

Report # 31985173.001

Rev. 1

Page 1 of 37

Electromagnetic Compatibility Test Report

Prepared in accordance with

FCC Part 15 Subpart B:2019, ICES-003 Issue 6

On

BLUtag Version 8

Prepared for:

Satellite Tracking of People 5353 W Sam Houston Parkway N, Suite 190 Houston, TX 77041-5186

USA

Prepared by:

TUV Rheinland of North America, Inc. 1279 Quarry Lane, Ste. A Pleasanton, CA 94566 U.S.A.

Report # 31985173.001

Rev. 1

Page 2 of 37

Revisions

Revision No.	Date	Reason for Change	Author
0	11/11/2019	Original Document	D. Foster

Note: Latest revision report will replace all previous reports.

Project # 165381

Report # 31985173.001

Report Date: 11/11/2019 Rev. 1

Page 3 of 37

ATTESTATION OF TEST RESULTS							
Client:	5353 W Sai	cking of People n Houston Parkway X 77041-5186	N, Suite 190	Suite 190 Mark Kirincic Tel: 281-658-7242 E-Mail: mkirincic@stopllc.com			
	USA						
Model Name:	BLUtag Ver	sion 8	Sei	ial Number:	PG22000037		
Model Numbers:	BLUtag Ver	rsion 8	Da	te(s) Tested:	October 30, 2019		
Test Location:	1279 Quarry	and of North Americ V Lane, Ste. A CA 94566 U.S.A. 49-9123	ca				
Test Specifications:	Emissions:	FCC Part 15 Subpart B:2019, ICES-003 Issue 6					
1000 opecifications.	Immunity:	N/A					
Test Result:	The abov	e product was foun	d to be Con	pliant to the	above test standard(s)		
Prepared by: Donn	Foster		Reviewed by: Richard Decker				
November 11, 2019 Date Name Signature		Signature	<u>Novem</u> Date	ber 15, 2019 Name	Signature		
Other aspects:							
		PLEASA	ANTON				
US1131 Testing (ACCREDITED ACCREDITED	INDUSTRY CAI 2932M-1				
US1131 Testing Cert #3331					1097 (A-0326)		

Report # 31985173.001

Rev. 1

Page 4 of 37

TABLE of CONTENTS

1	GENERAL INFORMATION	5
1.	1 Scope	5
1.2		
1	3 SUMMARY OF TEST RESULTS	6
2	LABORATORY INFORMATION	7
2.7		
2		
2		
2.2		
	PRODUCT INFORMATION	
3		
3.		
3.2	· ·	
3.3	3 Test Plan	13
4	EMISSIONS	14
4.	1 Radiated Emissions	1/1
4.2		
4.3		
4.4		
	ENDIX A	
5	TEST PLAN	29
5.	1 GENERAL INFORMATION	29
5.2	2 EUT DESIGNATION	29
5	3 Test configurations	29
5.4	4 TESTING TO BE PREFORMED	31
5.:		
5.0		
5.		
5.		
5.2		
5.3		
5.4		
5.5	· · · · · · · · · · · · · · · · · · ·	
5.0		
5.		
5.2		
5		
5.4	4 Emissions	36

Project # 165381 Report # 31985173.001
Report Date: 11/11/2019 Rev. 1

Rev. 1

1 General Information

1.1 Scope

This report is intended to document the status of conformance with the listed standards based on the results of testing performed on October 30 and November 8, 2019 for Satellite Tracking of People Co. on the BLUtag V8. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

Report # 31985173.001

port Date: 11/11/2019 Rev. 1

Page 6 of 37

1.3 Summary of Test Results					
Applicant	Satellite Tracking of People 5353 W Sam Houston Parkway N, Suite 190 Houston, TX 77041-5186 USA				
Contact	Mark Kirincic				
Tel.	Tel: 281-658-7242				
E-mail	E-Mail: mkirincic@stopllc.com				
Description	Satellite tracking ankle bracelet				
Model Name	BLUtag V8				
Model Number	BLUtag V8				
Serial Number	PG22000037				
Input Power	Input Power 3.7VDC				
Test Date(s)	October 30, 2019				

Standards	Description	Severity Level or Limit	Criteria	Test Result
CFR47 part 15 B, ICES- 003 Product Family Standard Emissions	Unintentional radiator	See called out basic standards below	See Below	Complies
FCC Part 15 Subpart B:2019, ICES-003 Issue 6	Radiated Emissions	30M-18 GHZ	Limit	Complies
FCC Part 15 Subpart B:2019, ICES-003 Issue 6	Conducted Emissions	150kHz-30 MHz	Limit	Complies

Report # 31985173.001 **Project #165381**

Page 7 of 37 Report Date: 11/11/2019 Rev. 1

Laboratory Information

2.1 **Accreditations & Endorsements**

US Federal Communications Commission

TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 5015 Brandin Ct. Fremont, CA, 94538 are recognized by the Commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Pleasanton Registration No. US1131, Fremont Registration No. US1131). The laboratory Scopes of Accreditation include Title 47 CFR Parts 15, 18 and 90. The accreditations are updated every three years.

2.1.2 A2LA

TUV Rheinland of North America EMC test facilities are accredited by the American Association for Laboratory Accreditation (A2LA). The laboratories have been assessed and accredited by A2LA in accordance with ISO Standard 17025:2017 (Testing Certificate #3331.02). The Scope of Laboratory Accreditation includes emission and immunity testing. The accreditations are

updated annually.

2.1.3 **Industry Canada**

Industry Canada Industrie

The Pleasanton 5-meter Semi-Anechoic Chamber, Registration No. 2932M-1, has been accepted by Industry Canada to perform testing to 3 and 5 meters

based on the test procedures described in ANSI C63.4-2014. The Fremont 10-meter Semi-Anechoic Chamber, Registration No. 2932D-1, has been accepted by Industry Canada to perform testing to 3 and 10 meters based on the test procedures described in ANSI C63.4-2014.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology

Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 5015 Brandin Ct. Fremont, CA, 94538, have been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0326

VCCI Registration No. for Fremont: A-0327

Project # 165381 Report # 31985173.001

Report Date: 11/11/2019 Rev. 1

Page 8 of 37

2.2 Test Facilities and EMC Software

Test facilities are located at 1279 Quarry Lane, Ste. A, Pleasanton, California 94566, U.S.A. and 5015 Brandin Ct, Fremont, CA 94538.

2.2.1 Emission Test Facility

The Semi-Anechoic Chambers and AC Line Conducted measurement facilities used to collect radiated and conducted emissions data have been constructed in accordance with ANSI C63.7:1992. The Fremont 10 meter semi-anechoic chamber has been measured in accordance with and verified to comply with the theoretical volumetric normalized site attenuation of ANSI C63.4:2009 and SVSWR requirements of CISPR 16-1-4 Consol. Ed. 3.0 (2010-04), at test distances of 3 and 10 meters. This site has been described in reports dated November 1st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by A2LA (Testing Certificate #3331.02). The Pleasanton 5 meter semi-anechoic chamber has been verified to comply with the theoretical volumetric normalized site attenuation of ANSI C63.4:2009 and SVSWR requirements of CISPR 16-1-4 Consol. Ed. 3.0 (2010-04) at a test distance of 3 meters. This site has been described in reports dated November 1st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by A2LA (Testing Certificate #3331.02).

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 3.7 m x 3.175 mm thick aluminum floor connected to PE ground. For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. For each of the other tests, the HCP is removed.

RF Field Immunity testing is performed in a 3m semi-anechoic chamber with absorber added to floor.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.9 m x 3.7 m x 3.175 mm thick aluminum ground plane which is connected to one end of the anechoic chamber.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

Project # 165381 Report # 31985173.001 Rev. 1

Page 9 of 37

2.2.3 EMC Software - Fremont

Manufacturer	Name	Version	Test Type
EMISoft	Vasona	5.0	Radiated & Conducted Emissions
ETS-Lindgren	TILE	4.2.A	Radiated Emissions > 1 GHz
ETS-Lindgren	TILE	V.3.4.K.22	Radiated & Conducted Immunity
Haefely	WinFEAT	1.6.3	Surge
Thermo Electron - Keytek	CEWare32	3.0	EFT/Surge/Voltage Dips & Interrupt
Voltech	IEC61000-3	1.15.07RC	Harmonic & Flicker

2.2.4 EMC Software - Pleasanton

Manufacturer	Name	Version	Test Type
ETS-Lindgren	TILE	3.4.K.14 @ 4.0.A.5	Radiated & Conducted Emissions
EMISoft	Vasona	5.0	Radiated & Conducted Emissions
Agilent	Agilent MXE	A.11.02	Radiated & Conducted Emissions
ETS-Lindgren	TILE	3.4.K.14	Radiated & Conducted Immunity
Thermo Electron - Keytek	CEWare32	4.00	EFT/Surge/Voltage Dips & Interrupt
Voltech	IEC61000-3	1.21.07RC2	Harmonic & Flicker

Report # 31985173.001 **Project #165381** Report Date: 11/11/2019

Page 10 of 37 Rev. 1

2.3 **Measurement Uncertainty**

Two types of measurement uncertainty are expressed in this report, per ISO Guide To The Expression Of Uncertainty In Measurement, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or co-variances of these other quantities weighted according to how the measurement result varies with changes in these quantities. The term standard uncertainty is the result of a measurement expressed as a standard deviation.

The Expanded Uncertainty defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand. The fraction may be viewed as the coverage probability or level of confidence of the interval.

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength
$$(dB\mu V/m) = RAW - AMP + CBL + ACF$$

Where: RAW = Measured level before correction $(dB\mu V)$
AMP = Amplifier Gain (dB)
CBL = Cable Loss (dB)
ACF = Antenna Correction Factor (dB/m)

$$\mu V\!/m = 10^{\frac{\mathit{dB}\mu V\,/\,m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m

Report # 31985173.001 **Project #165381** Report Date: 11/11/2019

Page 11 of 37 Rev. 1

2.3.2 Measurement Uncertainty Emissions

Per CISPR 16-4-2	$ m U_{lab}$	$ m U_{cispr}$					
Radiated Disturbance @ 10 meters							
30 – 1,000 MHz	2.25 dB	4.51 dB					
Radiated Disturbance @ 3 met	Radiated Disturbance @ 3 meters						
30 – 1,000 MHz	2.26 dB	4.52 dB					
1 – 6 GHz	2.12 dB	4.25 dB					
6 – 18 GHz	2.47 dB	4.93 dB					
Conducted Disturbance @ Mai	Conducted Disturbance @ Mains Terminals						
150 kHz – 30 MHz	1.09 dB	2.18 dB					
Disturbance Power							

Voltech PM6000A

The estimated combined standard uncertainty for harmonic current and flicker measurements is $\pm 5.0\%$.	Per CISPR 16-4-2
incasurements is ± 5.0%.	i

2.3.3 Measurement Uncertainty Immunity

The estimated expanded uncertainty for ESD immunity measurements is \pm 8.2%.	Per IEC 61000-4-2
The estimated expanded uncertainty for radiated immunity measurements is ± 4.10 dB.	Per IEC 61000-4-3
The estimated expanded uncertainty for EFT fast transient immunity measurements is \pm 5.84%.	Per IEC 61000-4-4
The estimated expanded uncertainty for surge immunity measurements is $\pm 5.84 \%$.	Per IEC 61000-4-4
The estimated expanded uncertainty for conducted immunity measurements with CDN is \pm 3.66 dB	Per IEC 61000-4-6
The estimated expanded uncertainty for power frequency magnetic field immunity is $\pm 11.6\%$.	Per IEC 61000-4-8
The estimated expanded uncertainty for voltage variation and interruption measurements is $\pm 3.48\%$.	Per IEC 61000-4-11

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 **Calibration Traceability**

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

Report # 31985173.001

Rev. 1

Page 12 of 37

2.5 **Measurement Equipment Used**

Equipment	Manufacturer	Model #	Serial/Inst#	Last Cal mm/dd/yy	Next Cal mm/dd/yy	Test
Bilog Antenna	Sunol Sciences	JB3	A102606	11/20/2017	11/20/2019	RE
Amplifier	Sonoma Instruments	310	165516	01/23/2019	01/23/2020	RE
Spectrum Analyzer	Agilent	N9038A	MY51210195	01/22/2019	01/22/2020	RE
Rigid Horn antenna	Emco	3115	9602-4676	05/03/19	05/03/2020	RE
LISN	Compower	LI215	12111	01\15\2019	01\15\2020	CE
Spectrum Analyzer	Rohde & Schwarz	ESI	1088.7490	01/22/2019	01/22/2020	RE,CE
Preamplifier	Miteq	TTA1800-30-HG	2020728	01/15/2019	01/15/2020	RE

Note: CE=Conducted Emissions, CI=Conducted Immunity, DP=Disturbance Power, EFT=Electrical Fast Transients, ESD=Electrostatic Discharge, FLI=Flicker, HAR=Harmonics, MF=Magnetic Field Immunity, NCR=No Calibration Required, RE=Radiated Emissions, RI=Radiated Immunity, SI=Surge Immunity, VDSI=Voltage Dips and Short Interruptions

Project # 165381 Report # 31985173.001
Report Date: 11/11/2019 Rev. 1

Page 13 of 37

3 Product Information

3.1 Product Description

See Section 5.4.

3.2 Equipment Modifications

None

3.3 Test Plan

The EUT product information, test configuration, mode of operation, test types, test procedures, test levels, pass/failure criteria, in this report were carried out per the product test plan located in Appendix A of this report.

Report # 31985173.001

Rev. 1

Page 14 of 37

Emissions

Radiated Emissions 4.1

This test measures the electromagnetic levels of spurious signals generated by the EUT that radiated from the EUT and may affect the performance of other nearby electronic equipment.

4.1.1 Overview of Test

Results	Complies (as tested per this report) Test Date					te(s)	October 30	, 2019
Standard	FCC Part 15 Subpart B:2019, ICES-003 Issue 6							
Model Number	BLUtag V8				Serial #	PG2	200037	
Configuration	See test plan for deta	See test plan for details.						
Test Setup	Tested in the 5-mete	Tested in the 5-meter chamber, placed on turntable: see test plan for details.						
EUT Powered By	The EUT is battery plattery	The EUT is battery powered at 3.7VDC the charger is only used for refreshing the battery						
Environmental Temp 21°C Humidity 37% Pressu					Pressure	1009 mbar		
Conditions								
Frequency Range	30-18000 MHz							
Perf. Criteria	Class B Perf. Verification Readings Under Limit							
Mod. to EUT	None		Test Pe	rfo	rmed By	Don	n Foster	

4.1.2 Test Procedure

Radiated emissions tests were performed using the procedures of ANSI C63.4 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

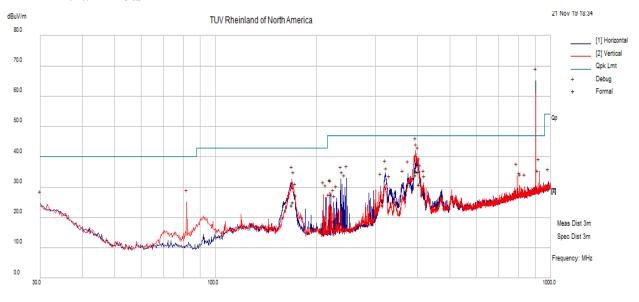
The frequency range from 30-18000 MHz was investigated for radiated emissions.

4.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

4.1.4 Final Test

All final radiated emissions measurements were below the specification limits.

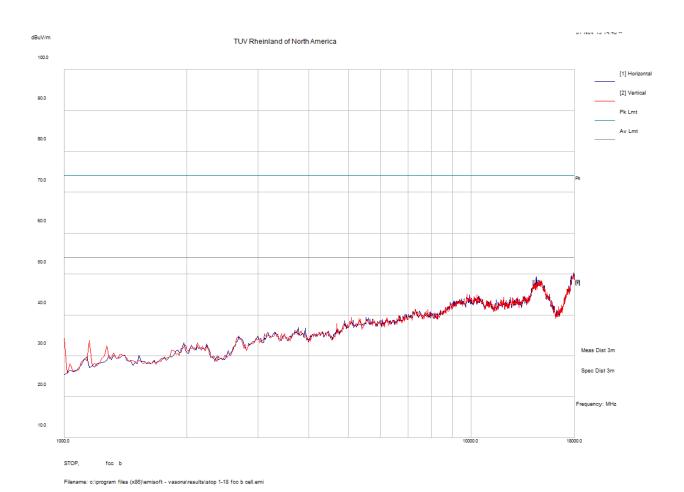


Project # 165381 Report # 31985173.001 Rev. 1

Page 15 of 37

4.1.5 Plots

Filename: Data not stored


Radiated Emissions 30-1000 MHz.

Report # 31985173.001

Rev. 1

Page 16 of 37

Radiated Emissions 1-18 GHz.

Report # 31985173.001

Rev. 1

Page 17 of 37

Radiated Emissions 30-1000 MHz.

Frequency	Raw dBu\	Cable Los	AF dB	Level dBu	Measuren	Pol	Hgt cm	Azt Deg	Limit dBu	Margin di	Pass /Fail
395.9963	42.3	3.86	-12.02	34.14	Quasi Max	V	186	186	47	-12.86	Pass
397.8959	43.28	3.87	-11.92	35.23	Quasi Max	V	135	333	47	-11.77	Pass
169.2856	37.16	3.18	-16.22	24.13	Quasi Max	V	128	92	43	-18.87	Pass
402.8797	42.92	3.88	-11.73	35.07	Quasi Max	V	139	352	47	-11.93	Pass
170.8641	38.35	3.18	-16.29	25.24	Quasi Max	V	105	302	43	-17.76	Pass
405.8181	38.77	3.89	-11.64	31.02	Quasi Max	Н	104	178	47	-15.98	Pass

Radiated Emissions 1-18 GHz.

Frequency	Raw dBu\	Cable Los	AF dB	Level dBu	Measuren	Pol	Hgt cm	Azt Deg	Limit dBu	'Margin d	Pass /Fail
17761.52	54.64	4.07	-8.3	50.41	Peak [Scar	V	100	0	54	-3.59	Pass
14882.77	57.68	3.63	-12.89	48.42	Peak [Scar	Н	100	0	54	-5.58	Pass
1136.273	68.25	0.49	-32.81	35.93	Peak [Scar	V	100	0	54	-18.07	Pass
1238.477	67.29	0.6	-32.48	35.41	Peak [Scar	V	100	0	54	-18.59	Pass

Report # 31985173.001 **Project #165381**

Page 18 of 37 Report Date: 11/11/2019 Rev. 1

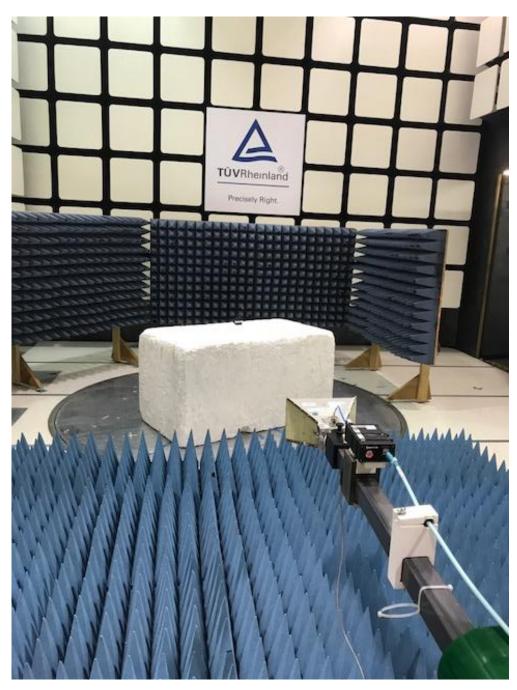
4.2 **Photos**

Figure 1 - Radiated Emissions Setup 30 - 1000 MHz - Front

Report # 31985173.001

Rev. 1

Page 19 of 37


Radiated Emissions Setup 30 to 1000 MHz rear

Report # 31985173.001

Rev. 1

Page 20 of 37

Radiated Emissions Setup 1-18 GHz front

Report # 31985173.001 Rev. 1

Page 21 of 37

Radiated Emissions Setup 1 to 18 GHz rear

Report # 31985173.001 Project # 165381 Report Date: 11/11/2019 Rev. 1

Page 22 of 37

Conducted Emissions 4.3

This test measures the electromagnetic levels of spurious signals generated by the EUT on the AC power line that may affect the performance of other nearby electronic equipment.

4.3.1 Overview of Test

Results	Complies (as tested	per this	s report)	Test Dat	e(s)	November 8,	2019	
Standard	FCC Part 15 Subpar	FCC Part 15 Subpart B:2019, ICES-003 Issue 6						
Model Number	BLUtag V8							
Configuration	See test plan for deta	ails.						
Test Setup	Tested in Lab 5, EU	Tested in Lab 5, EUT placed on table: see test plan for details.						
EUT Powered By	The EUT is battery battery	The EUT is battery powered at 3.7VDC the charger is only used for refreshing the battery						
Environmental Conditions		Temp	22° C	Humidity	37%	Pressure	1006 mbar	
Frequency Range	.150-30MHz							
Perf. Criteria	Class B		Perf. Verification		Readings Under Limit for L1 & Neutral			
Mod. to EUT	None		Test Performed By Donn Foster					

4.3.2 Test Procedure

Conducted emissions tests were performed using the procedures of ANSI C63.4 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

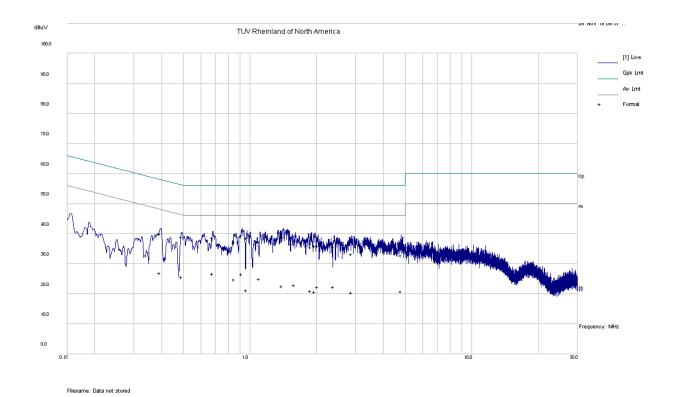
The frequency range from .150-30MHz was investigated for conducted emissions.

Conducted Emissions measurements were performed in the shielded room using procedures specified in the test plan and standard.

4.3.3 Deviations

There were no deviations from the test methodology listed in the test plan for the conducted emission test.

4.3.4 Final Test

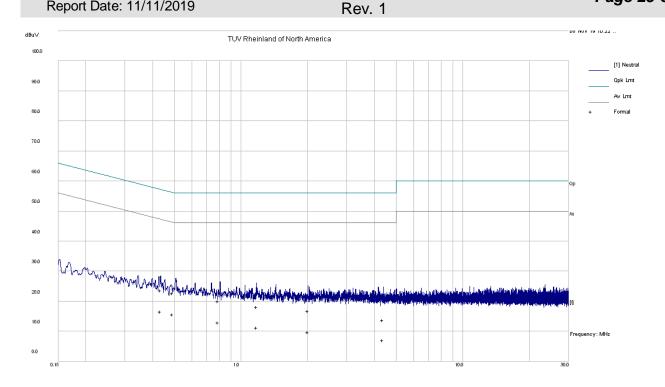

All final conducted emissions measurements were below the specification limits.

Report # 31985173.001

Date: 11/11/2019 Rev. 1

Page 23 of 37

Conducted Emissions .150-30 MHz. 110VAC line


Project # 165381 Report # 31985173.001 Rev. 1

Page 24 of 37

Project # 165381 Report # 31985173.001
Report Date: 11/11/2019 Rev. 1

Page 25 of 37

Filename: c:\program files\emisoft - vasona\results\STOP charger CE.emi

Conducted Emissions .150-30 MHz. 110VAC neutral

Report # 31985173.001

Rev. 1

Page 26 of 37

Conducted Emissions .150-30 MHz. 110VAC line

Frequency	Raw dBu\	Cable Los	Factors d	Level dBu	Measurem	Line	Limit dBu\	Margin dE	Pass	/Fail
0.394236	29.88	9.97	0.04	39.89	Quasi Pea	Live	57.97	-18.08	Pass	
0.394236	16.99	9.97	0.04	27.01	Average	Live	47.97	-20.97	Pass	
0.493103	28.83	9.98	0.04	38.85	Quasi Pea	Live	56.12	-17.26	Pass	
0.493103	15.59	9.98	0.04	25.61	Average	Live	46.12	-20.51	Pass	
0.678036	28.48	9.98	0.04	38.5	Quasi Pea	Live	56	-17.5	Pass	
0.678036	16.65	9.98	0.04	26.67	Average	Live	46	-19.34	Pass	
0.850873	27.22	9.99	0.04	37.25	Quasi Pea	Live	56	-18.75	Pass	
0.850873	14.77	9.99	0.04	24.8	Average	Live	46	-21.2	Pass	
0.919496	29.53	9.99	0.04	39.56	Quasi Pea	Live	56	-16.44	Pass	
0.919496	16.56	9.99	0.04	26.59	Average	Live	46	-19.41	Pass	
0.964364	28.51	9.99	0.04	38.54	Quasi Pea	Live	56	-17.46	Pass	
0.964364	11.2	9.99	0.04	21.23	Average	Live	46	-24.77	Pass	

Conducted Emissions .150-30 MHz. 110VAC neutral

Frequency	Raw dBu\	Cable Los	Factors d	Level dBu	Measurem	Line	Limit dBu\	Margin dE	Pass	/Fail
0.491704	12.69	9.98	0.04	22.71	Quasi Pea	Neutral	56.14	-33.43	Pass	
0.434543	13.75	9.97	0.04	23.76	Quasi Pea	Neutral	57.17	-33.41	Pass	
0.791481	9.93	9.99	0.04	19.96	Quasi Pea	Neutral	56	-36.04	Pass	
1.181179	8.12	9.99	0.04	18.15	Quasi Pea	Neutral	56	-37.85	Pass	
2.014936	6.78	10.01	0.04	16.83	Quasi Pea	Neutral	56	-39.17	Pass	
4.373818	3.72	10.05	0.04	13.81	Quasi Pea	Neutral	56	-42.19	Pass	
0.491704	5.69	9.98	0.04	15.71	Average	Neutral	46.14	-30.43	Pass	
0.434543	6.53	9.97	0.04	16.54	Average	Neutral	47.17	-30.63	Pass	
0.791481	2.89	9.99	0.04	12.92	Average	Neutral	46	-33.08	Pass	
1.181179	1.24	9.99	0.04	11.28	Average	Neutral	46	-34.72	Pass	
2.014936	-0.3	10.01	0.04	9.75	Average	Neutral	46	-36.25	Pass	
4.373818	-3.1	10.05	0.04	6.99	Average	Neutral	46	-39.01	Pass	

Report # 31985173.001

Rev. 1

Page 27 of 37

4.4 Photos

Report # 31985173.001

Rev. 1

Page 28 of 37

Conducted Emissions side

Conducted Emissions front

Report # 31985173.001

Rev. 1

Page 29 of 37

Appendix A

5 Test Plan

This test report is intended to follow this test plan outlined here in unless otherwise stated in this here report. The following test plan will give details on product information, standards to be used, test set ups and refer to TUV test procedures. The test procedures will give the steps to be taken when performing the stated test. The product information below came via client, product manual, product itself and or the internet.

5.1 General Information

Client	Satellite Tracking of People				
Address	5353 W Sam Houston Parkway N, Suite 190				
Audress	Houston, TX 77041-5186				
Contact Person	Mark Kirincic				
Telephone	281-658-7242				
e-mail	mkirincic@stopllc.com				

5.2 EUT Designation

Model Name	BLUtag V8
Model Number(s)	BLUtag V8

5.3 Test configurations

The ankle bracelet will be powered with the battery charger and placed on the test table

Project # 165381 Report # 31985173.001
Report Date: 11/11/2019 Rev. 1

Rev. 1

${\bf 5.3.1}\quad Equipment\ Under\ Test\ (EUT)\ Description$

The EUT is an ankle bracelet tracking and reporting system.

Table 1: EUT Specifications

EUT Specifications					
Dimensions	11x4x4.5 cm				
AC Input	The EUT is battery powered at 3.7VDC the charger is only used for refreshing the battery at 110VAC				
Environment	Indoor/Outdoor				
Product Marketing Name (PMN)	BLUtag Version 8				
Hardware Version Identification Number (HVIN)	8				
Firmware Version Identification Number (FVIN)					

Report # 31985173.001 **Project #165381**

Page 31 of 37 Report Date: 11/11/2019 Rev. 1

Testing to be preformed 5.4

Test Type	Required	Notes
Radiated Emissions	Yes	See Section 4.1
Conducted Emissions	Yes	See Section 4.3

Product Specifications 5.5

Model Number	BLUtag V8
Product Name	BLUtag V8
Part Number/Capacity	n/a

Project # 165381 Report # 31985173.001 Rev. 1

Page 32 of 37

5.6 Product Environments

\boxtimes	Domestic/Residential			Hospital
\boxtimes	Light Industrial/Commercial			Small Clinic
	Industrial			Doctor's office
	Telecommunications Center			Other than Telecommunications Center
	Other			

5.7 Applicable Documents

Standards	Description
FCC Part 15 Subpart B:2019, ICES-003 Issue 6	Unintentional Radiator

^{*}Check all that apply

Report # 31985173.001

Rev. 1

Page 33 of 37

5.8 EUT Electrical Power Information

Nome	# of Phases	Trmo	Input Voltage		AC Voltage	Current	Power
Name		Type	Min	Max	Voltage Frequency	Max.	rower
Ankle Bracelet Tracking system	1 □ 3 □ None ⊠	AC □ DC □ Host □ Batteries ⊠	3.7	3.7	Hz to Hz	2200Ah	14Wh
Notes					·		·

5.9 EUT Clock/Oscillator Frequencies

Reference Designation	Speed (MHz)	Type
	Not Provided	

5.10 Radiated Emissions, Upper Frequency

	Less than 108 MHz	Scan to 1 GHz
	Less than 500 MHz	Scan to 2 GHz
	Less than 1000 MHz	Scan to 5 GHz
\boxtimes	Greater than 1000 MHz	Scan to 5 th Harmonic or 40 GHz (whichever is lower)

5.11 Electrical Support Equipment

Reference Designation Manufacturer		Model	Serial Number			
Laptop	Lenovo	Thinkpad	None listed			
Battery Charger	Stonetronics	DSA-13FFC-05- FUS	None listed (p/n T66345T)			

Report # 31985173.001 **Project #165381** Report Date: 11/11/2019 Rev. 1

Page 34 of 37

5.12 Non - Electrical Support Equipment

Reference Designation	Manufacturer	Model	Serial Number or Description (e.g., Type of Gas or Liquid)
		None	

5.13 **EUT Equipment/Cabling Information**

		Cable Type				
EUT Port	Connected To	Length (Meters)	Shielded Yes / No	Bead Yes / No		
Battery charger port	charger port BLUtag charger port					

Note: The EUT is battery powered the charger is only used for refreshing the battery

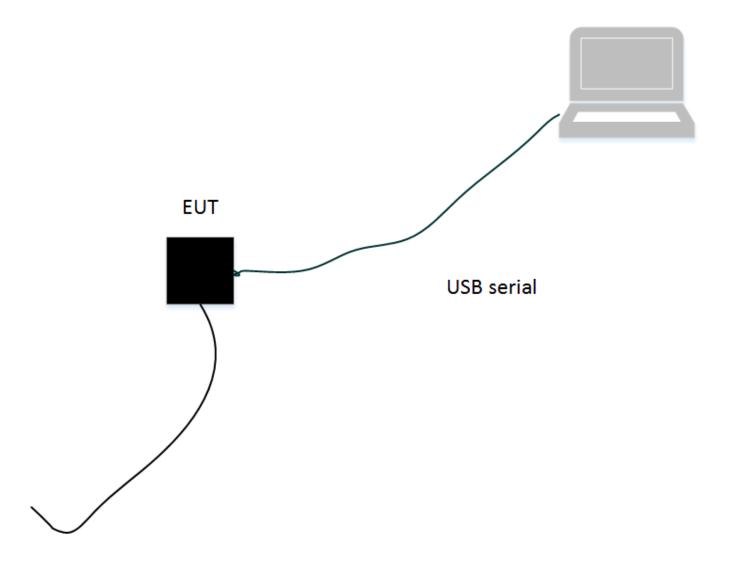
5.1 **EUT Test Program**

STOP BLUtag 8 approvals application v0.4

5.2 Mode of operation

The server is running a test routine that will send traffic and monitor the stream for errors.

5.3 **Monitoring the EUT During Testing**


n/a

Project # 165381 Report # 31985173.001
Report Date: 11/11/2019 Rev. 1

Rev. 1

5.3.1 Block Diagram

Battery Charger

Project # 165381 Report # 31985173.001 Rev. 1

Page 36 of 37

5.4 Emissions

5.4.1.1 Final Radiated Emissions Test Setup

Standard	FCC Part 15 Subpart B:2019, ICES-003 Issue 6			Procedure		ANSI C63.4	
Limit	Class B Emissions Verificat			tion	Emissions	Under Limit	
Scan #1	Final Scan 30 – 1000 MHz	Antenna Distance	3m	Detector		Quasi Peak	
Scan #2	Final Scan 1 – 18 GHz	Antenna Distance	3m	3m Detector		Average	
Configuration	See Section 5.3						
Notes	The system is running in the 915 radio mode						
	·						

5.4.1.2 Final Conducted Emissions Test Setup

Standard	FCC Part 15 Subpart B:2019, ICES-003 Issue 6			Pro	cedure	ANSI C63.4	
Limit	Class B	Emissions Ver	rificat	tion Emissions		Under Limit	
Scan #1	Final Scan .150-30MHz 110VAC	Antenna Distance	n/a	Detector		Average Quasi Peak	
Configuration	See Section 5.3						
Notes	The test is run in charging mode						

Report # 31985173.001

Rev. 1

Page 37 of 37

END OF REPORT