UTStarcom Canada BTS800 and iPA 1900T System

Report of Measurements

as per

FCC CFR47 Part 15/B and FCC CFR47 Part 24

Revision 1.8

April 20, 2006

Approval				
Checked By:	Robert Stirling, P.Eng	Date		

Protocol Labs, Abbotsford BC, Canada FCC Registration Number 96437 Industry Canada Registration Numbers IC3384

<u>Index</u>

Section I:	Information for Test Report of Measurements	3
Section II:	FCC CFR47 Part 15/B Report of Measurements	5
	Part 1 – A.C. Mains Conducted Emission Testing	6
	Part 2 - Radiated Emission Testing	7
Section III:	FCC CFR47 Part 24 Report of Measurements	8
	Part 1 - Field Strength of Spurious Radiation measurements	8
	Part 2 – Occupied Bandwidth	9
	Part 3 – RF Power Output	
	Part 4 – Spurious Emissions at Antenna Terminals	13
	Part 5 – Frequency Stability	18
Appendix A:	EUT Photos	20
Appendix B:	Measurement Data and Plots	22
	Conducted Emissions	23
Appendix C:	Measurement and Technical report for iCell BTS with iPA 800	25

Section I: Information for Test Report of Measurements

Testing Details

TESTED BY:	David Johanson
TEST CONDITIONS:	Temperature and Humidity: 10.8° C, 62%
TEST VOLTAGE:	120Vac, 60Hz
Test Facilities	
	Protocol Labs

28945 McTavish Rd. Abbotsford BC, Canada, V4X 2E7

FCC Registration Number 96437 Industry Canada Registration Number IC3384

Test Equipment List

EMISSIONS:

Device	Model Number	Serial No.	Last Cal.	Next Cal
Antenna	EMCO 3105	32	25/02/05	25/02/06
Antenna	EMCO LPA-30	178	13/10/04	13/10/05
Antenna	EMCO EM 6912	380	11/10/04	11/010/05
LISN	Solar 8012-50-R-24-BNC	863092	22/10/04	22/10/05
Power meter	Agilent E4417A	MY45100151	19/09/05	19/09/06
High Frequency Stack				
Spectrum Analyzer	Hewlett Packard 8566B	2241A02102	22/03/05	22/03/06
RF-Preselector	Hewlett Packard 85685A	3107A01222	22/03/05	22/03/06
Quasi-PeakAdapter	Hewlett Packard 85650A	2043A00240	22/03/05	22/03/06
Spectrum Analyzer	Agilent E4440	M444303599	01/01/05	01/01/06
Spectrum Analyzer	Agilent E4440	MY44303812	17/05/05	17/05/06
Tower	Rhientech Labs	Custom	NR	NR
Turntable	Protocol	Custom	NR	NR

Company Tested For

NAME: ADDRESS: UTStarcom Canada 4600 Jacombs Road Richmond, BC V6V 3B1

CONTACT PERSON: PHONE NUMBER: Mr. Joe Perrella 604-276-0055

Company on Test Site

NAME: ADDRESS: Unity Wireless Systems Corporation 7438 Fraser Park Drive Burnaby, BC V5J 5B9

CONTACT PERSON: EMAIL: PHONE NUMBER:

Mr. Rami Kenig ramik@unitywireless.com 604-267-2737

Equipment Under Test

THE TEST SYSTEM:	EUT: BTS800 and iPA1900T System		System		
	Manufacturer:	L	Unity Wireless Systems Corporation, OEM UTStarcom Canada		
	Part Number: Serial Number	r: 0	3000 0005 002 05031716		
	Aux Equip 1:	S	Signal Generator		
	Manufacturer: Part Number: Serial Number	H F: 3	Hewlett Packard HP8646C 3537A02338		
	Aux Equip 2:	L	Laptop PC		
	Manufacturer: Part Number: Serial Number	T F T: 6	Toshiba PS22SC-N91J4 60013470		
	Aux Equip 3: Manufacturer:	1 L	19.2 MHz Frequency Reference Jig Unity Wireless		
	Aux Equip 4: Manufacturer: Serial Number	i(L r: 1	iCell BTS800 Unity Wireless 12R200601300001		
TEST SETUP:	The EUT was setup in its approved operating configuration as per the requested requirements of the manufacturer. The iPA1900T is marketer with an iCell BTS800attached to its' input. For some of these tests the iPA1900T was tested as a standalone unit.			per the marketed ests the	
	The iCell BTS 800MHz was previously tested and approve standalone unit. It was approved as FCC ID: S52P800-1 R report that is listed in Appendix C.			nd approved a 2P800-1 Refei	s a ⁻ to the test
CABLING:					
	Cable	Connector	Load/Termination	Shielded	Ferrites
	RG174	SMA Male	19.2 Mµ2 Ref	Yes	No
	RG58	N Male	50 Ohm Load	Yes	No
	RG174	SMA Male	Frequency Generator	Yes	No
	RG6	N Male	Attenuators/Spectrum Analyzer	Yes	No
	Power Cord	3 Prong AC Plug	120VAC	No	No
	RS-232 Serial	DB-9 male	PC Serial Port	Yes	No
MODIFICATIONS:	No modificatio	No modifications were required for this unit to pass.			
CONCLUSION:	The BTS800 and iPA 1900T System as tested, complies with the requirements of FCC CFR47 Part 15/B, and FCC CFR47 Part 24				

Section II: FCC CFR47 Part 15/B Report of Measurements

<u>General</u>

Tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15B - Unintentional Radiators, Class A.

Both the Radiated and Power Line Conducted Emission tests were performed using measurement procedure outlined in the above standard.

FCC Labeling and Marking Requirements:

Markings

According to FCC Section 15.19, and ICES 003, a statement similar to the following must be included on an identification label, which also uniquely identifies the manufactured date, either explicitly or through a serial number etc.:

"This equipment complies with FCC Rules, Part 15 and Industry Canada's ICES 003 for a Class A Digital Device. Operation is subject to two conditions:

- 1) This device may not cause harmful interference, and
- 2) This device must accept any interference that may cause any undesired operation"

Additionally, if the manufacturer markets product to Quebec, the following supplemental information should be added to the label:

"Cet Apparreil numerique de la Classe A respecte toutes les exigences du Reglement sur le material broilleur du Canada."

Labeling

According to FCC Section 15.105, and ICES 003, the following statement must be included in a prominent location your User's Manual:

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference at his own expense.

It is also required according to FCC Part B Section 15.21 that a caution is included such as:

Caution: Changes or modifications to this equipment, not expressly approved by the manufacturer could void the user's authority to operate the equipment.

Part 1 – A.C. Mains Conducted Emission Testing

DATE:	March 9, 2005
TEST STANDARD:	FCC CFR47, Part 15, Subpart B
TEST VOLTAGE:	120Vac, 60Hz
TEST SETUP:	The iPA1900T was connected to the conducted emissions LISN apparatus. The BTS800 was tested previously. Refer to the report for FCC ID: S52P800-1 Refer to the test report that is listed in Appendix C.

MINIMUM STANDARD: Class A Limit:

Frequency (MHz)	Conducted Lir	nit (dBμV)
	Quasi-Peak	Average
0.15 - 0.50	79	66
5.00 - 30.0	73	60

METHOD OF MEASUREMENT: Measurements were made using a spectrum analyzer, Peak detector. Any emissions that are close to the limit are measured using a test receiver and CISPR Quasi-Peak detector.

DEVICE DESCRIPTIONS: As described in the Equipment Under Test Section, above.

CABLING DETAILS: The EUT was set up using the manufacturer's specified normal cabling configuration.

CABLING:

Cable	Connector	Load/Termination	Shielded	Ferrites
RG174	SMA Male	19.2 Mµ2 Ref	Yes	No
RG58	N Male	50 Ohm Load	Yes	No
RG174	SMA Male	Frequency Generator	Yes	No
RG6	N Male	Attenuators/Spectrum Analyzer	Yes	No
Power Cord	3 Prong AC Plug	120VAC	No	No
RS-232 Serial	DB-9 male	PC Serial Port	Yes	No

MODIFICATIONS:	No modifications were required for the device to pass the test.	
----------------	---	--

MEASUREMENT DATA: See Appendix B for Plots,

EMISSIONS DATA: See Tables 1 and 2 in Appendix B for corresponding frequencies.

PERFORMANCE: Complies with standard.

Part 2 - Radiated Emission Testing

TEST STANDARD: FCC CFR47, Part 15, Subpart B

TEST VOLTAGE: 120Vac, 60Hz

TEST SETUP: The equipment was set up in a 10-meter open field test site. Emissions in both horizontal and vertical polarizations were measured while rotating the EUT on a turntable to maximize the emissions signal strength and the results recorded on the attached plots. These measurements are for the iPA1900T only. The BTS800 was tested previously. Refer to the report for FCC ID: S52P800-1 Refer to the test report that is listed in Appendix C.

MINIMUM STANDARD: Class A Limit:

Frequency MHz	Field Strength at 10m	
	Microvolts/Meter	dB microvolts per meter
30 - 88	90	39.08
88 - 216	150	43.52
216 - 960	210	46.44
960 - above	300	49.54

DEVICE DESCRIPTIONS: Refer to the Equipment Under Test Section.

CABLING DETAILS:

The EUT was set up using the manufacturer's specified normal cabling configuration.

CABLING:

Cable	Connector	Load/Termination	Shielded	Ferrites
RG174	SMA Male	19.2 Mµ ₂ Ref	Yes	No
RG58	N Male	50 Ohm Load	Yes	No
RG174	SMA Male	Frequency Generator	Yes	No
RG6	N Male	Attenuators/Spectrum Analyzer	Yes	No
Power Cord	3 Prong AC Plug	120VAC	No	No
RS-232 Serial	DB-9 male	PC Serial Port	Yes	No

MODIFICATIONS: No modifications were required for the device to pass the test.

EMISSIONS DATA: See Table in Appendix B for corresponding frequencies.

PERFORMANCE: Complies with standard.

Section III: FCC CFR47 Part 24 Report of Measurements

<u>General</u>

Tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 24 – Personal Communication Services.

The Radiated Emission tests were performed using measurement procedure outlined in the above standard and in the applicable parts of CFR47 Part 2.

Part 1 - Field Strength of Spurious Radiation measurements

DATE:	March 10, 2005
TEST STANDARD:	47CFR2.1053, 24.238(A)
TEST VOLTAGE:	120Vac, 60Hz
TEST SETUP:	As required by §2.1053, field strength of spurious radiation measurements were made in accordance with the general procedures of TIA/EIA-603-A using the Substitution Method. The final measurements were made on a 3meter open area test site for Frequencies up to 1GHz. The remaining measurements were made at 1meter using a Microwave amplifier and the appropriate filters
	The iPA1900T was tested independently and was connected to the appropriate generators, terminators and a laptop PC to simulate the operations of the BTS800. The RF output of the iPA1900T was set to transmit at 1930, 1960 and 1980 MHz at 42.3 dBm output as per the manufacturers tuning procedures. The BTS800 was tested previously. Refer to the report for FCC ID: S52P800-1 Refer to the test report that is listed Appendix C. The unit was scanned over the frequency range of 9 kHz to 20 GHz.
MINIMUM STANDARD:	As per 24.238(a), the spurious emissions must be attenuated by 43 + 10log(P) below the transmitting power level. The power level is: 28.18W
	Therefore, the attenuation level limit for spurious emissions is set at: 43+10log(28.18) = 57.5dB
	Limit dBm = 10log((P)/0.001) – 57.5
	Limit dBm = 10log((28.18)/0.001) - 57.5 = 44.5 - 57.5 = -13dBm
	Maximum limit of Spurious Emissions = -13dBm
MODIFICATIONS:	No modifications were required for the device to pass the test.
EMISSIONS DATA:	Nothing was detectable when the unit was tested in all 3 frequencies in both Vertical and Horizontal modes. The frequencies were also investigated at 1MHz and 30KHz RBW to try and identify frequencies, but nothing was found above the noise floor.
PERFORMANCE:	Complies with standard.

Part 2 – Occupied Bandwidth

DATE:	April 19, 2005				
TEST STANDARD:	FCC CFR47, Part 24.238				
TEST VOLTAGE:	120Vac, 60Hz				
TEST SETUP:	As required by §24.238(b) of CFR 47, occupied bandwidth measurements were made at the 26dB attenuation point. Using an IF bandwidth of 12kHz, 1% of 6dB Bandwidth, we determined the 26dB occupied bandwidth of the emission at the lowest and highest selectable channel range was determined.				
	The iPA1900T was tested while connected to the BTS800. The RF output of the iPA1900T was set to 42.3dBm as per the manufacturers tuning procedures. The BTS800 was independently tested previously. Refer to the report for FCC ID: S52P800-1 Refer to the test report that is listed Appendix C.				
CABLING DETAILS:	The EUT was configuration.	set up using	the manufacturer's s	pecified norma	l cabling
CABLING:					
	Cable	Connector	Load/Termination	Shielded	
	RG174	SMA Male			Ferrites
			19.2 Mµ ₂ Ref	Yes	Ferrites No
	RG58	N Male	19.2 Mµ ₂ Ref 50 Ohm Load	Yes Yes	Ferrites No No
	RG58 RG174	N Male SMA Male	19.2 Mµ ₂ Ref 50 Ohm Load Frequency Generator	Yes Yes Yes	Ferrites No No No
	RG58 RG174 RG6	N Male SMA Male N Male	19.2 Mµ2 Ref 50 Ohm Load Frequency Generator Attenuators/Spectrum Analyzer	Yes Yes Yes Yes	Ferrites No No No No
	RG58 RG174 RG6 Power Cord	N Male SMA Male N Male 3 Prong AC Plug	19.2 Mµ2 Ref 50 Ohm Load Frequency Generator Attenuators/Spectrum Analyzer 120VAC	Yes Yes Yes Yes No	Ferrites No No No No
	RG58 RG174 RG6 Power Cord RS-232 Serial	N Male SMA Male N Male 3 Prong AC Plug DB-9 male	19.2 Mµ2 Ref 50 Ohm Load Frequency Generator Attenuators/Spectrum Analyzer 120VAC PC Serial Port	Yes Yes Yes Yes No Yes	Ferrites No No No No No No No No No
MODIFICATIONS:	RG58 RG174 RG6 Power Cord RS-232 Serial No modificatio	N Male SMA Male N Male 3 Prong AC Plug DB-9 male	19.2 Mµ2 Ref 50 Ohm Load Frequency Generator Attenuators/Spectrum Analyzer 120VAC PC Serial Port uired for the device to	Yes Yes Yes No Yes pass the test.	Ferrites No No No No

PERFORMANCE: Complies with standard.

Occupied Bandwidth - Lowest channel

Occupied Bandwidth - Highest Channel

Part 3 – RF Power Output

DATE:	April 19, 2006			
TEST STANDARD:	FCC CFR47, Part 2.1046 and 24.132(b)(c)			
TEST VOLTAGE:	120Vac, 60Hz			
TEST SETUP:	As required by §2.1046 of CFR 47, <i>RF Power Output measurements</i> were made at the RF output terminals using an Attenuator and a Power Meter. this test was performed with the BTS800 providing the input using a CDMA 2000 modulation format.			
	BTS800 and iPA1900T are components of a feedback loop. The iPA1900T has an output power detector that reports to the BTS800. The BTS800 reads the value of this power detector and never allows output power of the loop be more than 42.3dBm (this is software coded).			
	The EUT was scanned and tested in various configurations. The data was collected to show the highest level that could be detected.			
	CABLING DETAILS: The EUT was set up using the manufacturer's specified normal cabling configuration.			
	Agilent E4417A 42dB Correction value			
	Agilent E9323A			

EUT RF cable (1dB loss) Power Attenuator

CABLING:

Cable	Connector	Load/Termination	Shielded	Ferrites
RG174	SMA Male	19.2 MHz Ref	Yes	No
RG58	N Male	50 Ohm Load	Yes	No
RG174	SMA Male	Frequency Generator	Yes	No
RG6	N Male	Attenuators/Spectrum Analyzer	Yes	No
Power Cord	3 Prong AC Plug	120VAC	No	No
RS-232 Serial	DB-9 male	PC Serial Port	Yes	No

MODIFICATIONS:

No modifications were required for the device to pass the test.

EMISSIONS DATA - Maximum Power Output:

IPA Output Frequency (GHz)	Internal Power Meter Output level (dBm)	Measured (dBm)	Total (W)
1.93125	42.3	44.4	27.54
1.9600	42.3	44.5	28.18
1.98875	42.3	42.4	17.4

PERFORMANCE:

Maximum output power level measured: 44.5dBm (28.18Watts)

Part 4 – Spurious Emissions at Antenna Terminals

DATE:	March 9, 2005				
TEST STANDARD:	FCC CFR47, Part 2.1051; 24.238(a)				
TEST VOLTAGE:	120Vac, 60Hz				
TEST SETUP:	As required by §2.1051 of CFR 47, spurious emissions at antenna terminal measurements were made at the RF output terminals using a 50 Ohmattenuator and spectrum analyzer set for a 1MHz bandwidth. Tests were also performed at 10kHz bandwidth to confirm frequency presence. This test was performed with a digital signal generator configured to transmit a CDMA IS-95 modulated carrier signal. The frequency spectrum was investigated from 9.0 kHz to 20.0 GHz. The iPA1900T was tested independently and was connected to the appropriate generators, terminators and a laptop PC to simulate the operations of the BTS800. The RF output of the iPA1900T was set to 42.3 dBm as per the manufacturers tuning procedures. The BTS800 was tested previously. Refer to the report for FCC ID: S52P800-1 Refer to the test report that is listed Appendix C.				
CABLING DETAILS:	The EUT was configuration.	set up using	the manufacturer's s	pecified normal	cabling
CABLING.					
CABLING.	Cable	Connector	Load/Termination	Shielded	Ferrites
CADLING.	Cable RG174	Connector SMA Male	Load/Termination	Shielded Yes	Ferrites No
CABLING.	Cable RG174 RG58	Connector SMA Male N Male	Load/Termination 19.2 Mµ ₂ Ref 50 Ohm Load	Shielded Yes Yes	Ferrites No No
CADLING.	Cable RG174 RG58 RG174	Connector SMA Male N Male SMA Male	Load/Termination 19.2 Mµ2 Ref 50 Ohm Load Frequency Generator	Shielded Yes Yes Yes	Ferrites No No No
CADLING.	Cable RG174 RG58 RG174 RG58 RG174	Connector SMA Male N Male SMA Male N Male	Load/Termination 19.2 Mμ ₂ Ref 50 Ohm Load Frequency Generator Attenuators/Spectrum Analyzer	ShieldedYesYesYesYes	Ferrites No No No No
CADLING.	Cable RG174 RG58 RG174 RG6 Power Cord	Connector SMA Male N Male SMA Male N Male 3 Prong AC Plug	Load/Termination 19.2 Mµ2 Ref 50 Ohm Load Frequency Generator Attenuators/Spectrum Analyzer 120VAC	ShieldedYesYesYesYesNo	Ferrites No No No No
CADLING.	Cable RG174 RG58 RG174 RG6 Power Cord RS-232 Serial	Connector SMA Male N Male SMA Male N Male 3 Prong AC Plug DB-9 male	Load/Termination 19.2 Mµ2 Ref 50 Ohm Load Frequency Generator Attenuators/Spectrum Analyzer 120VAC PC Serial Port	ShieldedYesYesYesNoYes	Ferrites No No No No No No No No No
MODIFICATIONS: STANDARD:	CableRG174RG58RG174RG6Power CordRS-232 SerialNo modificatio24.238(a) Thetransmitting po	Connector SMA Male N Male SMA Male N Male 3 Prong AC Plug DB-9 male ns were req mean powe	Load/Termination 19.2 Mµ2 Ref 50 Ohm Load Frequency Generator Attenuators/Spectrum Analyzer 120VAC PC Serial Port uired for the device to er of emissions must b past (43 ±10logP)	Shielded Yes Yes Yes Yes No Yes pass the test. we attenuated be	Ferrites No No No No
MODIFICATIONS: STANDARD:	CableRG174RG58RG174RG6Power CordRS-232 SerialNo modification24.238(a) The transmitting portFor measurem 44.25dBm at 1 (43+1)The limit line is	Connector SMA Male N Male SMA Male N Male N Male 3 Prong AC Plug DB-9 male DB-9 male mean power ower by at le nents perforr 960Mhz. Th 0log26.6) = 5	Load/Termination 19.2 Mμ ₂ Ref 50 Ohm Load Frequency Generator Attenuators/Spectrum Analyzer 120VAC PC Serial Port uired for the device to er of emissions must b sast (43 +10logP) med with RBW=1MHz herefore Attenuation L 57.2dB 5 –57.2 = -13dBm	Shielded Yes Yes Yes Yes No Yes opass the test. pe attenuated be the power wimit is:	Ferrites No No No No No No elow the //as
MODIFICATIONS: STANDARD: EMISSIONS DATA:	CableRG174RG58RG174RG6Power CordRS-232 SerialNo modificatio24.238(a) The transmitting poFor measurem 44.25dBm at 1 (43+1)The limit line is See the follow	Connector SMA Male N Male SMA Male N Male N Male 3 Prong AC Plug DB-9 male DB-9 male mean power ower by at le nents perform 960Mhz. Th 0log26.6) = 5 s set at 44.2 ing pages for	Load/Termination19.2 M μ_2 Ref50 Ohm LoadFrequency GeneratorAttenuators/Spectrum Analyzer120VACPC Serial Portuired for the device to er of emissions must b east (43 +10logP)med with RBW=1MHz herefore Attenuation L 57.2dB 5 -57.2 = -13dBm or the data.	Shielded Yes Yes Yes No Yes No Yes or pass the test. pe attenuated be c, Peak power wimit is:	Ferrites No No No No No No elow the vas

Low Channel 1.930 GHz set to 42.3dBm output. Modulated with CDMA - IS95

Frequency (MHz)	Harmonic	Measured Signal (dBm) @1MHz	Limit Lines (dBm)	Delta Limit Peak (dBc)
1930.000	1st	40.94	NA	NA
3860.000	2nd	-69.85	-13.0	110
5790.000	3rd	-61.15	-13.0	102
7720.000	4th	-67.69	-13.0	109
9650.000	5th	-67.20	-13.0	108
11580.000	6th	-68.30	-13.0	109
13510.000	7th	-66.33	-13.0	107
15440.000	8th	-67.16	-13.0	108
17370.000	9th	-66.61	-13.0	107
19300.000	10th	-66.40	-13.0	107

Other then 3rd harmonic, no frequencies detected above the noise floor.

Mid Channel 1.960 GHz set to 42.3dBm output. Modulated with CDMA - IS95

Frequency (MHz)	Harmonic	Measured Signal (dBm) @1MHz	Limit Lines dBm)	Delta Limit Peak (dBc)
1960.000	1st	44.25	NA	NA
3920.000	2nd	-67.35	-13.0	112
5880.000	3rd	-58.32	-13.0	103
7840.000	4th	-67.30	-13.0	112
9800.000	5th	-68.45	-13.0	113
11760.000	6th	-67.23	-13.0	112
13720.000	7th	-66.51	-13.0	111
15680.000	8th	-68.56	-13.0	113
17640.000	9th	-66.54	-13.0	111
19600.000	10th	-67.12	-13.0	111

Other then 3rd harmonic, no frequencies detected above the noise floor.

High Channel 1.989 GHz set to 42.3dBm output. Modulated with CDMA - IS95

Frequency (MHz)	Harmonic	Measured Signal (dBm) @1MHz	Limit Lines (dBm)	Delta Limit Peak (dBc)
1989.000	1st	41.25	NA	NA
3978.000	2nd	-66.55	-13.0	108
5967.000	3rd	-60.85	-13.0	102
7956.000	4th	-66.40	-13.0	108
9945.000	5th	-67.34	-13.0	109
11934.000	6th	-68.52	-13.0	110
13923.000	7th	-67.25	-13.0	109
15912.000	8th	-68.74	-13.0	110
17901.000	9th	-68.36	-13.0	110
19890.000	10th	-67.95	-13.0	109

Other then 3rd harmonic, no frequencies detected above the noise floor.

Bandedge measurements

BTS800 and iPA1900T System Bandedge at Terminal - Low Freq. 1930 MHz

🔆 Agilent 10:53:39 Apr 20, 2006										
								Mkı	1 1.988	750 GHz
Ref 42	.3 dBm		#At	ten 20 di	3				- 22	.39 dBm
#Peak ∣										
Log		. 1	1							
10		A MARTIN	the party of the sector of the	Mill March						
dB/		ļ <u> </u>		$ \downarrow $						
Uffst										
42 dR		1		l l						
UI 1.ว.ด	. Anter H				the state of the s	2				
-13.0 dBm	Notes for a second second				and the second	NAL AND A	1 l			
						1.	WAY AND AND AND	What the sale .		
LGHA								Local of the second	a share	ters in the second
u 1 s2										
ni vej Center	1 990 0	L AA GHz						^	Sna	an 5 MHz
#Res R	1.000 0. ⊎ 12 kH≂	, ,			WRW 12 k	·H-7		#Swaa	n 2 e (1'	100 n+s)
Mark	or Tra	ro T	VDA		Avie	112	Ampliti		μεσ(1.	100 pt37
1	(1) F	req	1.988 75	50 GHz		22.39 (dBm		
2	(1) F	req	1.990 00	00 GHz		-25.42 (dBm		
	570			<u> </u>					1.40	

BTS800 and iPA1900T System Bandedge at Terminal - High Frequency at 1990 MHz

Out of Band Rejection at 879.60 MHz input and 1960 MHz output (Red = Frequency Generator Input Frequencies; Black = iPA1900T output Frequencies)

Part 5 – Frequency Stability

DATE:	April 25, 2005				
TEST STANDARD:	FCC CFR47, F	Part 2.1055;	24.235		
TEST VOLTAGE:	120Vac, 60Hz				
TEST SETUP:	As required by §2.1055 of CFR 47, stability measurements were made at the antenna output terminal using a 50 Ohm attenuator and spectrum analyzer set for a 10Hz resolution bandwidth. This test was performed uing a CW signal and measured using a RBW=10Hz				
	The Temperature Stability part of the test was performed at the manufacturers location with the manufacturers test equipment. The measurements were taken over the temperature range of –30 to +50 deg. Celsius, in 10 deg. increments for each of the Frequencies under test. The measurements were taken after the frequency and unit had stabilized for each frequency and temperature				
	The Voltage S measurements which is the 85 our in-house e	tability part o s were taker 5% to 115% equipment.	of the test were perfor n over the voltage rang of the rated operating	med at our lab ge of 93.5Vac t Voltage of 110	s. The to 126.5Vac)Vac. using
CABLING DETAILS:	The EUT was configuration.	set up using	the manufacturer's s	pecified norma	I cabling
CABLING:					
	Cable	Connector	Load/Termination	Shielded	Ferrites
	RG174	SMA Male	19.2 Mµ2 Ref	Yes	No
	RG58	N Male	50 Ohm Load	Yes	No
	RG174	SMA Male	Frequency Generator	Yes	No
	RG6	N Male	Attenuators/Spectrum Analyzer	Yes	No
	Power Cord	3 Prong AC Plug	120VAC	No	No
	RS-232 Serial	DB-9 male	PC Serial Port	Yes	No
MODIFICATIONS:	No modificatio	ns were req	uired for the device to	pass the test.	
STANDARD:	§24.235 of CF the fundament Since this can frequency, the appropriate lev	R 47, the fre al emission have a num manufactur vel to meet t	equency stability shall stays within the autho ber of interpretations, er has set a tolerance his requirement.	be sufficient to rized frequenc depending on of +/- 0.5ppm	ensure that y block. the as an
EMISSIONS DATA:	See the follow	ing pages fo	r the data.		

PERFORMANCE: Complies with standard.

		ing ever veriperataire vanger	
Temperature	Low Frequency Channel 0	Middle Frequency Channel	High Frequency Channel 1199
(°C)	1930.000000 MHz	600 1960.000000 MHz	1989.9500000 MHz
+50	1930.000000	1960.000000	1989.950000
+40	1930.000000	1960.000000	1989.950000
+30	1930.000000	1960.000000	1989.950000
+20		See Voltage table below	
+10	1930.000000	1960.000000	1989.950000
0	1930.000000	1960.000000	1989.950000
-10	1930.000000	1960.000000	1989.950000
-20	1930.000000	1960.000000	1989.950000
-30	1930.000000	1960.000000	1989.950000
Limit (0.5ppm)	1929.999350- 1930.0000965	1959.999902 - 1960.000980	1989.949005 - 1989.950995

Frequency Stability over Temperature Range.

Reference input frequency: 19.200000 MHz

TRX Input Frequency: 879.600000 MHz.

Frequency Stability over Voltage Range.

		, , , , , , , , , , , , , , , , , , , ,	
Voltage (Vac)	Low Frequency Channel 0 1930.000000 MHz	Middle Frequency Channel 600 1960.000000 MHz	High Frequency Channel 1199 1989.9500000 MHz
126.5	1929.9972647	1959.9971735	1989.9471241
115.5	1929.9972655	1959.9971728	1989.9471242
110.0	1929.9972702	1959.9971758	1989.9471232
104.5	1929.9972739	1959.9971756	1989.9471258
93.5	1929.9972740	1959.9971742	1989.9471257
Limit (0.5ppm)	1929.9996305 - 1929.998235	1959.996195 - 1959.998155	1989.946128 - 1989.948118

Reference input frequency: 19.200000 MHz

TRX Input Frequency: Channel 320 879.600000 MHz.

Performed at: +20°C

Nominal Voltage: 110.0Vac 60Hz

Appendix A: <u>EUT Photos</u>

Emissions Test Setup Front View

Emissions Test Setup Back View of Cables

Appendix B: <u>Measurement Data and Plots</u>

UTStarcom Canada -- iPA 1900T

Conducted Emissions

Table 1: Line 1 - 120Vac 60Hz

Frequency (MHz)	Peak (dBμV)	DelLim-Pk (dB)		
0.9925	60.9	0.90		
1.103	59.9	-0.1		
1.214	58.5	-1.5		
0.8834	58.1	-1.9		
0.5515	56.7	-3.3		
0.778	54.1	-5.9		
AVERAGE				
0.9925	57.9	-2.1		
1.109	56.9	-3.1		
1.22	55.6	-4.4		
0.8881	55.0	-5.0		

Frequency (MHz)	Peak (dBμV)	DelLim-Pk (dB)			
0.9925	60.7	0.7			
1.121	60.3	0.3			
1.098	59.9	-0.1			
1.22	58.4	-1.6			
0.8834	58.3	-1.7			
0.5486	56.3	-3.7			
AVERAGE					
0.9925	57.9	-2.1			
1.103	56.8	-3.2			
1.22	55.4	-4.6			
0.8834	55.1	-4.9			

Table 2: Line 2 - 120Vac 60Hz

Radiated Emission Class A - 10 m

Table 5: FCC Emissions

Frequency	Ant. Pol	Ant. Hgt	Ang	Uncor- Pk	Tot Corr	Peak	QP Lmt	DelLim-Pk
(MHz)		(m)	(deg)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
49.009920	v	1	0	20.9	10.36	31.26	49.53	-18.27
62.21124	v	1	250	13.2	6.28	19.48	49.53	-30.05
73.51903	v	1	180	16.6	7.5	24.1	49.53	-25.43

Conducted Emissions

Conducted Emissions Line 1 – 120Vac, 60Hz

Conducted Emissions Line 2 - 120Vac, 60Hz

Appendix C: <u>Measurement and Technical report for iCell BTS</u> with iPA 800

Refer to the FCC ID: S52P800-1 TUV America report No. SC501057-03 for detailed measurements of this product.

This document can be downloaded for the FCC web site located at: <u>https://gullfoss2.fcc.gov/prod/oet/cf/eas/reports/GenericSearch.cfm</u>

You would then insert the FCC ID: S52P800-1 into the first 2 fields. Then select "details" on the next window.