

TEST REPORT NO: RU1171/6423

1

COPY NO: 2

ISSUE NO:

FCC ID: S4GETRX1

REPORT ON THE CERTIFICATION TESTING OF A TELEGESIS (UK) Ltd. ETRX1 Module WITH RESPECT TO THE FCC RULES CFR 47, PART 15.247 JUNE 2005 INTENTIONAL RADIATOR SPECIFICATION ON BEHALF OF TELEGESIS (UK) Ltd.

TEST DATE: $16^{th} - 22^{nd}$ June 2005

TESTED BY:		J Charters
APPROVED BY:		P Green Product Manager
DATE:	1 st September 2005	
Distribution:		

Copy Nos: 1. TELEGESIS (UK) Ltd.

2. FCC EVALUATION LABORATORIES

3. TRL EMC

THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE

TRL COMPLIANCE SERVICES LTDEMC DIVISIONMOSS VIEWNIPE LANEUP HOLLANDWEST LANCASHIREWN8 9PYUNITED KINGDOMTELEPHONE+44(0)1695556666FAX+44(0)1695557077E-MAILtest@trl-emc.co.ukwww.trlcompliance.com

FS 21805

0728

CONTENTS

	PAGE
CERTIFICATE OF CONFORMITY & COMPLIANCE	3
APPLICANT'S SUMMARY	4
EQUIPMENT TEST CONDITIONS	5
TESTS REQUIRED	6
SAMPLE CALCULATIONS	6
TEST RESULTS	7-21

ANNEX
А
_
В
С
D

POWER SPECTRAL DENSITY	Е
CONDUCTED SPURIOUS EMISSIONS - TX ON	F
RADIATED SPURIOUS EMISSIONS – BANDEDGE	G
RADIATED SPURIOUS EMISSIONS – RX ONLY	Н
POWER LINE CONDUCTED EMISSIONS – TX ON	I
TEST EQUIPMENT CALIBRATION DETAILS	J

Notes:

1.	Component failure during test	YES NO	[] [X]
2.	If Yes, details of failure:		
3.	The facilities used for the testing of the product contain in this report are FCC L	_isted.	

4. The contents of the attached applicants declarations and other supplied information are not covered by the scope of this laboratory's UKAS or FCC accreditations' and is provided in good faith.

CERTIFICATE OF CONFORMITY & COMPLIANCE

FCC IDENTITY:	S4GETRX1				
PURPOSE OF TEST:	Certification				
TEST SPECIFICATION:	FCC RULES CFR 47, Part 15.247 June 2005				
TEST RESULT:	Compliant to Specification				
EQUIPMENT UNDER TEST:	ETRX1 Module				
EQUIPMENT SERIAL No:	Engineering sample				
EQUIPMENT TYPE:	ETRX1 Module				
CARRIER EMISSION:	0.00187Watts				
ANTENNA TYPE:	Integral				
GAIN ANTENNA:	4.4dBi				
BAND OF OPERATION:	2400MHz – 2483.5MHz				
CHANNEL SPACING:	N/A Wideband channel allocation				
NUMBER OF CHANNELS:	16				
FREQUENCY GENERATION:	SAW Resonator [] Crystal [] Synthesiser [X]				
MODULATION METHOD:	Amplitude [] Digital [X] Angle []				
POWER SOURCE(s):	+3.6Vdc				
TEST DATE(s):	16 th – 22 nd June 2005				
ORDER No(s):	TG-PO-10197				
APPLICANT:	TELEGESIS (UK) Ltd.				
ADDRESS:	Marlow Business Centre 84 Station Road Marlow SL7 1NX United Kingdom				
TESTED BY:	J Charters				
APPROVED BY:	P Green Product Manager				

APPLICANT'S SUMMARY

EQUIP	MENT UNDER TEST (EUT):	ETRX1 Module		
EQUIPMENT TYPE:		ETRX1 Module		
SERIA	L NUMBER OF EUT:	Engineering Samp	le	
PURPO	DSE OF TEST:	Certification		
TEST S	SPECIFICATION(s):	FCC RULES CFR	47, Par	t 15.247 June2005
TEST F	RESULT:	COMPLIANT	Yes No	[X] []
APPLIC	CANT'S CATEGORY:	MANUFACTUREF IMPORTER DISTRIBUTOR TEST HOUSE AGENT	2	[X] [] [] [] []
APPLIC	CANT'S ORDER No(s):	TG-PO-10197		
APPLIC	CANT'S CONTACT PERSON(s):	Mr Corin Clifford		
	E-mail address:	Corin.clifford@tele	gesis.co	<u>om</u>
APPLIC	CANT:	TELEGESIS (UK)	Ltd.	
	ADDRESS:	Marlow Business (84 Station Road Marlow SL7 1NX United Kingdom	Centre	
	TEL:	+44 1628 894347		
	FAX:	+44 1628 894333		
MANU	FACTURER:	TELEGESIS (UK)	Ltd.	
EUT(s)	COUNTRY OF ORIGIN:	United Kingdom		
TEST L	ABORATORY:	TRL EMC		
UKAS	ACCREDITATION No:	0728		
TEST	DATE(s)	16 th – 22 nd June 2	005	
TEST F	REPORT No:	RU1171/6423		

TEST/EXAMINATION	RULE PART	DETECTOR	APPLICABILITY
Intentional Emission Frequency:	15.247(b)	Peak	Yes
Intentional Emission Field Strength:	-	-	No
Intentional Emission Band Occupancy 6dB:	15.247 (a)	Peak	Yes
Intentional Emission ERP (mW):	15.247 (b)	Peak	Yes
Spurious Emissions – Conducted:	15.247 (c)	Peak	Yes
Spurious Emissions – Radiated <1000MHz:	15.209	Quasi Peak	Yes (note 1)
Spurious Emissions – Radiated >1000MHz:	15.209	Average	Yes (note 1)
Spectral Power Density	15.247 (e)	Peak	Yes
Spurious Emissions – Power Line TX	15.207	Quasi Peak Average	Yes
Spurious Emissions – Power Line RX	15.207	Quasi Peak Average	Yes
Maximum Frequency of Search:	15.33	-	Yes
Antenna Arrangements Integral:	15.203	-	Yes
Antenna Arrangements External Connector:	15.204	-	Yes
Restricted Bands	15.205	-	Yes
Extrapolation Factor	15.31(f)	-	Yes

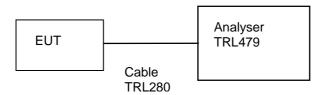
EQUIPMENT TEST / EXAMINATIONS REQUIRED

1.

Note 1: The manufacturer has stated that this unit is not intended to be operated within 20cm of the body.3. Emission Designator:

4.	Duty Cycle:		<100%
5.	Transmitter bit or pulse rate and level:		38400Bps
6.	Temperatures:	Ambient (Tnom)	20°C
7.	Supply Voltages:	Vnom	3.6Vdc
	Note: Vnom voltages are as stated shove upless athe	nuice chown on the to	at report page

Note: Vnom voltages are as stated above unless otherwise shown on the test report page


8.	Equipment Category:	Single channel Two channel Multi-channel	[] [] [X]
9.	Channel Allocation:	Narrowband Wideband	[] [X]

TRANSMITTER 6dB BANDWIDTH - CONDUCTED - PART 15.247(A)(2)

Ambient temperature	=
Relative humidity	=
Conditions	=
Supply voltage	=

- 20°C(<1GHz) 50% (<1GHz),
- Radio Lab
- 3.6V

Diagram

Frequency	Channel	Measured Bandwidth	Limit
2.405MHz	Bottom	1.630MHz	>500kHz
2.445MHz	Middle	1.690MHz	>500kHz
2.480MHz	Тор	1.640MHz	>500kHz

Notes:

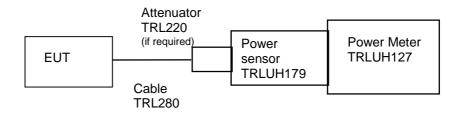
For analyser plots see annex C

Test Method:

1

The integral antenna was replaced by a temporary antenna connector. The EUT was connected to the analyser via a cable 1

2


3 The 6dB bandwidth was recorded with the EUT activity transmitting data.

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
SPECTRUM ANALYSER	MARCONI	2386/2380	152076/004	UH120	

TRANSMITTER - MAXIMUM PEAK POWER - CONDUCTED - PART 15.247(B)(3)

Ambient temperature	=	20°C(<1GHz)
Relative humidity	=	50% (<1GHz),
Conditions	=	Radio Lab
Supply voltage	=	3.6V

Diagram

High Power

Frequency MHz	Channel	Peak Power on Meter dBm	Attenuator loss dB	Peak Power Watts	EUT Antenna Gain dBi	Average Power Watts	Limit Watts
2.405	Bottom	-33.18	31.5	0.00068	4.4	0.00187	1
2.445	Middle	-33.81	31.5	0.00059	4.4	0.00162	1
2.480	Тор	-33.53	31.5	0.00063	4.4	0.00173	1

Low Power

Frequency MHz	Channel	Peak Power on Meter dBm	Attenuator loss dB	Peak Power mW	EUT Antenna Gain dBi	Average Power mW	Limit mW
2.405	Bottom	-31.59	1.3	0.00069	4.4	0.0019	1000
2.445	Middle	-31.73	1.3	0.00067	4.4	0.0018	1000
2.480	Тор	-31.69	1.3	0.0068	4.4	0.0019	1000

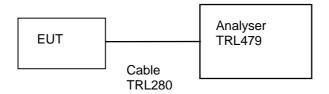
Notes:

1 Gain of antenna 4.4db declared by manufacturer.

Test Method:

- 1 The integral antenna was replaced by a temporary antenna connector.
- 2 The EUT was connected to the power sensor via a cable and attenuator -if applicable.
 - 3 The EUT was operated in transmit mode with modulation.
 - 4 The level on the power meter was recorded.

Test equipment used for Peak Power measurement:


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
POWER METER	MARCONI	6960B	237034/001	UH127	x
POWER SENSOR	MARCONI			UH179	x
ATTENUATOR	BIRD	8304-300-N	-	220	x

TRANSMITTER BAND EDGE EMISSIONS - CONDUCTED - Part 15.247(D)

Ambient temperature	=	20
Relative humidity	=	55
Conditions	=	Сс
Supply voltage	=	3.6

- О°С 5%
 - onducted Radio Lab
- ippiy ıy
- 6Vdc

Diagram

Test Result

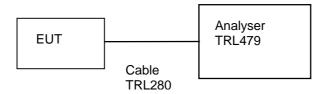
Measured as compliant, see analyser plots

Notes:

- 1 The EUT was set in a to a transmit mode with modulation on the top and bottom channels.
- 2 A temporary antenna connector was used to take the measurement.
- 3 See Annex D for analysers plots.

Test Method:

- 1 A plot covering the lowest channel and band edge was taken. A marker was set on the peak emission of the lowest channel. The delta marker function was then used to measure the highest out of band emissions. (If no peaks exist outside the band the level is taken at the band edge).
- 2 A plot covering the highest channel and band edge was taken. A marker was set on the peak emission of the highest channel. The delta marker function was then used to measure the highest out of band emissions. (If no peaks exist outside the band the level is taken at the band edge).


The test equipment used for the tests is shown below:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
RECEIVER	ROHDE & SCHWARZ	ESVS 10	825892/003	UH04	
SPECTRUM ANALYSER	MARCONI	2386/2380	152076/004	UH120	

TRANSMITTER POWER SPECTRAL DENSITY - CONDUCTED - PART 15.247(E)

Ambient temperature	=	20°C(<1GHz)
Relative humidity	=	50% (<1GHz),
Conditions	=	Radio Lab
Supply voltage	=	3.6V

Diagram

Frequency	Channel	Measured Power Spectral Density	Limit
2.405MHz	Bottom	-20.11dBm	8dBm
2.445MHz	Middle	-20.85dBm	8dBm
2.480MHz	Тор	-23.49dBm	8dBm

Notes:

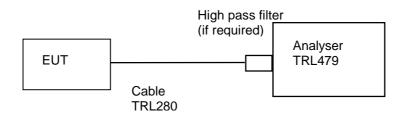
For analyzer plots see annex E 1

Test Method:

The integral antenna was replaced by a temporary antenna connector. 1

2 The EUT was connected to the analyser via a cable

3 The resolution bandwidth on the analyser was set to 3kHz and trace set to max hold.


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
SPECTRUM ANALYSER	MARCONI	2386/2380	152076/004	UH120	

TRANSMITTER CONDUCTED SPURIOUS EMISSIONS - CONDUCTED - Part 15.247(D)

Ambient temperature	
Relative humidity	
Conditions	
Supply voltage	

- $= 25^{\circ}C$
- = 55%
- = Conducted -Radio Lab
- = +3.6Vdc

Diagram

Top Channel

Range Frequency (MHz)	Emission Frequency (MHz)	Emission Level	Cable loss	Level (dBm)	Limit (dBm)
20 2000	4959.994	-46.63	1.0	-45.63	-27.76
30 – 26000	7.440520	-56.41	2.3	-54.11	-27.76

See spectrum analyser scan plots – Annex ${\sf F}$

Bottom Channel

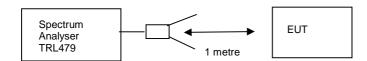
Level	Cable loss	(dBm)	(dBm)
-44.73 -57.84	1.0 2.3	-43.73 -55.54	-27.76 -27.76
	-44.73	-44.73 1.0	Level (dBm) -44.73 1.0 -43.73

See spectrum analyser scan plots – Annex F

Notes:	1 During the scans the unit was operated in the following modes:
	Transmitting on lowest channel with modulation
	Transmitting on highest channel with modulation
	2 Section 15.247(c) states that all spurious emissions measured within a 100kHz
	bandwidth shall be attenuated by at least 20dB below the level of the highest
	fundamental level measured within a 100kHz bandwidth.
	3 Only emissions within 20dB of limit are recorded.
Test Method:	· · · · · · · · · · · · · · · · · · ·
	1 The EUT was connected to the analyzer using a cable and high pass filter(if required).
	2 Frequency sweeps were performed to check for spurious emissions.

3 An emissions discovered were checked for compliance against the limit.

The test equipment used for the tests is shown below:


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
RECEIVER	ROHDE & SCHWARZ	ESIB 7	100182	630	
RECEIVER	ROHDE & SCHWARZ	ESVS 10	825892/003	UH04	
RANGE 1	TRL	3 METRE	N/A	UH06	
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x

TRANSMITTER EMISSIONS - RADIATED - Part 15.247(c) and 15.209

Ambient temperature
Relative humidity
Conditions
Supply voltage

= 25°C = 55% = Radiated OATS

- = +3.6Vdc
- = +3.6V

Horn

Bottom Channel 30MHz -26000MHz

	Emission Frequency (MHz)	Meas. Rx. (dBuV)	Cable loss (dB)	Ant. Factor	Field Strength (dBµV/m)	Extrap. Factor (dB)	Result (µV/m)	Limit (µV/m)	
30MHz – 88MHz Restricted band	Note 7							100	
88MHz – 216MHz Restricted band	Note 7							150	
216MHz – 960MHz Restricted band	Note 7							200	
960MHz – 1GHz Restricted band	Note 7							500	
1GHz – 26GHz Restricted band	Note 7							500	
30MHz -26GHz	Note 7							-20dBc	
See annex H for initial pre scan results.									

TRANSMITTER EMISSIONS cont. - RADIATED - Part 15.247(c) and 15.209

Middle Channel 30MHz -26000MHz

	Emission Frequency (MHz)	Meas. Rx. (dBuV)	Cable loss (dB)	Ant. Factor	Field Strength (dBµV/m)	Extrap. Factor (dB)	Result (µV/m)	Limit (µV/m)	
30MHz – 88MHz Restricted band	Note 7							100	
88MHz – 216MHz Restricted band	Note 7							150	
216MHz – 960MHz Restricted band	Note 7							200	
960MHz – 1GHz Restricted band	Note 7							500	
1GHz – 26GHz Restricted band	Note 7							500	
30MHz -26GHz	Note 7							-20dBc	
See annex H for initial pre scan results.									

Top Channel 30MHz -26000MHz

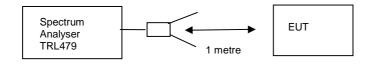
· ·	Emission Frequency (MHz)	Meas. Rx. (dBuV)	Cable loss (dB)	Ant. Factor	Field Strength (dBµV/m)	Extrap. Factor (dB)	Result (µV/m)	Limit (µV/m)	
30MHz – 88MHz Restricted band	Note 7							100	
88MHz – 216MHz Restricted band	Note 7							150	
216MHz – 960MHz Restricted band	Note 7							200	
960MHz – 1GHz Restricted band	Note 7							500	
1GHz – 26GHz Restricted band	Note 7							500	
30MHz -26GHz	Note 7							-20dBc	
See annex H for initial pre scan results.									

Notes:	1	During the scans the unit was operated in the following modes: Unit operating on lowest channel Unit operating on highest channel
	2	R indicates frequency with a restricted band.
	3	Initial pre scans were performed see Annex H for plots.
	4	Emissions above 1GHz were measured with both a peak and average detectors.
	5	Measurements <1GHz were performed at 3 meters.
	6	Measurements >1GHz were initial performed at 0.3metres. This distance was increased if sensitivity of analyser allowed.
	7	Only emissions with in 20dB of limit are recorded.
Test Method:		
	1	As per section 15.247
	2	Measuring distances as Notes 5 to 6 above.
	3	EUT 0.8 metre above ground plane.
	4	Emissions maximised by rotation of EUT, on an automatic turntable.
		Raising and lowering the receiver antenna between 1m & 4m >30MHz.
		Horizontal and vertical polarisations, of the receive antenna.

Horizontal and vertical polarisations, of the receive antenna. EUT orientation in three orthagonal planes. Maximum results recorded.

The test equipment used for the tests is shown below:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
AE, LOOP, Z2, 9kHz - 30MHz	ROHDE & SCHWARZ	HFH2	881058 - 53	07	
HORN ANTENNA	EMCO	3115	9010-3580	138	
HORN ANTENNA	EMCO	3115	9010-3581	139	x
RECEIVER	ROHDE & SCHWARZ	ESHS 10	830051/001	UH03	
RECEIVER	ROHDE & SCHWARZ	ESVS 10	825892/003	UH04	x
RANGE 1	TRL	3 METRE	N/A	UH06	x
AE, LOOP, Z2, 9kHz - 30MHz	ROHDE & SCHWARZ	HFH2	881058 - 53	07	
BILOG ANTENNA	CHASE	CBL6112	2129	UH93	x
SPECTRUM ANALYSER	MARCONI	2386/2380	152076/004	UH120	x


RECEIVER TESTS

TRANSMITTER SPURIOUS EMISSIONS - RADIATED - PART 15.209

Ambient temperature	
Relative humidity	
Conditions	
Supply voltage	

- $26^{\circ}C(<1GHz)$ =
- 55% (<1GHz), =
- Open Area Test Site (OATS) = =
 - +3.6Vdc

- 3m measurements <1GHz [X] [X] [X] 0.3m measurements >1GHz
- 3m extrapolated from 0.3m

Horn

Bottom Channel 30MHz -26000MHz

	FREQ. (MHz)	MEAS. Rx. (dBµV)	CABLE LOSS (dB)	ANT FACTOR	FIELD STRENGTH (dBµ/m)	EXTRAP. FACTOR (dB)	FIELD STRENGTH (µV/m)	
30MHz - 88MHz	Note 7							
88MHz - 216MHz	Note 7							
216MHz - 960MHz	Note 7							
960MHz - 1GHz	Note 7							
1GHz - 5GHz	Note 7							
	1.705MHz	to 30MHz	30µV/m @ 30m					
	30MHz to	88MHz		1	00µV/m @	3m		
Lingita	88MHz to	216MHz		1	50µV/m @	3m		
Limits	216MHz to	960MHz		2	:00µV/m @	3m		
	960MHz	to 1GHz		5	00µV/m @	3m		
	1GHz to	5GHz		5	i00µV/m @	3m		

Middle Channel 30MHz -26000MHz

	FREQ. (MHz)	MEAS. Rx. (dBµV)	CABLE LOSS (dB)	ANT FACTOR	FIELD STRENGTH (dBµ/m)	EXTRAP. FACTOR (dB)	FIELD STRENGTH (µV/m)
30MHz - 88MHz	Note 7						
88MHz - 216MHz	Note 7						
216MHz - 960MHz	Note 7						
960MHz - 1GHz	Note 7						
1GHz - 5GHz	Note 7						
	1.705MHz	to 30MHz			30µV/m @ 3	0m	
	30MHz to	88MHz	100µV/m @ 3m				
Limite	88MHz to	216MHz		150µV/m @ 3m			
Limits	216MHz to	960MHz		200µV/m @		3m	
	960MHz	to 1GHz		5	i00µV/m @	3m	
	1GHz to	5GHz		5	600µV/m @	3m	

Top Channel 30MHz -26000MHz

	FREQ. (MHz)	MEAS. Rx. (dBµV)	CABLE LOSS (dB)	ANT FACTOR	FIELD STRENGTH (dBµ/m)	EXTRAP. FACTOR (dB)	FIELD STRENGTH (µV/m)	
30MHz - 88MHz	Note 7							
88MHz - 216MHz	Note 7							
216MHz - 960MHz	Note 7							
960MHz - 1GHz	Note 7							
1GHz - 5GHz	Note 7							
	1.705MHz	to 30MHz		30µV/m @ 30m				
	30MHz to	88MHz	100µV/m @ 3m					
Limits	88MHz to	88MHz to 216MHz		150µV/m @ 3m				
Limits	216MHz to	960MHz	200µV/m @ 3m					
	960MHz	to 1GHz		5	i00µV/m @	3m		
	1GHz to	5GHz		5	00µV/m @	3m		

Notes:	 During the scans the unit was operated in the following modes Unit operating on lowest channel Unit operating on mid channel Unit operating on highest channel
	2 R indicates frequency with a restricted band.
	3 Initial pre scans were performed see Annex I for plots.
	4 Emissions above 1GHz were measured with both a peak and average detectors.
	5 Measurements <1GHz were performed at 3 meters.
	6 Measurements >1GHz were initial performed at 0.3metres. This distance was increased if sensitivity of analyser allowed.
	7 Only emissions with in 20dB of limit are recorded.
Test Method:	1 As per Radio – Noise Emissions, ANSI C63.4: 2003
	2 Measuring distances as Notes 1 to 4 above
	3 EUT 0.8 metre above ground plane
	4 Emissions maximised by rotation of EUT, on an automatic turntable.
	Raising and lowering the receiver antenna between 1m & 4m. Horizontal and vertical polarisations, of the receive antenna. EUT orientation in three orthagonal planes. Maximum results recorded.

The test equipment used for the Transmitter Spurious Emissions - Radiated - Part 15.209 tests is shown overleaf:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
AE, LOOP, Z2, 9kHz - 30MHz	ROHDE & SCHWARZ	HFH2	881058 - 53	07	
HORN ANTENNA	EMCO	3115	9010-3580	138	
HORN ANTENNA	EMCO	3115	9010-3581	139	x
RECEIVER	ROHDE & SCHWARZ	ESHS 10	830051/001	UH03	
RECEIVER	ROHDE & SCHWARZ	ESVS 10	825892/003	UH04	x
RANGE 1	TRL	3 METRE	N/A	UH06	х
AE, LOOP, Z2, 9kHz - 30MHz	ROHDE & SCHWARZ	HFH2	881058 - 53	07	
BILOG ANTENNA	CHASE	CBL6112	2129	UH93	х
SPECTRUM ANALYSER	MARCONI	2386/2380	152076/004	UH120	x

TRANSMITTER CONDUCTED EMISSIONS – AC POWER LINE Part 15.207

oratory

SIGNIFICANT EMISSIONS

Transmitting Top Channel DC Voltage supply to EUT 3.6Vdc

FREQUENCY (MHz)	MEASUREMENT RECEIVER READING (dBµV)	DETECTOR	CONDUCTOR (L or N)	LIMIT (dBµV)
0.385	43.77	QP	L	58.17
0.765	39.49	QP	L	56.0
0.385	39.33	AV	L	48.17

Transmitting Bottom Channel Voltage supply to EUT 3.6Vdc

FREQUENCY (MHz)	MEASUREMENT RECEIVER READING (dBµV)	DETECTOR	CONDUCTOR (L or N)	LIMIT (dBµV)
0.385	43.77	QP	L	58.17
0.765	39.49	QP	L	56.0
0.385	39.33	AV	L	48.17

SIGNIFICANT EMISSIONS

Receiving Voltage supply to EUT 3.6Vdc

FREQUENCY (MHz)	MEASUREMENT RECEIVER READING (dBµV)	DETECTOR	CONDUCTOR (L or N)	LIMIT (dBµV)
0.385	43.77	QP	L	58.17
0.765	39.49	QP	L	56.0
0.385	39.33	AV	L	48.17

SIGNIFICANT EMISSIONS

Transmitting Top Channel DC Voltage supply to EUT 2.7Vdc						
FREQUENCY (MHz)	MEASUREMENT RECEIVER READING (dBµV)	DETECTOR	CONDUCTOR (L or N)	LIMIT (dBµV)		
No significant emissions within 10dB of limit.						

Transmitting Bottom Channel Voltage supply to EUT 2.7Vdc

FREQUENCY (MHz)	MEASUREMENT RECEIVER READING (dBµV)	DETECTOR	CONDUCTOR (L or N)	LIMIT (dBµV)		
No significant emissions within 10dB of limit.						

SIGNIFICANT EMISSIONS

Receiving Voltage supply to EUT 2.7Vdc

FREQUENCY (MHz)	MEASUREMENT RECEIVER READING (dBµV)	DETECTOR	CONDUCTOR (L or N)	LIMIT (dBµV)	
No significant emissions within 10dB of limit.					

Notes:

1 See attached plots annex J (worst case 3.6Vdc)

Test Method: 1 As per Radio – Noise Emissions, ANSI C63.4: 2003

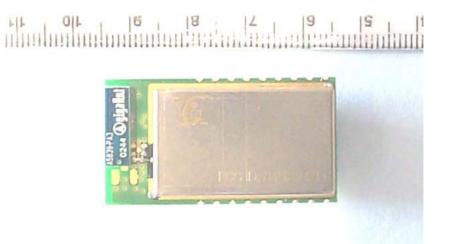
The test equipment used for the Transmitter Conducted Emissions - AC Power Line Part 15.207 test was:

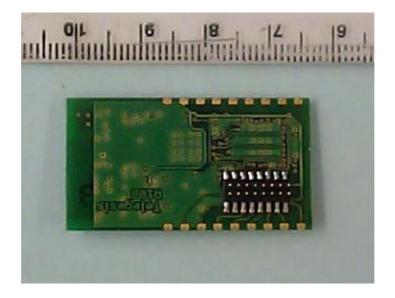
TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
RECEIVER	ROHDE & SCHWARZ	ESHS20	837960/003	237	
LISN / AMN	ROHDE & SCHWARZ	ESH3-Z5	83746/010	289	
RECEIVER	ROHDE & SCHWARZ	ESHS10	844077/019	353	
RECEIVER	ROHDE & SCHWARZ	ESHS 10	830051/001	UH03	x
LISN/AMN	ROHDE & SCHWARZ	ESH3-Z5	863906/018	UH05	X
SPECTRUM ANALYSER	MARCONI	2386/2380	152076/004	UH120	

ANNEX A

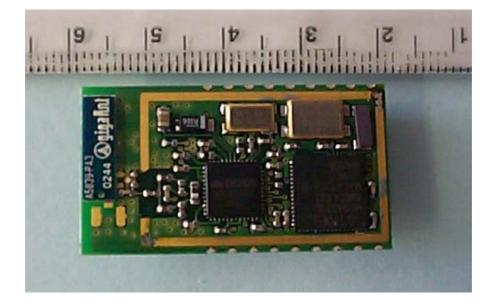
PHOTOGRAPHS

TEST SETUP


PHOTOGRAPH No. 1


TRANSMITTER FRONT VIEW

PHOTOGRAPH No. 2



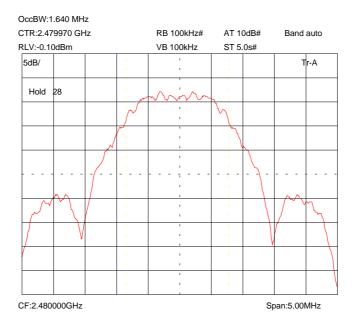
RU1171/6423

PHOTOGRAPH No. 3 TRANSMITTER REAR VIEW

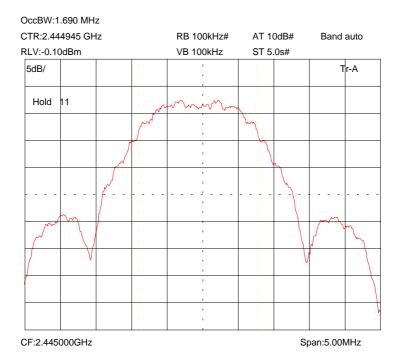
PHOTOGRAPH No. 4 TRANSMITTER PCB LID REMOVED

ANNEX B

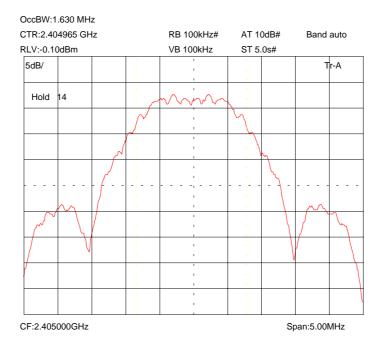
APPLICANT'S SUBMISSION OF DOCUMENTATION LIST


APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

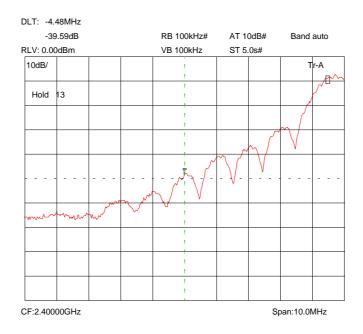
a.	ТСВ	-	APPLICATION FEE	[X] [X]
b.	AGENT'S LETTER OF AUTHORISATION	-		[X]
C.	MODEL(s) vs IDENTITY	-		[]
d.	ALTERNATIVE TRADE NAME DECLARATION(s)	-		[]
e.	LABELLING	- -	PHOTOGRAPHS DECLARATION DRAWINGS	[X] [X] [X]
f.	TECHNICAL DESCRIPTION	-		[X]
g.	BLOCK DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [X] []
h.	CIRCUIT DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [X] [] []
i.	COMPONENT LOCATION	- - -	Tx Rx PSU AUX	[X] [X] [] []
j.	PCB TRACK LAYOUT	- - -	Tx Rx PSU AUX	[X] [X] [] []
k.	BILL OF MATERIALS	- - -	Tx Rx PSU AUX	[X] [X] []
I.	USER INSTALLATION / OPERATING INSTRUCTIONS	-		[X]

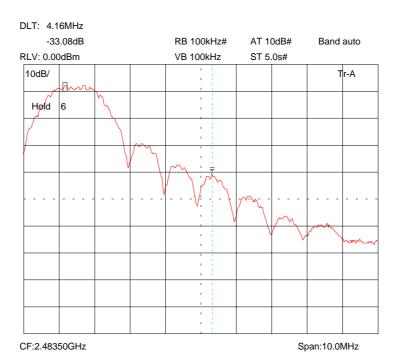

ANNEX C

6 dB BANDWIDTH

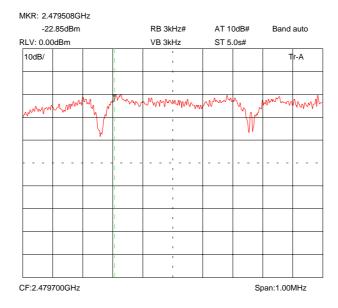

6dB Bandwidth Top Channel

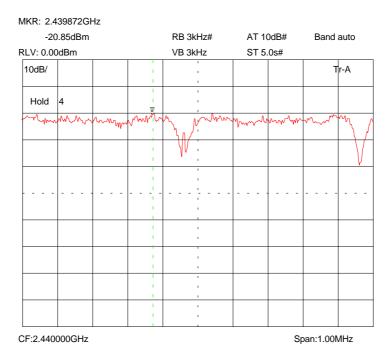
6dB Bandwidth Middle Channel


6dB Bandwidth Bottom Channel

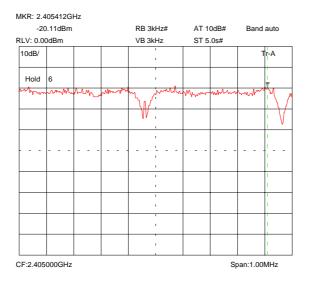

ANNEX D

BAND EDGE COMPLIANCE


Upper Band Edge


ANNEX E

POWER SPECTRAL DENSITY

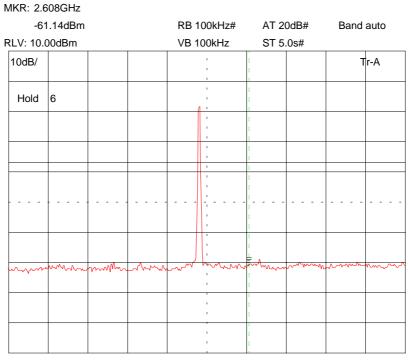

Power Density Top Channel

Power Density Middle Channel

Power Density Bottom Channel

ANNEX F

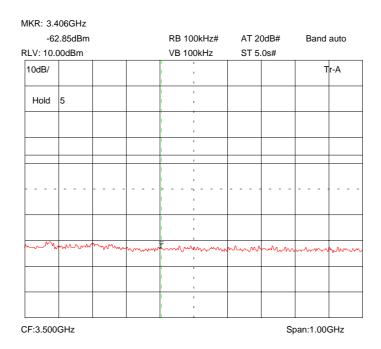
SPURIOUS EMISSIONS CONDUCTED


0 – 1GHz Low Channel

-6	5.37dBm			RB 10	0kHz#	AT 2	0dB#	Band	auto
RLV: 10.	00dBm			VB 10	0kHz	ST 5	.0s#		
10dB/								Т	r-A
Hold	5								
				1					
L.	· · · · · · · · · · · · · · · · · · ·	~~~~~	Mrm	Mun pr	mm	mp m	m		~~~
				·					

1-2 GHz Low Channel

-7.67dBm	RB 100kHz#	AT 20dB#	Band auto
LV: 10.00dBm	VB 100kHz	ST 5.0s#	
10dB/			Tr-A
Hold 29	±		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second strates and		


### 2-3GHz Low Channel



CF:2.500GHz

Span:1.00GHz

#### 3-4GHz Low Channel



### 4-6GHZ Low Channel

-4	4.51dBm			RB 100kHz#	AT 20dB#	Band auto
LV: 10.	00dBm	_		VB 100kHz	ST 5.0s#	
10dB/						Tr-A
Hold	5			1 1		
				·,		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····	mm	hm	himme	whyn hwm	

6-8GHz Low Channel

MKR: 7.2	16GHz								
-56	6.57dBm			RB 10	0kHz#	AT 2)dB#	Band	auto
RLV: 10.0	00dBm			VB 10	0kHz	ST 5.	0s#		
10dB/								Т	r-A
Hold	4								
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A	n_n_n	~M~~~~	www	Mmm	h~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man	r mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
L							0	0.00	

CF:7.000GHz

Span:2.00GHz

### 8-10GHz Low Channel

5.70dBm			RB 10	0kHz#	AT 20	)dB#	Band	auto
00dBm			VB 10	0kHz	ST 5.	0s#		
							Т	r-A
4				·				
				· .				
man	n. Marina	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_~~~~	~~~~	h	~~~~~	o.4- MA-0	hun
							40 - 0 - 0	
	00dBm	00dBm	00dBm 4	VB 10       4	OddBm         VB 100kHz           4         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         <	VB 100kHz         ST 5.           4         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -	VB 100kHz     ST 5.0s#       4     -       4     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     - <t< td=""><td>VB 100kHz     ST 5.0s#       4    </td></t<>	VB 100kHz     ST 5.0s#       4

# 10-12GHz Low Channel

-5	6.13dBm			RB 10	0kHz#	AT 20	0dB#	Band	auto
LV: 10.	00dBm			VB 10	0kHz	ST 5.	.0s#		-
10dB/								г	r-A
Hold	4								
~~~^		mm	www	~~~~~~^	www	whr	mm	mm	ww

12-14GHz Low Channel

-5	2.98dBm			RB 100	kHz#	AT 20)dB#	Band	auto
LV: 10.	00dBm			VB 100	kHz	ST 5.	0s#		
10dB/				1				T I	r-A
Hold	5								
					1				
					1				
					I.				
					-				
					1				
					+				
					1				
~~~~	m m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	mm	mm	Mnmm	ᢆ᠕᠂᠕	mm	_~~
				1					
					1				
				н 1	1				

CF:13.000GHz

Span:2.00GHz

# 14-16GHz Low Channel

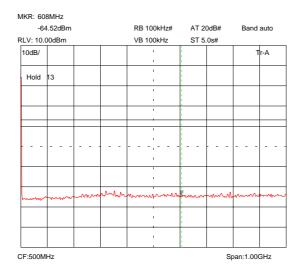
-5	2.98dBm			RB 100kHz#	AT 2	20dB#	Band a	Jto
LV: 10.	00dBm			VB 100kHz	ST 5	5.0s#		
10dB/				1			Tr-	A
Hold	4			1				
				'				
h	hnn	~~~~~	~~~~~	M-A-MANA	- m	· ·····	hand	~~~
				1				
				1				

### 16-18GHz Low Channel

-5	2.57dBm			RB 100kHz	¢ AT	20dB#	Band	auto
LV: 10.	00dBm			VB 100kHz	ST	5.0s#		
10dB/							Г	r-A
Hold	3			1				
				1	1			
				1	1			
					1			
M	mm	wwww	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmmmm	~~ <del>7</del> ^~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hanne	him
				1	1			
					1	_		
					1			

CF:17.000GHz

Span:2.00GHz


### 18-20GHz Low Channel

-5	2.13dBm			RB 100k	Hz#	AT 20	)dB#	Band	auto
LV: 10	.00dBm			VB 100k	Hz	ST 5.	0s#		
10dB/								Т	r-A
Hold	3								
				1					
www	thomas	- <b>~~~</b> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~^		<u>,</u>	~_//~~	ᠰᠬᠰ᠋᠁ᠰ	Mr. M	nm
				1					

### 20-22GHz Low Channel

-5	0.59dBm			RB 10	0kHz#	ŀ	AT 20	)dB#	Band	auto
LV: 10.	.00dBm			VB 10	0kHz	5	ST 5.	0s#		
10dB/					1				-	r-A
Hold	5									
					1					
					1 1 1					
					, ,	-				
LANN	mount	h	www.ww	www	www				_	-
					1					
					1 1 1					

# 0 – 1GHz High Channel



#### 1-2 GHz Low Channel

MKR: 1.608GHz			
-63.46dBm	RB 100kHz#	AT 20dB#	Band auto
RLV: 10.00dBm	VB 100kHz	ST 5.0s#	
10dB/		1 1	Tr-A
Hold 4		1 1	
		- 	
		i i	
		i i i	
		1	
mulmulminen	whome whome		mununu
		1	
	1	1	
CF:1.500GHz		S	pan:1.00GHz

# 2-3GHz High Channel

-61.14dBm LV: 10.00dBm				AT 2	20dB#	Band auto			
				ST	ST 5.0s#				
10dB/					1			-	Tr-A
Hold	6								
					1 1	1			
					- <u>-</u>				
					1 1 1				
~~~~	www.	mMm		-~~~~~~	han	mm	- Marina	nom	h
					1			+	+
						 		+	+

3-4GHz High Channel

MKR: 3.608GH	lz						
-63.09dE	3m		RB 100kHz#	AT 2	0dB#	Band	auto
RLV: 10.00dBn	n		VB 100kHz	ST 5	.0s#		
10dB/						Т	r-A
Hold 3			1 1 1				
		.	,				
			1				
			1 1				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 mar and a second	wW	······································	Amm-	hum	www.h.v	Mm
			1				
			1				
CF:3.500GHz			L		SI	ban:1.00	GHz

# 4-6GHz High Channel

-4	6.82dBm		RB 100kHz#	AT 20dB#	dB# Band auto		
LV: 10.00dBm			VB 100kHz	ST 5.0s#			
10dB/					Tr-A		
Hold	4						
Ποία	4		1 A A				
			1.1				
			1 A A				
			1.1				
			1 I I				
			L				
			÷				
					+		
			· · ·				
			· ·				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	mmm	mmmh	www.when		
			1.1				
			1.1				
			1 A A				

CF:5.000GHz

Span:2.00GHz

6-8GHz High Channel

MKR: 6.964GHz			
-62.83dBm	RB 100kHz#	AT 20dB#	Band auto
RLV: 10.00dBm	VB 100kHz	ST 5.0s#	
10dB/	1		Tr-A
Hold 3			
	1		
	1		
w.m.	mm	mmmum	www.www.www.
CF:7.000GHz		s	pan:2.00GHz

8-10GHz High Channel

-52.88dBm	RB 100kHz#	AT 20dB#	Band auto
LV: 10.00dBm	VB 100kHz	ST 5.0s#	
10dB/			Tr-A
Hold 7			
manne	mount	mmmmm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

10-12GHz High Channel

-56.07dBm	RB 100kHz#	AT 20dB#	Band auto		
LV: 10.00dBm	VB 100kHz	ST 5.0s#			
10dB/			Tr-A		
Hold 3					
mumum	MM na no	human	mmmmm		

CF:11.000GHz

Span:2.00GHz

12-14GHz High Channel

-5	3.70dBm			RB 100kHz# AT 2			20dB# Band		auto	
LV: 10.	_V: 10.00dBm			VB 10	00kHz	ST 5.	ST 5.0s#			
10dB/								-	Tr-A	
					I.					
Hold	2				1					
					1					
					1					
				'	1					
		1								
					1					
			.0.0	m				-		
\sim	mm	mm	www		min	man	MMM	mm	m	
								-		
					1					
					1					
					1					

CF:13.000GHz

Span:2.00GHz

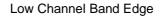
14-16GHz Low Channel

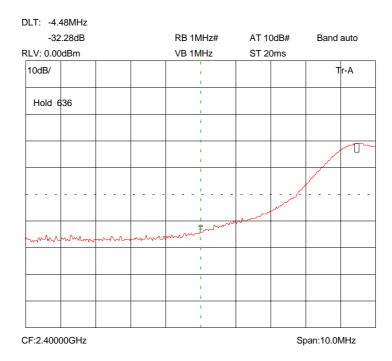
-54.59dBm RLV: 10.00dBm			RB 100kHz#	Band auto	
			VB 100kHz	ST 5.0s#	
10dB/					Tr-A
Hold	4				
			1		
LNMM	······································	m hor	mm	······································	www.www

16-18GHz High Channel

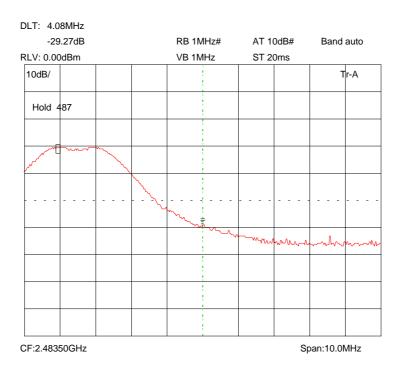
-50.77dBm	RB 100kHz#	AT 20dB#	Band auto
LV: 10.00dBm	VB 100kHz	ST 5.0s#	
10dB/			Tr-A
Hold 8			
monter	mm main Mm	www.	how
F:17.000GHz			pan:2.00GHz

18-20GHz Low Channel

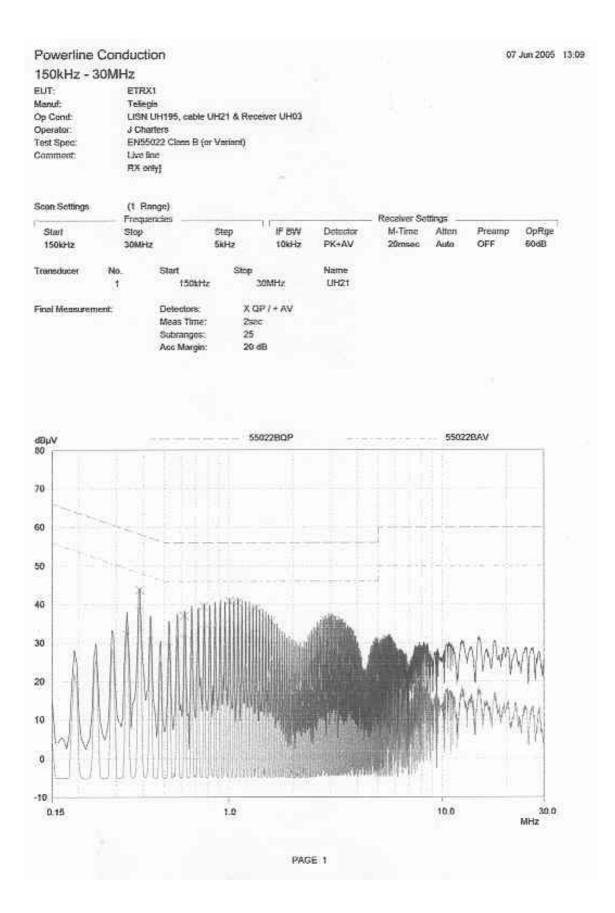

-5	-52.55dBm			RB 100kHz#	AT 2	0dB#	Band	Band auto	
RLV: 10.00dBm			VB 100kHz	ST 5	ST 5.0s#				
10dB/							т	r-A	
				I 1					
Hold	4			1.1					
				t i					
				l i L i	-		-		
				1.0					
	1				1				
. An	mm			mm	-	1 A A A	mm	m	
	10000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	W 0	1			1000 000 000		
				1.	+		+		
				the second					
				1 1					
				the second					


20-22GHz High Channel

MKR: 21.2	16GHz							
-50.5	59dBm		RB 100	kHz#	AT 2	20dB#	Band	auto
RLV: 10.00)dBm		VB 100	kHz	ST 5	5.0s#		
10dB/							Т	r-A
Hold 5	5							
			1					
							1	
wwwww	marthan	and the second	wwww					
			1					
CF:21.000	GHz					s	5pan:2.000	GHz


ANNEX G

SPURIOUS EMISSIONS RADIATED (BAND EDGE)

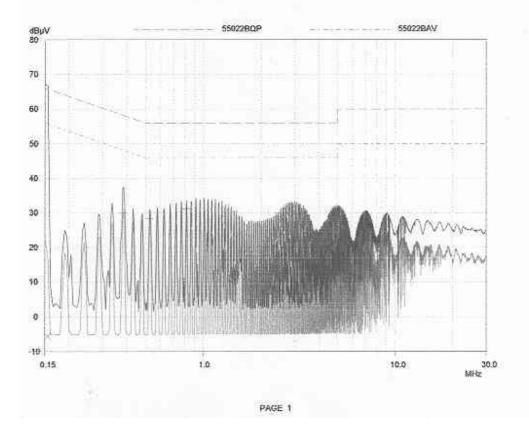


ANNEX H

RECEIVER SPURIOUS EMISSIONS

ANNEX I

POWER LINE CONDUCTION TRANSMITTER

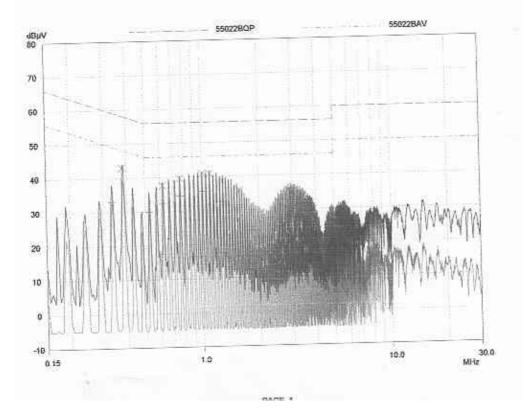


RU1171/6423

Powerline Conduction

150kHz - 3	OMHz
EUT:	ETRX1
Manuf	Telingis
Op Cond:	LISN UH195, cable UH21 & Receiver UH03
Operator:	J Charlers
Test Spec:	EN55022 Class B (or Varianil)
Comment:	Neutral line
	RX only]

Scan Settings		1 Range) requencies		1.54		- Receiver Se			
Start 150kHz	8 3	top DMIHz	Step 5kHz	IF BW 10kHz	Detector PK+AV	M-Time 20mseo	Atten Auto	Preamp OFF	OpRge 60dB
Transducer	No.	Start	Stop		Name				
	1	150kHz	6 3	30MHz	UH21				
Finai Measurer	nent	Detectors:		P/+AV					
		Meas Time: Subranges;	250 25	e .					
		Acc Margin:	20						

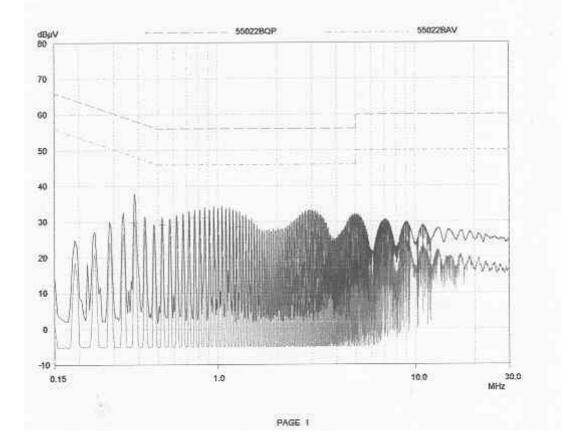

07 Jun 2005 12:50

Powerline Conduction

(1) (2) (2) (2)	1212		11.1.2
150kk	17 -	-30W	HZ

I STATISTICS THE	
EUT:	ETRX1
Manuf	Tellegia LISN UH195, cable UH21 & Receiver UH03
Op Cond:	
Operator: Test Spec:	J Charters EN55022 Class B (or Variant)
Comment	Live line
Considered.	TX on high power top channel

Scan Settings		Range)			1000	Receiver Set	ttings		
Start 150kHz	Stop 30M		Step SkHz	IF 8W IOkHz	Delector PK+AV	M-Time 20msec	Atten Auto	Preamp OFF	OpRge 60dB
Transducer	No. 1	Stort 150kHz	Slop 3	OMHz	Name UH21				
Final Moonarement.		Detectors: Meas Time: Bubranges: Aco Margin:	X Q 25e 25 20 d						


07 Jun 2005 12:35

Powerline Conduction

150kHz - 30MHz

EUT:	ETRX1
Menuf:	Tellegis
Op Cond:	LISN UH195, cable UH21 & Receiver UH03
Operator:	J Charlers
Test Spec:	EN65022 Class B (or Variant)
Comment	Meutral line
	TX on high power top channel

Scan Settings	122	1 Range) equancies				Receiver Se			
Start 150kHz	3	top DMHz	Step SkHz	IF BW 10kHz	Detector PK+AV	M-Time 20mseo	Atten Auto	Preamp OFF	OpRge 60dB
Transducer	No.	Start	Stop		Name				
	4	160kHz	34	MHz	UH21				
Final Messurer	nent	Detectors:	X QP	/+AV					
		Meas Time:	Zsec						
		Subvanges:	25						
		Acc Margin:	20 đi						

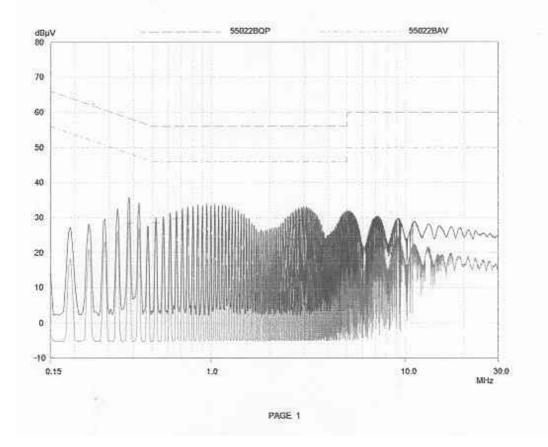
 Powerline Conduction
 07 Jun 2005
 12:06

 150kHz - 30MHz
 EUT:
 ETRX1

 EUT:
 ETRX1

 Memorit
 Tellegis

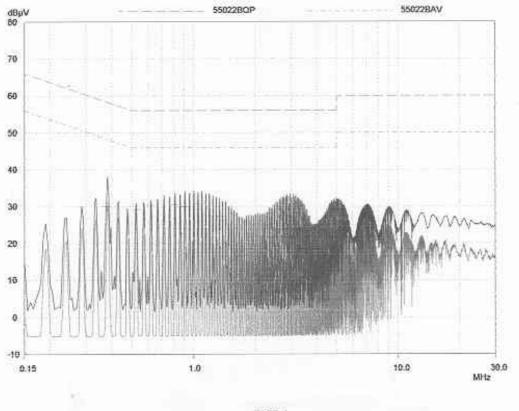

 Op Cond:
 LISN UH195, cable UH21 & Receiver UH03


 Operator:
 J Charters

 Text Spec:
 EN55022 Class B (or Variant)

 Comment:
 Live line

 TX on High power bottom channel



Powerline Conduction

150kHz - 30MHz

EUT:	ETRX1
Memor:	Tellegis
Op Cond:	LISN UH195, cable UH21 & Receiver UH03
Operator:	J Charters
Test Spec:	EN55022 Class B (or Variant)
Comment:	Neutral line
	TX on high power bottom channel

10000	Freque	endes	_		_	Receiver Se	ins -		
Start 150kHz	Stop 30MH	2	Step 5kHz	IF BVV 10kHz	Detector PK+AV	M-Time 20msec	Atten Auto	Preamp OFF	OpRge 60dB
Transducer	No.	Start	Stop		Name				
	1	150kHz	3	owner	UP121				
Finai Measurer	nent	Detectors: Meas Time: Subranges:	X QF 25ec 25	PI+AV					
		Acc Margin:	20 d	в					

PAGE 1

ANNEX J

TEST EQUIPMENT CALIBRATION DETAILS

TRL	Equipment		Last Cal	Calibration
Number	Туре	Manufacturer	Calibration	Period
	3m Range ERP			
UH006	CĂL	TRL	01/03/05	12
UH028	Log Periodic Ant	Schwarbeck	28/04/05	24
UH029	Bicone Antenna	Schwarbeck	27/04/05	24
UH041	Multimeter	AVOmeter	14/12/04	12
UH120	Spectrum Analyser	Marconi	15/03/05	12
UH122	Oscilloscope	Tektronix	07/06/05	24
UH162	ERP Cable Cal	TRL	23/05/05	12
UH179	Power Sensor	Marconi	14/12/04	12
UH228	Power Sensor	Marconi	17/01/05	12
UH253	1m Cable N type	TRL	10/01/05	12
UH254	1m Cable N type	TRL	10/01/05	12
UH264	CD Audio	Burosch	N/A	
UH265	Notch filer	Telonic	24/06/05	12
L005	CMTA	R&S	22/10/04	12
L007	Loop Antenna	R&S	29/03/05	24
L138	1-18GHz Horn	EMCO	15/04/05	24
L139	1-18GHz Horn	EMCO	03/05/05	24
L176	Signal Generator	Marconi	31/01/05	12
L193	Bicone Antenna	Chase	12/10/03	24
L203	Log Periodic Ant	Chase	21/10/03	24
L254	Signal Generator	Marconi	13/12/04	12
L280	18GHz Cable	Rosenberger	10/01/05	12
L343	CCIR Noise Filter	TRL	07/06/05	12
	Temperature			
L426	Indicator	Fluke	14/12/04	12
L478	Signal Generator	R&S	19/05/04	12
L479	Analyser	Anritsu	05/10/04	12
L552	Signal Generator	Agilent	25/04/05	12

RU1171/6423