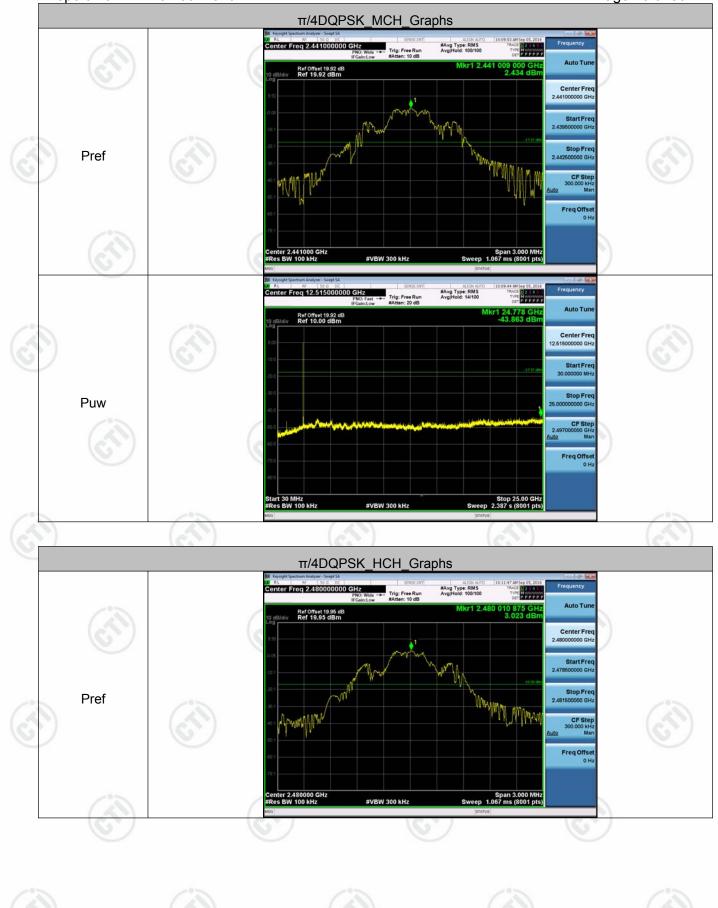
Result Table

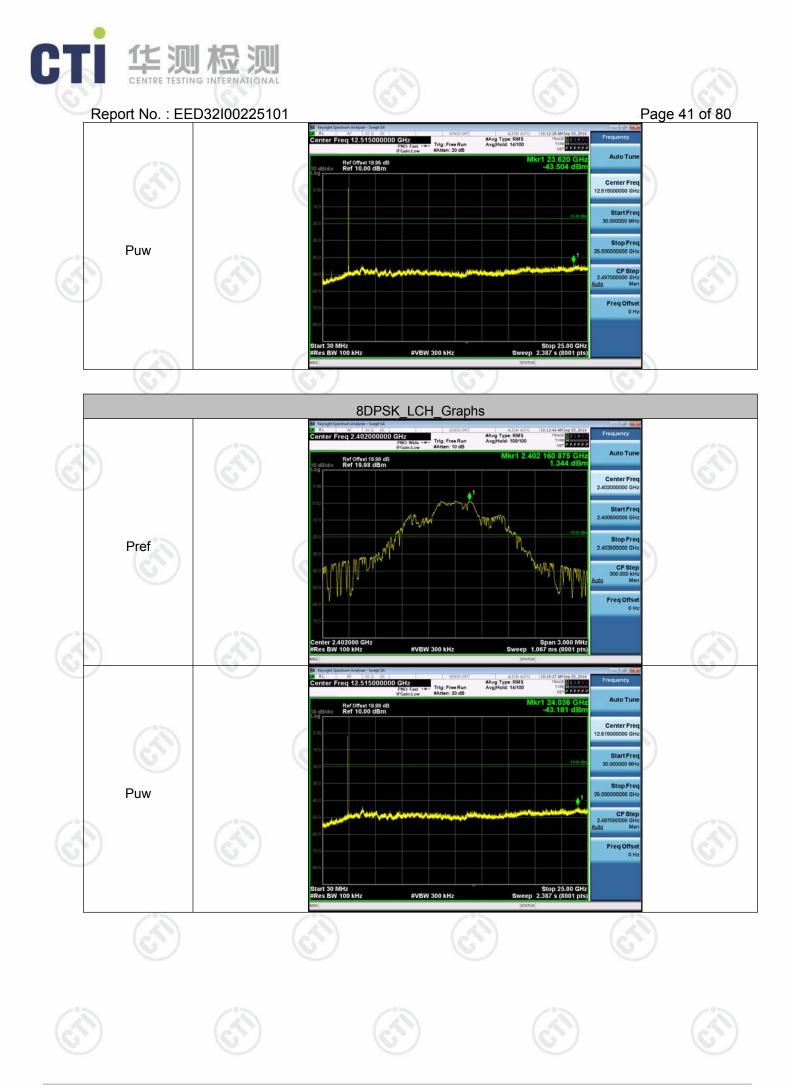
	Ohannal	Due f [dDue]	DenveldDenal	Mandiat
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	0.537	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	МСН	1.821	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	нсн	2.434	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	1.422	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	МСН	2.434	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	3.023	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	1.344	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	МСН	2.423	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	2.929	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

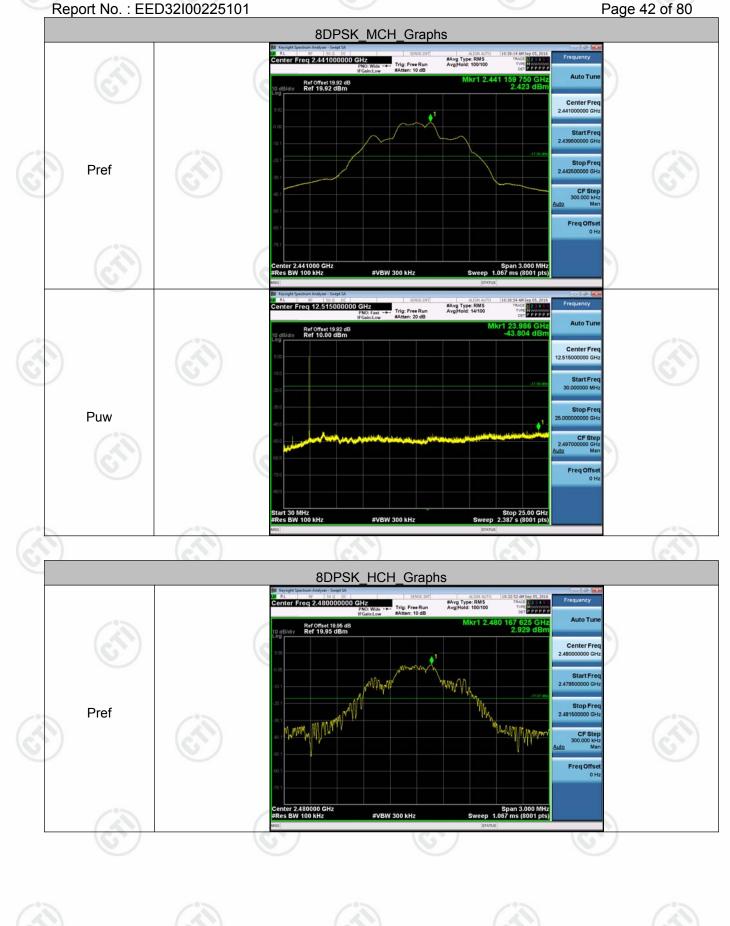
Page 38 of 80

Report No. : EED32I00225101 Page 39 of 80 er Freq 12.515000000 GHz #Avg Type: RMS Avg[Hold: 14/100 Trig: Free Run Auto Tu 1 24.332 G -43.465 dE Ref Offset 19.95 dB Ref 10.00 dBm Center Fre Start Fre Stop Fr Puw CF SI 2.45 uto Freq Offs Stop 25.00 GH: 2.387 s (8001 pts Start 30 MHz #Res BW 100 kHz #VBW 300 kHz π /4DQPSK_LCH_Graphs





Page 40 of 80



Page 42 of 80

Appendix H): Pseudorandom Frequency Hopping Sequence

Tes	t Requirement:	47 CFR Par	t 15C Section 15.2	247 (a)(1) require	ment:	
	requency hopping system or the 20 dB bandwidth				arated by a mir	nimum of 25
	rnatively. Frequency hop			•	may have hon	nina
	nnel carrier frequencies t					
	nnel, whichever is greate					
	system shall hop to char					
	udorandom ordered list o					
	h transmitter. The system dwidths of their correspo					
	smitted signals.			uencies in synchi		
	Pseudorandom Frequ	ency Hopping Se	auence		~°>>	
The outp The	pseudorandom sequen outs are added in a mod sequence begins with t	ce may be gene ulo-two addition s	rated in a nine-states and the res	ult is fed back to	the input of th	e first stage
one	s. • Number of shift regis	er stages: 9				
1	Length of pseudo-rar	•	$9_{-1} = 511$ bits			
- (j	Longest sequence of	•				
1						
	Г	→□-□-□-				
	6		↓			
	(¢		<u> </u>			
	Linear Feedba	ack Shift Registe	er for Generation	of the PRBS se	avence	
	An example of Pseudo	0			quonoo	
	20 62 46 77	7 64	8 73		6 75 1	
P)						
/						
	Each frequency used e		• •			: 4la a : a
	The system receivers					
	Corresponding transm					
	The device does not h					rt to avoid t
	simultaneous occupan	cy of individual no	pping frequencies	by multiple transm	litters.	

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

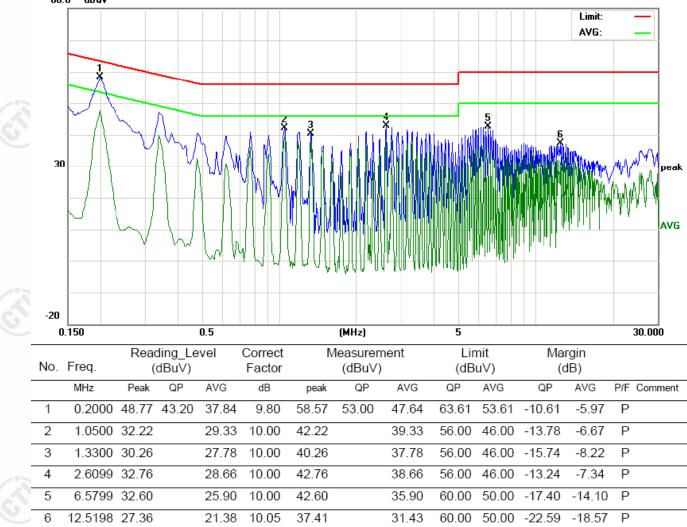
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.39dBi.

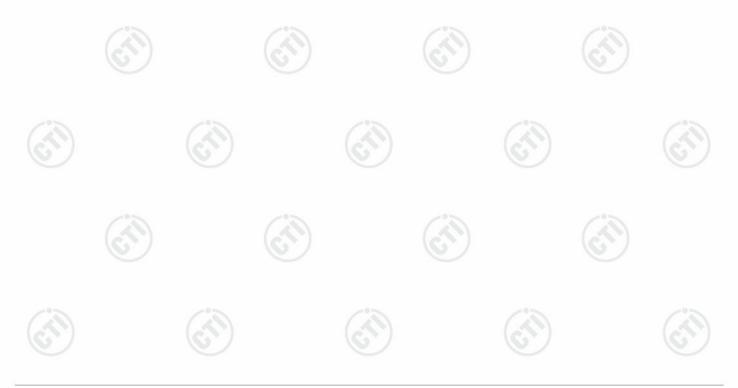
Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz						
	 The mains terminal disturbant The EUT was connected to Stabilization Network) which power cables of all other under which was bonded to the gradient of the unit being measured multiple power cables to a state exceeded. 	AC power source thr h provides a $50\Omega/50$ nits of the EUT were round reference plane d. A multiple socket	ough a LISN 1 (Line μ H + 5Ω linear importance connected to a sec e in the same way a outlet strip was use	e Impedance edance. Th cond LISN s the LISN d to conne				
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangen		•				
	EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the						
	5) In order to find the maximum of the interface cables must conducted measurement.							
Limit:				_				
e la	Frequency range (MHz)	Limit (dBµV)					
	Trequency range (ivitiz)	Quasi-peak	Average					
		66 to 56*	56 to 46*					
	0.15-0.5	00 10 30	00 10 40					
	0.15-0.5	56	46					
	101			61				
	0.5-5	56 60 with the logarithm of	46 50 the frequency in the	e range 0.7				

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.





Live line: 80.0 dBuV

Page 48 of 80

Neutral line: 80.0 dBu¥ Limit: AVG: 30 peak AVG -20 0.150 0.5 (MHz) 5 30.000 Reading_Level Correct Measurement Limit Margin No. Freq. Factor (dBuV) (dBuV) (dBuV) (dB) MHz Peak QP AVG dB peak QP AVG QP AVG QP AVG P/F Comment Ρ 1 0.2000 48.33 43.15 39.37 58.13 52.95 49.17 63.61 53.61 -10.66 9.80 -4.44 2 0.3400 38.30 26.62 9.84 48.14 36.46 59.20 49.20 -11.06 -12.74 Ρ Ρ 3 1.0500 32.71 31.00 30.41 10.00 42.71 40.41 56.00 -5.59 41.00 46.00 -15.00 -5.19 4 1.3300 32.59 31.70 30.81 10.00 42.59 41.70 40.81 56.00 46.00 -14.30 Ρ 5 Ρ 2.6099 26.48 23.44 10.00 36.48 33.44 56.00 46.00 -19.52 -12.56 6 6.5799 29.20 24.18 10.00 39.20 34.18 60.00 50.00 -20.80 -15.82 Ρ

Notes:

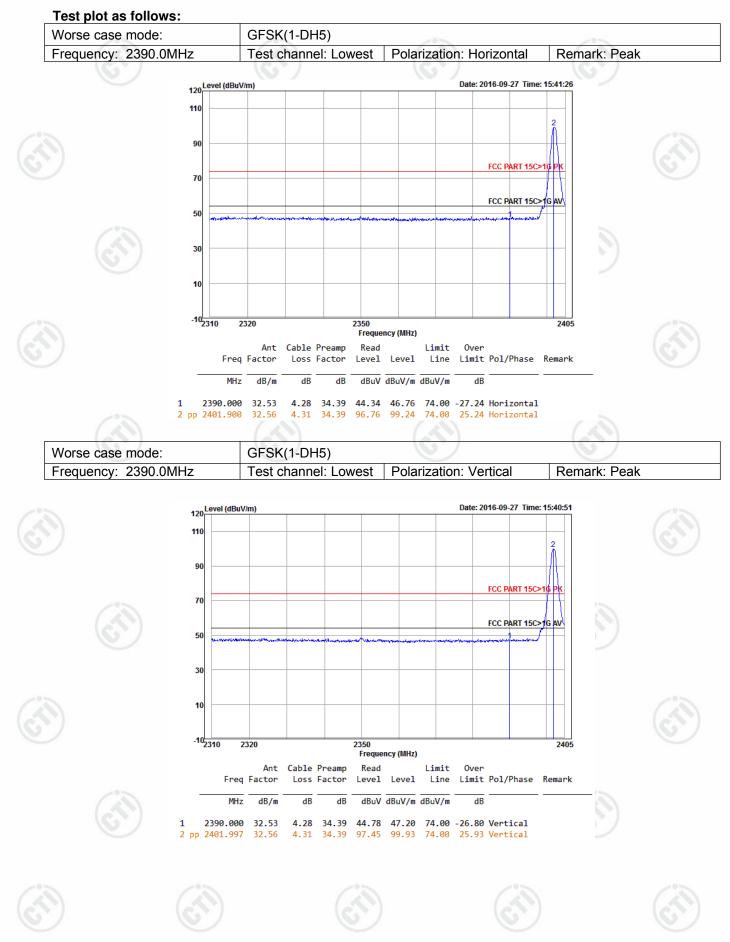
1. The following Quasi-Peak and Average measurements were performed on the EUT:

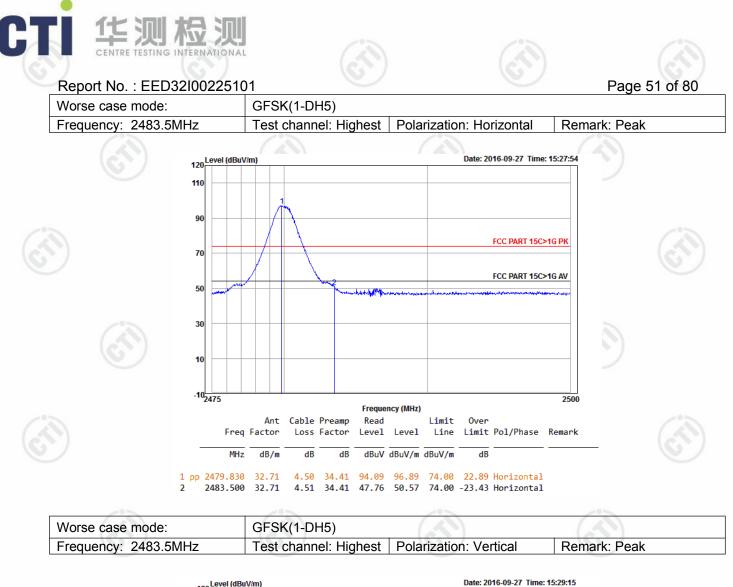
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

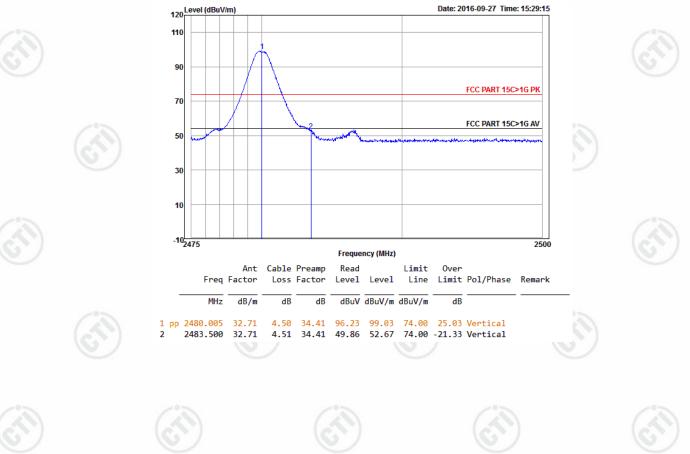
3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

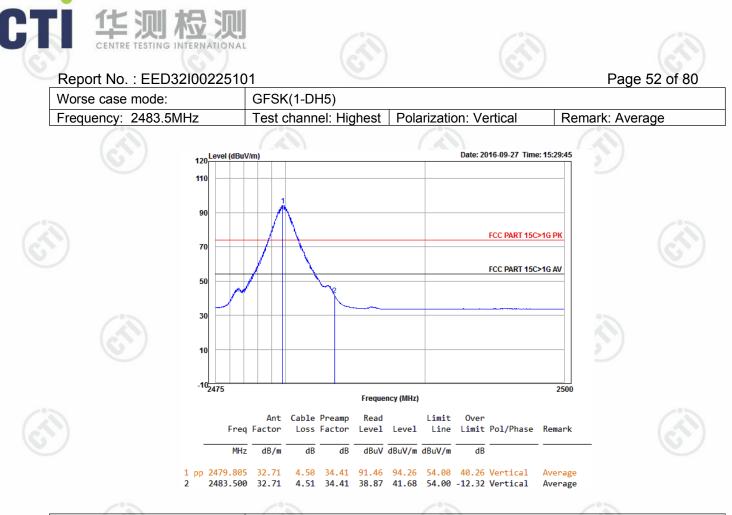
Report No. : EED32100225101 Page 4 Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak 120		300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	-0
Test Procedure:	Below 1GHz test procedu	ire as below:	(ć.	((c,
Limit:	 a. The EUT was placed of at a 3 meter semi-anex determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the ant d. For each suspected en the antenna was tuned table was turned from e. The test-receiver system Bandwidth with Maxim f. Place a marker at the of frequency to show com bands. Save the spect for lowest and highest Above 1GHz test proceded g. Different between above to fully Anechoic Chammeter (Above 18GHz the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu 	choic camber. T of the highest ra- eters away from op of a variable-l- varied from one m value of the fi- tenna are set to nission, the EU ⁻ I to heights from 0 degrees to 36 em was set to Pe um Hold Mode. end of the restric- npliance. Also m rum analyzer ple channel ure as below: we is the test site nber and change he distance is 1 lowest channel ments are perfor d found the X as res until all freq	he table wa adiation. the interfer height anter meter to for eld strength make the n f was arran 1 meter to 0 degrees t eak Detect cted band of heasure any ot. Repeat for e, change fir e form table meter and , the Highe meter and , the Highe	as rotated 3 ence-recei nna tower. bur meters h. Both hom neasuremen iged to its 4 meters to find the Function a closest to the rom Semi- to con Semi- table is 1.5 st channel Y, Z axis p ing which i	360 degrees to iving antenna, above the grou rizontal and ve ent. worst case and and the rotatak maximum reac and Specified he transmit s in the restrict ower and modu Anechoic Cha to 1.5 5 meter). positioning for it is worse case as complete.	wh uncertic d th ble ding ted ulat
	Frequency 30MHz-88MHz	Limit (dBµV 40.			mark	
				1		
	88MHz-216MHz	43.5 Quasi-pe				
	216MHz-960MHz	46.			eak Value	
	960MHz-1GHz	54.		· ·	eak Value	
	Above 1GHz	54.0		Average Value		
b. 1				Peak Value		

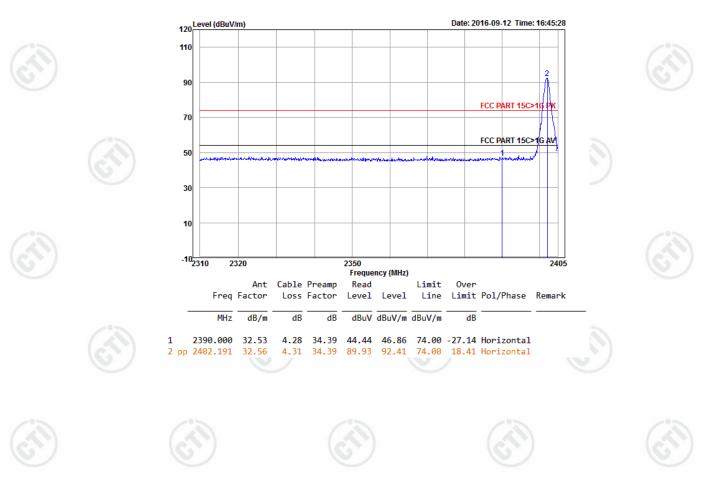


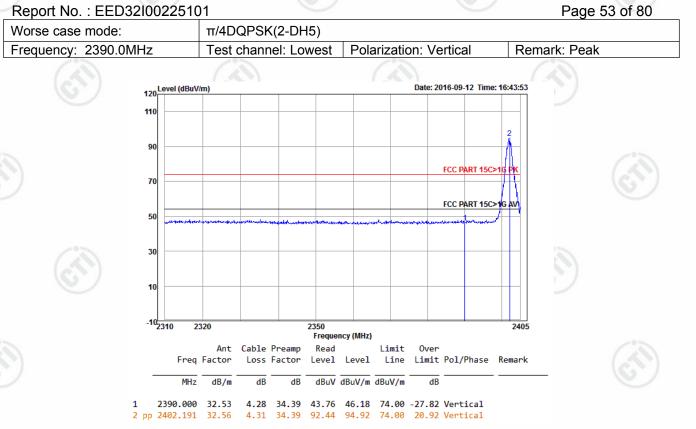




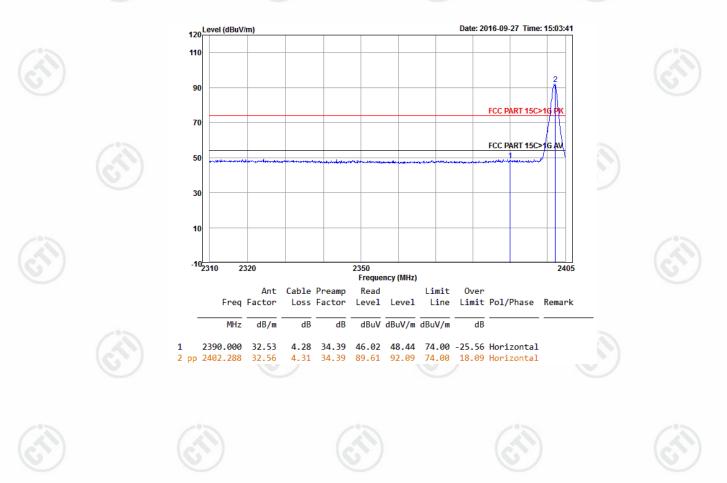

Page 50 of 80

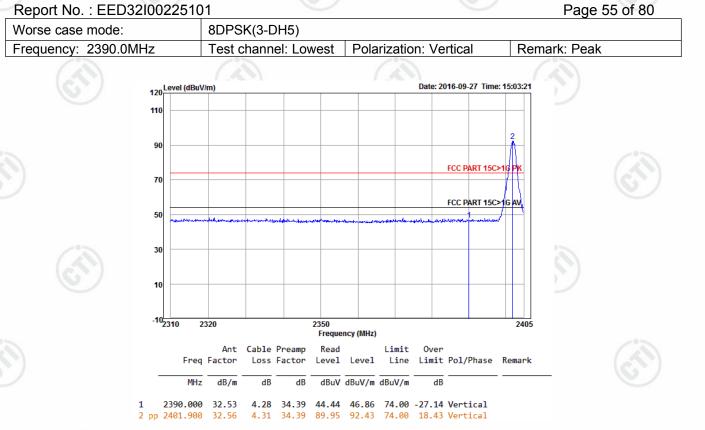
Report No. : EED32I00225101





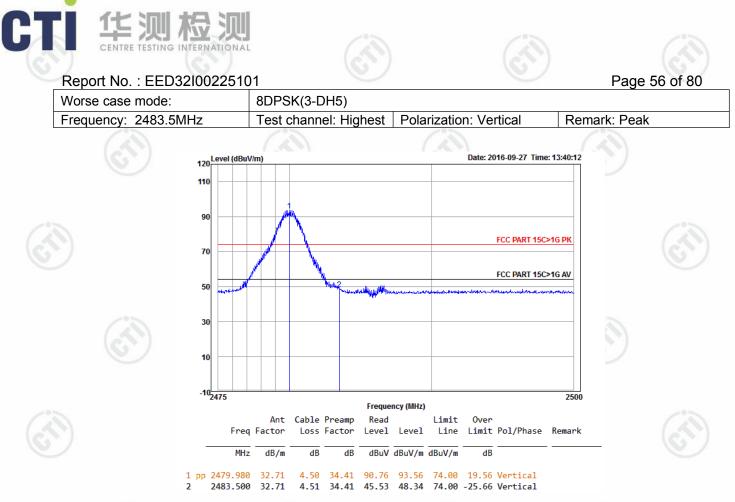
Worse case mode:	π/4DQPSK(2-DH5)	(25)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak


Worse case mode:	π/4DQPSK(2-DH5)	(est)	(2)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

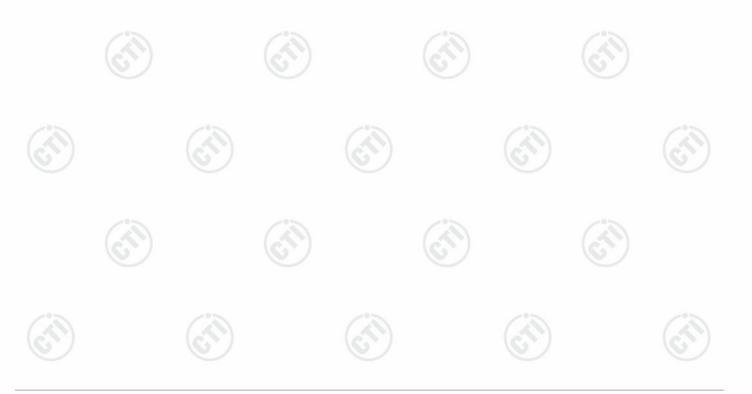


Report No. : EED32l00225101 Page 54 of 80 Worse case mode: π/4DQPSK(2-DH5) Test channel: Highest | Polarization: Vertical Frequency: 2483.5MHz Remark: Peak 120 Level (dBuV/m) Date: 2016-09-27 Time: 15:07:52 110 90 FCC PART 15C>1G PK 70 FCC PART 15C>1G AV 50 30 10 -10<mark>2475</mark> 2500 Frequency (MHz) Ant Cable Preamp Read Limit **Over** Loss Factor Level Level Line Limit Pol/Phase Remark Freq Factor MHz dB/m dBuV dBuV/m dBuV/m dB dB dB 1 pp 2479.980 32.71 4.50 34.41 89.34 92.14 74.00 18.14 Vertical 2 2483.500 32.71 4.51 34.41 46.81 49.62 74.00 -24.38 Vertical

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak



Worse case mode:	8DPSK(3-DH5)	(est)	(25)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak



Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode. 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix L): Radiated Spurious Emissions

Receiver Setup:	<*>>	-			2°
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
(\mathcal{C})	Above 1GHz	Peak	1MHz	10Hz	Average

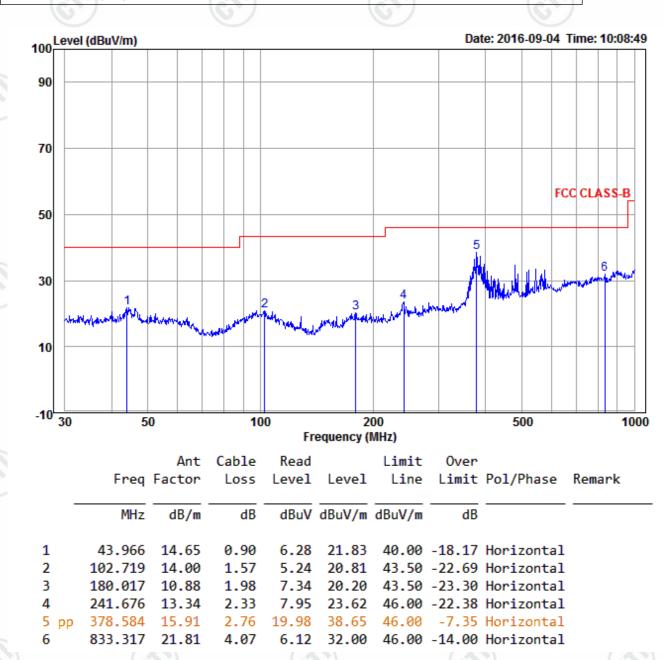
Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.


Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	- /	<u></u>	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	applicable to the	otherwise specified above the maximu equipment under te vel radiated by the o	um permittee st. This pea	d average emi	ssion limit

Report No. : EED32100225101 Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

Page 59 of 80

100 Level (dBuV/m) Date: 2016-09-27 Time: 16:26:15 90 70 FCC CLASS-B 50 2 30 الدارانية الروالي 4 10 -10 30 50 100 200 500 1000 Frequency (MHz) Cable Read Limit **Over** Ant Freq Factor Loss Level Level Line Limit Pol/Phase Remark MHz dBuV dBuV/m dBuV/m dB/m dB dB 1 34.882 13.40 0.84 11.44 25.68 40.00 -14.32 Vertical 2 31.61 44.587 14.64 0.95 16.02 40.00 -8.39 Vertical pp 3 60.280 13.67 1.43 25.35 40.00 -14.65 Vertical 10.25 4 77.865 9.33 1.55 24.02 40.00 -15.98 Vertical 13.14 5 181.920 11.05 2.00 9.29 22.34 43.50 -21.16 Vertical 3.20 34.09 46.00 -11.91 Vertical 6 545.183 18.83 12.06

Note:

1) for 30MHz~1GHz test, low middle highest channel are tested, only show worst data in the report.

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Transmitter Emission above 1GHz

Worse case	mode:	GFSK(1-DH5)	Test o	hannel:	Lowest	Remark:	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1132.844	30.06	2.43	35.04	48.05	45.50	74.00	-28.50	Pass	Horizontal
1663.803	31.17	2.97	34.54	49.90	49.50	74.00	-24.50	Pass	Horizontal
4804.000	34.69	5.11	34.35	44.93	50.38	74.00	-23.62	Pass	Horizontal
5850.919	35.79	7.10	34.30	42.12	50.71	74.00	-23.29	Pass	Horizontal
7206.000	36.42	6.66	34.90	39.89	48.07	74.00	-25.93	Pass	Horizontal
9608.000	37.88	7.73	35.08	38.81	49.34	74.00	-24.66	Pass	Horizontal
1276.818	30.41	2.60	34.88	47.29	45.42	74.00	-28.58	Pass	Vertical
1663.803	31.17	2.97	34.54	48.11	47.71	74.00	-26.29	Pass	Vertical
3766.785	32.97	5.48	34.58	46.04	49.91	74.00	-24.09	Pass	Vertical
4804.000	34.69	5.11	34.35	44.11	49.56	74.00	-24.44	Pass	Vertical
7206.000	36.42	6.66	34.90	39.93	48.11	74.00	-25.89	Pass	Vertical
9608.000	37.88	7.73	35.08	37.26	47.79	74.00	-26.21	Pass	Vertical

	Worse case	mode:	GFSK(1-DH5)	Test o	hannel:	Middle	Remark:	Peak	
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
	1132.844	30.06	2.43	35.04	47.25	44.70	74.00	-29.30	Pass	Horizontal
	1364.182	30.60	2.69	34.80	46.38	44.87	74.00	-29.13	Pass	Horizontal
	4882.000	34.85	5.08	34.33	44.73	50.33	74.00	-23.67	Pass	Horizontal
2	6315.233	36.07	7.11	34.50	42.19	50.87	74.00	-23.13	Pass	Horizontal
	7323.000	36.43	6.77	34.90	38.31	46.61	74.00	-27.39	Pass	Horizontal
	9764.000	38.05	7.60	35.05	38.00	48.60	74.00	-25.40	Pass	Horizontal
	1276.818	30.41	2.60	34.88	47.08	45.21	74.00	-28.79	Pass	Vertical
	1668.044	31.18	2.98	34.54	47.91	47.53	74.00	-26.47	Pass	Vertical
	3728.625	33.00	5.48	34.58	44.86	48.76	74.00	-25.24	Pass	Vertical
	4882.000	34.85	5.08	34.33	45.04	50.64	74.00	-23.36	Pass	Vertical
1	7323.000	36.43	6.77	34.90	37.64	45.94	74.00	-28.06	Pass	Vertical
3	9764.000	38.05	7.60	35.05	38.13	48.73	74.00	-25.27	Pass	Vertical

9920.000	38.22	7.47	35.02	37.42	48.09	74.00	-25.91	Pass	Horizontal	
1204.210	30.24	2.52	34.96	47.19	44.99	74.00	-29.01	Pass	Vertical	
1668.044	31.18	2.98	34.54	48.49	48.11	74.00	-25.89	Pass	Vertical	
4960.000	35.02	5.05	34.31	41.20	46.96	74.00	-27.04	Pass	Vertical	
5895.771	35.82	7.20	34.30	40.99	49.71	74.00	-24.29	Pass	Vertical	
7440.000	36.45	6.88	34.90	39.57	48.00	74.00	-26.00	Pass	Vertical	
9920.000	38.22	7.47	35.02	37.39	48.06	74.00	-25.94	Pass	Vertical	
)		5)		G	9	C	\mathcal{O}		(C)	
Worse case mode:		π/4DQPSK(2-DH5) Tes			channel: Lowest			Remark:	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1167.982	30.15	2.48	35.00	47.59	45.22	74.00	-28.78	Pass	Horizontal	
1585.248	31.03	2.90	34.60	46.49	45.82	74.00	-28.18	Pass	Horizontal	
4804.000	34.69	5.11	34.35	40.69	46.14	74.00	-27.86	Pass	Horizontal	
6461.583	36.14	6.97	34.59	41.08	49.60	74.00	-24.40	Pass	Horizontal	
7206.000	36.42	6.66	34.90	37.50	45.68	74.00	-28.32	Pass	Horizontal	
9608.000	37.88	7.73	35.08	34.91	45.44	74.00	-28.56	Pass	Horizontal	
1201.149	30.23	2.52	34.96	46.95	44.74	74.00	-29.26	Pass	Vertical	
1621.985	31.10	2.94	34.57	45.77	45.24	74.00	-28.76	Pass	Vertical	

Test channel:

Level

(dBµV/m)

45.62

49.80

50.30

50.37

47.15

Read

Level

(dBµV)

48.17

50.20

44.54

42.05

38.72

Highest

Limit Line

(dBµV/m)

74.00

74.00

74.00

74.00

74.00

Over

Limit

(dB)

-28.38

-24.20

-23.70

-23.63

-26.85

华测检 Report No. : EED32I00225101

Antenna

Factor

(dB/m)

30.06

31.17

35.02

35.72

36.45

GFSK(1-DH5)

Cable

Loss

(dB)

2.43

2.97

5.05

6.90

6.88

Preamp

Gain

(dB)

35.04

34.54

34.31

34.30

34.90

Worse case mode:

Frequency

1132.844

1663.803

4960.000

5762.235

7440.000

3728.625

4804.000

7206.000

9608.000

33.00

34.69

36.42

37.88

5.48

5.11

6.66

7.73

34.58

34.35

34.90

35.08

(MHz)

Page 61 of 80

Antenna

Polaxis

Horizontal

Horizontal

Horizontal

Horizontal

Horizontal

Remark: Peak

Result

Pass

Pass

Pass

Pass

Pass

Pass Vertical Pass Vertical

Vertical

Vertical

74.00

74.00

74.00

74.00

-25.19

-27.94

-26.49

-25.35

Pass

Pass

44.91

40.61

39.33

38.12

48.81

46.06

47.51

48.65

Worse case mode:		π/4DQPSK(2-DH5)		Test channel:		Middle		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1127.091	30.05	2.43	35.04	46.29	43.73	74.00	-30.27	Pass	Horizonta	
1663.803	31.17	2.97	34.54	45.24	44.84	74.00	-29.16	Pass	Horizonta	
4882.000	34.85	5.08	34.33	38.38	43.98	74.00	-30.02	Pass	Horizonta	
5776.922	35.73	6.93	34.30	40.17	48.53	74.00	-25.47	Pass	Horizonta	
7323.000	36.43	6.77	34.90	37.25	45.55	74.00	-28.45	Pass	Horizonta	
9764.000	38.05	7.60	35.05	35.19	45.79	74.00	-28.21	Pass	Horizonta	
1150.279	30.10	2.46	35.02	47.79	45.33	74.00	-28.67	Pass	Vertical	
1764.123	31.34	3.05	34.46	45.78	45.71	74.00	-28.29	Pass	Vertical	
4882.000	34.85	5.08	34.33	40.22	45.82	74.00	-28.18	Pass	Vertical	
6379.864	36.10	7.05	34.54	41.98	50.59	74.00	-23.41	Pass	Vertical	
7323.000	36.43	6.77	34.90	39.89	48.19	74.00	-25.81	Pass	Vertical	
9764.000	38.05	7.60	35.05	36.76	47.36	74.00	-26.64	Pass	Vertical	
Worse case mode:		π/4DQPSK(2-DH5)		Test channel:		Highest		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1115.673	30.02	2.41	35.06	46.59	43.96	74.00	-30.04	Pass	Horizonta	
							07.64	Pass	Horizonta	
1668.044	31.18	2.98	34.54	46.74	46.36	74.00	-27.64	1 435		
	31.18 35.02	2.98 5.05	34.54 34.31	46.74 39.45	46.36 45.21	74.00 74.00	-27.64	Pass	Horizonta	
1668.044									Horizonta Horizonta	
1668.044 4960.000	35.02	5.05	34.31	39.45	45.21	74.00	-28.79	Pass	Horizonta	
1668.044 4960.000 5732.974	35.02 35.70	5.05 6.83	34.31 34.30	39.45 40.82	45.21 49.05	74.00 74.00	-28.79 -24.95	Pass Pass	Horizonta Horizonta	
1668.044 4960.000 5732.974 7440.000	35.02 35.70 36.45	5.05 6.83 6.88	34.31 34.30 34.90	39.45 40.82 38.16	45.21 49.05 46.59	74.00 74.00 74.00	-28.79 -24.95 -27.41	Pass Pass Pass	Horizonta Horizonta Horizonta	
1668.044 4960.000 5732.974 7440.000 9920.000	35.02 35.70 36.45 38.22	5.05 6.83 6.88 7.47	34.31 34.30 34.90 35.02	39.45 40.82 38.16 35.71	45.21 49.05 46.59 46.38	74.00 74.00 74.00 74.00	-28.79 -24.95 -27.41 -27.62	Pass Pass Pass Pass	205	
1668.044 4960.000 5732.974 7440.000 9920.000 1150.279	35.02 35.70 36.45 38.22 30.10	5.05 6.83 6.88 7.47 2.46	34.31 34.30 34.90 35.02 35.02	39.45 40.82 38.16 35.71 47.71	45.21 49.05 46.59 46.38 45.25	74.00 74.00 74.00 74.00 74.00	-28.79 -24.95 -27.41 -27.62 -28.75	Pass Pass Pass Pass Pass	Horizonta Horizonta Horizonta Vertical Vertical	
1668.044 4960.000 5732.974 7440.000 9920.000 1150.279 1381.656	35.02 35.70 36.45 38.22 30.10 30.63	5.05 6.83 6.88 7.47 2.46 2.71	34.31 34.30 34.90 35.02 35.02 34.78	39.45 40.82 38.16 35.71 47.71 46.15	45.21 49.05 46.59 46.38 45.25 44.71	74.00 74.00 74.00 74.00 74.00 74.00	-28.79 -24.95 -27.41 -27.62 -28.75 -29.29	Pass Pass Pass Pass Pass Pass	Horizonta Horizonta Vertical Vertical Vertical	
1668.044 4960.000 5732.974 7440.000 9920.000 1150.279 1381.656 4960.000	35.02 35.70 36.45 38.22 30.10 30.63 35.02	5.05 6.83 6.88 7.47 2.46 2.71 5.05	34.31 34.30 34.90 35.02 35.02 34.78 34.31	39.45 40.82 38.16 35.71 47.71 46.15 39.03	45.21 49.05 46.59 46.38 45.25 44.71 44.79	74.00 74.00 74.00 74.00 74.00 74.00 74.00	-28.79 -24.95 -27.41 -27.62 -28.75 -29.29 -29.21	Pass Pass Pass Pass Pass Pass Pass	Horizonta Horizonta Horizonta Vertical	

Frequency (MHz)	Factor (dB/m)	Loss (dB)	Gain (dB)	Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Limit (dB)	Result	Antenna Polaxis
1280.072	30.41	2.61	34.88	47.52	45.66	74.00	-28.34	Pass	Horizontal
1668.044	31.18	2.98	34.54	46.75	46.37	74.00	-27.63	Pass	Horizontal
4804.000	34.69	5.11	34.35	41.30	46.75	74.00	-27.25	Pass	Horizontal
5732.974	35.70	6.83	34.30	42.77	51.00	74.00	-23.00	Pass	Horizontal
7206.000	36.42	6.66	34.90	38.83	47.01	74.00	-26.99	Pass	Horizontal
9608.000	37.88	7.73	35.08	37.81	48.34	74.00	-25.66	Pass	Horizontal
1204.210	30.24	2.52	34.96	45.99	43.79	74.00	-30.21	Pass	Vertical
1676.558	31.19	2.98	34.53	45.65	45.29	74.00	-28.71	Pass	Vertical
4804.000	34.69	5.11	34.35	40.48	45.93	74.00	-28.07	Pass	Vertical
6396.125	36.11	7.03	34.55	39.86	48.45	74.00	-25.55	Pass	Vertical
7206.000	36.42	6.66	34.90	37.11	45.29	74.00	-28.71	Pass	Vertical
9608.000	37.88	7.73	35.08	36.30	46.83	74.00	-27.17	Pass	Vertical
Worse case	mode:	8DPSK(3-DH5)		Test channel:		Middle		Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1150.279	30.10	2.46	35.02	47.43	44.97	74.00	-29.03	Pass	Horizontal
3192.366	33.43	5.58	34.52	45.63	50.12	74.00	-23.88	Pass	Horizontal
4882.000	34.85	5.08	34.33	39.97	45.57	74.00	-28.43	Pass	Horizontal
5836.044	35.78	7.07	34.30	40.73	49.28	74.00	-24.72	Pass	Horizontal
7323.000	36.43	6.77	34.90	39.04	47.34	74.00	-26.66	Pass	Horizontal
9764.000	38.05	7.60	35.05	36.97	47.57	74.00	-26.43	Pass	Horizontal
1204.210	30.24	2.52	34.96	47.63	45.43	74.00	-28.57	Pass	Vertical

Test channel:

Level

Read

Lowest

Limit Line

Over

华测检 P

Worse case mode:

Frequency

1680.831

4882.000

5910.798

7319.964

9764.000

31.20

34.85

35.83

36.43

38.05

2.99

5.08

7.23

6.77

7.60

34.53

34.33

34.30

34.90

35.05

46.69

40.00

40.71

37.89

37.61

46.35

45.60

49.47

46.19

48.21

74.00

74.00

74.00

74.00

74.00

-27.65

-28.40

-24.53

-27.81

-25.79

Pass

Pass

Pass

Pass

Pass

Vertical

Vertical

Vertical

Vertical

Vertical

Report No. : EED32l00225101

Antenna

8DPSK(3-DH5)

Cable

Preamp

Antenna

Remark: Peak

30.22 34.97 1198.095 2.51 47.20 44.96 74.00 -29.04 Pass 31.47 34.40 46.07 46.26 74.00 -27.74 Pass 1846.834 3.12 34.31 74.00 4960.000 35.02 5.05 39.62 45.38 -28.62 Pass 6561.030 34.65 41.38 74.00 -24.21 36.19 6.87 49.79 Pass 7440.000 36.45 6.88 34.90 38.87 47.30 74.00 -26.70 Pass 9920.000 38.22 7.47 35.02 37.15 47.82 74.00 -26.18 Pass 1118.517 30.02 2.42 35.05 47.29 44.68 74.00 -29.32 Pass 1663.803 31.17 2.97 34.54 47.00 46.60 74.00 -27.40 Pass 4960.000 35.02 5.05 34.31 39.61 45.37 74.00 -28.63 Pass 6379.864 7.05 34.54 74.00 36.10 40.45 49.06 -24.94Pass

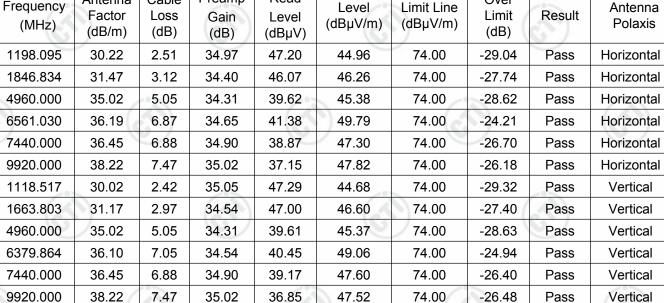
Read

Note:

1) Through Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Level =Receiver Reading -Correct Factor


Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

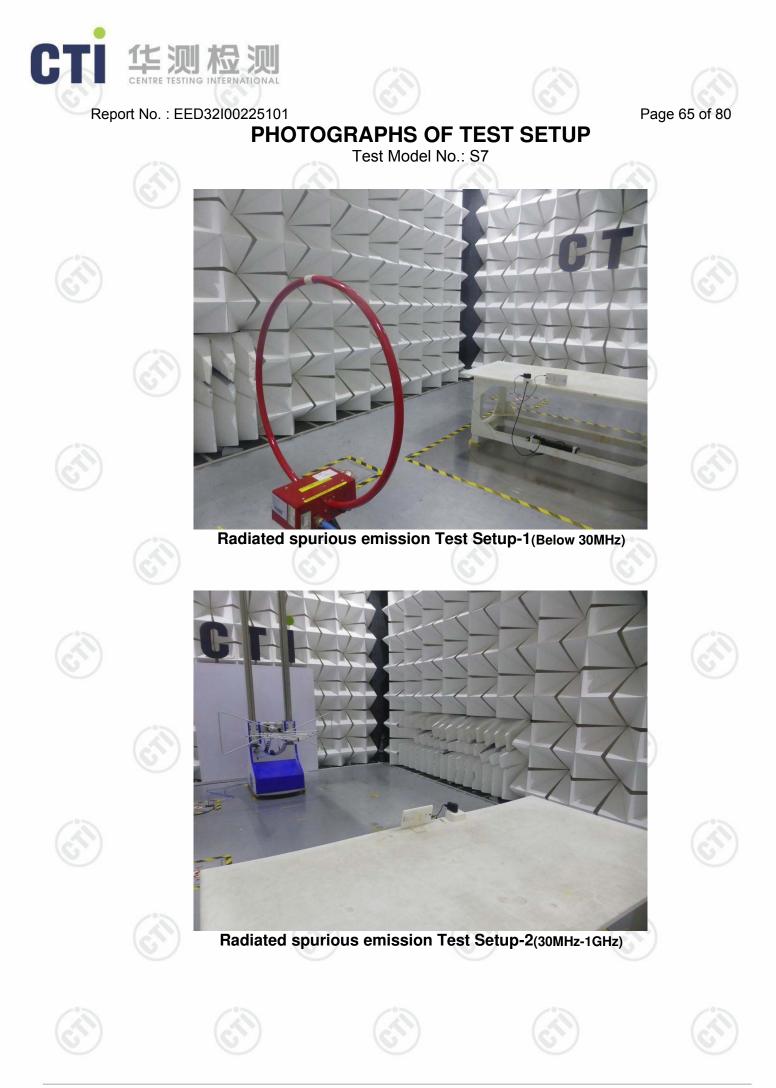
4) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

Report No. : EED32100225101 Worse case mode: 8DPSK(3-DH5) Test channel: Highest

Preamp

Antenna

Cable

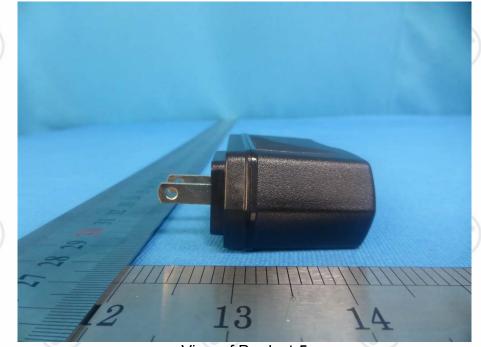

Remark: Peak

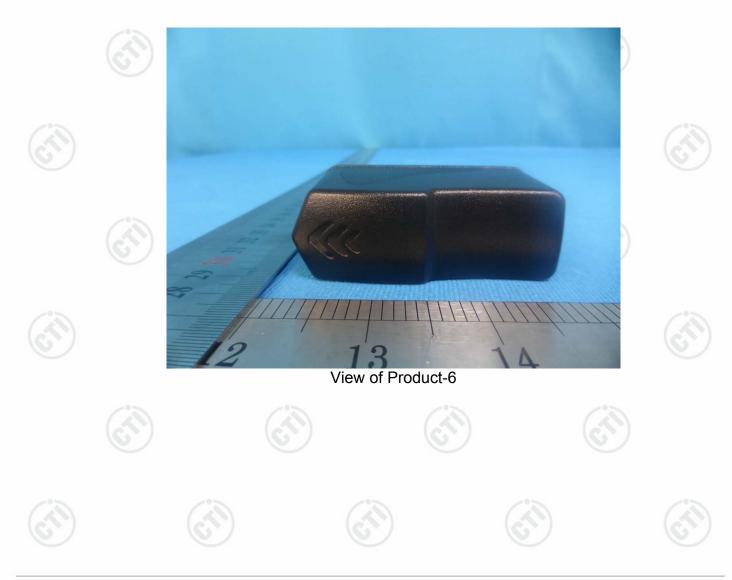
Over

Radiated spurious emission Test Setup-3(Above 1GHz)

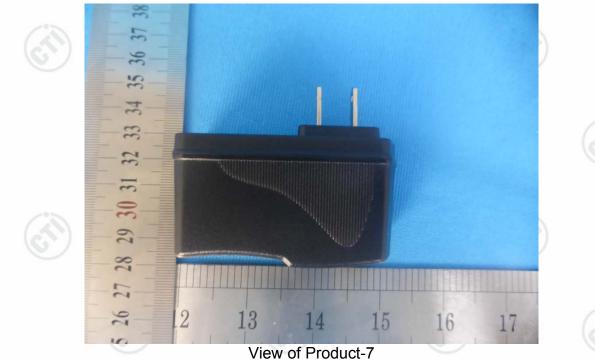
Conducted Emissions Test Setup

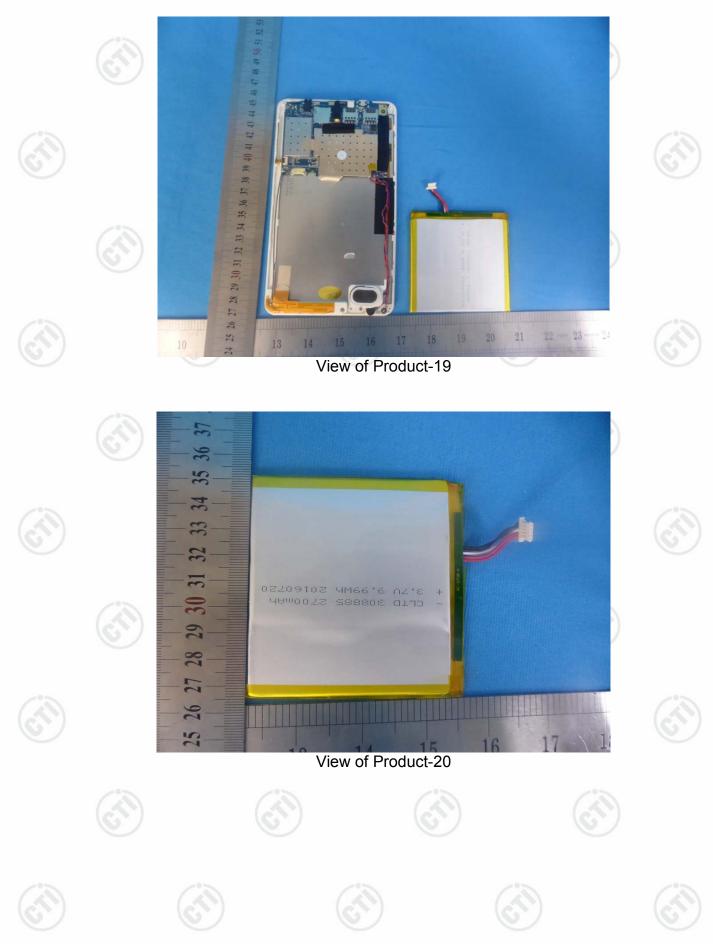
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

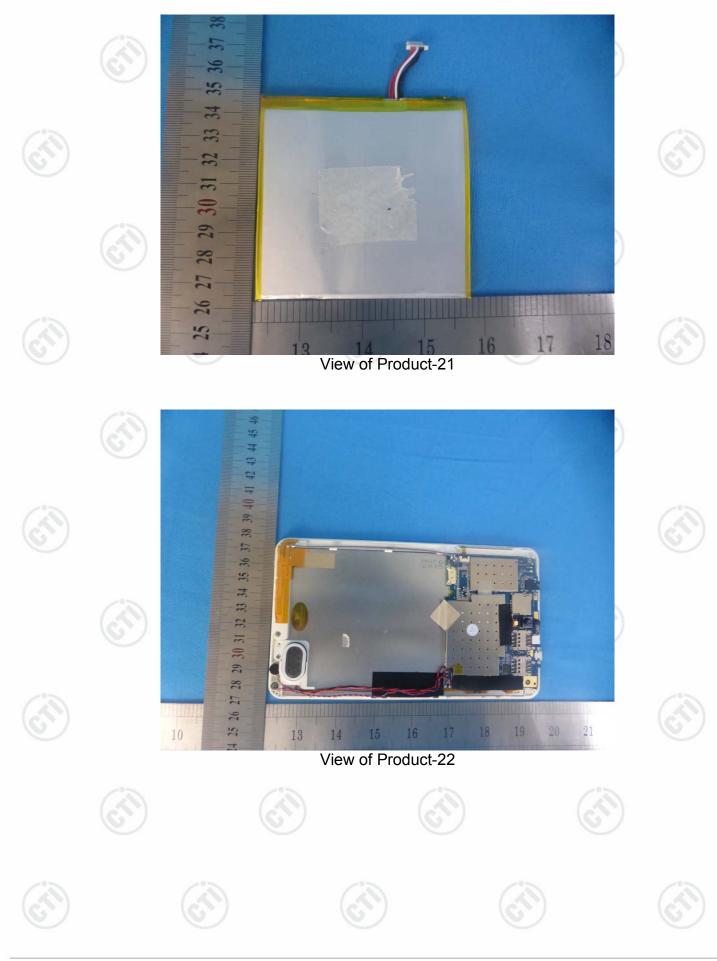


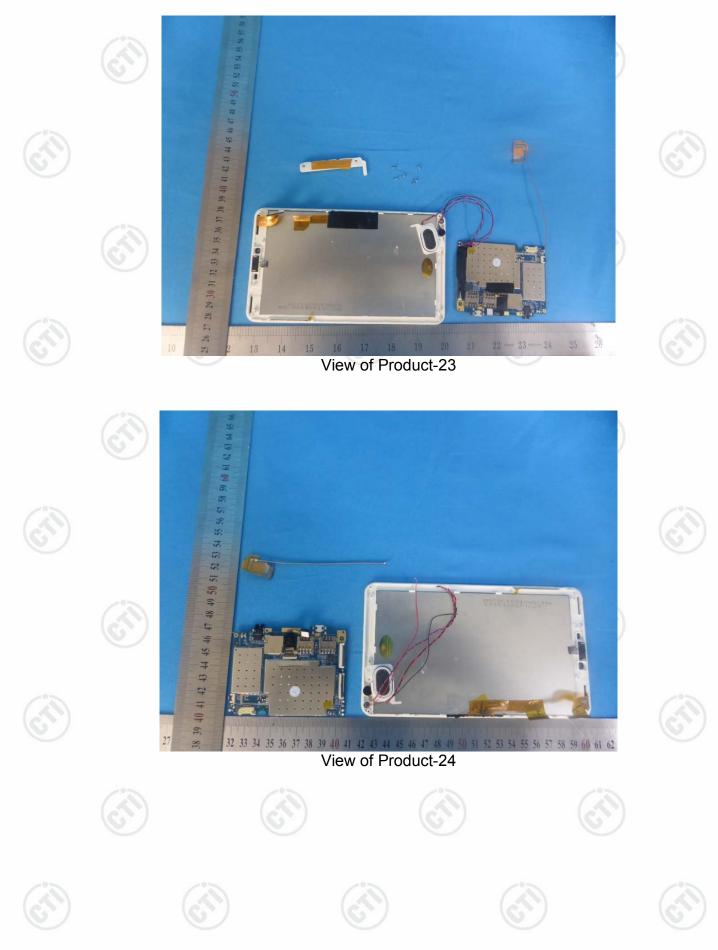


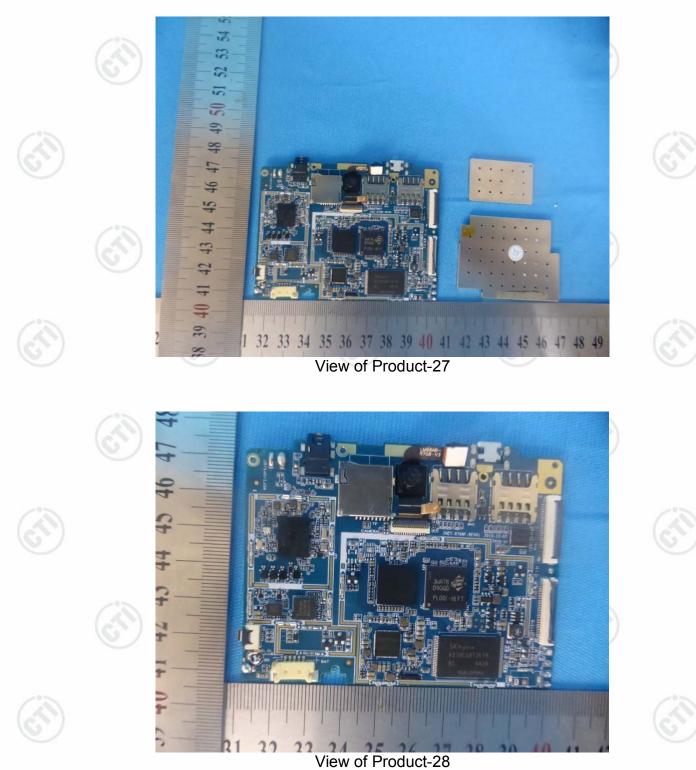
View of Product-5











*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.