

# **TEST REPORT**



#### **Report Reference Number:**

Total Number of Pages: Date of Issue:

#### **EMC Test Laboratory:**

Address: Phone: Fax:

# E10599-2301\_StarSolutions\_iCell COMPAC-N LTE BC12\_Rev1.0

73 October 3, 2023

#### QAI Laboratories Ltd.

3980 North Fraser Way, Burnaby, BC, V5J 5K5 Canada (604) 527-8378 (604) 527-8368

# Laboratory Accreditations (per ISO/IEC 17025:2017)



This report has been completed in accordance with the requirements of ISO/IEC 17025. Test results contained in this report are within QAI Laboratories ISO/IEC 17025 accreditations. QAI Laboratories authorizes the applicant to reproduce this report, provided it is reproduced in its entirety and for the use by the company's employees only.

#### Manufacturer:

Address:

#### **Equipment Tested:**

Model Number(s): FCC ID: ISED ID:

# **Star Solutions International Inc**

#120, 4600 Jacombs Rd Richmond, BC V6V 3B1

LTE Base Station: Band Class 12

NL-1210, NL-1211 S52-7-12-12-00-1 8076A-71212001





# **REVISION HISTORY**

| Date                                                                                                                 | Report<br>Number                                         | Details       | Author's<br>Initials |  |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------|----------------------|--|
| September 11, 2023                                                                                                   | E10599-2301_StarSolutions_iCell COMPAC-N LTE BC12_Rev0.0 | Initial draft | AH                   |  |
| September 13, 2023                                                                                                   | E10599-2301_StarSolutions_iCell COMPAC-N LTE BC12_Rev0.1 | Draft         | AH                   |  |
| September 25, 2023                                                                                                   | E10599-2301_StarSolutions_iCell COMPAC-N LTE BC12_Rev0.2 | Draft         | JS                   |  |
| September 27, 2023                                                                                                   | E10599-2301_StarSolutions_iCell COMPAC-N LTE BC12_Rev0.3 | Draft         | AH                   |  |
| October 3, 2023                                                                                                      | E10599-2301_StarSolutions_iCell COMPAC-N LTE BC12_Rev1.0 | Final         | AH                   |  |
| All previous versions of this report have been superseded by the latest dated revision as listed in the above table. |                                                          |               |                      |  |
| Please dispose of all previous electronic and paper printed revisions accordingly.                                   |                                                          |               |                      |  |

# **REPORT AUTHORIZATION**

The data documented in this report is for the test equipment provided by the manufacturer and the results relate only to the item tested. The tests were conducted on the sample equipment as requested by the manufacturer for the purpose of demonstrating compliance with the standards outlined in Section I of this report as agreed upon by the Manufacturer under the quote 23RH05175R2.

The Manufacturer is responsible for the tested product configurations, continued product compliance, and for the appropriate auditing of subsequent products as required.

This report may comprise a partial list of tests that are required for FCC and ISED. A Declaration of Conformity can only be produced by the manufacturer. This is to certify that the following report is true and correct to the best of our knowledge.

This report is the confidential property of the client addressed. The report may only be reproduced in full. Publication of extracts from this report is not permitted without written approval from QAI. Any liability attached thereto is limited to the fee charged for the individual project file referenced. The results of this report pertain only to the specific items tested, calibrated, or sampled. Unless specifically stated or identified otherwise, QAI has utilized a simple acceptance rule to make conformity decisions on testing results contained in this report as applicable.

Testing Performed by Alec Hope Senior RF/EMC Engineer

Report Prepared by Alec Hope Senior RF/EMC Engineer

Anto Sint

Report Reviewed by Parminder Singh Vice President of EMC



South Korea

# **QAI FACILITIES**

| British Columbia                                                                                                        | Ontario                                                                                      | Virginia                                                                                    | China                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| <b>QAI Laboratories Inc.</b><br><b>Main Laboratory/Headquarters</b><br>3980 North Fraser Way,<br>Burnaby, BC V5J Canada | <b>QAI Laboratories Inc.</b><br>25 Royal Group Crescent #3,<br>Vaughan,<br>ON L4H 1X9 Canada | <b>QAI Laboratories Ltd.</b><br>1047 Zachary Taylor Hwy,<br>Suite A Huntly,<br>VA 22640 USA | <b>QAI Laboratories Ltd</b><br>Room 408, No. 228, Jiangchang<br>3 <sup>rd</sup> Road Jing'An District,<br>Shanghai, China 200436 |
| California                                                                                                              | Oklahoma                                                                                     | Miami                                                                                       | South Korea                                                                                                                      |
| QAI Laboratories Ltd.                                                                                                   | QAI Laboratories Ltd.                                                                        | QAI Laboratories Ltd.                                                                       | QAI Laboratories Ltd                                                                                                             |
| 8385 White Oak Avenue Rancho                                                                                            | 5110 North Mingo Road                                                                        | 8148 NW 74th Ave,                                                                           | #502, 8, Sanbon-ro 324beon-gil                                                                                                   |
| Cucamonga, CA 91730 USA                                                                                                 | Tulsa, OK 74117, USA                                                                         | Medley, FL 33166 USA                                                                        | Gunpo-si, Gyeonggi-do, 15829,                                                                                                    |

# **QAI EMC ACCREDITATION**

QAI EMC is your one-stop regulatory compliance partner for electromagnetic compatibility (EMC) and electromagnetic interference (EMI). Products are tested to the latest and applicable EMC/EMI requirements for domestic and international markets. QAI EMC goes above and beyond being a testing facility—we are your regulatory compliance partner. QAI EMC has the capability to perform RF Emissions and Immunity for all types of electronics manufacturing including Industrial, Scientific, Medical, Information Technology, Telecom, Wireless, Automotive, Marine and Avionics.

| EMC Laboratory      | FCC Designation | IC Registration | A2LA        |
|---------------------|-----------------|-----------------|-------------|
| Location            | (3m SAC)        | (3m SAC)        | Certificate |
| Burnaby, BC, Canada | CA9543          | 9543A           | 3657.02     |

# EMC Facility Burnaby BC, Canada





#### TABLE OF CONTENTS

| REVISION HISTORY<br>REPORT AUTHORIZATION<br>QAI FACILITIES<br>QAI EMC ACCREDITATION      | 2<br>2<br>2<br>3<br>3                        |
|------------------------------------------------------------------------------------------|----------------------------------------------|
| 1 EXECUTIVE SUMMARY                                                                      | 8                                            |
| 1.1         Purpose           1.2         Scope           1.3         Summary of Results |                                              |
| 2 GENERAL INFORMATION                                                                    | 10                                           |
| <ul> <li>2.1 PRODUCT DESCRIPTION</li></ul>                                               | 10<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |
| 3 DATA & TEST RESULTS                                                                    | 14                                           |
| <ul> <li>3.1 RF Peak Output Power &amp; Peak to Average Ratio</li></ul>                  | 14<br>37<br>42<br>49<br>53<br>56<br>58<br>62 |
| APPENDIX A: TEST SETUP PHOTOS                                                            |                                              |
| APPENDIX B: ABBREVIATIONS                                                                |                                              |



#### LIST OF FIGURES

| Figure 2: Ant 1 Output Power, 5 MHE BW, QPSK/16QAM, Mid Channel.         19           Figure 3: Ant 1 Output Power, 5 MHE BW, QPSK/16QAM, Mid Channel.         90           Figure 5: Ant 1 Output Power, 5 MHE BW, QPSK/64QAM, Low Channel.         20           Figure 6: Ant 1 Output Power, 5 MHE BW, QPSK/64QAM, Low Channel.         21           Figure 6: Ant 1 Output Power, 5 MHE BW, QPSK/64QAM, Low Channel.         21           Figure 7: Ant 1 Output Power, 5 MHE BW, QPSK/26QAM, Low Channel.         22           Figure 9: Ant 1 Output Power, 5 MHE BW, QPSK/26QAM, Mid Channel.         22           Figure 10: Ant 1 Output Power, 10 MHE BW, QPSK/26QAM, Mid Channel.         23           Figure 12: Ant 1 Output Power, 10 MHE BW, QPSK/26QAM, Mid Channel.         24           Figure 13: Ant 1 Output Power, 10 MHE BW, QPSK/26QAM, Mid Channel.         25           Figure 14: Ant 1 Output Power, 10 MHE BW, QPSK/26QAM, Mid Channel.         25           Figure 15: Ant 1 Output Power, 10 MHE BW, QPSK/26QAM, Mid Channel.         26           Figure 13: Ant 1 Output Power, 10 MHE BW, QPSK/26QAM, Mid Channel.         26           Figure 13: Ant 1 Output Power, 10 MHE BW, QPSK/26QAM, Mid Channel.         27           Figure 22: Ant 2 Output Power, 5 MHE BW, QPSK/26QAM, Mid Channel.         27           Figure 23: Ant 2 Output Power, 5 MHE BW, QPSK/26QAM, Mid Channel.         29           Figure 24: Ant 2 Output Power, 5 MHE BW, QPSK/26QAM, Mid Channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 1: EUT                                                         | 10 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----|
| Figure 3: Am 1 Output Power, 5 MHz BW, QPSK/16QAM, High Channel         9           Figure 4: Am 1 Output Power, 5 MHz BW, QPSK/64QAM, Mich Channel         20           Figure 5: Am 1 Output Power, 5 MHz BW, QPSK/64QAM, Mich Channel         21           Figure 5: Am 1 Output Power, 5 MHz BW, QPSK/64QAM, Mich Channel         21           Figure 6: Am 1 Output Power, 5 MHz BW, QPSK/64QAM, Mich Channel         21           Figure 7: Am 1 Output Power, 5 MHz BW, QPSK/256QAM, Low Channel         22           Figure 10: Am 1 Output Power, 5 MHz BW, QPSK/256QAM, Mid Channel         22           Figure 11: Am 1 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel         23           Figure 13: Am 1 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel         24           Figure 14: Am 1 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel         25           Figure 15: Am 1 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel         25           Figure 18: Am 1 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel         26           Figure 18: Am 1 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel         26           Figure 12: Am 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel         26           Figure 12: Am 2 Output Power, 5 MHz BW, QPSK/64QAM, Mid Channel         26           Figure 12: Am 2 Output Power, 5 MHz BW, QPSK/64QAM, Mid Channel         27           Figure 12: Am 2 Output Power, 5 MHz BW, QPSK/64QAM, Mid Channel         27 <td>Figure 2: Ant 1 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel</td> <td>18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Figure 2: Ant 1 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel       | 18 |
| Figure 1: Ant 1 Output Power, 5 MHz BW, QPSK/16QAM, Migh Channel       90         Figure 5: Ant 1 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel       20         Figure 6: Ant 1 Output Power, 5 MHz BW, QPSK/64QAM, Migh Channel       21         Figure 7: Ant 1 Output Power, 5 MHz BW, QPSK/25QAM, Low Channel       21         Figure 7: Ant 1 Output Power, 5 MHz BW, QPSK/25QAM, High Channel       22         Figure 10: Ant 1 Output Power, 5 MHz BW, QPSK/25QAM, High Channel       22         Figure 12: Ant 1 Output Power, 10 MHz BW, QPSK/25QAM, High Channel       23         Figure 12: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel       24         Figure 13: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel       25         Figure 15: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel       25         Figure 16: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel       26         Figure 17: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel       26         Figure 19: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel       27         Figure 10: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel       27         Figure 12: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Migh Channel       27         Figure 12: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel       27         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Mid Channel       29         Figure 24: Ant 2 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Figure 3: Ant 1 Output Power, 5 MHz BW, QPSK/16QAM, Mid Channel       | 19 |
| Figure 5: Ant 1 Output Power, 5 MH2 BW, QPSK/64QAM, Mid Channel       20         Figure 5: Ant 1 Output Power, 5 MH2 BW, QPSK/64QAM, Mid Channel       21         Figure 7: Ant 1 Output Power, 5 MH2 BW, QPSK/256QAM, Low Channel       21         Figure 9: Ant 1 Output Power, 5 MH2 BW, QPSK/256QAM, Low Channel       22         Figure 10: Ant 1 Output Power, 5 MH2 BW, QPSK/256QAM, Mid Channel       22         Figure 11: Ant 1 Output Power, 10 MH2 BW, QPSK/16QAM, Low Channel       23         Figure 13: Ant 1 Output Power, 10 MH2 BW, QPSK/16QAM, Mid Channel       24         Figure 13: Ant 1 Output Power, 10 MH2 BW, QPSK/64QAM, Mid Channel       24         Figure 14: Ant 1 Output Power, 10 MH2 BW, QPSK/64QAM, Mid Channel       25         Figure 16: Ant 1 Output Power, 10 MH2 BW, QPSK/64QAM, Mid Channel       26         Figure 16: Ant 1 Output Power, 10 MH2 BW, QPSK/64QAM, Mid Channel       26         Figure 17: Ant 1 Output Power, 10 MH2 BW, QPSK/64QAM, Mid Channel       27         Figure 21: Ant 2 Output Power, 5 MH2 BW, QPSK/16QAM, Mid Channel       27         Figure 22: Ant 2 Output Power, 5 MH2 BW, QPSK/16QAM, Mid Channel       27         Figure 23: Ant 2 Output Power, 5 MH2 BW, QPSK/16QAM, Mid Channel       28         Figure 23: Ant 2 Output Power, 5 MH2 BW, QPSK/64QAM, Mid Channel       29         Figure 23: Ant 2 Output Power, 5 MH2 BW, QPSK/64QAM, Mid Channel       30         Figure 24: Ant 2 Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Figure 4: Ant 1 Output Power, 5 MHz BW, QPSK/16QAM, High Channel      |    |
| Figure 7: Ant J Output Power, 5 MHz BW, QPSK/54QAM, Low Channel.         21           Figure 8: Ant J Output Power, 5 MHz BW, QPSK/25QAM, Low Channel.         21           Figure 9: Ant J Output Power, 5 MHz BW, QPSK/25QAM, Low Channel.         22           Figure 10: Ant J Output Power, 10 MHz BW, QPSK/25QAM, High Channel.         23           Figure 11: Ant J Output Power, 10 MHz BW, QPSK/25QAM, High Channel.         23           Figure 12: Ant J Output Power, 10 MHz BW, QPSK/40QAM, Low Channel.         24           Figure 13: Ant J Output Power, 10 MHz BW, QPSK/40QAM, High Channel.         24           Figure 14: Ant J Output Power, 10 MHz BW, QPSK/40QAM, Low Channel.         25           Figure 15: Ant J Output Power, 10 MHz BW, QPSK/40QAM, Low Channel.         26           Figure 16: Ant J Output Power, 10 MHz BW, QPSK/40QAM, Low Channel.         26           Figure 17: Ant J Output Power, 10 MHz BW, QPSK/40QAM, Low Channel.         27           Figure 21: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, High Channel.         27           Figure 21: Ant 2 Output Power, 10 MHz BW, QPSK/26QAM, Low Channel.         27           Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/40QAM, Low Channel.         27           Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/40QAM, Low Channel.         28           Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/40QAM, Low Channel.         29           Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/40QAM, Mid Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure 5: Ant I Output Power, 5 MHz BW, QPSK/64QAM, Low Channel       | 20 |
| Figure 8: Ant I Output Power, 5 MHz BW, QPSK/25QQAM, Low Channel.       31         Figure 9: Ant I Output Power, 5 MHz BW, QPSK/25QQAM, Mid Channel.       22         Figure 10: Ant I Output Power, 10 MHz BW, QPSK/25QQAM, Mid Channel.       22         Figure 11: Ant I Output Power, 10 MHz BW, QPSK/16QAM, Low Channel.       23         Figure 12: Ant I Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel.       24         Figure 13: Ant I Output Power, 10 MHz BW, QPSK/16QAM, High Channel.       24         Figure 14: Ant I Output Power, 10 MHz BW, QPSK/16QAM, High Channel.       25         Figure 15: Ant I Output Power, 10 MHz BW, QPSK/16QAM, High Channel.       26         Figure 16: Ant I Output Power, 10 MHz BW, QPSK/16QAM, High Channel.       26         Figure 12: Ant I Output Power, 10 MHz BW, QPSK/25QAM, Low Channel.       26         Figure 12: Ant I Output Power, 5 MHz BW, QPSK/25QAM, Low Channel.       27         Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel.       27         Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, High Channel.       28         Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, High Channel.       29         Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Mid Channel.       29         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Mid Channel.       30         Figure 24: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Mid Channel.       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Figure 0: Ant 1 Output Power, 5 MHz BW, QPSK/04QAM, Mid Channel.      | 20 |
| Higure 9: Ant 1 Output Power, 5 MHz BW, QPSK/256QAM, Mid Channel.       22         Figure 10: Ant 1 Output Power, 5 MHz BW, QPSK/256QAM, High Channel.       22         Figure 11: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel.       23         Figure 12: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel.       23         Figure 12: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel.       24         Figure 13: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, High Channel.       24         Figure 15: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel.       25         Figure 16: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, High Channel.       26         Figure 10: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, High Channel.       26         Figure 10: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, High Channel.       27         Figure 21: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel.       27         Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel.       28         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Mid Channel.       29         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Mid Channel.       30         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Mid Channel.       30         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Mid Channel.       30         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Mid Channel.       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Figure 7. And 1 Output Power, 5 MHz BW, QFSK/04QAM, High Channel      |    |
| Figure 10: Ant 1 Output Power, 5 MHz BW, QPSK/256QAM, High Channel       22         Figure 11: Ant 1 Output Power, 10 MHZ BW, QPSK/16QAM, Low Channel       23         Figure 12: Ant 1 Output Power, 10 MHZ BW, QPSK/16QAM, Mid Channel       24         Figure 13: Ant 1 Output Power, 10 MHZ BW, QPSK/16QAM, High Channel       24         Figure 15: Ant 1 Output Power, 10 MHZ BW, QPSK/16QAM, High Channel       24         Figure 15: Ant 1 Output Power, 10 MHZ BW, QPSK/16QAM, High Channel       25         Figure 16: Ant 1 Output Power, 10 MHZ BW, QPSK/256QAM, Mid Channel       26         Figure 19: Ant 1 Output Power, 10 MHZ BW, QPSK/256QAM, Mid Channel       27         Figure 20: Ant 1 Output Power, 10 MHZ BW, QPSK/256QAM, Mid Channel       27         Figure 21: Ant 2 Output Power, 5 MHZ BW, QPSK/16QAM, Mid Channel       28         Figure 22: Ant 2 Output Power, 5 MHZ BW, QPSK/16QAM, Mid Channel       29         Figure 23: Ant 2 Output Power, 5 MHZ BW, QPSK/26QAM, Mid Channel       29         Figure 24: Ant 2 Output Power, 5 MHZ BW, QPSK/26QAM, Mid Channel       29         Figure 25: Ant 2 Output Power, 5 MHZ BW, QPSK/26QAM, Mid Channel       30         Figure 24: Ant 2 Output Power, 5 MHZ BW, QPSK/26QAM, Low Channel       30         Figure 25: Ant 2 Output Power, 5 MHZ BW, QPSK/25QAM, Low Channel       31         Figure 30: Ant 2 Output Power, 10 MHZ BW, QPSK/25QAM, Low Channel       31         Figure 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Figure 9: Ant 1 Output Power, 5 MHz BW, QFSK/256QAM, Edw Channel      |    |
| Figure 11: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel         23           Figure 12: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel         23           Figure 13: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, High Channel         24           Figure 15: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel         24           Figure 15: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel         25           Figure 16: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel         26           Figure 17: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel         26           Figure 18: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel         27           Figure 21: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel         27           Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel         28           Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel         29           Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel         30           Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Mid Channel         30           Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel         30           Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel         31           Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel         32           Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 10: Ant 1 Output Power, 5 MHz BW OPSK/2560AM High Channel      | 22 |
| Figure 12: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel.         23           Figure 13: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel.         24           Figure 15: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel.         25           Figure 15: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, High Channel.         25           Figure 16: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Migh Channel.         26           Figure 11: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Migh Channel.         26           Figure 12: Ant 1 Output Power, 5 MHz BW, QPSK/16QAM, Migh Channel.         27           Figure 21: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Migh Channel.         27           Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Migh Channel.         28           Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel.         29           Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel.         29           Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Migh Channel.         30           Figure 24: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Migh Channel.         30           Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Migh Channel.         30           Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Migh Channel.         30           Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Migh Channel.         32           Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure 11: Ant 1 Output Power, 10 MHz BW, OPSK/16OAM, Low Channel     |    |
| Figure 13: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 12: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel     | 23 |
| Figure 14: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 13: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, High Channel    | 24 |
| Figure 15: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, High Channel       25         Figure 18: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, Liok Channel       26         Figure 18: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, High Channel       27         Figure 20: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel       27         Figure 21: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, High Channel       28         Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Liok Channel       28         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Liok Channel       29         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Liok Channel       30         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Liok Channel       30         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, High Channel       30         Figure 24: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Liok Channel       31         Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Liok Channel       31         Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Liok Channel       32         Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Liok Channel       32         Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Liok Channel       33         Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Low Channel       33         Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel       34 <t< td=""><td>Figure 14: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel</td><td>24</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Figure 14: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel     | 24 |
| Figure 16: Ant 1 Output Power, 10 MHz BW, QPSK/26QAM, Low Channel.       26         Figure 19: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel.       26         Figure 19: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel.       26         Figure 19: Ant 1 Output Power, 5 MHz BW, QPSK/256QAM, Low Channel.       27         Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Mid Channel.       28         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, High Channel       28         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel.       29         Figure 24: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, High Channel       30         Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, High Channel       30         Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/26QAM, Low Channel       30         Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/26QAM, High Channel       31         Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/26QAM, High Channel       31         Figure 25: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, High Channel       32         Figure 31: An 2 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel       32         Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/6QAM, Low Channel       33         Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/6QAM, Low Channel       33         Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/6QAM, Low Channel       33         Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 15: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel     | 25 |
| Figure 17: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel       26         Figure 18: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel       27         Figure 20: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Mid Channel       28         Figure 21: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel       28         Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel       29         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel       29         Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel       30         Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel       30         Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel       31         Figure 29: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel       31         Figure 29: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel       32         Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel       32         Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel       33         Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, High Channel       34         Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel       34         Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel       34         Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel       34         Figure 32:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 16: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, High Channel    | 25 |
| <ul> <li>Figure 18: Ant 1 Output Power, 10 MHz BW, QPSK/250QAM, Mid Channel.</li> <li>Pigure 20: Ant 2 Output Power, 5 MHz BW, QPSK/250QAM, High Channel.</li> <li>Pigure 21: Ant 2 Output Power, 5 MHz BW, QPSK/26QAM, Mid Channel.</li> <li>Pigure 22: Ant 2 Output Power, 5 MHz BW, QPSK/26QAM, Mid Channel.</li> <li>Pigure 23: Ant 2 Output Power, 5 MHz BW, QPSK/26QAM, Mid Channel.</li> <li>Pigure 24: Ant 2 Output Power, 5 MHz BW, QPSK/26QAM, Mid Channel.</li> <li>Pigure 25: Ant 2 Output Power, 5 MHz BW, QPSK/26QAM, Mid Channel.</li> <li>Pigure 25: Ant 2 Output Power, 5 MHz BW, QPSK/26QAM, Mid Channel.</li> <li>Pigure 26: Ant 2 Output Power, 5 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 27: Ant 2 Output Power, 5 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 27: Ant 2 Output Power, 5 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 28: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 29: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 31: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 31: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 33: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 34: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 34: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 36: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 36: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 36: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 36: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 37: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 37: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 37: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 37: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>Pigure 37: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.<!--</td--><td>Figure 17: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel</td><td>26</td></li></ul> | Figure 17: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel    | 26 |
| <ul> <li>Figure 19: Ant 1 Output Power, 10 MHz BW, QPSK/250QAM, High Channel</li> <li>27</li> <li>Figure 21: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel</li> <li>28</li> <li>Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/46QAM, Mid Channel</li> <li>29</li> <li>Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/46QAM, Low Channel</li> <li>29</li> <li>Figure 24: Ant 2 Output Power, 5 MHz BW, QPSK/46QAM, Mid Channel</li> <li>29</li> <li>Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/46QAM, Mid Channel</li> <li>30</li> <li>Figure 26: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, High Channel</li> <li>30</li> <li>Figure 27: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, High Channel</li> <li>31</li> <li>Figure 28: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Mid Channel</li> <li>31</li> <li>Figure 29: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel</li> <li>32</li> <li>Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel</li> <li>33</li> <li>Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/6QAM, Mid Channel</li> <li>34</li> <li>Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/6QAM, Mid Channel</li> <li>35</li> <li>Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel</li> <li>34</li> <li>Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel</li> <li>35</li> <li>Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel</li> <li>36</li> <li>Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Kuw Channel</li> <li>35</li> <li>Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel</li> <li>36</li> <li>Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel</li> <li>36</li> <li>Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Migh Channel</li> <li>36</li> <li>Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Migh Channel</li> <li>37</li> <li>Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Migh Channel</li> <li>36</li> <li>Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/26QAM, Low Channel</li> <li>37</li> <li>Figure 34: Ant 2 Outpu</li></ul>                                                                                                | Figure 18: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel    | 26 |
| <ul> <li>Figure 20: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel.</li> <li>Pigure 21: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, High Channel.</li> <li>28</li> <li>Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, High Channel.</li> <li>29</li> <li>Figure 24: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Mid Channel.</li> <li>29</li> <li>Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Mid Channel.</li> <li>30</li> <li>Figure 24: Ant 2 Output Power, 5 MHz BW, QPSK/25QAM, Low Channel.</li> <li>30</li> <li>Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/25QAM, Low Channel.</li> <li>30</li> <li>Figure 26: Ant 2 Output Power, 5 MHz BW, QPSK/25QAM, Low Channel.</li> <li>31</li> <li>Figure 28: Ant 2 Output Power, 5 MHz BW, QPSK/25QAM, Low Channel.</li> <li>31</li> <li>Figure 29: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Low Channel.</li> <li>32</li> <li>Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>33</li> <li>Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/6QAM, Mid Channel.</li> <li>34</li> <li>Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/6QAM, Mid Channel.</li> <li>35</li> <li>Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, High Channel.</li> <li>34</li> <li>Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Low Channel.</li> <li>35</li> <li>Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Low Channel.</li> <li>36</li> <li>Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Low Channel.</li> <li>37</li> <li>Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>38</li> <li>Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>39</li> <li>Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>36</li> <li>Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>37</li> <li>Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>38</li> <li>Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel.</li> <li>39</li> <li>Figure 34: Dow Bandvidth, QPSK/16</li></ul>                                                                                                | Figure 19: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, High Channel   | 27 |
| Figure 21: Ant 2 Output Power, 5 MHz BW, OPSK/16QAM, High Channel       28         Figure 23: Ant 2 Output Power, 5 MHz BW, OPSK/6QAM, Low Channel       29         Figure 24: Ant 2 Output Power, 5 MHz BW, OPSK/64QAM, Low Channel       29         Figure 25: Ant 2 Output Power, 5 MHz BW, OPSK/64QAM, High Channel       30         Figure 25: Ant 2 Output Power, 5 MHz BW, OPSK/256QAM, High Channel       30         Figure 25: Ant 2 Output Power, 5 MHz BW, OPSK/256QAM, Mid Channel       31         Figure 29: Ant 2 Output Power, 10 MHz BW, OPSK/26QAM, High Channel       31         Figure 29: Ant 2 Output Power, 10 MHz BW, OPSK/16QAM, Mid Channel       32         Figure 31: Ant 2 Output Power, 10 MHz BW, OPSK/16QAM, High Channel       32         Figure 32: Ant 2 Output Power, 10 MHz BW, OPSK/16QAM, High Channel       33         Figure 31: Ant 2 Output Power, 10 MHz BW, OPSK/26QAM, High Channel       34         Figure 32: Ant 2 Output Power, 10 MHz BW, OPSK/26QAM, Mid Channel       34         Figure 33: Ant 2 Output Power, 10 MHz BW, OPSK/26QAM, Mid Channel       35         Figure 35: Ant 2 Output Power, 10 MHz BW, OPSK/26QAM, Mid Channel       35         Figure 36: Ant 2 Output Power, 10 MHz BW, OPSK/26QAM, Mid Channel       35         Figure 37: Ant 2 Output Power, 10 MHz BW, OPSK/26QAM, Mid Channel       35         Figure 36: Ant 2 Output Power, 10 MHz BW, OPSK/26QAM, Mid Channel       35         Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 20: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel      |    |
| Pigure 22: Ant 2 Output Power, 5 MHz BW, OPSK/16QAM, High Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 21: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Mid Channel      |    |
| Pigure 23: Am 2 Output Power, 5 MHz BW, OPSK/64QAM, High Channel       .29         Figure 24: Ant 2 Output Power, 5 MHz BW, OPSK/64QAM, High Channel       .30         Figure 25: Ant 2 Output Power, 5 MHz BW, OPSK/25QAM, Low Channel       .30         Figure 27: Ant 2 Output Power, 5 MHz BW, OPSK/25QAM, Low Channel       .30         Figure 27: Ant 2 Output Power, 5 MHz BW, OPSK/25QAM, High Channel       .31         Figure 28: Ant 2 Output Power, 5 MHz BW, OPSK/25QAM, Mid Channel       .31         Figure 30: Ant 2 Output Power, 10 MHz BW, OPSK/16QAM, Mid Channel       .32         Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel       .33         Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel       .33         Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel       .34         Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel       .35         Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel       .35         Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel       .35         Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel       .35         Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/25QAM, Mid Channel       .35         Figure 37: Shight Bandwidth, QPSK/16QAM, 5 MHz BW       .39         Figure 37: Shight Bandwidth, QPSK/16QAM, 5 MHz BW       .39         Figure 41: 99% Bandwidth, QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, High Channel     |    |
| Pigure 24: Anit 2 Output Power, 5 MHz BW, QPSK/64QAM, Hing Channel20Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Low Channel30Figure 26: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Low Channel31Figure 28: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, High Channel31Figure 29: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel32Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel32Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, High Channel33Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, High Channel33Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel34Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, High Channel34Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel34Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel35Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel36Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel36Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 41: 99% Bandwidth, QPSK/26QAM, 5 MHz BW39Figure 41: 99% Bandwidth, QPSK/26QAM, 5 MHz BW40Figure 41: 99% Bandwidth, QPSK/26QAM, 10 MHz BW41Figure 42: 99% Bandwidth, QPSK/26QAM, 5 MHz BW41Figure 43: High Band Edge, 5 MHz BW, QPSK/6QAM44Figure 44: Low Band Edge, 5 MHz BW, QPSK/6QAM44Figure 45: High Band Edge, 5 MHz BW, QPSK/26QAM44Figure 41: High Band Edge, 5 MHz BW, QPSK/6QAM45Figure 51: High Band Ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel      |    |
| Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Low Channel30Figure 27: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Low Channel31Figure 28: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Kigh Channel31Figure 29: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel32Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel32Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel33Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel33Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel34Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel35Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel35Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel35Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel36Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel36Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel36Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel36Figure 40: 99% Bandwidth, QPSK/6QAM, 5 MHz BW40Figure 41: Pows Bandwidth, QPSK/6QAM, 5 MHz BW40Figure 42: 99% Bandwidth, QPSK/256QAM, 10 MHz BW40Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM44Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 46: Low Band Edge, 5 MHz BW, QPSK/256QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/26QAM44Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 24: All 2 Output Power, 5 MHz BW, QFSK/04QAM, Mid Channel      |    |
| Figure 27: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Mid Channel31Figure 28: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel31Figure 29: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel32Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel32Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel33Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel33Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel34Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel34Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel35Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel35Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel36Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 40: 99% Bandwidth, QPSK/16QAM, 5 MHz BW40Figure 41: 99% Bandwidth, QPSK/256QAM, 10 MHz BW40Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM43Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 46: Low Band Edge, 5 MHz BW, QPSK/16QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 46: Low Band Edge, 5 MHz BW, QPSK/16QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/256QAM45Figure 51: High Band Edge, 10 MHz BW, QPSK/256QAM45Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Figure 26: Ant 2 Output Power 5 MHz BW, QI SK/04QAM, High Channel     |    |
| Figure 28: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, High Channel31Figure 29: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel32Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel32Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, High Channel33Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/46QAM, Low Channel33Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel34Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel34Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel35Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel35Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel36Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 39: 99% Bandwidth, QPSK/16QAM, 10 MHz BW39Figure 41: 99% Bandwidth, QPSK/64QAM, 10 MHz BW40Figure 42: 99% Bandwidth, QPSK/64QAM, 10 MHz BW40Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM41Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM43Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/256QAM45Figure 51: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 51: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM45Figure 52: Low Band Edge, 10 MHz BW, QPSK/256QAM45Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM45Figure 54: Low Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Figure 20: Ant 2 Output Power, 5 MHz BW, QI SK 250QAM, Low Channel    |    |
| Figure 29: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel32Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel33Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, High Channel33Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel33Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel34Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, High Channel34Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/56QAM, Low Channel35Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel35Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel36Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 40: 99% Bandwidth, QPSK/16QAM, 10 MHz BW39Figure 41: 99% Bandwidth, QPSK/256QAM, 10 MHz BW40Figure 42: 99% Bandwidth, QPSK/256QAM, 10 MHz BW40Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM41Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM43Figure 46: Low Band Edge, 5 MHz BW, QPSK/16QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/256QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 48: Low Band Edge, 5 MHz BW, QPSK/16QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 51: High Band Edge, 10 MHz BW, QPSK/256QAM45Figure 50: Low Band Edge, 10 MHz BW, QPSK/256QAM45Figure 51: High Band Edge, 10 MHz BW, QPSK/256QAM46Figure 52: Low Band Edge, 10 MHz B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Figure 28: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, High Channel    |    |
| Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel.32Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, High Channel33Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel33Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel34Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel34Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/56QAM, Low Channel35Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/56QAM, High Channel35Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel35Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel36Figure 38: 99% Bandwidth, QPSK/16QAM, 10 MHz BW39Figure 39% Bandwidth, QPSK/16QAM, 10 MHz BW39Figure 41: 99% Bandwidth, QPSK/256QAM, 5 MHz BW40Figure 42: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM43Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 46: Low Band Edge, 5 MHz BW, QPSK/16QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 48: Low Band Edge, 5 MHz BW, QPSK/16QAM44Figure 49: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM45Figure 52: Low Band Edge, 10 MHz BW, QPSK/256QAM45Figure 54: Low Band Edge, 10 MHz BW, QPSK/16QAM46Figure 55: High Band Edge, 10 MHz BW, Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Figure 29: Ant 2 Output Power, 10 MHz BW, OPSK/16OAM, Low Channel     |    |
| Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, High Channel33Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel33Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel34Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, High Channel34Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel35Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel35Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel36Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 39: 99% Bandwidth, QPSK/64QAM, 10 MHz BW39Figure 41: 99% Bandwidth, QPSK/26QAM, 5 MHz BW40Figure 42: 99% Bandwidth, QPSK/26QAM, 10 MHz BW40Figure 43: 99% Bandwidth, QPSK/26QAM, 5 MHz BW40Figure 41: 99% Bandwidth, QPSK/26QAM, 10 MHz BW40Figure 42: 99% Bandwidth, QPSK/26QAM, 10 MHz BW41Figure 43: 99% Bandwidth, QPSK/26QAM, 10 MHz BW41Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM43Figure 47: High Band Edge, 5 MHz BW, QPSK/26QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/26QAM44Figure 50: Low Band Edge, 5 MHz BW, QPSK/26QAM45Figure 51: High Band Edge, 10 MHz BW, QPSK/26QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/26QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/26QAM47Figure 55: High Band Edge, 10 MHz BW, QPSK/26QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/26QAM47Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM46 <t< td=""><td>Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel     |    |
| Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel33Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, High Channel34Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, High Channel34Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel35Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel35Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel36Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 39: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 40: 99% Bandwidth, QPSK/64QAM, 10 MHz BW40Figure 41: 99% Bandwidth, QPSK/256QAM, 5 MHz BW40Figure 42: 99% Bandwidth, QPSK/25QAM, 5 MHz BW40Figure 43: 99% Bandwidth, QPSK/25QAM, 5 MHz BW41Figure 43: 99% Bandwidth, QPSK/25QAM, 5 MHz BW41Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM43Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM43Figure 47: High Band Edge, 5 MHz BW, QPSK/256QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/26QAM44Figure 50: Low Band Edge, 5 MHz BW, QPSK/16QAM44Figure 51: High Band Edge, 5 MHz BW, QPSK/16QAM45Figure 51: Low Band Edge, 10 MHz BW, QPSK/256QAM45Figure 51: High Band Edge, 10 MHz BW, QPSK/256QAM45Figure 52: Low Band Edge, 10 MHz BW, QPSK/256QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/256QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM47Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM47Figure 54: Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, High Channel    | 33 |
| Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel.34Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, High Channel.34Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel.35Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel.35Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel.36Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 39: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 41: 99% Bandwidth, QPSK/64QAM, 5 MHz BW40Figure 42: 99% Bandwidth, QPSK/256QAM, 10 MHz BW40Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM43Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/256QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/256QAM45Figure 50: Low Band Edge, 5 MHz BW, QPSK/256QAM45Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/26QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/26QAM47Figure 55: High Band Edge, 10 MHz BW, QPSK/26QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/26QAM47Figure 55: High Band Edge, 10 MHz BW, QPSK/26QAM48Figure 55: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel     | 33 |
| Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, High Channel34Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel35Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel36Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel36Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 39: 99% Bandwidth, QPSK/16QAM, 10 MHz BW39Figure 40: 99% Bandwidth, QPSK/64QAM, 5 MHz BW40Figure 41: 99% Bandwidth, QPSK/256QAM, 10 MHz BW40Figure 42: 99% Bandwidth, QPSK/256QAM, 10 MHz BW40Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM41Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM43Figure 47: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/256QAM44Figure 48: Low Band Edge, 5 MHz BW, QPSK/26QAM44Figure 49: High Band Edge, 5 MHz BW, QPSK/26QAM44Figure 49: High Band Edge, 5 MHz BW, QPSK/26QAM44Figure 49: Low Band Edge, 10 MHz BW, QPSK/26QAM46Figure 50: Low Band Edge, 10 MHz BW, QPSK/26QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/26QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/26QAM47Figure 55: Low Band Edge, 10 MHz BW, QPSK/26QAM48Figure 54: Low Band Edge, 10 MHz BW, QPSK/26QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/26QAM48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 57: RF Conducted Out of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel     | 34 |
| Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel35Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel36Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel36Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 39: 99% Bandwidth, QPSK/16QAM, 10 MHz BW39Figure 40: 99% Bandwidth, QPSK/64QAM, 5 MHz BW40Figure 41: 99% Bandwidth, QPSK/256QAM, 5 MHz BW40Figure 42: 99% Bandwidth, QPSK/256QAM, 5 MHz BW40Figure 42: 99% Bandwidth, QPSK/256QAM, 5 MHz BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM43Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM44Figure 46: Low Band Edge, 5 MHz BW, QPSK/64QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/256QAM44Figure 48: Low Band Edge, 5 MHz BW, QPSK/26QAM44Figure 49: High Band Edge, 5 MHz BW, QPSK/26QAM45Figure 50: Low Band Edge, 5 MHz BW, QPSK/26QAM45Figure 51: High Band Edge, 10 MHz BW, QPSK/26QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/26QAM46Figure 53: High Band Edge, 10 MHz BW, QPSK/26QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/26QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/26QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/26QAM48Figure 55: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 55: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/26QAM50Figure 57: RF Conducted Out of B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, High Channel    | 34 |
| Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/250QAM, Mid Channel35Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/250QAM, High Channel36Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHz BW39Figure 39: 99% Bandwidth, QPSK/64QAM, 10 MHz BW39Figure 40: 99% Bandwidth, QPSK/64QAM, 5 MHz BW40Figure 41: 99% Bandwidth, QPSK/64QAM, 5 MHz BW40Figure 42: 99% Bandwidth, QPSK/250QAM, 5 MHz BW40Figure 42: 99% Bandwidth, QPSK/250QAM, 5 MHz BW40Figure 42: 99% Bandwidth, QPSK/250QAM, 10 MHz BW41Figure 43: 99% Bandwidth, QPSK/250QAM, 10 MHz BW41Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM43Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM43Figure 46: Low Band Edge, 5 MHz BW, QPSK/250QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/250QAM44Figure 49: High Band Edge, 5 MHz BW, QPSK/250QAM45Figure 50: Low Band Edge, 10 MHz BW, QPSK/260QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/64QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/260QAM46Figure 53: High Band Edge, 10 MHz BW, QPSK/260QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/260QAM47Figure 55: High Band Edge, 10 MHz BW, QPSK/260QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/250QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/250QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/250QAM48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel    | 35 |
| Figure 3/: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel    |    |
| Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHZ BW39Figure 39: 99% Bandwidth, QPSK/16QAM, 10 MHz BW39Figure 40: 99% Bandwidth, QPSK/64QAM, 5 MHZ BW40Figure 41: 99% Bandwidth, QPSK/256QAM, 5 MHZ BW40Figure 42: 99% Bandwidth, QPSK/256QAM, 5 MHZ BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 5 MHZ BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 44: Low Band Edge, 5 MHZ BW, QPSK/16QAM43Figure 45: High Band Edge, 5 MHZ BW, QPSK/16QAM43Figure 46: Low Band Edge, 5 MHZ BW, QPSK/64QAM44Figure 47: High Band Edge, 5 MHZ BW, QPSK/256QAM44Figure 48: Low Band Edge, 5 MHZ BW, QPSK/256QAM44Figure 50: Low Band Edge, 10 MHZ BW, QPSK/16QAM45Figure 51: High Band Edge, 10 MHZ BW, QPSK/16QAM46Figure 51: High Band Edge, 10 MHZ BW, QPSK/16QAM47Figure 52: Low Band Edge, 10 MHZ BW, QPSK/64QAM47Figure 53: High Band Edge, 10 MHZ BW, QPSK/64QAM47Figure 54: Low Band Edge, 10 MHZ BW, QPSK/256QAM47Figure 55: High Band Edge, 10 MHZ BW, QPSK/26QAM47Figure 54: Low Band Edge, 10 MHZ BW, QPSK/26QAM47Figure 55: High Band Edge, 10 MHZ BW, QPSK/26QAM48Figure 55: High Band Edge, 10 MHZ BW, QPSK/26QAM48Figure 55: High Band Edge, 10 MHZ BW, QPSK/26QAM48Figure 55: RF Conducted Out of Band Emissions, 5 MHZ BW, QPSK/16QAM50Figure 57: RF Conducted Out of Band Emissions, 5 MHZ BW, QPSK/16QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHZ BW, QPSK/16QAM50<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel   |    |
| Figure 39: 99% Baldwidu, QPSK/16QAM, 10 MHZ BW59Figure 41: 99% Bandwidth, QPSK/64QAM, 5 MHz BW40Figure 41: 99% Bandwidth, QPSK/64QAM, 10 MHz BW40Figure 42: 99% Bandwidth, QPSK/256QAM, 5 MHz BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 42: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 42: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 42: 100 Band Edge, 5 MHz BW, QPSK/16QAM43Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM43Figure 46: Low Band Edge, 5 MHz BW, QPSK/64QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/26QAM44Figure 48: Low Band Edge, 5 MHz BW, QPSK/26QAM45Figure 49: High Band Edge, 5 MHz BW, QPSK/26QAM45Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/256QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/256QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM47Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 59: RF Conduct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 38: 99% Bandwidth, QPSK/16QAM, 5 MHZ BW                        |    |
| Ingure 40. 97% Bandwidth, QFSK/04QAM, 10 MHz BW40Figure 41: 99% Bandwidth, QPSK/64QAM, 10 MHz BW40Figure 42: 99% Bandwidth, QPSK/256QAM, 5 MHz BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM43Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM43Figure 46: Low Band Edge, 5 MHz BW, QPSK/64QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/256QAM44Figure 48: Low Band Edge, 5 MHz BW, QPSK/256QAM45Figure 49: High Band Edge, 5 MHz BW, QPSK/26QAM45Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/256QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/26QAM47Figure 52: Low Band Edge, 10 MHz BW, QPSK/26QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/26QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 59: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/16QAM51Figure 59: RF Conducted Out of Band E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 39: 99% Dandwidth OPSK/10QAM, 10 MHz DW                        |    |
| Figure 41: 99% Bandwidti, QPSK/256QAM, 10 MHz BW41Figure 42: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 43: Low Band Edge, 5 MHz BW, QPSK/16QAM43Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM43Figure 46: Low Band Edge, 5 MHz BW, QPSK/64QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/64QAM44Figure 48: Low Band Edge, 5 MHz BW, QPSK/256QAM45Figure 49: High Band Edge, 5 MHz BW, QPSK/256QAM45Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/256QAM47Figure 52: Low Band Edge, 10 MHz BW, QPSK/256QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/256QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM47Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/26QAM51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/26QAM51Figure 59: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/16QAM51Figure 59: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/16QAM51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Figure 40. 99% Bandwidth OPSK/64OAM 10 MHz BW                         | 40 |
| Figure 42: 99% Bandwidth, QPSK/256QAM, 10 MHz BW41Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW43Figure 44: Low Band Edge, 5 MHz BW, QPSK/16QAM43Figure 45: High Band Edge, 5 MHz BW, QPSK/64QAM44Figure 46: Low Band Edge, 5 MHz BW, QPSK/64QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/256QAM44Figure 48: Low Band Edge, 5 MHz BW, QPSK/256QAM45Figure 49: High Band Edge, 5 MHz BW, QPSK/256QAM45Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/256QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/256QAM47Figure 52: Low Band Edge, 10 MHz BW, QPSK/256QAM47Figure 52: Low Band Edge, 10 MHz BW, QPSK/256QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/16QAM51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Figure 42: 99% Bandwidth OPSK/2560AM 5 MHz BW                         |    |
| Figure 14: Low Band Edge, 5 MHz BW, QPSK/16QAM.43Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM.43Figure 46: Low Band Edge, 5 MHz BW, QPSK/64QAM.44Figure 47: High Band Edge, 5 MHz BW, QPSK/64QAM.44Figure 48: Low Band Edge, 5 MHz BW, QPSK/256QAM.45Figure 49: High Band Edge, 5 MHz BW, QPSK/256QAM.45Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM.46Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM.46Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM.47Figure 53: High Band Edge, 10 MHz BW, QPSK/256QAM.47Figure 54: Low Band Edge, 10 MHz BW, QPSK/26QAM.48Figure 55: High Band Edge, 10 MHz BW, QPSK/26QAM.48Figure 55: High Band Edge, 10 MHz BW, QPSK/26QAM.48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM.50Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/26QAM.50Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM.50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM.50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM.50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM.50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM.50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM.50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM.51Manufacturer:Star Solutions International Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Figure 43: 99% Bandwidth, OPSK/2560AM, 10 MHz BW                      |    |
| Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM43Figure 46: Low Band Edge, 5 MHz BW, QPSK/64QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/64QAM44Figure 48: Low Band Edge, 5 MHz BW, QPSK/256QAM45Figure 49: High Band Edge, 5 MHz BW, QPSK/256QAM45Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/64QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/16QAM51Manufacturer:Star Solutions International Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 44: Low Band Edge, 5 MHz BW, OPSK/16OAM                        |    |
| Figure 46: Low Band Edge, 5 MHz BW, QPSK/64QAM44Figure 47: High Band Edge, 5 MHz BW, QPSK/64QAM44Figure 48: Low Band Edge, 5 MHz BW, QPSK/256QAM45Figure 49: High Band Edge, 5 MHz BW, QPSK/256QAM45Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/64QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM51ManufacturerStar Solutions International Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM                       |    |
| Figure 47: High Band Edge, 5 MHz BW, QPSK/64QAM44Figure 48: Low Band Edge, 5 MHz BW, QPSK/256QAM45Figure 49: High Band Edge, 5 MHz BW, QPSK/256QAM45Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/64QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/16QAM51Manufacturer:Star Solutions International Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 46: Low Band Edge, 5 MHz BW, QPSK/64QAM                        | 44 |
| Figure 48: Low Band Edge, 5 MHz BW, QPSK/256QAM.45Figure 49: High Band Edge, 5 MHz BW, QPSK/256QAM.45Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM.46Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM.46Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM.47Figure 53: High Band Edge, 10 MHz BW, QPSK/64QAM.47Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM.47Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM.48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM.50Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM.50Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM.51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM.51Manufacturer:Star Solutions International Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Figure 47: High Band Edge, 5 MHz BW, QPSK/64QAM                       | 44 |
| Figure 49: High Band Edge, 5 MHz BW, QPSK/256QAM45Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/64QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM50Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Manufacturer:Star Solutions International Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure 48: Low Band Edge, 5 MHz BW, QPSK/256QAM                       | 45 |
| Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM46Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM46Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM47Figure 53: High Band Edge, 10 MHz BW, QPSK/64QAM47Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM48Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM48Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM50Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/64QAM50Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM51Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM51Manufacturer:Star Solutions International Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Figure 49: High Band Edge, 5 MHz BW, QPSK/256QAM                      | 45 |
| Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM       46         Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM       47         Figure 53: High Band Edge, 10 MHz BW, QPSK/64QAM       47         Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM       48         Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM       48         Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM       50         Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/64QAM       50         Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM       51         Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM       51         Figure 59: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM       51         Manufacturer:       Star Solutions International Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Figure 50: Low Band Edge, 10 MHz BW, QPSK/16QAM                       | 46 |
| Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM       47         Figure 53: High Band Edge, 10 MHz BW, QPSK/64QAM       47         Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM       48         Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM       48         Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM       50         Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/64QAM       50         Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM       51         Figure 59: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/16QAM       51         Manufacturer:       Star Solutions International Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM                      | 46 |
| Figure 53: High Band Edge, 10 MHz BW, QPSK/64QAM       47         Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM       48         Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM       48         Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM       50         Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/64QAM       50         Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM       51         Figure 59: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/16QAM       51         Manufacturer:       Star Solutions International Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 52: Low Band Edge, 10 MHz BW, QPSK/64QAM                       | 47 |
| Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Figure 53: High Band Edge, 10 MHz BW, QPSK/64QAM                      |    |
| Figure 55: Fign Band Edge, 10 MHz BW, QPSK/250QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 54: Low Band Edge, 10 MHz BW, QPSK/256QAM                      |    |
| Figure 50: KF Conducted Out of Band Emissions, 5 MHZ BW, QPSK/16QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Figure 55: High Band Edge, 10 MHZ BW, QPSK/250QAM                     |    |
| Figure 57: KF Conducted Out of Band Emissions, 5 MHz BW, QPSK/04QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Figure 50: KF Conducted Out of Band Emissions, 5 MHz BW, QPSK/10QAM   |    |
| Figure 59: RF Conducted Out of Band Emissions, 51 WHZ BW, QFSK/250QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Figure 57. KF Conducted Out of Band Emissions, 5 INHZ BW, QF5K/04QAIM |    |
| Manufacturer: Star Solutions International Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Figure 59: RF Conducted Out of Band Emissions, 5 WHZ DW, QFSK/250QAW  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manufacturer: Star Solutions International Inc                        | 1  |



| Figure 60: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/64QAM  | 52 |
|-----------------------------------------------------------------------|----|
| Figure 61: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/256QAM | 52 |
| Figure 62: AC Conducted Emissions, Line 1                             | 55 |
| Figure 63: AC Conducted Emissions, Line 2                             | 55 |
| Figure 64: Conducted Emissions: Telecom                               | 57 |
| Figure 65: Radiated Emissions: 30 MHz - 1 GHz                         | 60 |
| Figure 66: Radiated Emissions: 1 GHz – 6 GHz                          | 61 |
| Figure 67: Radiated Emissions: 6 GHz – 18 GHz                         | 61 |
| Figure 68: Output Frequency: -30 °C                                   | 64 |
| Figure 69: Output Frequency: -20 °C                                   | 64 |
| Figure 70: Output Frequency: -10 °C                                   | 65 |
| Figure 71: Output Frequency: 0 °C                                     | 65 |
| Figure 72: Output Frequency: 10 °C                                    | 66 |
| Figure 73: Output Frequency: 20 °C                                    | 66 |
| Figure 74: Output Frequency: 30 °C                                    | 67 |
| Figure 75: Output Frequency: 40 °C                                    | 67 |
| Figure 76: Output Frequency: 50 °C                                    | 68 |
| Figure 77: Output Frequency: 102V                                     | 68 |
| Figure 78: Output Frequency: 120V                                     | 69 |
| Figure 79: Output Frequency: 138V                                     | 69 |
| Figure 80: RF Conducted Measurement Setup                             | 70 |
| Figure 80: Conducted Emissions: AC Power Line Measurement Setup       | 70 |
| Figure 80: Conducted Emissions: Telecom Measurement Setup             | 71 |
| Figure 80: Radiated Emissions: 30 MHz – 1 GHz Measurement Setup       | 71 |
| Figure 80: Radiated Emissions: 1 GHz – 18 GHz Measurement Setup.      | 72 |

#### LIST OF TABLES

| Table 1: Applicable test standards and descriptions              | 9  |
|------------------------------------------------------------------|----|
| Table 2: Sample Quasi-Peak Correction Data – Radiated            | 12 |
| Table 3: Sample Quasi-Peak Correction Data - Conducted Emissions | 13 |
| Table 4: Sample Average Correction Data- Conducted Emissions     | 13 |
| Table 5: Ant 1 RF Output Power:5 MHz BW, QPSK/16-QAM             | 16 |
| Table 6: Ant 1 RF Output Power:5 MHz BW, QPSK/64-QAM             | 16 |
| Table 7: Ant 1 RF Output Power:5 MHz BW, QPSK/256-QAM            | 16 |
| Table 8: Ant 1 RF Output Power:10 MHz BW, QPSK/16-QAM            | 16 |
| Table 9: Ant 1 RF Output Power:10 MHz BW, QPSK/64-QAM            | 17 |
| Table 10: Ant 1 RF Output Power:10 MHz BW, QPSK/256-QAM          | 17 |
| Table 11: Ant 2 RF Output Power:5 MHz BW, QPSK/16-QAM            | 17 |
| Table 12: Ant 2 RF Output Power:5 MHz BW, QPSK/64-QAM            | 17 |
| Table 13: Ant 2 RF Output Power:5 MHz BW, QPSK/256-QAM           | 17 |
| Table 14: Ant 2 RF Output Power:10 MHz BW, QPSK/16-QAM           | 18 |
| Table 15: Ant 2 RF Output Power:10 MHz BW, QPSK/64-QAM           | 18 |
| Table 16: Ant 2 RF Output Power:10 MHz BW, QPSK/256-QAM          | 18 |
| Table 17: 99% Bandwidth                                          |    |
| Table 18: Band Edge, 5 MHz BW                                    | 42 |
| Table 19: Band Edge, 10 MHz BW                                   | 43 |
| Table 20: RF Conducted Out of Band Emissions                     | 49 |
| Table 21: AC Conducted Emissions, Line 1                         | 54 |
| Table 22: AC Conducted Emissions, Line 2                         | 54 |
| Table 23: Conducted Emissions: Telecom                           | 57 |
| Table 24: Unintentional Radiated Emissions: 30 MHz - 1 GHz       | 60 |
| Table 25: Unintentional Radiated Emissions: 1 GHz - 18 GHz       | 60 |
| Table 26: Frequency Stability with Temperature Change            | 63 |
| Table 27: Frequency Stability with Voltage Change                | 63 |



# **1 EXECUTIVE SUMMARY**

# 1.1 Purpose

The purpose of this report is to demonstrate and document the compliance of Star Solutions COMPAC-N LTE BC12 as per Sections 1.2 and 1.3.

### 1.2 Scope

The information documented in this report is based on the test methods and levels as per Quote 23RH05175R2:

CFR Title 47 FCC Part 15 - Radio Frequency Devices, Subpart B - Unintentional Radiators

CFR Title 47 FCC Part 27 – Miscellaneous Wireless Communications Services

RSS-Gen Issue 5 – General Requirements for Compliance of Radio Apparatus

**RSS-130 Issue 2** – Equipment Operating in the Frequency Bands 617-652 MHz, 663-698 MHz, 698-756 MHz and 777-787 MHz

SRSP-518 Issue 2 – Technical Requirements in the Bands 617-652 MHz, 663-698 MHz, 698-756 MHz and 777-787 MHz



# 1.3 Summary of Results

The following testing was performed pursuant to FCC Title 47 Part 15 and Industry Canada ICES-003 to demonstrate the testimony to "FCC, IC, & CE" mark Electromagnetic Compatibility testing for the product.

| No. | Test                   | Applicable Standard | Test Method       | Result   |  |
|-----|------------------------|---------------------|-------------------|----------|--|
| 1   | Peak Power and Peak to | RSS-130, 4.6        | ANSI C63.26:2015  | Complias |  |
| 1   | Average Ratio          | FCC 27.50 (c)(9)    | KDB 971168 D01    | Compiles |  |
| 2   | 00% Bandwidth          | RSS-Gen, 6.7        | ANSI C63 26:2015  | Complies |  |
| 2   | 9970 Danawidun         | FCC 27.54 (c)(3)    | ANSI C03.20.2015  | complies |  |
| 3   | Band Edge              | RSS-130, 4.7.1      | ANSI C63 26:2015  | Complies |  |
| 5   | Dana Euge              | FCC 27.53 (g)       | ANSI C05.20.2015  | complies |  |
| 1   | RF Conducted Out of    | RSS-130, 4.7.1      | ANSI C63 26:2015  | Complies |  |
| 4   | Band Emissions         | FCC 27.53 (g)       | ANSI C03.20.2015  | compiles |  |
| 5   | Conducted Emissions:   | ICES-003            | ANSI C63 4:2014   | Complies |  |
| 5   | AC Power Line          | FCC 15.107          | ANSI C05.4.2014   |          |  |
| 6   | Conducted Emissions:   | Client Request      | CISPR 32          | Complies |  |
| 0   | Telecom                | Cheft Request       | CI51 K 52         | compiles |  |
| 7   | Unintentional Radiated | RSS-Gen             | ANSI C63 4·2014   | Complies |  |
|     | Emissions              | FCC 15.109          | 711051 005.4.2014 | compiles |  |
|     |                        | RSS-Gen, 6.11       |                   |          |  |
| 8   |                        | RSS-130, 4.5        |                   | Complies |  |
|     | Frequency Stability    | FCC 27.54           | ANSI C63.4:2014   | Complies |  |
|     |                        | FCC 2.1055 (d)      |                   |          |  |
|     |                        | FCC 2.1055 (a)(1)   |                   |          |  |

Table 1: Applicable test standards and descriptions

Note: The gain of the antenna(s) is provided by the client to measure or calculate test results and is not independently measured by QAI.



# 2 GENERAL INFORMATION

# 2.1 Product Description

The information provided in this section is for the Equipment Under Test (EUT) and the corresponding Auxiliary Equipment needed to perform the tests as a complete system.



Figure 1: EUT

#### **Equipment Under Test (EUT)**

| Equipment                                    | iCell COMPAC-N LTE BC12          |
|----------------------------------------------|----------------------------------|
| Description                                  | LTE Base Station: Band Class 12  |
| Manufacturer                                 | Star Solutions International Inc |
| Model No.                                    | NL-1211/NL-1210                  |
| Serial No.                                   | 1217R23032300001 A0              |
| Clock frequencies tuned upon within the EUT: | 19.2 MHz, 25 MHz, 38.4 MHz       |
| Highest frequency generated within the EUT:  | 746 MHz                          |

Notes: Model number NL-1211 was the model tested; model number NL-1210 is equivalent model



**Equipment Under Test (EUT) – RF Information** 

| RF device type            | LTE Base Station                  |
|---------------------------|-----------------------------------|
| Model No                  | NL-1210                           |
| Model No.                 | NL-1211                           |
| Operating frequency       | 729 – 746 MHz                     |
| Channel bandwidth         | 5 MHz, 10 MHz                     |
| Output Power/Transmitter  | 2x20 W (43 dBm)                   |
|                           | QPSK                              |
| Modulation type           | 16-QAM                            |
| Modulation type           | 64-QAM                            |
|                           | 256-QAM                           |
| Test Channels (I. M. H)   | 10 MHz BW: 734, 737.5, 741 MHz    |
| Test Chamleis (L, Wi, II) | 5 MHz BW: 731.5, 737.5, 743.5 MHz |
| Adaptive                  | No                                |
| Geo-location-capable      | Yes                               |
| Number of antenna ports   | 2                                 |

Notes: Model number NL-1211 was the model tested; model number NL-1210 is equivalent model

#### **Equipment Under Test (EUT) – General Information**

| Tested as                             | Tabletop                            |
|---------------------------------------|-------------------------------------|
| Dimensions                            | 47 x 33 x 18.5 cm                   |
| Declared operating temperature range: | -40 °C to +55 °C                    |
| Input power                           | 250 Watts (max) 215 Watts (average) |
| Grounded                              | Yes                                 |
| Device use                            | Fixed location                      |

Notes: None.

#### **Test Modes**

| Mode | Transmitter State                                       | Power                 |
|------|---------------------------------------------------------|-----------------------|
| 1    | On – No data connection (QPSK/16QAM)                    | 48 VDC, 5A, 250W peak |
| 2    | On – Phone connected, no data transmission (QPSK/64QAM) | 48 VDC, 5A, 250W peak |
| 3    | On – Phone connected, transmitting data (QPSK/256QAM)   | 48 VDC, 5A, 250W peak |
| 4    | Off – Receive Only                                      | 48 VDC, 5A, 250W peak |

#### **Auxiliary Manufacturer Supplied Equipment**

| Equipment | Manufacturer | Product Description | Model No.  |
|-----------|--------------|---------------------|------------|
| Aux 1     | Dell         | Laptop              | D630 PP18L |
| Aux 2     | Apple        | Test Phone: iPhone  | iPhone 6   |



# 2.2 Environmental Conditions

The equipment under test was operated and tested under the following environmental conditions:

| Parameter         | Conditions |
|-------------------|------------|
| Location          | Indoors    |
| Temperature       | 25 °C      |
| Relative Humidity | 37 %rh     |

### 2.3 Measurement Uncertainty

| Parameter                      | Uncertainty     |
|--------------------------------|-----------------|
| Radiated Emissions, 30MHz-1GHz | ± 2.40 dB       |
| Radiated Emissions, 1GHz-40GHz | ± 2.48 dB       |
| Radio Frequency                | ±1.5 x 10-5 MHz |
| Total RF Power Conducted       | ±1.36 dB        |
| Spurious Emissions, Conducted  | ±1.36 dB        |
| RF Power Density, Conducted    | ±1.36 dB        |
| Temperature                    | ±1°C            |
| Humidity                       | ±5 %            |
| DC and low frequency voltages  | ±3 %            |

### 2.4 Worst Test Case

Worst-case orientation was determined during the preliminary testing. The final radiated emissions were performed in the worst-case orientation.

### 2.5 Sample Calculations of Emissions Data

Radiated and conducted emissions were performed using EMC32 software developed by Rohde & Schwarz. Transducer factors such as antenna factors, cable losses and amplifier gains were stored in the test templates which are used to perform the emissions measurements. After the test is finished, data is generated from the EMC32 consisting of product details, emission plots and final data tables as shown below.

| Frequency<br>(MHz) | Q-Peak<br>(dBµV/m) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Ant. Ht.<br>(cm) | Pol | Turntable<br>Position<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|--------------------|--------------------|--------------------|------------------|-----|--------------------------------|---------------|----------------|-------------------|
| 42.663900          | 33.0               | 1000.000           | 120.000            | 100.0            | Н   | 70.0                           | 13.2          | 7.5            | 40.5              |

Table 2: Sample Quasi-Peak Correction Data - Radiated

Quasi-Peak reading shown in the table above is already corrected by the software using the correction factor shown in column "Corr." The correction factor listed under "Corr." table calculated as:

#### Corr.(dB) = Antenna factor + Cable loss

#### Corr.(dB) = Antenna factor + Cable Loss - Amp gain (if pre-amplifier was used)

The final Quasi peak reading shown in the data is calculated by the software using following equation:

#### Corrected Quasi-Peak (dBµV/m) = Raw Quasi-Peak Reading + Antenna factor + Cable loss

To obtain the final Quasi-Peak or Average reading during power line conducted emissions, transducer factors are included in the final measurement as shown below.

| Frequency | Q-Peak | Meas. Time | Bandwidth | PE  | Corr. | Margin | Limit  |
|-----------|--------|------------|-----------|-----|-------|--------|--------|
| (MHz)     | (dBµV) | (ms)       | (kHz)     |     | (dB)  | (dB)   | (dBµV) |
| 0.150     | 44.3   | 1000.000   | 9.000     | GND | 0.6   | 21.7   | 66.0   |

Table 3: Sample Quasi-Peak Correction Data - Conducted Emissions

| Frequency | Average | Meas. Time | Bandwidth | PE  | Corr. | Margin | Limit  |
|-----------|---------|------------|-----------|-----|-------|--------|--------|
| (MHz)     | (dBµV)  | (ms)       | (kHz)     |     | (dB)  | (dB)   | (dBµV) |
| 0.150     | 27.2    | 1000.000   | 9.000     | GND | 0.6   | 28.8   | 56.0   |

 Table 4: Sample Average Correction Data- Conducted Emissions

Quasi Peak or Average reading shown in the preceding table is already corrected by the software using the correction factor shown in column "Corr." The correction factor listed under "Corr." table calculated as:

#### Corr.(dB) = Antenna factor + Cable loss

The final Quasi-peak or Average reading shown in the data is calculated by the software using following equation:

#### Corr. Quasi-Peak/Average Reading (dBµV) = Raw Quasi-Peak/Average Reading + Antenna factor + Cable loss

The allowable margin from the limits, as per the standards, were calculated for both radiated and conducted emissions:

#### Margin(dB) = Limit – Quasi-Peak or Average reading



# **3 DATA & TEST RESULTS**

#### 3.1 RF Peak Output Power & Peak to Average Ratio

| Date Performed: | July 26, 2023                                                                     |
|-----------------|-----------------------------------------------------------------------------------|
| Test Standard:  | FCC CFR 47 Part 27.50 (c)<br>IC RSS-130 Issue 5<br>SRSP-518 Issue 2               |
| Test Method:    | FCC KDB 971168 D01 Power Meas License Digital Systems v03r01<br>ANSI C63.26: 2015 |
| Modifications:  | None.                                                                             |
| Final Result:   | Complies                                                                          |
|                 |                                                                                   |

#### **Applicable Regulation:**

FCC CFR 47 Part 27.50 (c)(3)

Fixed and base stations transmitting a signal with an emission bandwidth greater than 1 MHz must not exceed an ERP of 1000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 1000 watts/MHz ERP in accordance with the following table:

| Antenna height (AAT) in<br>Meters | Effective radiated power (ERP) in<br>Watts |
|-----------------------------------|--------------------------------------------|
| (feet)                            |                                            |
| Above 1372 (4500)                 | 65                                         |
| Above 1220 (4000) to 1372 (4500)  | 70                                         |
| Above 1067 (3500) to 1220 (4000)  | 75                                         |
| Above 915 (3000) to 1067 (3500)   | 100                                        |
| Above 763 (2500) to 915 (3000)    | 140                                        |
| Above 610 (2000) to 763 (2500)    | 200                                        |
| Above 458 (1500) to 610 (2000)    | 350                                        |
| Above 305 (1000) to 458 (1500)    | 600                                        |
| Up to 305 (1000)                  | 1000                                       |

#### FCC CFR 47 Part 27.50 (c)(4)

Fixed and base stations located in a county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, and transmitting a signal with an emission bandwidth greater than 1 MHz must not exceed an ERP of 2000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 2000 watts/MHz ERP in accordance with the following table:

| Antenna height (AAT) in<br>Meters (feet) | Effective radiated power (ERP) in<br>Watts |
|------------------------------------------|--------------------------------------------|
| Above 1372 (4500)                        | 130                                        |
| Above 1220 (4000) to 1372 (4500)         | 140                                        |
| Above 1067 (3500) to 1220 (4000)         | 150                                        |
| Above 915 (3000) to 1067 (3500)          | 200                                        |
| Above 763 (2500) to 915 (3000)           | 280                                        |
| Above 610 (2000) to 763 (2500)           | 400                                        |
| Above 458 (1500) to 610 (2000)           | 700                                        |
| Above 305 (1000) to 458 (1500)           | 1200                                       |
| Up to 305 (1000)                         | 2000                                       |



RSS-130 Issue 2:

4.6.1 General

The transmitter output power shall be measured in terms of average power. In addition, the peak to average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

4.6.3 Frequency bands 698-756 MHz and 777-787 MHz

The e.r.p. shall not exceed 30 watts for mobile equipment and outdoor fixed subscriber equipment. The e.r.p. shall not exceed 3 watts for portable equipment and indoor fixed subscriber equipment.

For base and fixed equipment other than fixed subscriber equipment, refer to SRSP-518 for the e.i.r.p. limits.

SRSP-518 Issue 2:

5.1 Radiated power and antenna height limits for fixed and base stations

For fixed and base stations transmitting in accordance with section 4 of SRSP-518 issue 2, the maximum permissible equivalent isotropically radiated power (e.i.r.p.) is 1640 watts and 1640 watts/MHz for a channel bandwidth less than or equal to 1 MHz, respectively. These e.i.r.p. limits apply for stations with an antenna height above average terrain (HAAT) up to 305 meters.

Fixed and base stations located in geographical areas at a distance greater than 26 km from large or medium population centers and transmitting in accordance with section 4 of SRSP-518 issue 2, may increase their e.i.r.p. up to a maximum of 3280 watts/MHz (i.e. No more than 3280 watts e.i.r.p. in any 1 MHz band segment), with an antenna HAAT up to 305 meters.

Within 26 km of any large or medium population center, fixed and base stations may operate at increased e.i.r.p. if more than 50% of the population within a particular sector's coverage is located outside these large and medium population centers.

Fixed and base stations with increase e.i.r.p. must not be used to provide coverage to large and medium population centers. However, some incidental coverage of these large and medium population centers by stations with increased e.i.r.p. is permitted.

This provision also applies for fixed and base stations with a channel bandwidth equal to or less than 1 MHz (i.e. e.i.r.p may be increase up to a maximum of 3280 watts).

For all installations with an antenna HAAT in excess of 305 meters, a corresponding reduction in e.i.r.p. according to the following formula shall be applied:

$$EIRP_{reduction} = 20 \log_{10} \left(\frac{HAAT}{305}\right) \, dB$$



#### **Test Setup:**

The EUT was tested outside the SAC via output conducted measurements per KDB 971168 D01 Power Meas License Digital Systems v03r01 and ANSI C63.26:2015

#### **Measurement Data and Plots:**

| Carrier<br>Frequency<br>(MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|-------------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
| 731.5                         | 13.99                | 7.92                | 31.00                                     | 38.92                                     | 7.80                                    | 6.07         | 13            | 6.93           | Complies |
| 737.5                         | 14.25                | 6.39                | 30.97                                     | 37.36                                     | 5.45                                    | 7.86         | 13            | 5.14           | Complies |
| 743.5                         | 13.90                | 7.00                | 30.96                                     | 37.96                                     | 6.25                                    | 6.90         | 13            | 6.10           | Complies |

<sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 5: Ant 1 RF Output Power:5 MHz BW, QPSK/16-QAM

| Carrier<br>Frequency<br>(MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|-------------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
| 731.5                         | 17.22                | 12.01               | 31.00                                     | 43.01                                     | 20.00                                   | 5.21         | 13            | 7.79           | Complies |
| 737.5                         | 17.08                | 11.84               | 30.97                                     | 42.81                                     | 19.10                                   | 5.24         | 13            | 7.76           | Complies |
| 743.5                         | 17.37                | 12.04               | 30.96                                     | 43.00                                     | 20.00                                   | 5.33         | 13            | 7.67           | Complies |

<sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 6: Ant 1 RF Output Power:5 MHz BW, QPSK/64-QAM

| Carrier<br>Frequency<br>(MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|-------------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
| 731.5                         | 17.22                | 12.01               | 31.00                                     | 43.01                                     | 20.00                                   | 5.21         | 13            | 7.79           | Complies |
| 737.5                         | 16.89                | 12.34               | 30.97                                     | 43.31                                     | 21.43                                   | 4.55         | 13            | 8.45           | Complies |
| 743.5                         | 16.92                | 11.85               | 30.96                                     | 42.81                                     | 19.10                                   | 5.07         | 13            | 7.93           | Complies |

<sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 7: Ant 1 RF Output Power:5 MHz BW, QPSK/256-QAM

| Carrier<br>Frequency<br>(MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|-------------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
| 734.0                         | 16.87                | 7.47                | 31.00                                     | 38.47                                     | 7.03                                    | 9.40         | 13            | 3.60           | Complies |
| 737.5                         | 16.56                | 6.49                | 30.97                                     | 37.46                                     | 5.57                                    | 10.07        | 13            | 2.93           | Complies |
| 741.0                         | 16.41                | 6.70                | 30.96                                     | 37.66                                     | 5.83                                    | 9.71         | 13            | 3.29           | Complies |

<sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 8: Ant 1 RF Output Power:10 MHz BW, QPSK/16-QAM

| Carrier<br>Frequency<br>(MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|-------------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
| 734.0                         | 19.82                | 13.10               | 31.00                                     | 44.10                                     | 25.70                                   | 6.72         | 13            | 6.28           | Complies |
| 737.5                         | 19.77                | 12.71               | 30.97                                     | 43.68                                     | 23.33                                   | 7.06         | 13            | 5.94           | Complies |
| 741.0                         | 20.08                | 12.63               | 30.96                                     | 43.59                                     | 22.86                                   | 7.45         | 13            | 5.55           | Complies |

<sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 9: Ant 1 RF Output Power:10 MHz BW, QPSK/64-QAM

| Carrier<br>Frequency<br>(MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|-------------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
| 734.0                         | 20.06                | 12.97               | 31.00                                     | 43.97                                     | 24.95                                   | 7.09         | 13            | 5.91           | Complies |
| 737.5                         | 19.81                | 12.87               | 30.97                                     | 43.84                                     | 24.21                                   | 6.94         | 13            | 6.06           | Complies |
| 741.0                         | 19.87                | 12.63               | 30.96                                     | 43.59                                     | 22.86                                   | 7.24         | 13            | 5.76           | Complies |

<sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 10: Ant 1 RF Output Power:10 MHz BW, QPSK/256-QAM

| Carrier<br>Frequency<br>(MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|-------------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
| 731.5                         | 13.68                | 8.53                | 31.00                                     | 39.53                                     | 8.97                                    | 5.15         | 13            | 7.85           | Complies |
| 737.5                         | 13.67                | 8.00                | 30.97                                     | 38.97                                     | 7.89                                    | 5.67         | 13            | 7.33           | Complies |
| 743.5                         | 13.79                | 8.22                | 30.96                                     | 39.18                                     | 8.28                                    | 5.57         | 13            | 7.43           | Complies |

 $^{1}$  Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 11: Ant 2 RF Output Power:5 MHz BW, QPSK/16-QAM

| Carrier<br>Frequency<br>(MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|-------------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
| 731.5                         | 16.93                | 11.90               | 31.00                                     | 42.90                                     | 19.50                                   | 5.03         | 13            | 7.97           | Complies |
| 737.5                         | 14.88                | 12.16               | 30.97                                     | 43.13                                     | 20.56                                   | 2.72         | 13            | 10.28          | Complies |
| 743.5                         | 17.37                | 12.74               | 30.96                                     | 43.70                                     | 23.40                                   | 4.63         | 13            | 8.37           | Complies |

 $^1$  Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 12: Ant 2 RF Output Power:5 MHz BW, QPSK/64-QAM

| Carrier<br>Frequency<br>(MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|-------------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
| 731.5                         | 16.91                | 12.59               | 31.00                                     | 43.59                                     | 22.86                                   | 4.32         | 13            | 8.68           | Complies |
| 737.5                         | 16.95                | 11.85               | 30.97                                     | 42.82                                     | 19.14                                   | 5.10         | 13            | 7.90           | Complies |
| 743.5                         | 16.91                | 11.74               | 30.96                                     | 42.70                                     | 18.62                                   | 5.17         | 13            | 7.83           | Complies |

<sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 13: Ant 2 RF Output Power:5 MHz BW, QPSK/256-QAM

| ] | Carrier<br>Frequency<br>(MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|---|-------------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
|   | 734.0                         | 14.30                | 6.66                | 31.00                                     | 37.66                                     | 5.83                                    | 7.64         | 13            | 5.36           | Complies |
|   | 737.5                         | 15.63                | 7.86                | 30.97                                     | 38.83                                     | 7.64                                    | 7.77         | 13            | 5.23           | Complies |
|   | 741.0                         | 14.45                | 6.67                | 30.96                                     | 37.63                                     | 5.79                                    | 7.78         | 13            | 5.22           | Complies |

<sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 14: Ant 2 RF Output Power:10 MHz BW, QPSK/16-QAM

| Carrier<br>Frequency<br>(MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|-------------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
| 734.0                         | 19.58                | 12.93               | 31.00                                     | 43.93                                     | 24.72                                   | 6.65         | 13            | 6.35           | Complies |
| 737.5                         | 19.65                | 13.12               | 30.97                                     | 44.09                                     | 25.64                                   | 6.53         | 13            | 6.47           | Complies |
| 741.0                         | 19.74                | 12.58               | 30.96                                     | 43.54                                     | 22.59                                   | 7.16         | 13            | 5.84           | Complies |

<sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 15: Ant 2 RF Output Power:10 MHz BW, QPSK/64-QAM

| C<br>Fre | Carrier<br>equency<br>MHz) | Raw<br>Peak<br>(dBm) | Raw<br>Avg<br>(dBm) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected<br>Avg Output<br>Power<br>(dBm) | Corrected<br>Avg Output<br>Power<br>(W) | PAPR<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Results  |
|----------|----------------------------|----------------------|---------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|--------------|---------------|----------------|----------|
|          | 734.0                      | 19.61                | 12.51               | 31.00                                     | 43.51                                     | 22.44                                   | 7.10         | 13            | 5.90           | Complies |
|          | 737.5                      | 19.80                | 12.89               | 30.97                                     | 43.86                                     | 24.32                                   | 6.91         | 13            | 6.09           | Complies |
|          | 741.0                      | 20.02                | 12.64               | 30.96                                     | 43.60                                     | 22.91                                   | 7.38         | 13            | 5.62           | Complies |

<sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 16: Ant 2 RF Output Power:10 MHz BW, QPSK/256-QAM



Date: 26.JUL.2023 15:40:51

Figure 2: Ant 1 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel





Date: 8.SEP.2023 09:26:26

Figure 3: Ant 1 Output Power, 5 MHz BW, QPSK/16QAM, Mid Channel



Date: 26.JUL.2023 15:41:54

Figure 4: Ant 1 Output Power, 5 MHz BW, QPSK/16QAM, High Channel





Date: 26.JUL.2023 16:13:37

Figure 5: Ant 1 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel



Date: 26.JUL.2023 16:11:23

Figure 6: Ant 1 Output Power, 5 MHz BW, QPSK/64QAM, Mid Channel





Date: 27.SEP.2023 11:28:11

Figure 7: Ant 1 Output Power, 5 MHz BW, QPSK/64QAM, High Channel



Date: 26.JUL.2023 16:20:12

Figure 8: Ant 1 Output Power, 5 MHz BW, QPSK/256QAM, Low Channel





Date: 26.JUL.2023 16:21:18

Figure 9: Ant 1 Output Power, 5 MHz BW, QPSK/256QAM, Mid Channel



Date: 26.JUL.2023 16:24:59

Figure 10: Ant 1 Output Power, 5 MHz BW, QPSK/256QAM, High Channel





Date: 26.JUL.2023 16:45:00

Figure 11: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel



Date: 26.JUL.2023 16:43:50

Figure 12: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel





Date: 26.JUL.2023 16:42:33

Figure 13: Ant 1 Output Power, 10 MHz BW, QPSK/16QAM, High Channel



Date: 26.JUL.2023 17:00:30

Figure 14: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel





Date: 26.JUL.2023 16:58:34

Figure 15: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel



Date: 26.JUL.2023 16:57:28

Figure 16: Ant 1 Output Power, 10 MHz BW, QPSK/64QAM, High Channel





Date: 26.JUL.2023 17:02:44

Figure 17: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel



Date: 26.JUL.2023 17:03:27

Figure 18: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel





Date: 26.JUL.2023 17:04:36

Figure 19: Ant 1 Output Power, 10 MHz BW, QPSK/256QAM, High Channel



Date: 26.JUL.2023 15:52:49

Figure 20: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Low Channel



Date: 26.JUL.2023 15:48:45

Figure 21: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, Mid Channel



Date: 26.JUL.2023 15:44:47

Figure 22: Ant 2 Output Power, 5 MHz BW, QPSK/16QAM, High Channel





Date: 26.JUL.2023 16:00:01

Figure 23: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Low Channel



Date: 26.JUL.2023 16:02:36

Figure 24: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, Mid Channel





Date: 27.SEP.2023 11:25:30

Figure 25: Ant 2 Output Power, 5 MHz BW, QPSK/64QAM, High Channel



Date: 26.JUL.2023 16:30:17

Figure 26: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Low Channel





Date: 26.JUL.2023 16:28:14

Figure 27: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, Mid Channel



Date: 26.JUL.2023 16:26:42

Figure 28: Ant 2 Output Power, 5 MHz BW, QPSK/256QAM, High Channel





Date: 26.JUL.2023 16:38:49

Figure 29: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Low Channel



Date: 26.JUL.2023 16:40:01

Figure 30: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, Mid Channel





Date: 26.JUL.2023 16:41:04

Figure 31: Ant 2 Output Power, 10 MHz BW, QPSK/16QAM, High Channel



Date: 26.JUL.2023 16:53:34

Figure 32: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Low Channel





Date: 26.JUL.2023 16:52:31

Figure 33: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, Mid Channel



Date: 26.JUL.2023 16:51:23

Figure 34: Ant 2 Output Power, 10 MHz BW, QPSK/64QAM, High Channel





Date: 26.JUL.2023 17:10:08

Figure 35: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Low Channel



Date: 26.JUL.2023 17:06:53

Figure 36: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, Mid Channel





Date: 26.JUL.2023 17:05:58

Figure 37: Ant 2 Output Power, 10 MHz BW, QPSK/256QAM, High Channel


# 3.2 99% Bandwidth

| Date Performed: | July 26, 2023                                                    |
|-----------------|------------------------------------------------------------------|
| Test Standard:  | FCC CFR 47 Part 27.50 (c)<br>RSS-Gen Issue 5<br>SRSP-518 Issue 2 |
| Test Method:    | RSS-Gen Issue 5<br>ANSI C63.26: 2015                             |
| Modifications:  | None.                                                            |
| Final Result:   | Complies                                                         |

#### **Applicable Regulation:**

#### FCC CFR 47 Part 27.50 (c)(3)

Fixed and base stations transmitting a signal with an emission bandwidth greater than 1 MHz must not exceed an ERP of 1000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 1000 watts/MHz ERP in accordance with the following table:

| Antenna height (AAT) in          | Effective radiated power (ERP) in |
|----------------------------------|-----------------------------------|
| Meters                           | Watts                             |
| (feet)                           |                                   |
| Above 1372 (4500)                | 65                                |
| Above 1220 (4000) to 1372 (4500) | 70                                |
| Above 1067 (3500) to 1220 (4000) | 75                                |
| Above 915 (3000) to 1067 (3500)  | 100                               |
| Above 763 (2500) to 915 (3000)   | 140                               |
| Above 610 (2000) to 763 (2500)   | 200                               |
| Above 458 (1500) to 610 (2000)   | 350                               |
| Above 305 (1000) to 458 (1500)   | 600                               |
| Up to 305 (1000)                 | 1000                              |

## FCC CFR 47 Part 27.50 (c)(4)

Fixed and base stations located in a county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, and transmitting a signal with an emission bandwidth greater than 1 MHz must not exceed an ERP of 2000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 2000 watts/MHz ERP in accordance with the following table:

| Antenna height (AAT) in          | Effective radiated power (ERP) in |
|----------------------------------|-----------------------------------|
| Meters (feet)                    | Watts                             |
| Above 1372 (4500)                | 130                               |
| Above 1220 (4000) to 1372 (4500) | 140                               |
| Above 1067 (3500) to 1220 (4000) | 150                               |
| Above 915 (3000) to 1067 (3500)  | 200                               |
| Above 763 (2500) to 915 (3000)   | 280                               |
| Above 610 (2000) to 763 (2500)   | 400                               |
| Above 458 (1500) to 610 (2000)   | 700                               |
| Above 305 (1000) to 458 (1500)   | 1200                              |
| Up to 305 (1000)                 | 2000                              |



RSS-Gen Issue 5:

6.7 Occupied bandwidth (or 99% emission bandwidth) and x dB bandwidth)

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

**Note**: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

## **Test Setup:**

The EUT was tested outside the SAC via output conducted measurements per RSS-Gen Issue 5 and ANSI C63.26:2015

| Modulation Scheme | Carrier Frequency<br>(MHz) | BW Setting<br>(MHz) | 99% Bandwidth<br>(MHz) | Result   |
|-------------------|----------------------------|---------------------|------------------------|----------|
| QPSK / 16QAM      | 737.5                      | 5                   | 4.487                  | Complies |
| QPSK / 16QAM      | 737.5                      | 10                  | 8.910                  | Complies |
| QPSK / 64QAM      | 737.5                      | 5                   | 4.455                  | Complies |
| QPSK / 64QAM      | 737.5                      | 10                  | 8.942                  | Complies |
| QPSK / 256QAM     | 737.5                      | 5                   | 4.455                  | Complies |
| QPSK / 256QAM     | 737.5                      | 10                  | 8.942                  | Complies |

#### **Measurement Data and Plots:**

Table 17: 99% Bandwidth





Date: 26.JUL.2023 17:35:03





Date: 26.JUL.2023 17:21:47

Figure 39: 99% Bandwidth, QPSK/16QAM, 10 MHz BW





Date: 26.JUL.2023 17:36:48





Date: 26.JUL.2023 17:25:08

Figure 41: 99% Bandwidth, QPSK/64QAM, 10 MHz BW





Date: 26.JUL.2023 17:37:56





Date: 26.JUL.2023 17:24:13

Figure 43: 99% Bandwidth, QPSK/256QAM, 10 MHz BW



# 3.3 Band Edge

| Date Performed: | July 27, 2023                                |
|-----------------|----------------------------------------------|
| Test Standard:  | FCC CFR 47 Part 27.53 (g)<br>RSS-130 Issue 2 |
| Test Method:    | ANSI C63.10:2013                             |
| Modifications:  | None                                         |
| Final Result:   | Complies                                     |

## **Applicable Regulation:**

#### FCC CFR 47 Part 27.53 (g):

For operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

#### RSS-130 Issue 2:

#### 4.7.1 General unwanted emissions limits

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least  $43 + 10 \log 10 p$  (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.

## **Test Setup:**

The EUT was tested outside the SAC via output conducted measurements per ANSI C63.26:2015.

## **Measurement Data and Plots:**

| Channel<br>Frequency<br>(MHz) | Band Edge | Modulation  | Signal<br>Attenuation<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Result   |
|-------------------------------|-----------|-------------|-------------------------------|---------------|----------------|----------|
| 731.5                         | Low       | QPSK/16QAM  | 50.85                         | 42.86         | 7.99           | Complies |
| 743.5                         | High      | QPSK/16QAM  | 52.68                         | 44.72         | 7.96           | Complies |
| 731.5                         | Low       | QPSK/64QAM  | 56.33                         | 47.72         | 8.61           | Complies |
| 743.5                         | High      | QPSK/64QAM  | 48.98                         | 48.04         | 0.94           | Complies |
| 731.5                         | Low       | QPSK/256QAM | 51.58                         | 47.03         | 4.55           | Complies |
| 743.5                         | High      | QPSK/256QAM | 49.29                         | 47.82         | 1.47           | Complies |

Table 18: Band Edge, 5 MHz BW



| Channel<br>Frequency<br>(MHz) | Band Edge | Modulation  | Signal<br>Attenuation<br>(dB) | Limit<br>(Minimum)<br>(dB) | Margin<br>(dB) | Result   |
|-------------------------------|-----------|-------------|-------------------------------|----------------------------|----------------|----------|
| 734.0                         | Low       | QPSK/16QAM  | 52.78                         | 44.99                      | 7.79           | Complies |
| 741.0                         | High      | QPSK/16QAM  | 52.26                         | 44.90                      | 7.36           | Complies |
| 734.0                         | Low       | QPSK/64QAM  | 48.49                         | 48.48                      | 0.01           | Complies |
| 741.0                         | High      | QPSK/64QAM  | 50.63                         | 47.21                      | 3.42           | Complies |
| 734.0                         | Low       | QPSK/256QAM | 50.76                         | 47.10                      | 3.66           | Complies |
| 741.0                         | High      | QPSK/256QAM | 49.43                         | 47.96                      | 1.47           | Complies |

Table 19: Band Edge, 10 MHz BW



Date: 27.JUL.2023 12:09:41





Date: 27.JUL.2023 12:26:58

Figure 45: High Band Edge, 5 MHz BW, QPSK/16QAM





Date: 27.JUL.2023 12:14:01





Date: 27.JUL.2023 12:29:40

Figure 47: High Band Edge, 5 MHz BW, QPSK/64QAM





Date: 27.JUL.2023 12:18:31





Date: 27.JUL.2023 12:28:10

Figure 49: High Band Edge, 5 MHz BW, QPSK/256QAM





Date: 27.JUL.2023 11:29:26





Date: 27.JUL.2023 11:31:13

Figure 51: High Band Edge, 10 MHz BW, QPSK/16QAM





Date: 27.JUL.2023 12:03:09





Date: 27.JUL.2023 12:01:06

Figure 53: High Band Edge, 10 MHz BW, QPSK/64QAM





Date: 27.JUL.2023 12:04:23





Date: 27.JUL.2023 11:59:57

Figure 55: High Band Edge, 10 MHz BW, QPSK/256QAM



# 3.4 RF Conducted Out of Band Emissions

| Date Performed: | July 27, 2023                                |
|-----------------|----------------------------------------------|
| Test Standard:  | FCC CFR 47 Part 27.53 (g)<br>RSS-130 Issue 2 |
| Test Method:    | ANSI C63.10:2013                             |
| Modifications:  | None                                         |
| Final Result:   | Complies                                     |

## **Applicable Regulation:**

## FCC CFR 47 Part 27.53 (g):

For operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least  $43 + 10 \log (P) dB$ . Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

#### RSS-130 Issue 2:

#### 4.7.1 General unwanted emissions limits

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least  $43 + 10 \log 10 p$  (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.

## **Test Setup:**

The EUT was tested outside the SAC via output conducted measurements per ANSI C63.26:2015.

## **Measurement Data and Plots:**

| Channel<br>Frequency<br>(MHz) | BW<br>(MHz) | Modulation  | Signal<br>Attenuation<br>(dB) | Limit<br>(dB) | Margin<br>(dB) | Result   |
|-------------------------------|-------------|-------------|-------------------------------|---------------|----------------|----------|
| 737.5                         | 5           | QPSK/16QAM  | 47.63                         | 41.16         | 6.47           | Complies |
| 737.5                         | 5           | QPSK/64QAM  | > 52                          | 46.65         | 5.35           | Complies |
| 737.5                         | 5           | QPSK/256QAM | 51.70                         | 45.26         | 6.44           | Complies |
| 737.5                         | 10          | QPSK/16QAM  | > 50                          | 43.28         | 6.72           | Complies |
| 737.5                         | 10          | QPSK/64QAM  | > 50                          | 44.90         | 5.10           | Complies |
| 737.5                         | 10          | QPSK/256QAM | > 53                          | 47.45         | 5.55           | Complies |

Table 20: RF Conducted Out of Band Emissions





Date: 27.JUL.2023 12:20:52

Figure 56: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/16QAM



Date: 27.JUL.2023 12:22:14

Figure 57: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/64QAM





Date: 27.JUL.2023 12:24:04

Figure 58: RF Conducted Out of Band Emissions, 5 MHz BW, QPSK/256QAM



Date: 27.JUL.2023 11:15:52

Figure 59: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/16QAM





Date: 27.JUL.2023 11:16:21

Figure 60: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/64QAM



Date: 27.JUL.2023 11:19:24

Figure 61: RF Conducted Out of Band Emissions, 10 MHz BW, QPSK/256QAM



# 3.5 Conducted Emissions: AC Power Line

| Date Performed: | July 26, 2023                  |
|-----------------|--------------------------------|
| Test Standard:  | FCC 15.107<br>ICES-003 Issue 7 |
| Test Method:    | ANSI C63.10:2013               |
| Modifications:  | None                           |
| Final Result:   | Complies                       |

## **Applicable Standard:**

FCC 47 CFR Part 15.107: Conducted limits

a) For Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, withing the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H / 50  $\Omega$  line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

| Frequency of emission | Conducted limit (dBµV) |         |  |
|-----------------------|------------------------|---------|--|
| (MHz)                 | Quasi-peak             | Average |  |
| 0.15 - 0.5            | 79                     | 66      |  |
| 0.5 - 30              | 73                     | 60      |  |

ICES-003 Issue 7 3.2.1: Conducted emissions limits

The ITE or digital apparatus shall comply with the conducted emission limits specified in the following table at its AC mains power terminals. The product under test shall comply with both the quasi-peak and the average limits.

Where the product under test is powered through an external device (for example, through an external power supply, or by means of a device providing power over Ethernet to the product under test), the conducted emission limits apply at the AC mains power terminals of the external device, while this is powering the product under test: see ICES-Gen.

| Frequency of emission | Conducted limit (dBµV) |                                 |                 |                 |  |  |
|-----------------------|------------------------|---------------------------------|-----------------|-----------------|--|--|
| (MHz)                 | Class A                | Class A Class A Class B Class B |                 |                 |  |  |
|                       | Quasi-peak             | Average                         | Quasi-peak      | Average         |  |  |
| 0.15 - 0.5            | 79                     | 66                              | 66 to 56 Note 1 | 56 to 46 Note 1 |  |  |
| 0.5 - 5               | 73                     | 60                              | 56              | 46              |  |  |
| 5-30                  | 73                     | 60                              | 60              | 50              |  |  |

<sup>Note 1</sup> The level decreases linearly with the logarithm of the frequency.

#### **Test Setup:**

The EUT was tested inside the SAC using a 50  $\mu$ H / 50  $\Omega$  lisn per ANSI C63.10:2013.



## **Measurement Data and Plots:**

| Frequency<br>MHz | QuasiPeak<br>(dBuV/m) | Average<br>(dBuV/m) | Line | PE  | Corr.<br>(dB/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Result   |
|------------------|-----------------------|---------------------|------|-----|-----------------|-------------------|----------------|----------|
| 5.3020           |                       | 47.34               | L1   | GND | 10.2            | 60.00             | 12.66          | Complies |
| 5.4340           |                       | 41.67               | L1   | GND | 10.2            | 60.00             | 18.33          | Complies |
| 5.5660           |                       | 39.52               | L1   | GND | 10.2            | 60.00             | 20.48          | Complies |
| 5.8320           |                       | 43.68               | L1   | GND | 10.2            | 60.00             | 16.32          | Complies |
| 6.0960           |                       | 40.05               | L1   | GND | 10.2            | 60.00             | 19.95          | Complies |
| 6.6260           |                       | 40.69               | L1   | GND | 10.2            | 60.00             | 19.32          | Complies |
| 10.3380          |                       | 43.39               | L1   | GND | 10.3            | 60.00             | 16.61          | Complies |
| 10.6020          |                       | 46.47               | L1   | GND | 10.3            | 60.00             | 13.53          | Complies |
| 10.8680          |                       | 46.48               | L1   | GND | 10.3            | 60.00             | 13.52          | Complies |
| 11.1320          |                       | 50.75               | L1   | GND | 10.3            | 60.00             | 9.25           | Complies |
| 11.3960          |                       | 47.95               | L1   | GND | 10.3            | 60.00             | 12.05          | Complies |
| 11.6620          |                       | 47.93               | L1   | GND | 10.3            | 60.00             | 12.07          | Complies |
| 11.9260          |                       | 48.80               | L1   | GND | 10.3            | 60.00             | 11.20          | Complies |
| 12.4540          |                       | 43.03               | L1   | GND | 10.3            | 60.00             | 16.97          | Complies |

Table 21: AC Conducted Emissions, Line 1

| Frequency<br>MHz | QuasiPeak<br>(dBuV/m) | Average<br>(dBuV/m) | Line | PE  | Corr.<br>(dB/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Result   |
|------------------|-----------------------|---------------------|------|-----|-----------------|-------------------|----------------|----------|
| 5.3000           |                       | 44.42               | L2   | GND | 10.2            | 60.00             | 15.58          | Complies |
| 5.4340           |                       | 31.00               | L2   | GND | 10.2            | 60.00             | 29.00          | Complies |
| 5.5660           |                       | 47.95               | L2   | GND | 10.2            | 60.00             | 12.05          | Complies |
| 5.8300           |                       | 45.60               | L2   | GND | 10.2            | 60.00             | 14.40          | Complies |
| 6.0960           |                       | 38.15               | L2   | GND | 10.2            | 60.00             | 21.85          | Complies |
| 6.6260           |                       | 34.22               | L2   | GND | 10.2            | 60.00             | 25.78          | Complies |
| 7.1560           |                       | 36.67               | L2   | GND | 10.2            | 60.00             | 23.33          | Complies |
| 10.3380          |                       | 44.00               | L2   | GND | 10.3            | 60.00             | 16.00          | Complies |
| 10.6020          |                       | 49.62               | L2   | GND | 10.3            | 60.00             | 10.38          | Complies |
| 10.8660          |                       | 51.00               | L2   | GND | 10.3            | 60.00             | 9.00           | Complies |
| 11.1320          |                       | 50.97               | L2   | GND | 10.3            | 60.00             | 9.03           | Complies |
| 11.3960          |                       | 52.22               | L2   | GND | 10.3            | 60.00             | 7.78           | Complies |
| 11.6620          |                       | 48.73               | L2   | GND | 10.3            | 60.00             | 11.27          | Complies |
| 11.9260          |                       | 49.63               | L2   | GND | 10.3            | 60.00             | 10.37          | Complies |
| 12.4580          |                       | 42.95               | L2   | GND | 10.3            | 60.00             | 17.05          | Complies |
| 12.7220          |                       | 42.02               | L2   | GND | 10.3            | 60.00             | 17.98          | Complies |

Table 22: AC Conducted Emissions, Line 2





Figure 62: AC Conducted Emissions, Line 1



Figure 63: AC Conducted Emissions, Line 2



# 3.6 Conducted Emissions: Telecom

| Date Performed: | July 26, 2023 |
|-----------------|---------------|
| Test Standard:  | CISPR 32      |
| Test Method:    | CISPR 32      |
| Modifications:  | None          |
| Final Result:   | Complies      |

#### **Applicable Standard:**

CISPR 32 Annex A.3: Requirements for conducted emissions

The EUT is deemed to comply with the conducted emission requirements when it has been shown to be compliant with all applicable limits as given in the following table(s).

| Frequency of emission | Conducted limit (dBµV) |          |  |  |  |
|-----------------------|------------------------|----------|--|--|--|
| (MHz)                 | Quasi-peak             | Average  |  |  |  |
| 0.15 - 0.5            | 97 to 87               | 84 to 74 |  |  |  |
| 0.5 - 30              | 87                     | 74       |  |  |  |

## **Test Setup and Measurement Method:**

CISPR 32 Annex C.4.1.6.2

Measurement is made at wired network ports using AANs with longitudinal conversion losses as defined in Table C.2. The AAN for the cable category specified by the equipment documentation provided to the user shall be used. The level of emissions from the EUT shall not exceed the applicable limits of Annex A.

When emission voltage measurements are performed, the AAN shall provide a voltage measurement port suitable for connection to a measuring receiver while simultaneously satisfying the analogue/digital data port common mode termination impedance requirements.

For unscreened cables containing balanced pairs, an AAN conforming to C.41.2 shall be used. The LCL values of the AAN shall be within the tolerance given in Table C.2 for an AAN appropriate to the cable category connected to the EUT.

The procedure shall be as follows:

- Arrange the EUT, local AE and associated cabling;
- Measure the voltage at the measurement port of the AAN;
- Correct the measured voltage by adding the AAN voltage division factor defined in C.4.1.2 e)
- Compare the corrected voltage with the limit



## **Measurement Data and Plots:**

| Frequency<br>MHz | QuasiPeak<br>(dBuV/m) | Average<br>(dBuV/m) | Corr.<br>(dB/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Result   |
|------------------|-----------------------|---------------------|-----------------|-------------------|----------------|----------|
| 1.4700           |                       | 68.69               | 19.4            | 74.00             | 5.31           | Complies |
| 9.2760           |                       | 63.59               | 19.6            | 74.00             | 10.41          | Complies |
| 9.5440           |                       | 61.23               | 19.6            | 74.00             | 12.77          | Complies |
| 9.8040           |                       | 64.30               | 19.6            | 74.00             | 9.70           | Complies |
| 10.0720          |                       | 67.67               | 19.6            | 74.00             | 6.33           | Complies |
| 10.3360          |                       | 67.51               | 19.6            | 74.00             | 6.49           | Complies |
| 10.6040          |                       | 66.20               | 19.6            | 74.00             | 7.80           | Complies |
| 10.8680          |                       | 67.87               | 19.6            | 74.00             | 6.13           | Complies |
| 11.1320          |                       | 66.65               | 19.6            | 74.00             | 7.35           | Complies |
| 11.3960          |                       | 66.69               | 19.6            | 74.00             | 7.31           | Complies |

Table 23: Conducted Emissions: Telecom



Figure 64: Conducted Emissions: Telecom



# 3.7 Unintentional Radiated Emissions

| Date Performed: | July 26, 2023                                                                              |
|-----------------|--------------------------------------------------------------------------------------------|
| Test Standard:  | FCC 47 CFR Part 15.33 (a)(1), (5)<br>FCC 47 CFR Part 15.109<br>ICES-003 Issue 7<br>RSS-247 |
| Test Method:    | ANSI C63.4:2014                                                                            |
| Modifications:  | None                                                                                       |
| Final Result:   | Complies                                                                                   |

## **Applicable Standard:**

FCC 47 CFR Part 15.33 (b)(1): Frequency range of radiated measurements

For an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

| Highest frequency generated or used in the device or on<br>which the device operates or tunes (MHz) | Upper frequency of measurement range (MHz)                   |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Below 1.075                                                                                         | 30                                                           |
| 1.075 - 108                                                                                         | 1000                                                         |
| 108 - 500                                                                                           | 2000                                                         |
| 500 - 1000                                                                                          | 5000                                                         |
| Above 1000                                                                                          | 5 <sup>th</sup> harmonic of the highest frequency or 40 GHz, |
| Above 1000                                                                                          | whichever is lower.                                          |

FCC 47 CFR Part 15.109: Radiated emission limits

b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 10 meters, shall not exceed the following:

| Frequency of<br>emission (MHz) | Field strength at<br>10m<br>(microvolts/meter) | Field strength at<br>10m<br>(dBuV/meter) | Field strength at 3 m<br>(microvolts/meter) | Field strength at 3<br>m<br>(dBuV/meter) |
|--------------------------------|------------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|
| 30 - 88                        | 90                                             | 39.1                                     | 100                                         | 40.0                                     |
| 88 - 216                       | 150                                            | 43.5                                     | 160                                         | 44.1                                     |
| 216 - 960                      | 210                                            | 46.4                                     | 220                                         | 46.8                                     |
| Above 960                      | 300                                            | 49.5                                     | 310                                         | 49.8                                     |



ICES-003 3.2.2 Radiated emission limits

The quasi-peak limits for the electric component of the radiated field strength emitted from ITE or digital apparatus, within 30 MHz to 1 GHz, for a measurement distance of 3 m or 10 m, are:

| Frequency Range<br>(MHz) | Class A (3 m)<br>Quasi-peak<br>(dBµV/m) | Class A (10 m)<br>Quasi-peak<br>(dBµV/m) | Class B (3 m)<br>Quasi-peak<br>(dBµV/m) | Class B (10 m)<br>Quasi-peak<br>(dBµV/m) |
|--------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|
| 30 - 88                  | 50.0                                    | 40.0                                     | 40.0                                    | 30.0                                     |
| 88-216                   | 54.0                                    | 43.5                                     | 43.5                                    | 33.1                                     |
| 216 - 230                | 56.9                                    | 46.4                                     | 46.0                                    | 35.6                                     |
| 230 - 960                | 57.0                                    | 47.0                                     | 47.0                                    | 37.0                                     |
| 960 - 1000               | 60.0                                    | 49.5                                     | 54.0                                    | 43.5                                     |

At and above 1 GHz, except for outdoor units of home satellite receiving systems, the ITE or digital apparatus shall comply with:

| Frequency Range | Class A  | Class A  | Class B  | Class B  |
|-----------------|----------|----------|----------|----------|
|                 | Average  | Peak     | Average  | Peak     |
| (MHZ)           | (dBµV/m) | (dBµV/m) | (dBµV/m) | (dBµV/m) |
| $1 - F_M$       | 60       | 80       | 54       | 74       |

 $F_M$  is determined by:

| Highest internal frequency (F <sub>X</sub> ) | Highest measurement frequency $(F_M)$ |
|----------------------------------------------|---------------------------------------|
| $F_X \le 108 \text{ MHz}$                    | 1 GHz                                 |
| 108 MHz $\leq F_X \leq$ 500 MHz              | 2 GHz                                 |
| 500 MHz $\leq F_X \leq 1$ GHz                | 5 GHz                                 |
| $F_X > 1 \text{ GHz}$                        | 5 x $F_X$ up to a maximum of 40 GHz   |

## **Test Setup:**

The EUT was tested in a 3 m SAC and was positioned on the front of the turntable and the radiated output of the device was measured for all emissions up to 18 GHz.



## **Measurement Data and Plots:**

| Complies |
|----------|
|          |
| Complies |
| -        |

Table 24: Unintentional Radiated Emissions: 30 MHz - 1 GHz

| Frequency<br>MHz | MaxPeak<br>(dBuV/m) | Average<br>(dBuV/m) | Height<br>(cm) | Pol | Azimuth<br>(°) | Corr.<br>(dB/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Result   |
|------------------|---------------------|---------------------|----------------|-----|----------------|-----------------|-------------------|----------------|----------|
|                  |                     |                     |                |     |                |                 |                   |                | Complies |

Table 25: Unintentional Radiated Emissions: 1 GHz - 18 GHz

No emissions were observed at frequencies above 1 GHz.



Figure 65: Radiated Emissions: 30 MHz - 1 GHz







Figure 66: Radiated Emissions: 1 GHz – 6 GHz



Figure 67: Radiated Emissions: 6 GHz - 18 GHz



# 3.8 Frequency Stability

| Date Performed: | July 27, 2023                                                                                                                |  |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Standard:  | FCC CFR 47 Part 27.54<br>FCC CFR 47 Part 2.1055 (a)(1)<br>FCC CFR 47 Part 2.1055 (d)<br>RSS-130 Issue 2<br>RSS-Gen Issue 5   |  |  |  |  |
| Test Method:    | ANSI C63.10:2013<br>RSS-Gen Issue 5                                                                                          |  |  |  |  |
| Modifications:  | The EUT was unable to produce an unmodulated CW signal, therefor the LO bleed through was used to monitor the EUT frequency. |  |  |  |  |
| Final Result:   | Complies                                                                                                                     |  |  |  |  |

#### **Applicable Regulation:**

#### FCC CFR 47 Part 27.54:

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

# FCC CFR 47 Part 2.1055 (a)(1):

The frequency stability shall be measured with variation of ambient temperature from  $-30^{\circ}$  to  $+50^{\circ}$  centigrade.

FCC CFR 47 Part 2.1055 (d)(1):

The frequency stability shall be measured with variation of primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

#### RSS-130 Issue 2:

4.5 Transmitter frequency stability

For equipment that is capable of transmitting numerous channels simultaneously for different applications (e.g. LTE and narrowband – Internet of Things (IoT)), the occupied bandwidth shall be the bandwidth representing the sum of the occupied bandwidths of these channels.

The frequency stability shall be sufficient to ensure that the occupied bandwidth remains within each frequency block range when tested at the temperature and supply voltage variations specified in RSS-Gen.

RSS-Gen Issue 5:

Frequency stability is a measure of frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at an appropriate reference temperature and the rated supply voltage.

When the measurement method of transmitter frequency stability is not stated in the applicable RSS or reference standards, the following conditions apply:

- a) The reference temperature for radio transmitters is  $+20^{\circ}C$  ( $+68^{\circ}F$ ).
- b) A hand-held device that is only capable of operating using internal batteries shall be tested at the battery's nominal voltage, and again at the battery's operating end-point voltage, which shall be specified by the equipment manufacturer. For this test, either a battery or an external power supply can be used.

c) The operating carrier frequency shall be set up in accordance with the manufacturer's published operation and instruction manual prior to the commencement of these tests. No adjustment of any frequency-determining circuit element shall be made subsequent to this initial set-up.

With the transmitter installed in an environmental test chamber, the unmodulated carrier frequency and frequency stability shall be measured under the conditions specified below for licensed and licence-exempt devices, unless specified otherwise in the applicable RSS. A sufficient stabilization period at each temperature shall be used prior to each frequency measurement.

For licensed devices, the following measurement conditions apply:

- a) at the temperatures of -30°C (-22°F), +20°C (+68°F) and +50°C (+122°F), and at the manufacturer's rated supply voltage
- b) at the temperature of  $+20^{\circ}C$  (+68°F) and at  $\pm 15\%$  of the manufacturer's rated supply voltage

If the frequency stability limits are only met within a temperature range that is smaller than the range specified in (a) for licensed or licence-exempt devices, the frequency stability requirement will be deemed to be met if the transmitter is automatically prevented from operating outside this smaller temperature range and if the published operating characteristics for the equipment are revised to reflect this restricted temperature range.

# **Test Setup:**

The EUT was tested in an environmental chamber per RSS-Gen and ANSI C63.26:2015.

| Temperature<br>(°C) | Transmitter<br>Frequency<br>(MHz) | PPM Change<br>From Reference<br>Temp | Limit<br>(PPM) | Margin<br>(PPM) | Result   |
|---------------------|-----------------------------------|--------------------------------------|----------------|-----------------|----------|
| -30                 | 737.50000                         | 0                                    | 1              | 1               | Complies |
| -20                 | 737.50000                         | 0                                    | 1              | 1               | Complies |
| -10                 | 737.50000                         | 0                                    | 1              | 1               | Complies |
| 0                   | 737.50000                         | 0                                    | 1              | 1               | Complies |
| 10                  | 737.50000                         | 0                                    | 1              | 1               | Complies |
| 20                  | 737.50000                         | Ref                                  |                |                 |          |
| 30                  | 737.50000                         | 0                                    | 1              | 1               | Complies |
| 40                  | 737.50000                         | 0                                    | 1              | 1               | Complies |
| 50                  | 737.50000                         | 0                                    | 1              | 1               | Complies |

## **Measurement Data and Plots:**

Table 26: Frequency Stability with Temperature Change

| Supply Voltage<br>(V) | Transmitter<br>Frequency<br>(MHz) | PPM Change<br>From Reference<br>Temp | tange<br>Gerence<br>(PPM) (PPM) (PPM) |   | Result   |
|-----------------------|-----------------------------------|--------------------------------------|---------------------------------------|---|----------|
| 102                   | 737.50000                         | 0                                    | 1                                     | 1 | Complies |
| 120                   | 737.50000                         | Ref                                  |                                       |   |          |
| 138                   | 737.50000                         | 0                                    | 1                                     | 1 | Complies |

Table 27: Frequency Stability with Voltage Change





Date: 27.JUL.2023 16:12:06

Figure 68: Output Frequency: -30 °C



Date: 27.JUL.2023 15:53:43

Figure 69: Output Frequency: -20 °C





Date: 27.JUL.2023 15:40:28

Figure 70: Output Frequency: -10 °C



Date: 27.JUL.2023 15:32:56

Figure 71: Output Frequency: 0 °C





Date: 27.JUL.2023 15:29:01



Figure 72: Output Frequency: 10 °C

Date: 27.JUL.2023 15:01:52

Figure 73: Output Frequency: 20 °C





Date: 27.JUL.2023 15:15:01

Figure 74: Output Frequency: 30 °C



Date: 27.JUL.2023 15:09:53

Figure 75: Output Frequency: 40 °C





Date: 27.JUL.2023 15:15:01

Figure 76: Output Frequency: 50 °C



Date: 27.JUL.2023 14:31:00

Figure 77: Output Frequency: 102V





Date: 27.JUL.2023 14:29:49

Figure 78: Output Frequency: 120V



Date: 27.JUL.2023 14:31:52

Figure 79: Output Frequency: 138V



# Appendix A: Test Setup Photos



Figure 80: RF Conducted Measurement Setup



Figure 81: Conducted Emissions: AC Power Line Measurement Setup





Figure 82: Conducted Emissions: Telecom Measurement Setup



Figure 83: Radiated Emissions: 30 MHz - 1 GHz Measurement Setup



QAI Laboratories 3980 North Fraser Way Burnaby, BC, V5J 5K5 Canada



Figure 84: Radiated Emissions: 1 GHz – 18 GHz Measurement Setup


## Appendix B: ABBREVIATIONS

| Abbreviation | Definition                                                                                                                 |
|--------------|----------------------------------------------------------------------------------------------------------------------------|
| AC           | Alternating Current                                                                                                        |
| AM           | Amplitude Modulation                                                                                                       |
| CE           | European Conformity                                                                                                        |
| CISPR        | Comité International Spécial des Perturbations Radioélectriques<br>(International Special Committee on Radio Interference) |
| DC           | Direct Current                                                                                                             |
| EFT          | Electrical Fast Transient                                                                                                  |
| EMC          | Electro Magnetic Compatibility                                                                                             |
| EMI          | Electro Magnetic Interference                                                                                              |
| ESD          | Electrostatic Discharge                                                                                                    |
| EUT          | Equipment Under Test                                                                                                       |
| FCC          | Federal Communications Commission                                                                                          |
| FVIN         | Firmware Version Identification Number FVIN                                                                                |
| IC           | Industry Canada                                                                                                            |
| ICES         | Interference Causing Equipment Standard                                                                                    |
| IEC          | International Electrotechnical Commission                                                                                  |
| LISN         | Line Impedance Stabilizing Network                                                                                         |
| OATS         | Open Area Test Site                                                                                                        |
| RF           | Radio Frequency                                                                                                            |
| RMS          | Root-Mean-Square                                                                                                           |
| SAC          | Semi-Anechoic Chamber                                                                                                      |

## **END OF REPORT**