

Test Report

Report Number: 3082574MPK-002 Project Number: 3082574 Report Date: September 12, 2005

Testing performed on the iCell CDMA 1X BTS Module - 1900 MHz Model Number: iCell 1900 MHz BTS Pico

> FCC ID: S52P1900-1 to

> > FCC Part 24

for UTStarcom Canada Ltd.

A2LA Certificate Number: 1755-01

Test Performed by: Intertek Testing Services NA, Inc 1365 Adams Court Menlo Park, CA 94025 <u>Test Authorized by:</u> 4600 Jacombs Road Richmond, BC V6V3B1, Canada **Date:** September 15, 2005

Prepared by:

Ollie Movrong, EMC Department Manager

used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

David Chernomordik, EMC Technical Manager

Reviewed by:

Date: September 15, 2005

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be

TABLE OF CONTENTS

1.0	Intro	oduction	4
	1.1	Product Description	4
	1.2	Summary of Test Results	5
	1.3	Test Configuration	6
		1.3.1 Support Equipment	6
		1.3.2 Block diagram of Test Setup	6
	1.4	Related Submittal(s) Grants	6
2.0	RF F	Power Output	7
	2.1	Test Procedure	7
	2.2	Test Equipment	7
	2.3	Test Results	7
3.0	Radi	iated Power	11
	3.1	Requirement	11
	3.2	Test Procedure	11
	3.3	Test Results	11
4.0	Occuj	pied Bandwidth	12
	4.1	Test Procedure	
	4.2	Test Equipment	
	4.3	Test Results	12
5.0	Out o	f Band Emissions at Antenna Terminals	16
	5.1	Requirement	
	5.2	Test Procedure	
	5.3	Test Equipment	
	5.4	Test Results	16
6.0	Trar	smitter Spurious Radiation	
	6.1	Requirement	
	6.2	Test Procedure	
	6.3	Test Equipment	
	6.4	Configuration Photographs	
	6.5	Test Results	
7.0	Rece	iver Radiated emissions	
	7.1	Radiated Emission Limits	
	7.2	Field Strength Calculation	
	7.3	Configuration Photographs	
	7.4	Test Results	
8.0	Freq	uency Stability vs Temperature and Voltage	

Intertek ETL SEMKO

	8.1	Requirement	
	8.2	Test Procedure	
	8.3	Test Results	
9.0	RF F	Exposure evaluation	41
10.0	List	of Test Equipment	42
11.0	Doci	ument History	43

1.0 Introduction

1.1 Product Description

The Equipment under Test (EUT), model: iCell 1900 MHz BTS Pico is the CDMA2000 module which provides a one CDMA carrier support for one, two or three sector operation.

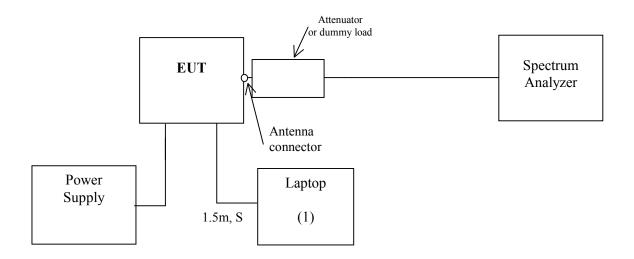
For more information about the radios, refer to the attached product description.

Whether quantity (>1) production is planned	Yes
Туре	CDMA Base Station module
Rated RF Output Power	20 dBm
Frequency Ranges, MHz	1930 – 1990 MHz
Type of modulation	CDMA
Channel bandwidth	1.23 MHz
Antenna & Gain	Not specified
Detachable antenna?	yes
Operating temperature	-30° C to $+55^{\circ}$ C

EUT receive date:	March 20, 2005
EUT receive condition:	The prototype version of the EUT was received in good condition with no
	apparent damage. As declared by the Applicant it is identical to the production units.
Test start date:	March 24, 2005
Test completion date:	September 9, 2005

1.2 Summary of Test Results

FCC Rule	Description of Test	Result	Page
2.1046	RF Power Output	Complies	7
24.232	ERP	Complies	11
2.1047	Modulation characteristics	Not Applicable	
2.1049	Occupied Bandwidth	Complies	12
2.1051, 24.238	Out of Band Emissions at Antenna Terminals	Complies	16
2.1053, 24.238	Transmitter Spurious Radiation	Complies	30
2.1055, 24.235	Frequency Stability vs. Temperature and Voltage	Complies	39
2.1091	RF Exposure evaluation	Complies	41
15.109	Receiver Radiated Emissions	Complies	33



1.3 Test Configuration

1.3.1 Support Equipment

Item #	Description	Model No.	S/N or P/N
1	Compaq Laptop	Armada 7400	7933CY570119
2	Apx Technologies Power Supply	Switching Power Supply	SP60905M

1.3.2 Block diagram of Test Setup

$\mathbf{S} = $ Shielded	$\mathbf{F} = $ With Ferrite
$\mathbf{U} = \mathbf{U}$ nshielded	\mathbf{m} = Length in Meters

1.4 Related Submittal(s) Grants

None

2.0 **RF Power Output** FCC 2.1046

2.1 Test Procedure

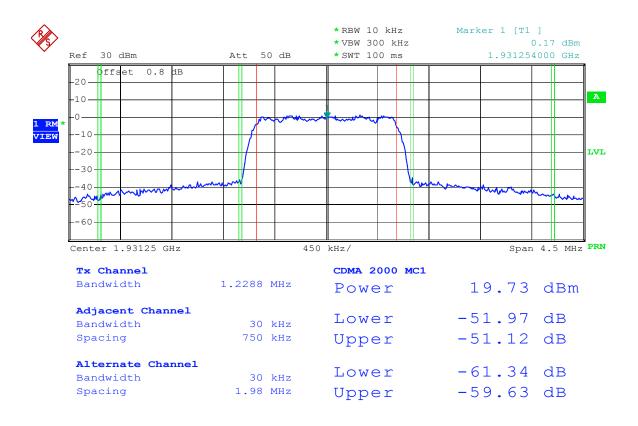
The EUT RF output was connected as shown on the diagram in sec.1.3.2. The EUT was setup to transmit continuously the maximum power.

The spectrum analyzed was setup to measure a "channel power" in the 1.2288 MHz bandwidth. The attenuation and cable loss were added to the spectrum analyzed reading by using OFFSET function.

Measurements were performed at three frequencies (low, middle, and high channels).

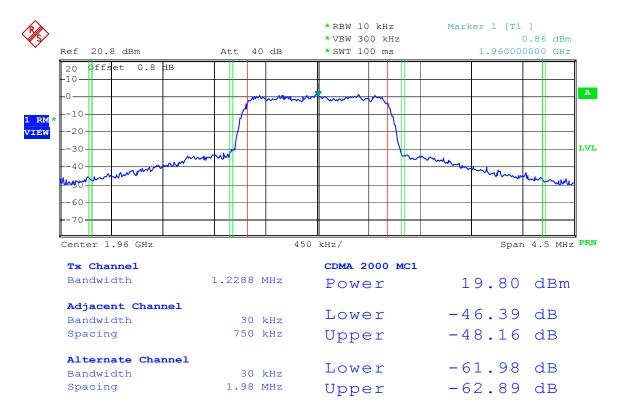
2.2 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer


2.3 Test Results

Channel	Frequency (MHz)	Measured Output Power (dBm)	Measured Output Power (mWatt)	Plot
25	1931.25	19.7	93.3	2.1
600	1960.0	19.8	95.5	2.2
1175	1988.75	20.0	100.0	2.3

For more details refer to the attached plots.


Plot 2.1

Comment: Output power, ch 25 Date: 24.MAR.2005 10:52:01

Plot 2.2

Comment: Output power, ch 600 Date: 23.MAR.2005 17:35:43


```
Plot 2.3
```


Comment: Output power, ch 1175 Date: 24.MAR.2005 11:45:22

- 3.0 Radiated Power FCC 24.232
- 3.1 Requirement

FCC 24.232(a)

The maximum Equivalent Isotropically Radiated Power (EIRP) is 1640 Watts.

3.2 Test Procedure

The ERP may be calculated by adding the antenna gain to the output power in dBm: $EIRP = P_{max} + G_{dBi}$ However, the antenna is not supplied with the EUT. Therefore, instead of calculation the EIRP, the maximum allowed antenna gain was calculated.

The calculation was performed on the base of the limit (3 W or 34.8 dBm) of the ERP for exclusion from routine environmental evaluation for RF exposure according to FCC 2.1091(c).

The maximum gain $G_{max} = 34.8 - 20.0 = 14.8 \text{ dBd} = 16.9 \text{ dBi}$

3.3 Test Results

Result Complies

4.0 Occupied Bandwidth FCC 2.1049

4.1 Test Procedure

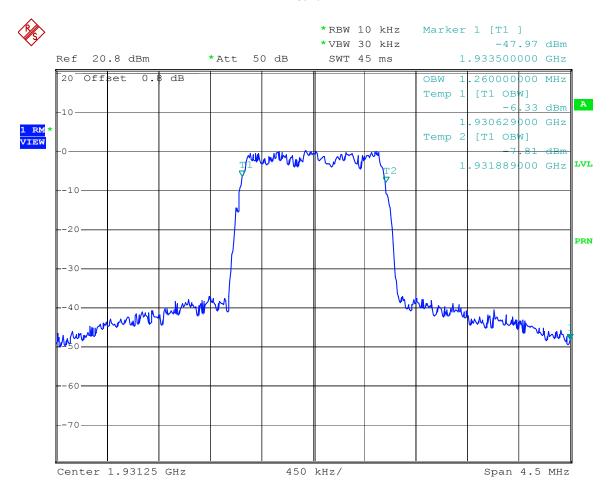
The EUT RF output was connected as shown on the diagram in sec.1.3.2. The EUT was setup to transmit the maximum power.

The spectrum analyzed was setup to measure the Occupied Bandwidth (defined as the 99% Power Bandwidth). The Occupied Bandwidth was measured at low, middle, and high channels.

4.2 Test Equipment

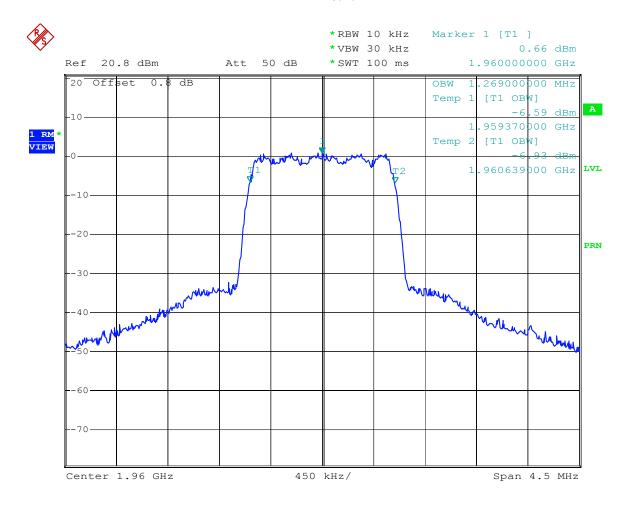
Rohde & Schwarz FSP40 Spectrum Analyzer

4.3 Test Results

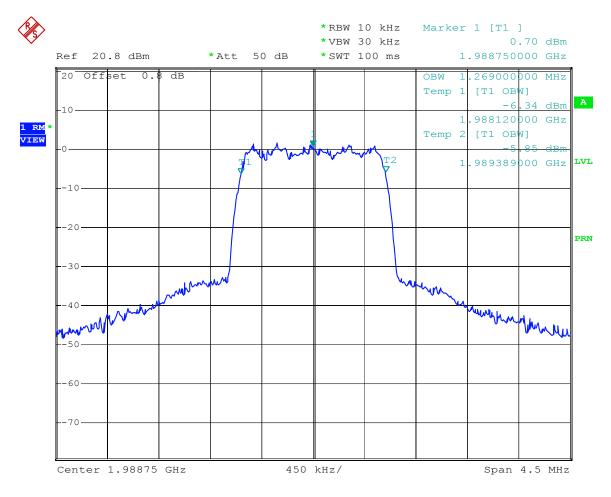

Channel	Frequency (MHz)	Measured Occupied Bandwidth (MHz)	Plot
25	1931.25	1.26	4.1
600	1960.0	1.27	4.2
1175	1988.75	1.27	4.3

For more details refer to the attached plots.

Emission Designator is 1M25F9W


Plot 4.1

Comment: Occupied bandwidth, ch 25 Date: 24.MAR.2005 14:31:42


Plot 4.2

Comment: Occupied bandwidth, ch 600 Date: 23.MAR.2005 17:39:13

Comment: Occupied bandwidth, ch 1175 Date: 24.MAR.2005 11:48:51

5.0 Out of Band Emissions at Antenna Terminals FCC 2.1051, 24.238

5.1 Requirement

The power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $(43 + 10 \log P) dB$.

Note: That corresponds to the level of -13 dBm for any out-of-band and spurious emissions.

5.2 Test Procedure

The EUT RF output was connected as shown on the diagram in sec.1.3.2. The EUT was setup to transmit the maximum power.

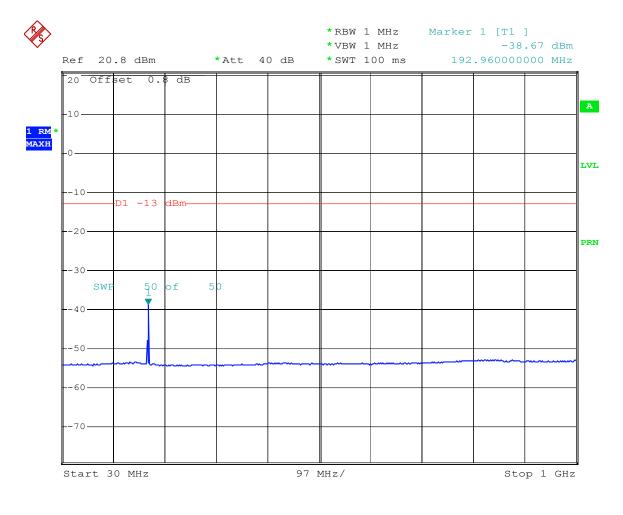
For measurements, the spectrum analyzed resolution bandwidth was set to 1 MHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block, the spectrum analyzed resolution bandwidth was set to 30 kHz.

Measurements were performed at three frequencies (low, middle, and high channels).

Sufficient scans were taken to show the out-of-band emissions up to 10th harmonic.

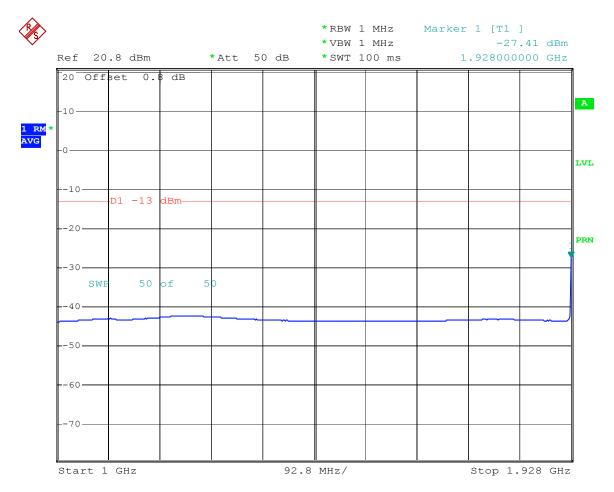
5.3 Test Equipment

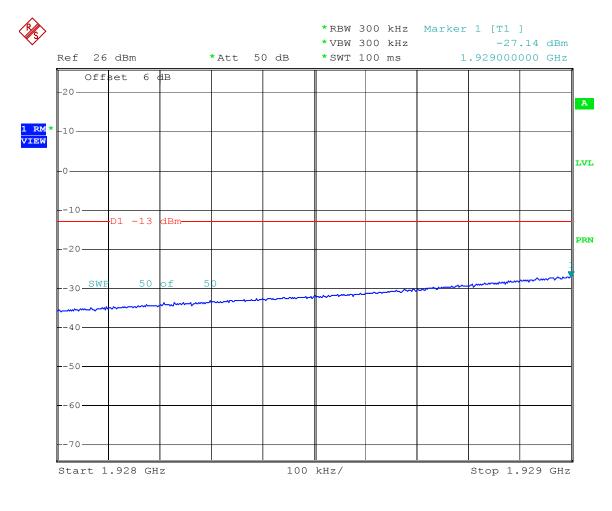
Rohde & Schwarz FSP40 Spectrum Analyzer


5.4 Test Results

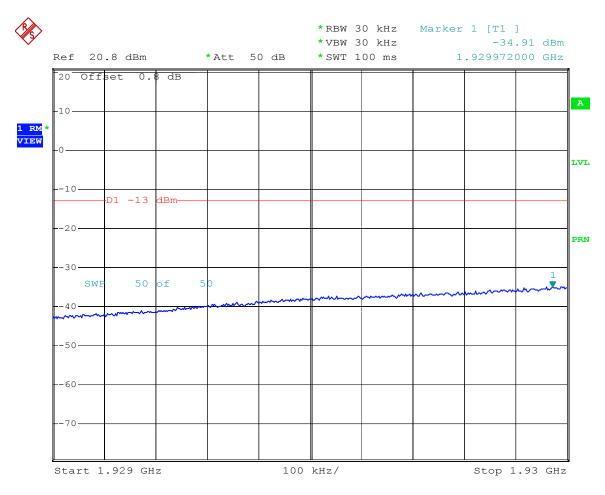
Result Complies by 14 dB

Refer to the following plots.



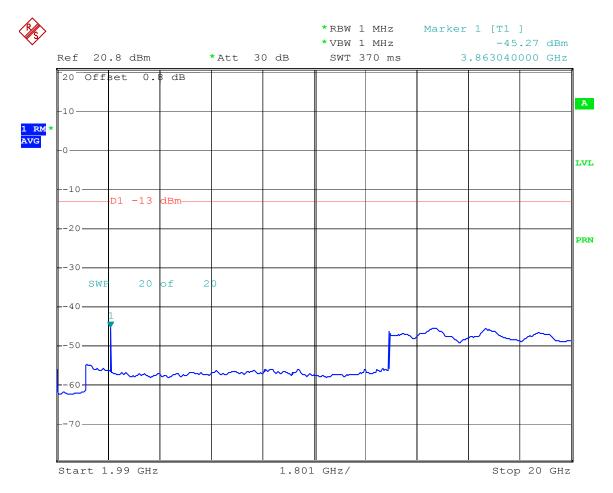

Comment: Out-of-band emissions, ch 25 Date: 24.MAR.2005 11:16:44

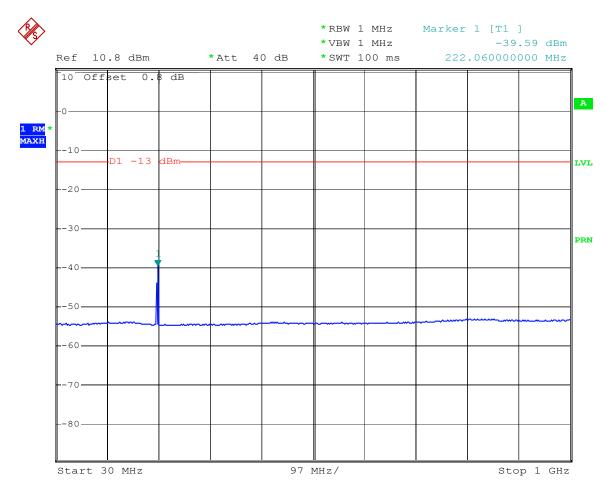
Comment: Out-of-band emissions, ch 25 Date: 24.MAR.2005 11:05:49

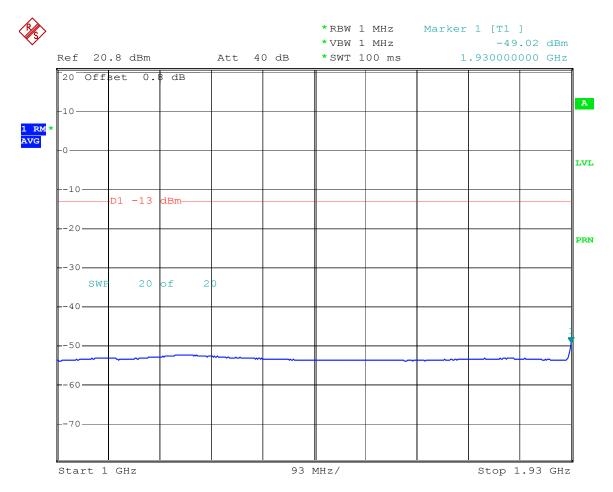


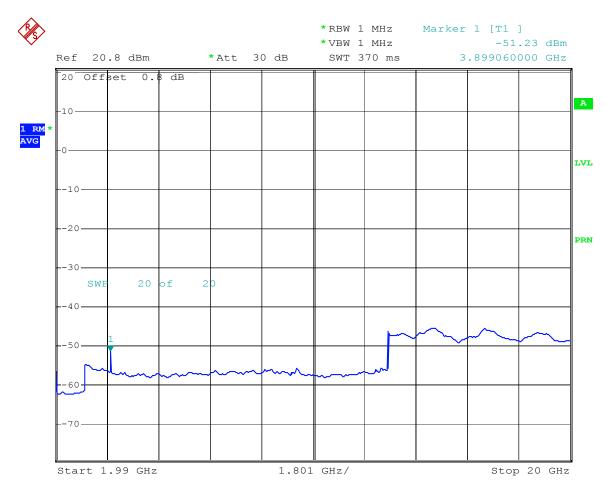
Comment: Out-of-band emissions, ch 25, BCF=5.2 dB added Date: 24.MAR.2005 11:09:30

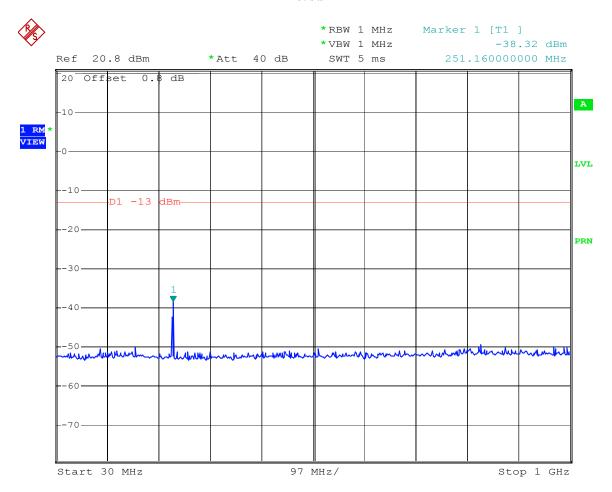
Note: Since the resolution bandwidth (RBW) of less than 1 MHz is used, the bandwidth correction factor (BCF) of 10Log(1/RBW) = 5.2 dB was added to the Spectrum analyzer reading (as OFFSET).

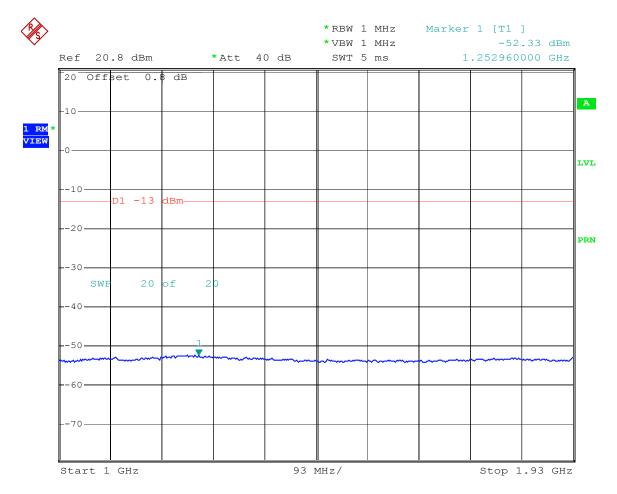


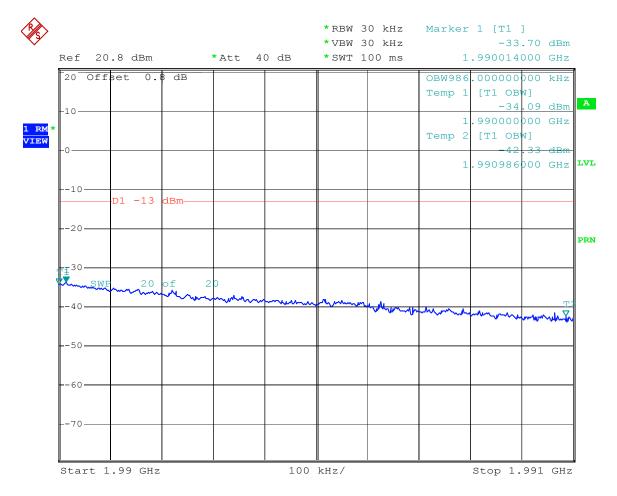

Comment: Out-of-band emissions, ch 25 Date: 24.MAR.2005 11:02:42

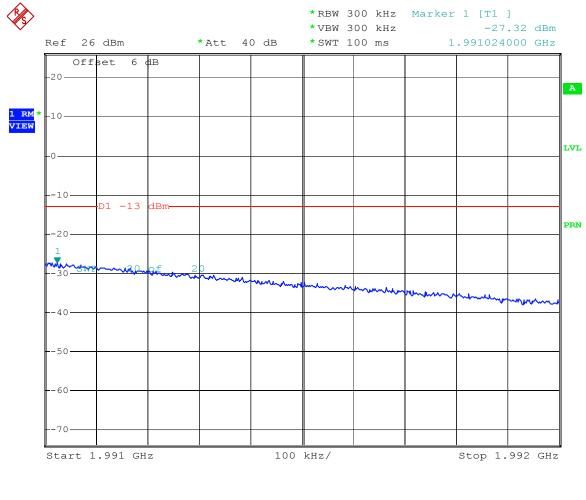

Comment: Out-of-band emissions, ch 25 Date: 24.MAR.2005 14:26:52


Comment: Out-of-band emissions, ch 600 Date: 23.MAR.2005 17:50:29

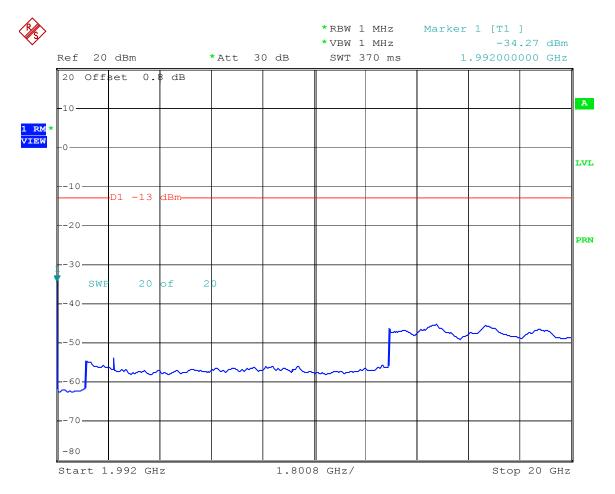

Comment: Out-of-band emissions, ch 600 Date: 23.MAR.2005 17:45:40


Comment: Out-of-band emissions, ch 600 Date: 24.MAR.2005 14:41:16


Comment: Out-of-band emissions, ch 1175 Date: 24.MAR.2005 13:19:41


Comment: Out-of-band emissions, ch 1175 Date: 24.MAR.2005 14:06:15

Comment: Out-of-band emissions, ch 1175 Date: 24.MAR.2005 11:53:18



Comment: Out-of-band emissions, ch 1175, BCF=5.2 dB added Date: 24.MAR.2005 11:59:56

Note: Since the resolution bandwidth (RBW) of less than 1 MHz is used, the bandwidth correction factor (BCF) of 10Log(1/RBW) = 5.2 dB was added to the Spectrum analyzer reading (as OFFSET).

Comment: Out-of-band emissions, ch 1175 Date: 24.MAR.2005 13:18:03

6.0 Transmitter Spurious Radiation FCC 2.1053, 24.238

6.1 Requirement

The power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $(43 + 10 \log P) dB$.

Note: That corresponds to the level of -13 dBm for any radiated out-of-band and spurious emissions.

6.2 Test Procedure

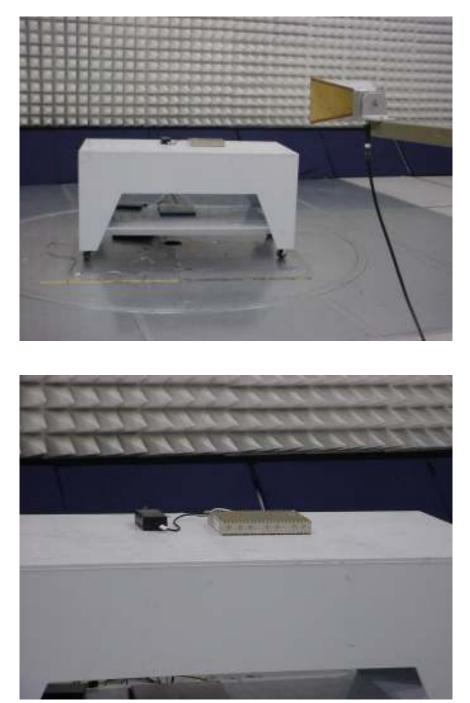
The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to 10-th harmonic of each of the three fundamental frequency (low, middle, and high channels) was investigated. The worst case of emissions was reported.

For spurious emissions attenuation, the substitution method was used. The EUT was substituted by a reference antenna (half-wave dipole - below 1 GHz, or Horn antenna - above 1GHz), connected to a signal generator. The signal generator output level (V_g in dBm) was adjusted to obtain the same reading as from EUT. The EIRP at the spurious emissions frequency was calculated as follows.

$EIRP_{(dBm)} = V_g + G_{(dBi)}$

The spurious emissions attenuation is the difference between EIRP at the fundamental frequency (see section 3) and at the spurious emissions frequency.


6.3 Test Equipment

Roberts Antenna EMCO 3115 Horn Antennas Rohde & Schwarz FSP40 Spectrum Analyzer Low Pass Filter Preamplifiers

6.4 Configuration Photographs

Radiated Emission Test Setup

6.5 Test Results

Frequency	SA Reading (from EUT)	Signal Generator Output required to have the same SA Reading as from EUT	EIRP	EIRP Limit	EIRP Margin
MHz	dB(µV)	V _g dBm	dBm	dBm	dB
Low Channe	l: 1931.25MHz				
3862.5	49.1	-55.5	-45.9	-13	-32.9
5793.7	36.2	-69.4	-58.8	-13	-45.8
7725.0	22.8 *	-83.5	-72.3	-13	-59.3
Mid Channel	: 1960.10MHz				
3920.2	49.6	-55.0	-45.4	-13	-32.4
5880.3	35.4	-70.5	-59.6	-13	-46.6
7840.4	22.6 *	-83.3	-72.1	-13	-59.1
High Channe	High Channel: 1988.75 MHz				
3977.5	45.8	-58.8	-49.2	-13	-36.2
5966.2	35.6	-70.3	-59.4	-13	-46.5
7955.0	22.8 *	-83.5	-72.3	-13	-59.3

Transmitter Spurious Radiated Emissions

EIRP is calculated as: $EIRP_{(dBm)} = V_{g(dBm)} + G_{(dBi)}$

* Noise Floor

All other emissions not reported are more than 20 dB below the limit.

Result

Complies by more than 20 dB

- **7.0 Receiver Radiated emissions** FCC 15.109
- 7.1 Radiated Emission Limits

The following radiated emission limits apply to Class A unintentional radiators:

Frequency (MHz)	Class A at 10m (µV/m)	Class A at 10m (dBµV/m)
30-88	90	39
88-216	150	43.5
216-960	210	46.4
Above 960	300	49.5

Radiated Emissions Limits, Section 15.109(b)

Note: Three sets of units are commonly used for EMI measurement, decibels below one milliwatt (-dBm), decibels above a microvolt (dB μ V), and microvolts (μ V). To convert between them, use the following formulas: 20 LOG₁₀ (μ V) = dB μ V, dBm = dB μ V-107.

7.2 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\label{eq:FS} \begin{split} FS &= RA + AF + CF - AG \\ Where \ FS &= Field \ Strength \ in \ dB\mu V/m \\ RA &= Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB\mu V \\ CF &= Cable \ Attenuation \ Factor \ in \ dB \\ AF &= Antenna \ Factor \ in \ dB \\ AG &= Amplifier \ Gain \ in \ dB \end{split}$$

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

FS = RR + LFWhere FS = Field Strength in dBµV/m RR = RA - AG in dBµV LF = CF + AF in dB

Assume a receiver reading of 52.0 dB μ V is obtained. The antennas factor of -7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

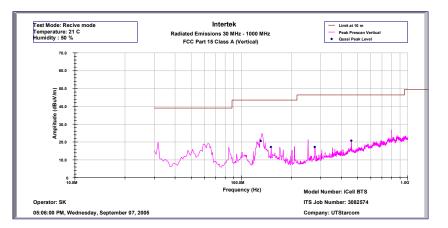
 $RA = 52.0 \text{ dB}\mu\text{V}$ $AF = 7.4 \text{ dB} RR = 23.0 \text{ dB}\mu\text{V}$ CF = 1.6 dB LF = 9.0 dBAG = 29.0 dBFS = RR + LF $FS = 23 + 9 = 32 \text{ dB}\mu\text{V/m}$

Level in $\mu V/m$ = Common Antilogarithm [(32 dB $\mu V/m$)/20] = 39.8 $\mu V/m$

7.3 Configuration Photographs

Radiated Emission Test Setup

7.4 Test Results


Tested By:	Suresh Kondapalli
Test Date:	September 7, 2005

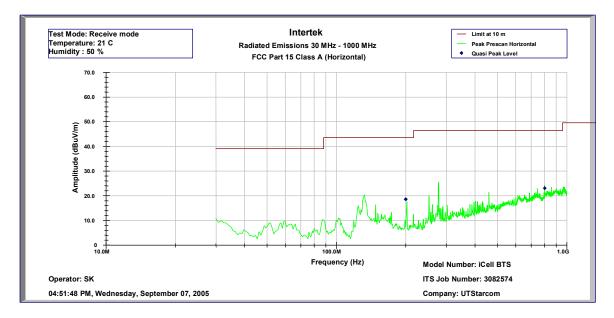
The results on the following page(s) were obtained when the device was tested in the receiving mode

Note: A complete scan was made from 30 MHz – 1000 MHz. The six highest emissions are reported.

Result	Complies by more than 20 dB
--------	-----------------------------

Intertek Testing Services Radiated Emissions 30 MHz - 1000 MHz FCC Part 15 Class A (QP-Vertical)

Operator: SK


05:05:57 PM, Wednesday, September 07, 2005

Model Number: iCell BTS ITS Job Number: 3082574 Company: UTStarcom

Frequency	Quasi Pk FS	Limit@10m	Margin	RA	CF	AG	AF
MHz	dB(uV/m)	dB(uV/m)	dB	dB	dB	dB	dB(1/m)
131.0	20.6	43.5	-22.9	41.4	4.6	32.9	7.5
150.0	16.7	43.5	-26.8	34.0	4.7	32.9	10.8
281.0	14.6	46.4	-31.8	28.9	5.5	32.8	13.0
458.0	20.7	46.4	-25.7	28.9	6.2	32.8	18.4

Test Mode: Receive mode Temperature: 21 C Humidity : 50 %

Intertek Testing Services Radiated Emissions 30 MHz - 1000 MHz FCC Part 15 Class A (QP-Horizontal)

Operator: SK

04:51:45 PM, Wednesday, September 07, 2005

Model Number: iCell BTS ITS Job Number: 3082574 Company: UTStarcom

Frequency	Quasi Pk FS	Limit@10m	Margin	RA	CF	AG	AF
MHz	dB(uV/m)	dB(uV/m)	dB	dB	dB	dB	dB(1/m)
200.0	18.6	43.5	-24.9	36.5	5	32.8	9.9
802.0	23.1	46.4	-23.3	26.3	7.3	32.7	22.1

Test Mode: Receive mode Temperature: 21 C Humidity : 50 %

)

8.0 Frequency Stability vs Temperature and Voltage FCC 2.1055, 24.235

8.1 Requirement

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

8.2 Test Procedure

The EUT was placed inside the temperature chamber. The RF power output was connected to frequency counter. The EUT was setup to transmit the maximum power.

After the temperature stabilized for approximately 20 minutes, the transmitting frequency was measured by the frequency counter and recorded.

At the room temperature, the frequency was measured when the EUT was powered with the nominal voltage and with 85% and 115% of the nominal voltage.

8.3 Test Results

Nominal frequency: 1960 MHz

Frequency Stability Test Data (Hz)

	Frequency Deviation (Hz)							
	Temperature (°C)							
-30	-20	-10	0	10	20	30	40	50
85% Sup	ply 5.2 x 0.8	35 = 4.4V						
-20.5	-19.8	-19.8	-20.0	-19.3	-20.5	-20.1	-19.3	-20.3
100% Su	pply 5.2V							
-20.6	-19.7	-19.8	-19.6	-20.4	-20.1	-19.8	-20.3	-19.9
115% Su	pply 5.2 x 1	.15 = 6.0V						
-20.3	-20.8	-20.6	-20.3	-20.6	-20.4	-19.8	-19.7	-20.3

Maximum frequency deviation is 20.8 Hz

Result

Complies

9.0 RF Exposure evaluation FCC 2.1091, 24.52

The EUT is a wireless device used in a mobile application, at least 20 cm from any body part of the user or nearby persons.

Considering the maximum allowed antenna gain of 16.9 dBi (see sec. 3.2), the maximum EIRP is 36.9 dBm or 4.9 W.

Using the formula for the Power Density $S = EIRP/ 4\pi D^2$, the distance D, where the Maximum Permissible Exposure (MPE) satisfies the FCC 1.1310 limit for General Population/Uncontrolled Exposure, can be calculated as:

$D \ge \sqrt{(EIRP/4\pi S)}$

The MPE Limit at 1960 MHz is 1.0 mW/cm² (or 10 W/m²), therefore, $D \geq 0.197 \mbox{ m}$

The Statement that a minimum separation distance of 20 cm between the antenna and persons must be maintained is included in the User's manual.

10.0 List of Test Equipment

Measurement equipment used for compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Serial #	Cal Int	Cal Due
BI-Log Antenna	EMCO	3143	9509-1160	12	10/28/05
Double-ridged Horn Antenna	EMCO	3115	8812-3049	12	04/29/06
Dipole Antenna	CDI	Roberts	331	12	09/19/05
Double-ridged Horn Antenna	EMCO	3115	9170-3712	12	06/08/06
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	09/10/05
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	09/10/05
Spectrum Analyzer	Rohde & Schwarz	FSP40	036612004	12	09/15/05
Signal Generator	Hewlett Packard	83732A	322A00119	12	03/21/06
Power Meter	Booton	4300	62003DU	12	10/19/06
Pre-Amplifier	Sonoma Inst.	310	185634	12	07/05/06
Pre-Amplifier	Miteq	AMF-4D-001180-24-10P	799159	12	03/29/06

11.0 Document History

Revision/ Job Number	Writer Initials	Date	Change
1.0 / 3082574	DC	September 12, 2005	Original document