

TEST REPORT

Product : 8" Tablet PC

Trade mark :

Model/Type reference : M8, M8X, M8 PLUS, M8X PLUS, T8, T8X, K8, K8X

Serial number : N/A

Ratings : Input: 5V === 2A

(Class III, IPX0)

FCC ID : S5V-D07M80

Report number : EED32H000332-1

Date : Apr. 20, 2015

Regulations : See below

Test Standards	Results
	PASS

Prepared for:

Proexpress Distributor LLC 11011 GREENWOOD AVE.N APT 5, SEATTLE, WA 98103, United States

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Reviewed by:

ouisa la

Approved by:

Jimmy Li Lab manager Date:

Apr. 20, 2015

Check No.: 1727836113

I. CEI	RTIFICATION INFORMATION					4
2. TES	ST SUMMARY					4
3. ME	ASUREMENT UNCERTAINTY					5
4. PR	ODUCT INFORMATION					5
5. TES	ST EQUIPMENT LIST					5
6. SU	PPORT EQUIPMENT LIST					5
7. 6DI	B BANDWIDTH MEASUREMENT					6
7.1.	LIMITS					6
7.2.	BLOCK DIAGRAM OF TEST SETU	JP				6
7.3.	TEST PROCEDURE					6
7.4.	TEST RESULT					6
8. PO	WER SPECTRAL DENSITY					
8.1.	LIMITS					9
8.2.	BLOCK DIAGRAM OF TEST SETU	JP				9
8.3.	TEST PROCEDURE					9
8.4.	TEST RESULT		20%		20%	9
9. MA	XIMUM PEAK CONDUCTED OUTP	PUT POWER ME	ASUREMENT			12
9.1.	LIMITS					12
9.2.	BLOCK DIAGRAM OF TEST SETU	JP				12
9.3.	TEST PROCEDURE					12
9.4.	TEST RESULT					12
10.	CONDUCTED BANDEDGE EMISSION	ON MEASUREM	IENT			15
10.1.	LIMITS					15
10.2.	BLOCK DIAGRAM OF TEST SETU	JP			.(652)	15
10.3.	TEST PROCEDURE					15
10.4.	TEST RESULT					
11. CO	NDUCTED SPURIOUS EMISSION I	MEASUREMEN'	Т	(A)		17

Page 3 of 37

11.1.	LIMITS							17
11.2.	BLOCK D	IAGRAM OF	TEST SETUP	·				17
11.3.	TEST PR	OCEDURE	(O)					17
11.4.	TEST RE	SULT						17
12.	RADIATED	BANDEDGE	EMISSION /	RADIATED S	PURIOUS EN	MISSION MEA	ASUREMENT	20
12.1.	LIMITS	(-52)		(683)				20
12.2.								
12.3.	TEST PR	OCEDURE						21
12.4.	TEST RE	SULT						22
13.	AC CONDU	CTED EMISS	SION TEST		(6)		(6)	25
13.1.	LIMITS							25
13.2.								
13.3.								
13.4.								
APPEN	DIX 1 PHOT	OGRAPHS C	OF TEST SET	UP				28
2					(3)		(3)	
APPEN	DIX 2 EXTE	RNAL PHOTO	OGRAPHS O	F PRODUCT.				30
ΔΡΡΕΝ	DIY 3 INTER	NAL PHOTO	OGRAPHS OF	PRODUCT				34
	eans not a		JONAI 113 OI	TRODUCT.		Selles:		
1 1 // 11 /	σαπό ποι α	ррпсавте.						

Report No. : EED32H000332-1 Page 4 of 37

1. CERTIFICATION INFORMATION

Applicant: Proexpress Distributor LLC

11011 GREENWOOD AVE.N APT 5, SEATTLE, WA 98103,

United States

Manufacturer: SHENZHEN KAIDA TECHNOLOGY DIGITAL CO., LTD

5F, A Block, Tongsheng Technology Builing, Huahui Road, Dalang Street, Longhua Town, Bao'an Disrict, Shenzhen

FCC ID: S5V-D07M80

Product: 8" Tablet PC

Model/Type reference: M8, M8X, M8 PLUS, M8X PLUS, T8, T8X, K8, K8X

Trade Name:

Fragus Touch

AKASO

Serial Number: N/A

Report Number: EED32H000332-1

Sample Received Date: Mar. 20, 2015

Sample tested Date: Mar. 20, 2015 to Apr. 20, 2015

The above equipment was tested by Centre Testing International (Shenzhen) Corporation for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, Subpart C and the measurement procedure according to ANSI C63.4:2009 and ANSI C63.10:2013.

2. TEST SUMMARY

No.	Test Item	Rule	Result
1	6dB Bandwidth	FCC PART15.247(a)(2)	PASS
2	Transmitter Output Power	FCC PART15.247(b)(3)	PASS
3	Power Spectral Density	FCC PART15.247(e)	PASS
4	Conducted Bandedge Emission / Conducted Spurious Emission	FCC PART15.247(d)	PASS
5	Radiated Bandedge Emission / Radiated Spurious Emission	FCC PART15.247(d)	PASS
6	AC Conducted Emission	FCC PART15.207	PASS
7	Antenna requirements	FCC PART15.203	PASS (See Notes)

^{*:} According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The EUT has a built in antenna which is a short wire solder on the PCB, this is permanently attached antenna and meets the requirements of this section.

Remark: Input voltage have been adjusted from 85% to 115%, no influence was found.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission Test	3.2 dB
Radiated Emissions / Bandedge Emission	4.5 dB

4. PRODUCT INFORMATION

Items		Desc	ription	
Rating	Input: 5V === 2A (Class III, IPX0)			
Type of Modulation	BT4.0/BLE			
Antenna Type	Integral antenna	(6,2)	(6,0)	(6)
Frequency Range	2402 ~ 2480 MHz			
Gain	0dBi			

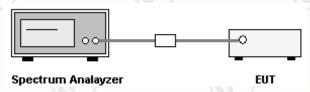
All models are same except model name and brand name. Model M8 was selected for test.

5. TEST EQUIPMENT LIST

Equipment	Manufacturer	Model	Serial No.	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3	13	06/01/2016
Receiver	R&S	ESCI	100435	07/08/2015
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	618	06/17/2015
Multi device Controller	maturo	NCD/070/10711 112		N/A
Horn Antenna	ETS-LINGREN	3117	00057407	07/07/2015
Microwave Preamplifier	Agilent	8449B	3008A02425	03/19/2016
Spectrum Analyzer	R&S	FSP40	100416	07/06/2015
Receiver	R&S	ESCI	100009	07/19/2015
LISN	R&S	ENV216	100098	07/19/2015

6. SUPPORT EQUIPMENT LIST

Device Type	Brand	Model	Data Cable	Remark
100 /	(60.7		(S) /	1907 /
	i			


Page 6 of 37

7. 6DB BANDWIDTH MEASUREMENT

7.1. LIMITS

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

7.2. BLOCK DIAGRAM OF TEST SETUP

7.3. TEST PROCEDURE

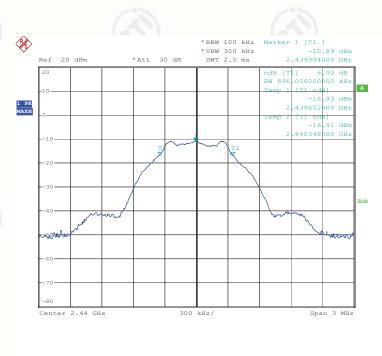
- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3×RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (kHz)	Result
2402	708	PASS
2440	696	PASS
2480	696	PASS

Page 7 of 37


Report No.: EED32H000332-1

Please see the following plots (worst case):

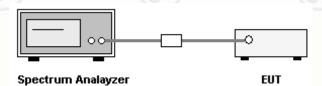
Date: 3.APR.2015 17:45:45

2402MHz

Date: 3.APR.2015 17:46:49

Report No.: EED32H000332-1

*RBW 100 kHz *VBW 300 kHz SWT 2.5 ms Marker 1 [T1] -10.66 dBm 2.479994000 GHz Ref 20 dBm *Att 30 dB 1 PK MAXH Span 3 MHz


Page 9 of 37

8. POWER SPECTRAL DENSITY

8.1. LIMITS

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.2. BLOCK DIAGRAM OF TEST SETUP

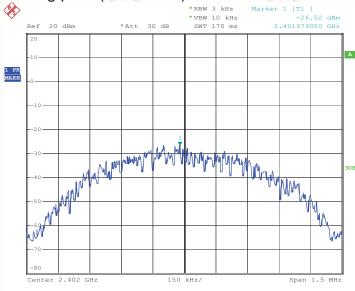
8.3. TEST PROCEDURE

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz.
- d) Set the VBW $\geq 3 \times RBW$.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

8.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (dBm)	Result
2402	-26.52	PASS
2440	-25.44	PASS
2480	-25.12	PASS



Page 10 of 37

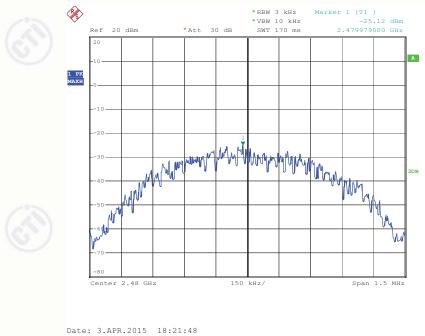
Report No. : EED32H000332-1

Please see the following plots (worst case):

Date: 3.APR.2015 18:18:16

2402MHz

Date: 3.APR.2015 18:19:01

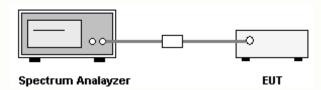


Report No.: EED32H000332-1

Page 11 of 37

2480MHz

Page 12 of 37


9. MAXIMUM PEAK CONDUCTED OUTPUT POWER MEASUREMENT

9.1. LIMITS

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt (30dBm).

9.2. BLOCK DIAGRAM OF TEST SETUP

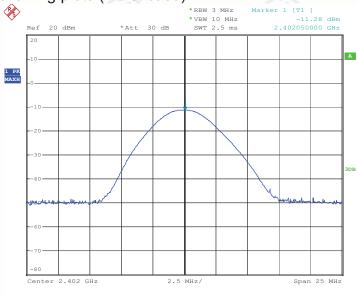
9.3. TEST PROCEDURE

- a) Set the RBW ≥ DTS bandwidth.
- b) Set the VBW \geq 3 x RBW
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

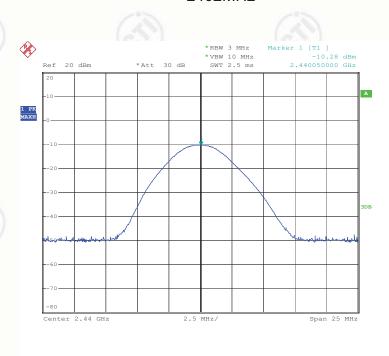
9.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (dBm)	Result
2402	-11.28	PASS
2440	-10.28	PASS
2480	-10.03	PASS



Page 13 of 37

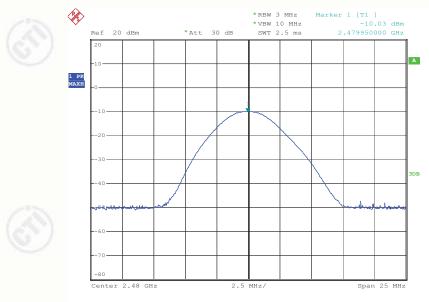

Report No.: EED32H000332-1

Please see the following plots (worst case):

Date: 3.APR.2015 17:40:29

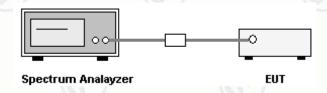
2402MHz

Date: 3.APR.2015 17:41:30



Report No.: EED32H000332-1 Page 14 of 37

2480MHz


Page 15 of 37

10. CONDUCTED BANDEDGE EMISSION MEASUREMENT

10.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

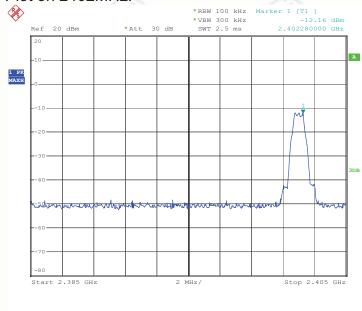
10.2. BLOCK DIAGRAM OF TEST SETUP

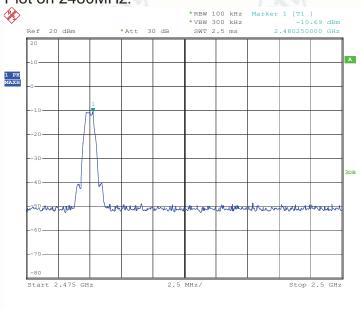
10.3. TEST PROCEDURE

- a) Set to the maximum power setting and enable the EUT transmit continuously.
- b) Set RBW = 100 kHz, VBW = 300 kHz (≥ RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- c) Enable hopping function of the EUT and then repeat step a and b.
- d) Measure and record the results in the test report.

10.4. TEST RESULT

Worst case data attached.--- please see the following plots.



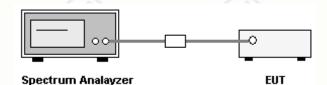

Page 16 of 37

Low Band Edge Plot on 2402MHz:

Date: 3.APR.2015 18:16:49

High Band Edge Plot on 2480MHz:

Date: 3.APR.2015 18:13:36


Page 17 of 37

11. CONDUCTED SPURIOUS EMISSION MEASUREMENT

11.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

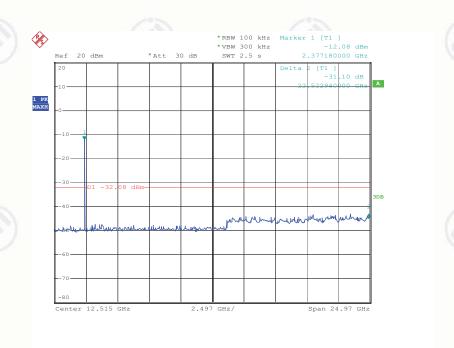
11.2. BLOCK DIAGRAM OF TEST SETUP

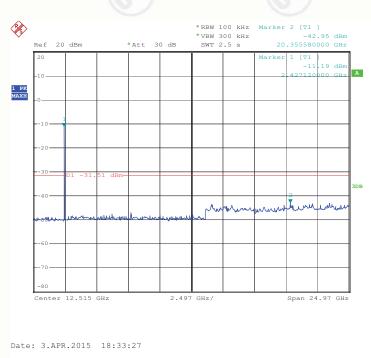
11.3. TEST PROCEDURE

- a) The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- b) Set to the maximum power setting and enable the EUT transmit continuously.
- c) Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- d) Measure and record the results in the test report.
- e) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

11.4. TEST RESULT

Worst case data---Please see the following plots.



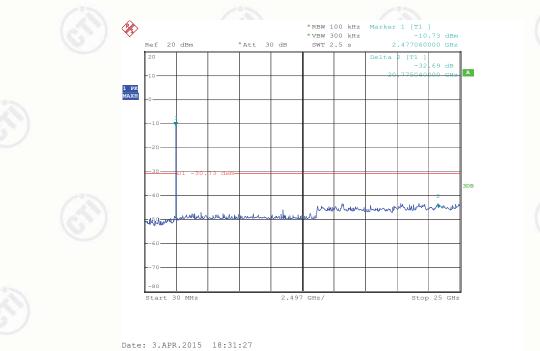


Page 18 of 37

Date: 3.APR.2015 18:34:50

2402MHz:

2440MHz:



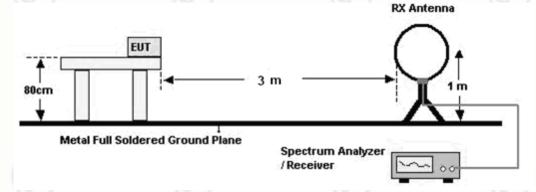
Page 19 of 37

2480MHz

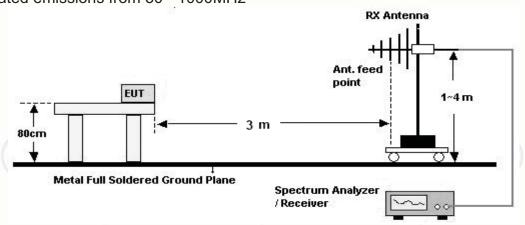
Report No.: EED32H000332-1 Page 20 of 37

12. RADIATED BANDEDGE EMISSION / RADIATED SPURIOUS EMISSION MEASUREMENT

12.1. LIMITS


The field strength of any emissions, which appear outside of operating frequency band and restricted band specified on 15.205(a), shall not exceed the general radiated emission limits as below.

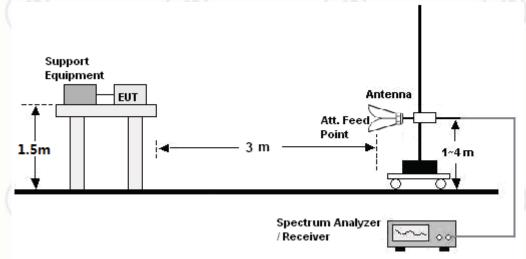
minic de beletti	1 -00.1	26. 74.	
Frequency (MHz)	Field strength (μV/m)	Distance (m)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30	30	30	
30-88	100	3	
88-216	150	3	
216-960	200	3	
Above 960	500	3	


Note: the tighter limit applies at the band edges.

12.2. BLOCK DIAGRAM OF TEST SETUP

For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30 - 1000MHz



For radiated emissions from 1GHz to 25GHz

12.3. TEST PROCEDURE

Below 30MHz

- a. The Product is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.
- b. For each suspected emission, the Product was arranged to its worst case and then turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- c. The test frequency analyzer system was set to Peak Detect (300Hz RBW in 9kHz to 150kHz and 10kHz RBW in 150kHz to 30MHz) Function and Specified Bandwidth with Maximum Hold Mode.

30MHz ~ 1GHz:

- a. The Product was placed on the non-conductive turntable 0.8m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 100 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value (120 kHz RBW): vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The EUT was placed on the non-conductive turntable 1.5m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the

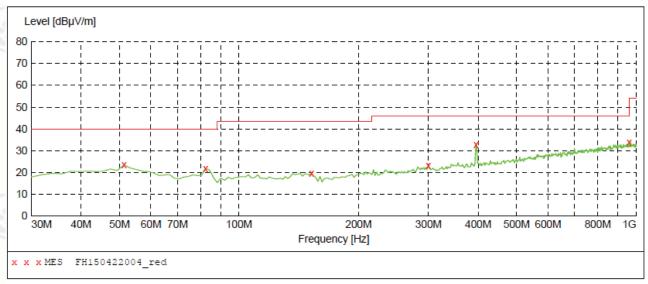
Page 22 of 37

Report No.: EED32H000332-1

antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

12.4. TEST RESULT

All the modes of operation (X, Y, Z) were investigated and the worst-case emissions are reported.


Below 30MHz:

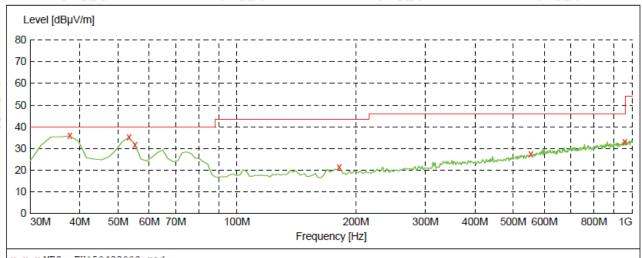
No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

$30 \mathrm{MHz} \sim 1 \mathrm{GHz}$:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel are chosen as representative in below:

H:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
51.340000 82.380000 152.220000 299.660000 394.720000 959.260000	23.40 21.80 19.70 23.10 32.80 33.70	15.9 9.6 10.4 16.3 18.9 27.4	40.0 40.0 43.5 46.0 46.0	16.6 18.2 23.8 22.9 13.2 12.3	QP QP	100.0 200.0 200.0 100.0 100.0 200.0	290.00 337.00 337.00 319.00 338.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL



Page 23 of 37

V:

x x x MES FH150422003_red

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
37.760000	35.80	14.4	40.0	4.2	QP	100.0	232.00	VERTICAL
53.280000	35.10	15.7	40.0	4.9	QP	100.0	334.00	VERTICAL
55.220000	31.80	15.4	40.0	8.2	QP	100.0	27.00	VERTICAL
181.320000	21.20	12.9	43.5	22.3	QP	100.0	183.00	VERTICAL
553.800000	27.50	21.8	46.0	18.5	QP	200.0	45.00	VERTICAL
957.320000	33.30	27.3	46.0	12.7	QP	200.0	45.00	VERTICAL

Above 1GHz:

Test Results-(Measurement Distance: 3m)_Channel low_2402MHz mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2390.0	32.67	74	PK	Н	Р
2400.0	40.11	74	PK	Н	P
2402.0*	68.43		PK	Н	Р
4804.0	33.98	74	PK	Н	Р
2390.0	31.89	74	PK	V	Р
2400.0	41.09	74	PK	V	Р
2402.0*	69.22	<u> </u>	PK	V	Р
4804.0	33.09	74	PK	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel middle_2440MHz mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2440.0*	67.98	<i>30</i>	PK	Н	Р
2440.0*	65.09	3°)	PK	V	P
4880.0	33.88	74	PK	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m) Channel high 2480MHz mode:

	<u></u>										
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)						
2480.0*	68.09	- O	PK	Н	Р						
2483.5	33.12	74	PK	Н	Р						
4960.0	34.11	74	PK	Н	Р						
2480.0*	69.09		PK	V	Р						
2483.5	32.19	74	PK	V	Р						
4960.0	33.98	74	PK	V	P (C						

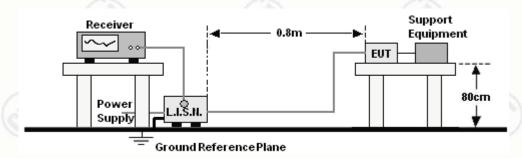
^{*:} fundamental frequency

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. No emission found from 18GHz to 25GHz.
- 3. All outside of operating frequency band and restricted band specified are below 15.209.

13. AC CONDUCTED EMISSION TEST

13.1. **LIMITS**


Limits for Class B digital devices

Frequency range	Limits dB(μV)							
(MHz)	Quasi-peak	Average						
0,15 to 0,50	66 to 56	56 to 46						
0,50 to 5	56	46						
5 to 30	60	50						

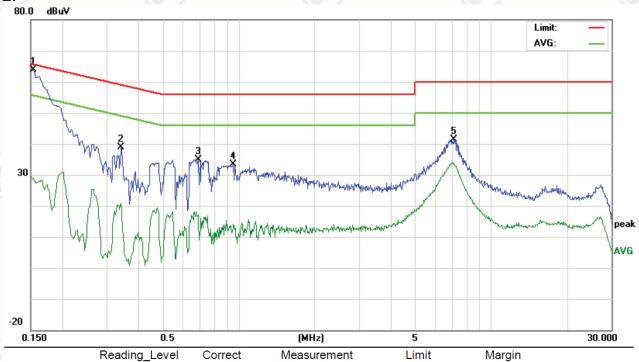
NOTE: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

13.2. BLOCK DIAGRAM OF TEST SETUP

13.3. PROCEDURE OF CONDUCTED EMISSION TEST

- a. The Product was placed on a nonconductive table above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

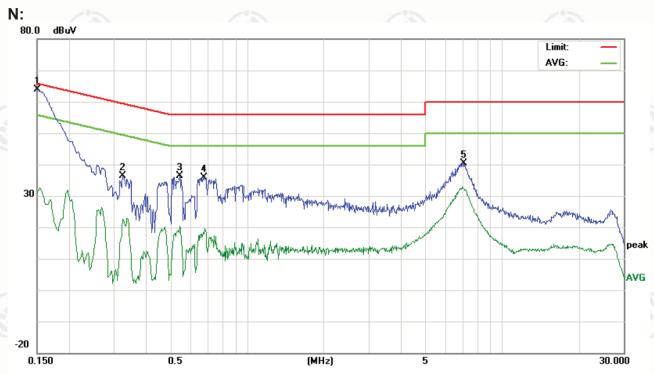


Report No. : EED32H000332-1 Page 26 of 37

13.4. GRAPHS AND DATA

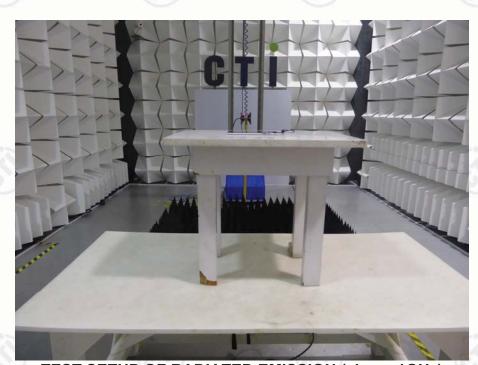
Product: 8" Tablet PCModel/Type reference: M8Power: AC 120V/60HzTemperature: 22°CMode: Keeping TX (BT4.0)Humidity: 52%

No.	Freq.	Reading_Level (dBuV)			Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	53.89	47.39	19.08	9.90	63.79	57.29	28.98	65.78	55.78	-8.49	-26.80	Р	
2	0.3420	29.10		10.96	9.90	39.00		20.86	59.15	49.15	-20.15	-28.29	Р	
3	0.6900	24.99		7.22	9.90	34.89		17.12	56.00	46.00	-21.11	-28.88	Р	
4	0.9580	23.42		4.32	9.90	33.32		14.22	56.00	46.00	-22.68	-31.78	Р	
5	7.1220	31.50		23.96	9.90	41.40		33.86	60.00	50.00	-18.60	-16.14	Р	



Page 27 of 37

No.	Freq.	Reading_Level (dBuV)		Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)				
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	54.09	47.26	20.60	9.90	63.99	57.16	30.50	65.99	55.99	-8.83	-25.49	Р	
2	0.3260	26.55		12.69	9.90	36.45		22.59	59.55	49.55	-23.10	-26.96	Р	
3	0.5460	26.55		10.46	9.90	36.45		20.36	56.00	46.00	-19.55	-25.64	Р	
4	0.6780	25.92		8.06	9.90	35.82		17.96	56.00	46.00	-20.18	-28.04	Ρ	
5	7.0700	30.54		22.59	9.90	40.44		32.49	60.00	50.00	-19.56	-17.51	Р	



Page 28 of 37

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

TEST SETUP OF RADIATED EMISSION (30MHz-1GHz)

TEST SETUP OF RADIATED EMISSION (above 1GHz)

Page 29 of 37

Page 30 of 37

Report No.: EED32H000332-1

APPENDIX 2 EXTERNAL PHOTOGRAPHS OF PRODUCT

External View of product-1

External View of product-2

Page 31 of 37

External View of product-3

External View of product-4

Page 32 of 37

Report No.: EED32H000332-1

3 12 14 4 5 6

7 8 9 401 2 3 4 5 6 7 8 9 501 2

External View of product-6

Page 33 of 37

Page 34 of 37

Report No.: EED32H000332-1

APPENDIX 3 INTERNAL PHOTOGRAPHS OF PRODUCT

Internal View of product-1

Internal View of product-2

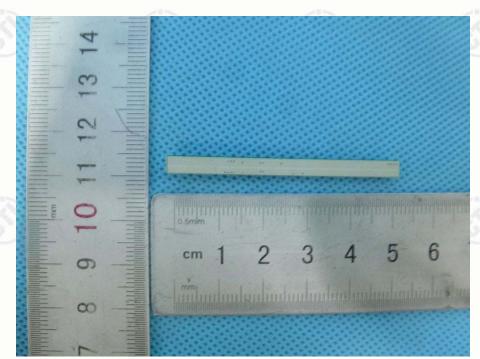
Internal View of product-3

Internal View of product-4

Page 36 of 37

Internal View of product-5

Internal View of product-6



Internal View of product-7

Internal View of product-8

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.