

Page 1 of 56

TEST REPORT

Product Name	:	Remote control
Brand Mark	:	N/A
Model No.	:	RF439A
FCC ID	:	S4X-RF439A
Report Number	:	BLA-EMC-202103-A11301
Date of Sample Receipt	:	2021/3/26
Date of Test	:	2021/3/26 to 2021/4/9
Date of Issue	:	2021/4/9
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Shenzhen C&D Electronics Co., Ltd.

Building 2, Xia You Song Mountaintop Industrial Di YouSong Village, Longhua Town, Bao'an District Shenzhen Guangdong China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: Ben Zoug Approved by: Times Li

REPORT REVISE RECORD

Version No.	Version No. Date Descrip			
00	2021/4/9	Original		
01	01 2021/4/14 Change the model			

TABLE OF CONTENTS

1	T	EST SUMMARY	5
2	C	GENERAL INFORMATION	6
3	G	GENERAL DESCRIPTION OF E.U.T.	6
4	Т	EST ENVIRONMENT	7
5		EST MODE	
		IEASUREMENT UNCERTAINTY	
6	Ν	DESCRIPTION OF SUPPORT UNIT	7
7			8
8		ABORATORY LOCATION	
9		EST INSTRUMENTS LIST	
1	F	RADIATED SPURIOUS EMISSIONS	12
	1.1	LIMITS	12
	1.2	BLOCK DIAGRAM OF TEST SETUP	
	1.3	PROCEDURE	13
	1.4	TEST DATA	15
3	F	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	23
	3.1	LIMITS	23
	3.2	BLOCK DIAGRAM OF TEST SETUP	
	3.3	PROCEDURE	
	3.4	TEST DATA	26
4	c	CONDUCTED SPURIOUS EMISSIONS	30
	4.1	LIMITS	30
	4.2	BLOCK DIAGRAM OF TEST SETUP	30
	4.3	TEST DATA	30
5	c	CONDUCTED BAND EDGES MEASUREMENT	31
	5.1	LIMITS	31
	5.2	BLOCK DIAGRAM OF TEST SETUP	31
	5.3	TEST DATA	31
6	F	POWER SPECTRUM DENSITY	32
	6.1	LIMITS	32
	6.2	BLOCK DIAGRAM OF TEST SETUP	32

	6.3	ТЕЅТ DATA	. 32
7	С	ONDUCTED PEAK OUTPUT POWER	. 33
	7.1	LIMITS	. 33
	7.2	BLOCK DIAGRAM OF TEST SETUP	. 33
	7.3	ТЕЅТ DATA	. 33
8	М	INIMUM 6DB BANDWIDTH	. 34
	8.1	LIMITS	. 34
	8.2	BLOCK DIAGRAM OF TEST SETUP	. 34
	8.3	ТЕST DATA	. 34
9	Α	NTENNA REQUIREMENT	. 35
	9.1	CONCLUSION	. 35
10) A	PPENDIX	. 36
	10.1	MAXIMUM CONDUCTED OUTPUT POWER	. 36
	10.2	-6dB Bandwidth	. 38
	10.3	Occupied Channel Bandwidth	. 40
	10.4	MAXIMUM POWER SPECTRAL DENSITY LEVEL	. 42
	10.5	BAND EDGE	
	10.6	CONDUCTED RF SPURIOUS EMISSION	. 47
A	PPEN	IDIX A: PHOTOGRAPHS OF TEST SETUP	. 51
A	PPEN	IDIX B: PHOTOGRAPHS OF EUT	. 52

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247 a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

2 GENERAL INFORMATION

Applicant	Shenzhen C&D Electronics Co., Ltd.		
	Building 2, Xia You Song Mountaintop Industrial Di YouSong Village, Longhua Town, Bao'an District Shenzhen Guangdong China		
Manufacturer	Shenzhen C&D Electronics Co., Ltd.		
Address	Building 2, Xia You Song Mountaintop Industrial Di YouSong Village, Longhua Town, Bao'an District Shenzhen Guangdong China		
Factory	Shenzhen C&D Electronics Co., Ltd.		
Address	Building 2, Xia You Song Mountaintop Industrial Di YouSong Village, Longhua Town, Bao'an District Shenzhen Guangdong China		
Product Name	Remote control		
Test Model No.	RF439A		

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V1.1
Software Version	V0.6
Operation Frequency:	2402MHz~2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	PCB Antenna
Antenna Gain:	2 dBi(Provided by customer)

4 TEST ENVIRONMENT

Environment	Temperature	Voltage		
Normal	+25 °C	3.0Vdc		

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
TX mode	Keep the EUT in continuously TX mode with modulation
Remark:New battery	is used during all test

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)	
Radiated Emission(9kHz-30MHz)	±4.34dB	
Radiated Emission(30Mz-1000MHz)	±4.24dB	
Radiated Emission(1GHz-18GHz)	±4.68dB	
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB	

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of Radiated Spurious Emissions						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Chamber	SKET	966	N/A	2020/11/10	2023/11/9	
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11	
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11	
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25	
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25	
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15	
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A	
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25	
Controller	SKET	N/A	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A	

Test Equipment Of Radiated Emissions which fall in the restricted bands										
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due					
Chamber	SKET	966	N/A	2020/11/10	2023/11/9					
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11					
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11					
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25					
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25					

Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15	
EMI software	EZ	EZ-EMC EEMC-3A1		N/A	N/A	
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25	
Controller	SKET	N/A	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A	

Test Equipment Of Conducted Spurious Emissions											
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due						
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11						
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11						
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11						
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11						

Test Equipment Of Conducted Band Edges Measurement										
Equipment	Manufacturer	Model	Cal.Date	Cal.Due						
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11					
Spectrum	Agilent	N9020A	N9020A MY49100060		2021/10/11					
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11					
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11					

Test Equipment Of Power Spectrum Density											
Equipment	Manufacturer	Model	Cal.Date	Cal.Due							
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11						
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11						

Report No.: BLA-EMC-202103-A11301 Page 11 of56

Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

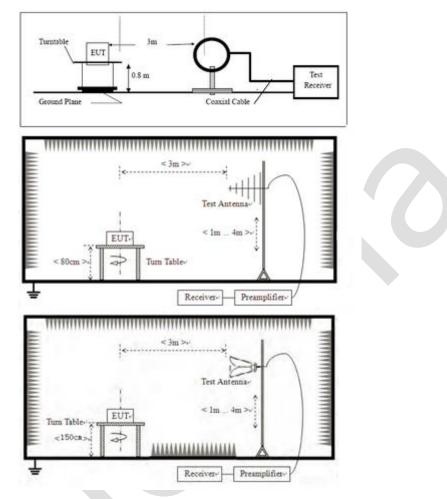
Test Equipment Of Conducted Peak Output Power										
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due					
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11					
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11					
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11					
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11					

Test Equipment Of Minimum 6dB Bandwidth											
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due						
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11						
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11						
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11						
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11						
			·								

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)												
Equipment Manufacturer Model S/N Cal.Date Cal.Due												
Shield room	SKET	833	N/A	2020/11/25	2023/11/24							
Receiver	R&S ESPI3		101082	2020/10/12	2021/10/11							
LISN	R&S	ENV216	3560.6550.15	2020/10/12	2021/10/11							
LISN	AT	AT166-2	AKK1806000003	2020/10/12	2021/10/11							
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A							

1 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6				
Test Mode (Pre-Scan)	TX Low channel;TX middle channel;TX high channel;TX mode (SE)				
Test Mode (Final Test)	TX Low channel;TX middle channel;TX high channel;TX mode (SE)				
Tester	Ben				
Temperature	25 °C				
Humidity	60%				


1.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

1.2 BLOCK DIAGRAM OF TEST SETUP

1.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

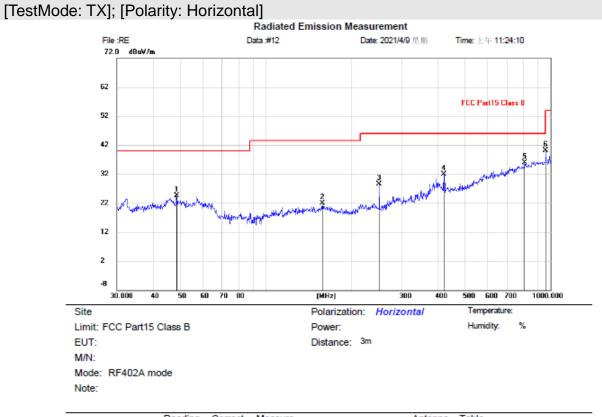
i. The radiation measurements are performed in X, Y, Z axis positioning for TX mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

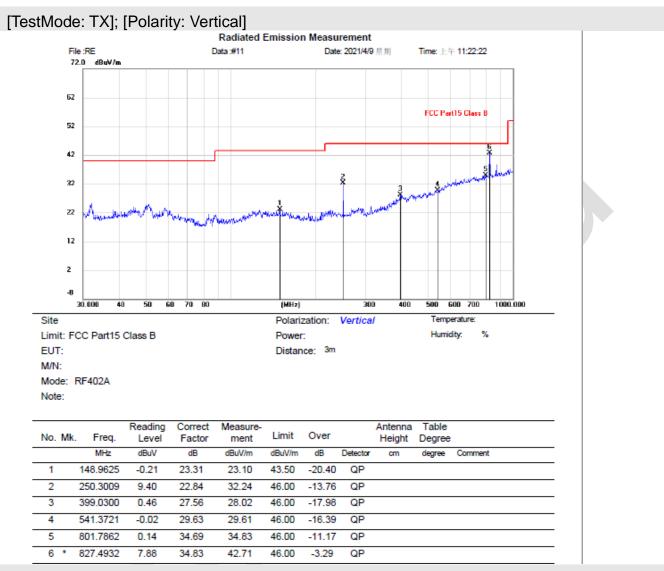
1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

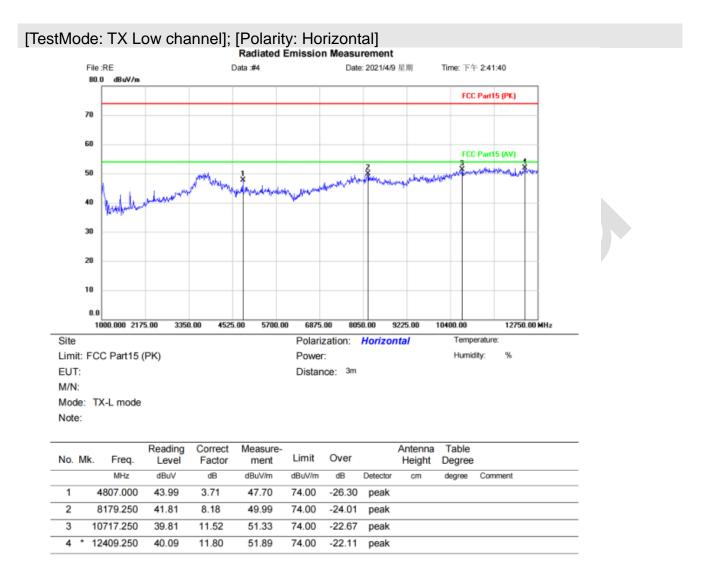

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor -Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

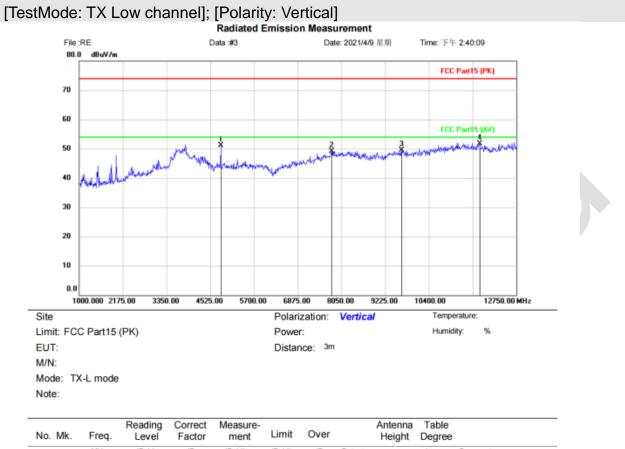
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



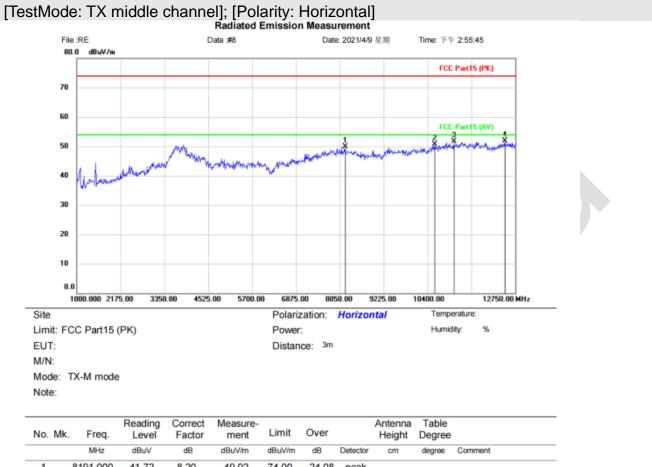
1.4 TEST DATA



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		48.5016	0.79	23.81	24.60	40.00	-15.40	QP				
2		158.1123	-1.29	23.20	21.91	43.50	-21.59	QP				
3		250.3009	5.76	22.84	28.60	46.00	-17.40	QP				
4		422.0577	4.17	27.81	31.98	46.00	-14.02	QP				
5	*	813.1114	1.07	34.83	35.90	46.00	-10.10	QP				
6		962.1621	3.81	36.30	40.11	54.00	-13.89	QP				

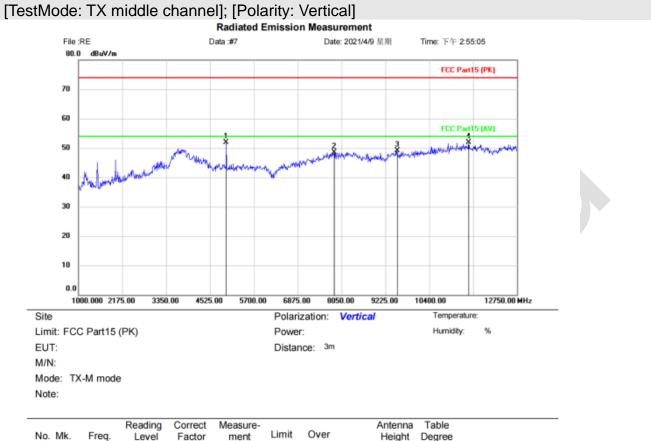


(Reference Only



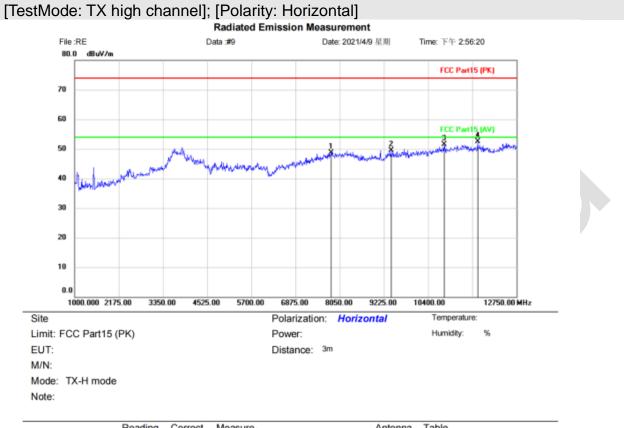
No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4807.000	47.41	3.71	51.12	74.00	-22.88	peak			
2		7791.500	41.49	7.68	49.17	74.00	-24.83	peak			
3		9671.500	40.15	9.42	49.57	74.00	-24.43	peak			
4	*	11763.000	40.16	11.63	51.79	74.00	-22.21	peak			

Reference Only



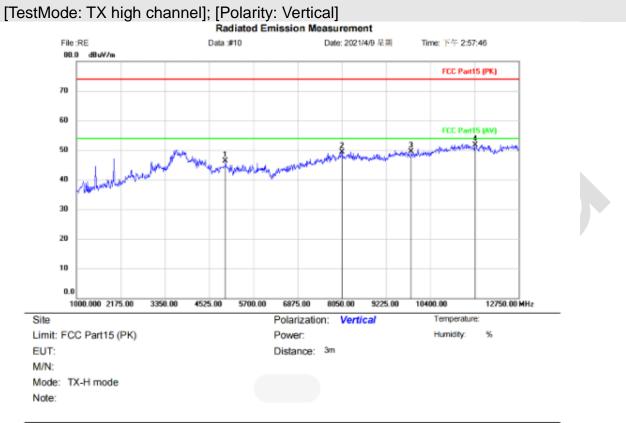
1	8191.000	41.72	8.20	49.92	74.00	-24.08	peak
2	10599.750	39.50	11.13	50.63	74.00	-23.37	peak
3	11105.000	39.67	12.02	51.69	74.00	-22.31	peak
4 *	12468.000	40.03	11.80	51.83	74.00	-22.17	peak

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	4959.750	48.14	3.75	51.89	74.00	-22.11	peak			
2		7850.250	40.79	7.76	48.55	74.00	-25.45	peak			
3		9542.250	39.97	9.14	49.11	74.00	-24.89	peak			
4		11457.500	39.99	11.84	51.83	74.00	-22.17	peak			

Reference Only



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		7826.750	41.07	7.73	48.80	74.00	-25.20	peak			
2		9413.000	40.59	8.86	49.45	74.00	-24.55	peak			
3		10823.000	39.67	11.80	51.47	74.00	-22.53	peak			
4	* '	11716.000	40.68	11.76	52.44	74.00	-21.56	peak			

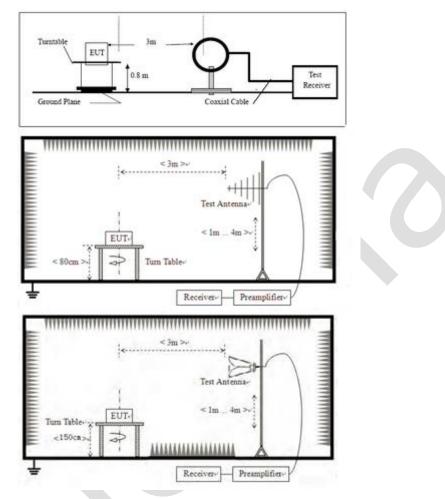
(Reference Only

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBu/V/m	dB	Detector	cm	degree	Comment
1		4959.750	42.49	3.75	46.24	74.00	-27.76	peak			
2		8050.000	41.26	8.01	49.27	74.00	-24.73	peak			
3		9894.750	39.40	10.06	49.46	74.00	-24.54	peak			
4	•	11598.500	39.55	12.06	51.61	74.00	-22.39	peak			

(Reference Only

RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS 2

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	TX Low channel;TX high channel
Test Mode (Final Test)	TX Low channel;TX high channel
Tester	Ben
Temperature	25 ℃
Humidity	60%


2.1 LIMITS

2.1 LIMITS		
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

2.2 BLOCK DIAGRAM OF TEST SETUP

2.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

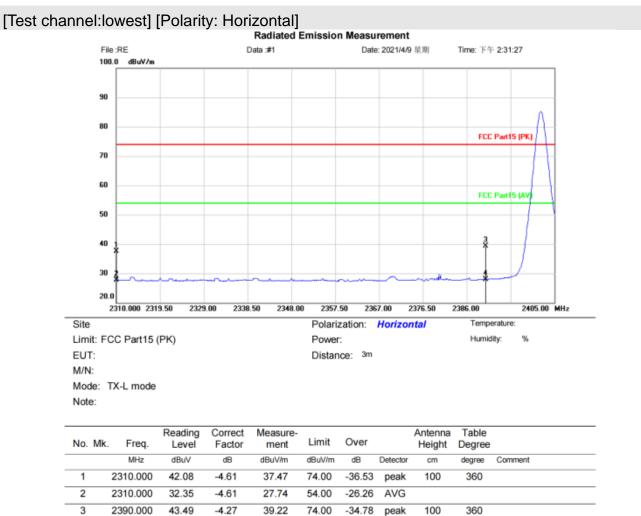
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for TX mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

2.4 TEST DATA

*:Maximum data x:Over limit !:over margin

Reference Only

Test Result: Pass

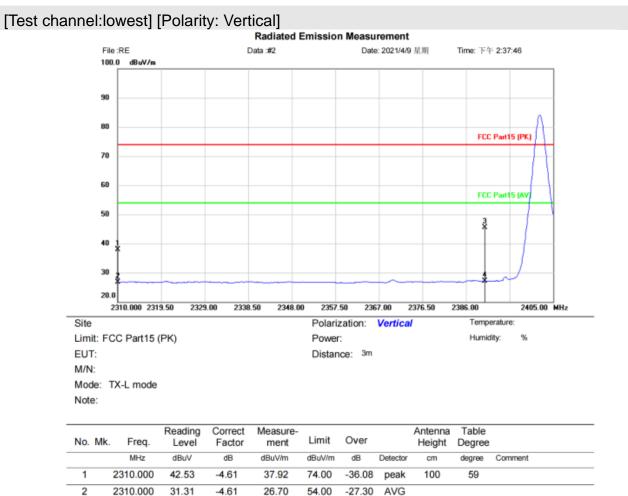
*

4

2390.000

32.26

-4.27


27.99

54.00

-26.01

AVG

x:Over limit 1:over margin

(Reference Only

Test Result: Pass

3

4

*

2390.000

2390.000

49.84

31.28

-4.27

-4.27

45.57

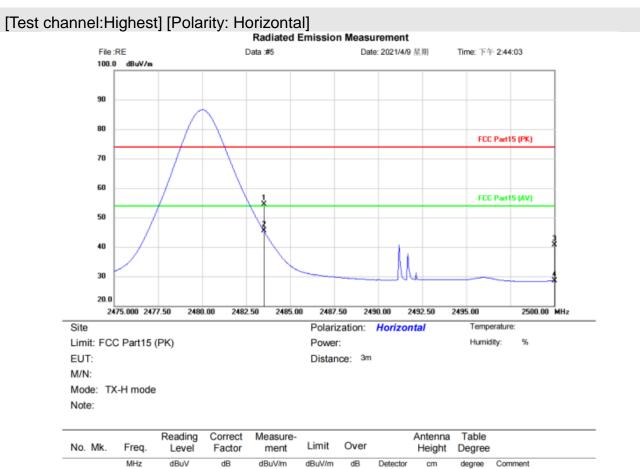
27.01

74.00

54.00

-28.43

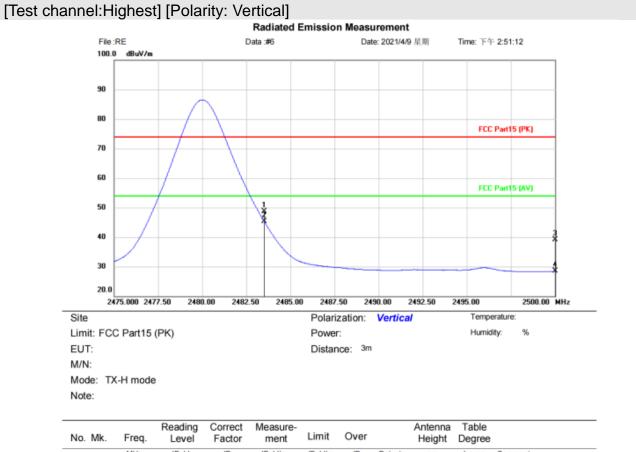
-26.99


peak

AVG

100

59

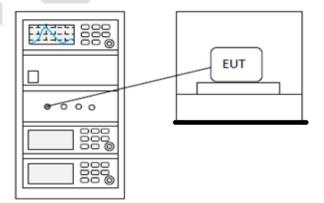


	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	2483.500	58.34	-3.84	54.50	74.00	-19.50	peak	100	0	
2 *	2483.500	49.32	-3.84	45.48	54.00	-8.52	AVG			
3	2500.000	44.50	-3.78	40.72	74.00	-33.28	peak	100	0	
4	2500.000	32.26	-3.78	28.48	54.00	-25.52	AVG			

(Reference Only

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	52.55	-3.84	48.71	74.00	-25.29	peak	100	0	
2	*	2483.500	49.22	-3.84	45.38	54.00	-8.62	AVG			
3		2500.000	42.87	-3.78	39.09	74.00	-34.91	peak	100	0	
4		2500.000	32.23	-3.78	28.45	54.00	-25.55	AVG			

(Reference Only


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8
Test Mode (Pre-Scan)	TX mode
Test Mode (Final Test)	TX mode
Tester	Ben
Temperature	25°C
Humidity	60%

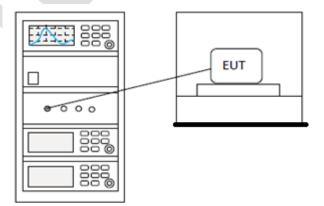
3 CONDUCTED SPURIOUS EMISSIONS

3.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

3.2 BLOCK DIAGRAM OF TEST SETUP

3.3 TEST DATA


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6
Test Mode (Pre-Scan)	TX mode
Test Mode (Final Test)	TX mode
Tester	Ben
Temperature	25 ℃
Humidity	60%

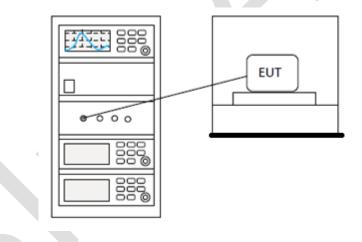
4 CONDUCTED BAND EDGES MEASUREMENT

4.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.209(a) (see \$15.205(c)).

4.2 BLOCK DIAGRAM OF TEST SETUP

4.3 TEST DATA


5 POWER SPECTRUM DENSITY

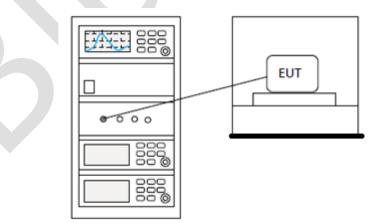
Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.10.2				
Test Mode (Pre-Scan)	TX mode				
Test Mode (Final Test)	TX mode				
Tester	Ben				
Temperature	25 ℃				
Humidity	60%				

5.1 LIMITS

Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

5.2 BLOCK DIAGRAM OF TEST SETUP

5.3 TEST DATA


CONDUCTED PEAK OUTPUT POWER 6

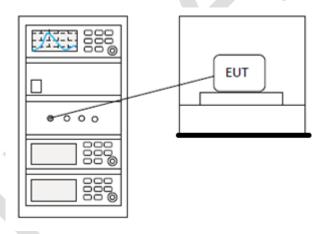
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	TX mode
Test Mode (Final Test)	TX mode
Tester	Ben
Temperature	25℃
Humidity	60%
6.1 LIMITS	

6.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)			
	1 for ≥50 hopping channels			
902-928	0.25 for $25 \le$ hopping channels < 50			
	1 for digital modulation			
2400-2483.5	1 for \geq 75 non-overlapping hopping channels			
	0.125 for all other frequency hopping systems			
	1 for digital modulation			
5705 5950	1 for frequency hopping systems and digital			
5725-5850	modulation			

6.2 BLOCK DIAGRAM OF TEST SETUP

TEST DATA 6.3


7 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.8.1				
Test Mode (Pre-Scan)	TX mode				
Test Mode (Final Test)	TX mode				
Tester	Ben				
Temperature	25 ℃				
Humidity	60%				

7.1 LIMITS

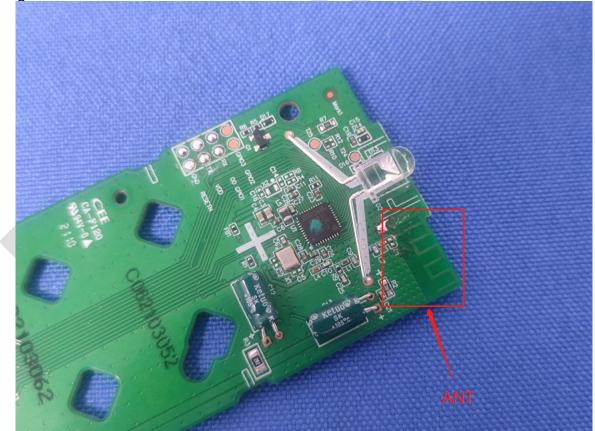
Limit: \geq 500 kHz

7.2 BLOCK DIAGRAM OF TEST SETUP

7.3 TEST DATA

8 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


8.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

10 APPENDIX

10.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	3.549	0	3.549	30	Pass
NVNT	BLE 1M	2442	Ant1	3.555	0	3.555	30	Pass
NVNT	BLE 1M	2480	Ant1	3.985	0	3.985	30	Pass

Power NVNT BLE 1M 2402MHz Ant1

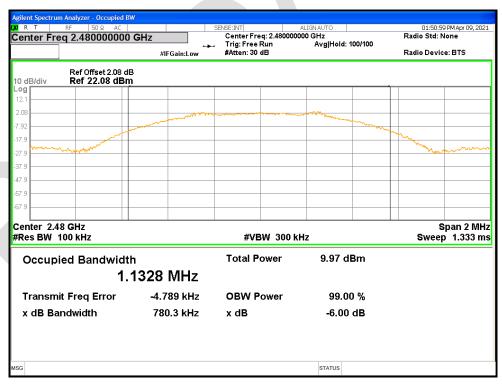
Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1

10.2 -6DB BANDWIDTH

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.769	0.5	Pass
	1M					
NVNT	BLE	2442	Ant1	0.762	0.5	Pass
	1M					
NVNT	BLE	2480	Ant1	0.78	0.5	Pass
	1M					

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1


0 ied B\ 01:47:31 PM Apr 09, Radio Std: None B T Center Freq: 2.40200000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB Center Freq 2.402000000 GHz **ц**., Radio Device: BTS #IFGain:Low Mkr3 2.40238 GHz Ref Offset 2.01 dB Ref 22.01 dBm -3.8280 dBm 10 dB/div .og $\langle \rangle$ {}² 48. Center 2.402 GHz #Res BW 100 kHz Span 2 MHz Sweep 1.333 ms #VBW 300 kHz Occupied Bandwidth **Total Power** 9.45 dBm 1.1238 MHz -5.019 kHz **OBW Power** 99.00 % **Transmit Freq Error** x dB Bandwidth 769.1 kHz x dB -6.00 dB STATUS SG

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

10.3 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.120419512
NVNT	BLE 1M	2442	Ant1	1.112313724
NVNT	BLE 1M	2480	Ant1	1.135722142

OBW NVNT BLE 1M 2402MHz Ant1

RT RF 50Ω AC		SENSE:INT	ALIGNAUTO	01:47:25 PM Apr 09, 2021
enter Freq 2.40200000	GHz	Center Freq: 2.402000	00 GHz	Radio Std: None
	#IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold: 100/100	Radio Device: BTS
	in Gam.cow			
Ref Offset 2.01 dE				
10 dB/div Ref 22.01 dBm	<u> </u>			
12.0				
2.01				
7.99		m	~	
			m	
18.0	~			
28.0	m N			www.
38.0			· · · · · · · · · · · · · · · · · · ·	- Marken
48.0				
58.0				
68.0				
Center 2.402 GHz				Span 3 MHz
Res BW 30 kHz		#VBW 100 ki	Hz	Sweep 3.333 ms
Occupied Bandwidth	<u>,</u>	Total Power	9.86 dBm	
		rotar rotror		
1.'	1204 MHz			
Transmit Freq Error	-1.836 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.374 MHz	x dB	-26.00 dB	
	1.374 MHZ	хub	-20.00 UB	
sg			STATUS	

OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1

10.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	2.665	8	Pass
NVNT	BLE 1M	2442	Ant1	2.614	8	Pass
NVNT	BLE 1M	2480	Ant1	3.12	8	Pass

RT 01:47:36 PM Apr 09, 2021 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 100/100 SENSE:INT Center Freq 2.402000000 GHz Trig: Free Run #Atten: 30 dB PNO: Wide ↔ IFGain:Low Mkr1 2.402 243 GHz Ref Offset 2.01 dB Ref 20.00 dBm 2.665 dBm 10 dB/div 10. 0 0.00 -10.0 20.0 -30.0 40.0 www -50.0 -60.0 -70 Center 2.402000 GHz #Res BW 100 kHz Span 3.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS

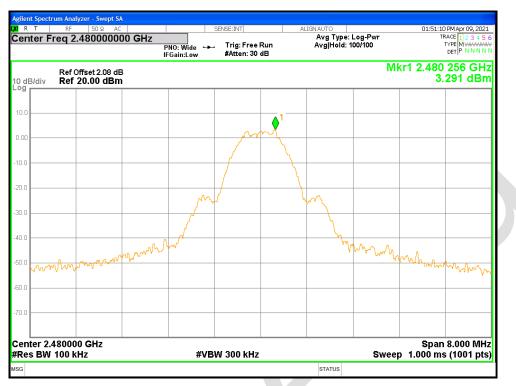
PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2442MHz Ant1

PSD NVNT BLE 1M 2480MHz Ant1

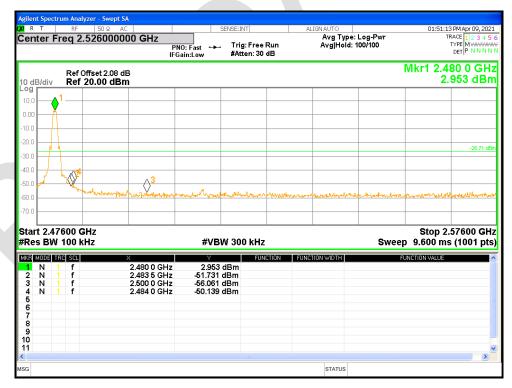
10.5 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-55.78	-30	Pass
NVNT	BLE 1M	2480	Ant1	-53.42	-30	Pass



Band Edge NVNT BLE 1M 2402MHz Ant1 Ref

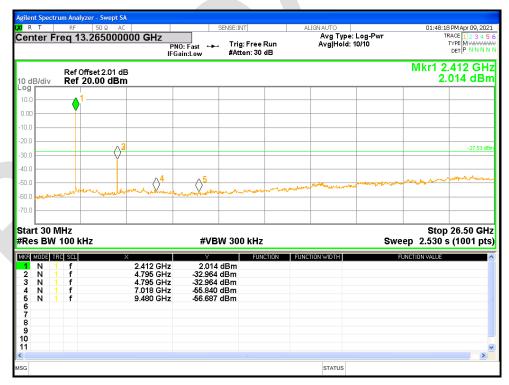
Band Edge NVNT BLE 1M 2402MHz Ant1 Emission



Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

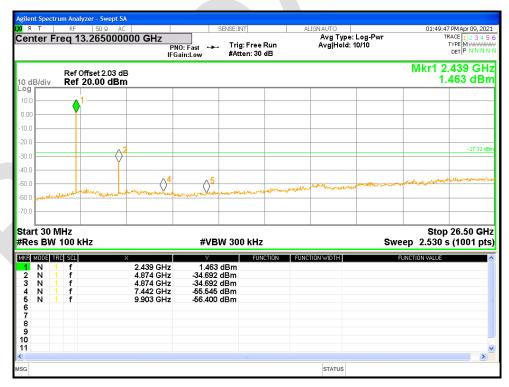
Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

10.6 CONDUCTED RF SPURIOUS EMISSION


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-35.44	-30	Pass
NVNT	BLE 1M	2442	Ant1	-37.37	-30	Pass
NVNT	BLE 1M	2480	Ant1	-36.35	-30	Pass

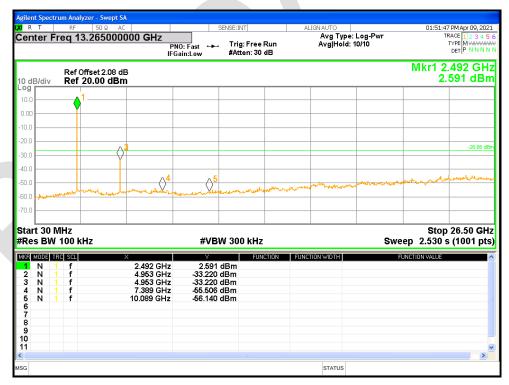
Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref

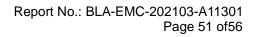
Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

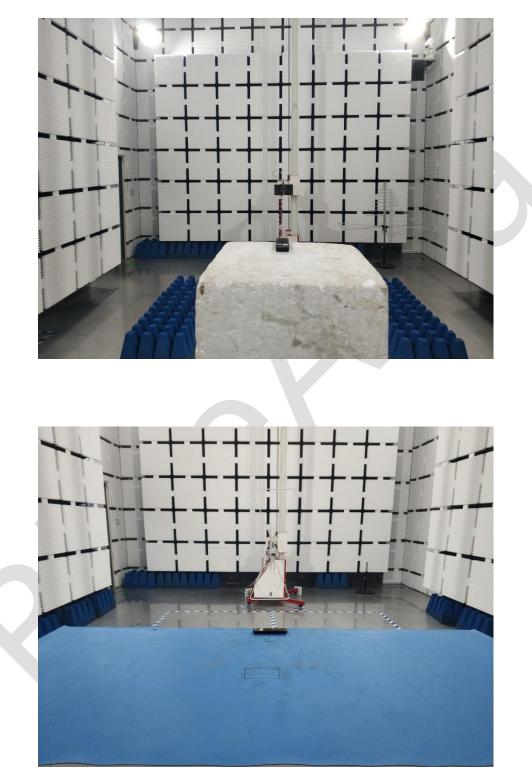


Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission



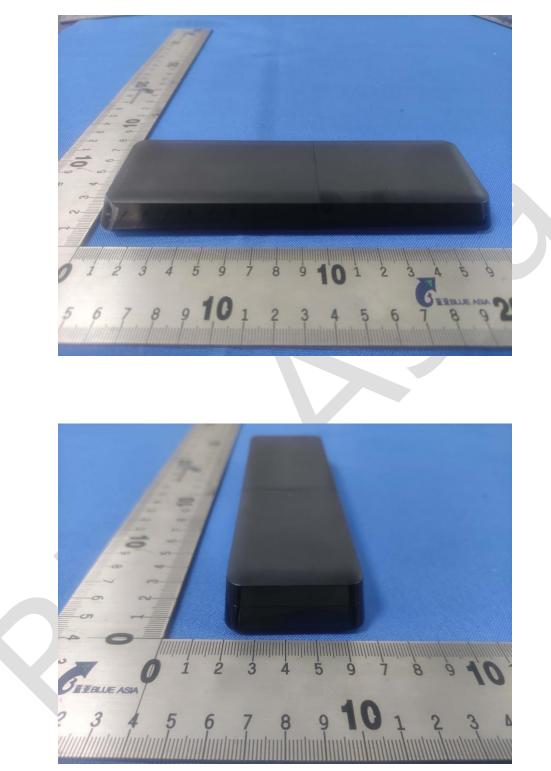



Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

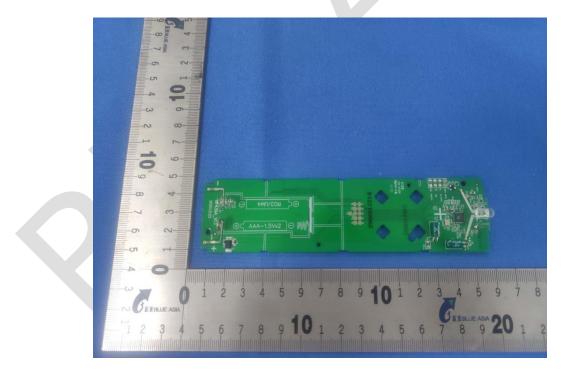


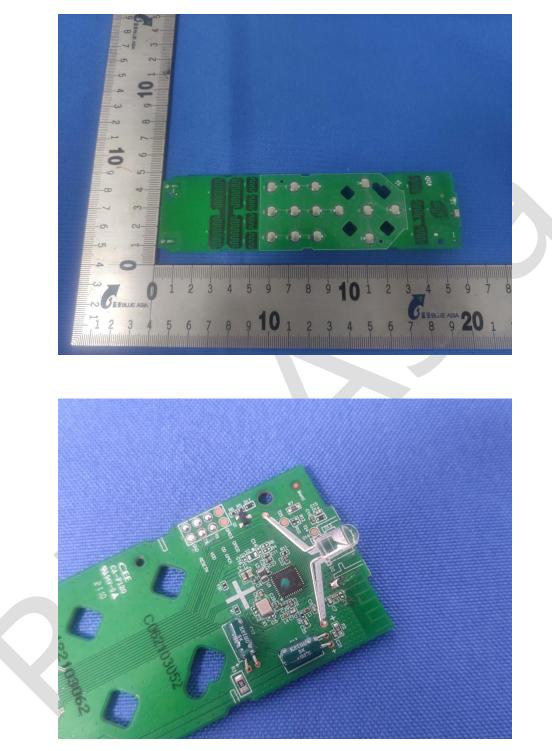
APPENDIX A: PHOTOGRAPHS OF TEST SETUP



APPENDIX B: PHOTOGRAPHS OF EUT

Report No.: BLA-EMC-202103-A11301 Page 53 of56


Report No.: BLA-EMC-202103-A11301 Page 54 of56


Report No.: BLA-EMC-202103-A11301 Page 55 of56

Report No.: BLA-EMC-202103-A11301 Page 56 of56

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.