

TIMCO ENGINEERING INC.

849 NW State Road 45
Newberry, Florida 32669
<http://www.timcoengr.com>
888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Test Report

Product Name: VHF MARINE RADIO

FCC ID: S2UNS100US

Applicant:

BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS
30 SUDBURY ROAD
ACTON MA 01720

Date Receipt: 3/24/2005

Date Tested: 3/30/2005

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS
FCC ID: S2UNS100US
REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

COVER SHEET

TIMCO ENGINEERING INC.

849 NW State Road 45
Newberry, Florida 32669
<http://www.timcoengr.com>
888.472.2424 F 352.472.2030 email: sid@timcoengr.com

TABLE OF CONTENTS LIST

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

TEST REPORT:

PAGE 1.....	GENERAL INFORMATION & TECHNICAL DESCRIPTION
PAGE 2.....	TECHNICAL DESCRIPTION CONTINUED
	RF POWER OUTPUT
PAGE 3.....	TECHNICAL DATA
PAGE 4.....	VOICE MODULATION CHARACTERISTICS
	AUDIO FREQUENCY RESPONSE
PAGE 5.....	AUDIO LOW PASS FILTER
PAGE 6.....	MODULATION LIMITING
PAGE 7.....	OCCUPIED BANDWIDTH
PAGE 8.....	OCCUPIED BANDWIDTH PLOT
PAGE 9.....	SPURIOUS EMISSIONS AT ANTENNA TERMINALS
PAGE 10.....	METHOD OF MEASURING CONDUCTED SPURIOUS EMISSIONS
PAGE 11-12.....	FIELD STRENGTH OF SPURIOUS EMISSIONS
PAGE 13.....	METHOD OF MEASURING RADIATED SPURIOUS EMISSIONS
PAGE 14.....	FREQUENCY STABILITY
PAGE 15-17.....	MPE CALCULATION
PAGE 18-23.....	LIST OF TEST EQUIPMENT

EXHIBITS INCLUDING:

BLOCK DIAGRAM
SCHEMATIC
PARTS LIST
USERS MANUAL
LABEL SAMPLE
LABEL LOCATION
EXTERNAL PHOTOGRAPHS
INTERNAL PHOTOGRAPHS
OPERATIONAL DESCRIPTION
TUNING PROCEDURE
TEST SET UP PHOTOGRAPHS
DSC WARNING LABEL

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS
FCC ID: S2UNS100US
REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

GENERAL INFORMATION

2.1033(c) BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS will sell the FCC ID: S2UNS100US VHF Marine transmitter in quantity, for use under FCC RULES PART 80.

2.1033(c) **TECHNICAL DESCRIPTION**

(4) Type of Emission: 16K0G3E/16K0F3E

Bn = 2M + 2DK
M = 3000
D = 4.6KHz (Peak Deviation)
K = 1
Bn = 2(3.0K) + 2(4.6K)(1) = 6.0K + 10.0 = 16.0K

80.205 (a) ALLOWED AUTHORIZED BANDWIDTH = 20.00KHz.

2.1033(c)(6) Frequency Range: 156.025 - 157.425 MHz

2.1033(c)(7) Power Range and Controls: There is a user Power switch for High/Low Power. Maximum Output Power Rating: High (25) Watts, (1) Watt into a 50 ohm resistive load.

2.1033(c)(8) DC Voltages and Current into Final Amplifier:

POWER INPUT		FINAL AMPLIFIER ONLY	
High		Low	
Vce = 13.6 Volts		Vce = 13.6 VDC	
Ice = 5.28 A		Ice = 1.28 A	
Pin = 71.81 Watts		Pin = 17.41 Watts	

Function of each electron tube or semiconductor device or other active circuit device is included in the parts list exhibit.

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

2.1033(c)(9) Complete Circuit Diagrams: The circuit diagrams and block diagrams are included.

2.1033(c)(10) Instruction book. The instruction manual is included.

2.1033(c)(11) Tune-up procedure. The tune-up procedure is included.

Description of all circuitry and devices provided for determining and stabilizing frequency is included in the circuit description

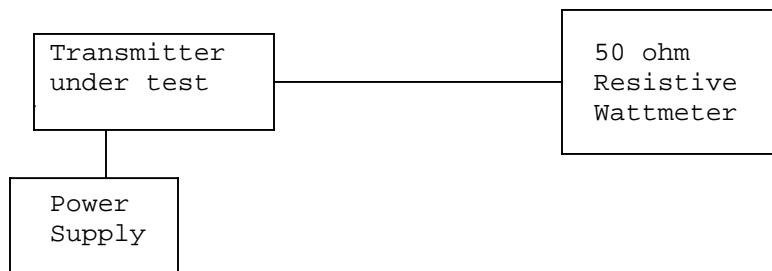
2.1033(c)(11) Digital modulation. This unit does NOT use digital modulation.

The data required by 2.1046 through 2.1055 is submitted below.

RF power output.

80.215 (e)(1)

RF power is measured by connecting a 50 ohm, resistive wattmeter to the RF output connector. With a nominal battery voltage, and the transmitter properly adjusted the RF output measures:


OUTPUT POWER: HIGH: 25 W
LOW: 1 W

80.911 (d)(5)

For primary supply voltages, measured in accordance with the procedures in this paragraph, greater than 11.5 volts, but less than 12.6 volts, the required transmitter output power shall be equal or greater than the value calculated below

$$P = 4.375(v) - 35.313 \text{ (For 12V this equals 17.2W)}$$

METHOD OF MEASURING RF POWER OUTPUT

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45
Newberry, Florida 32669
<http://www.timcoengr.com>
888.472.2424 F 352.472.2030 email: sid@timcoengr.com

TECHNICAL DATA:

80.203 (b) **External Controls:** The transmitter is capable of changing frequency between 156.05 - 157.425 MHz by external control. The available channels are shown in the User Manual description Channel List. These channels are preprogrammed by the manufacturer and change of frequency is inaccessible to the station operator.

80.203 (c) Five minutes continuous transmission test. The antenna was connected to a dummy load and the radio was locked in a transmit PTT mode. An external timer digital clock was used to observe the duration of the un-modulated transmission. The transmitter turned off and the radio went to receive mode at 4 minutes, 58 seconds as displayed by the external digital clock.

80.203 (n) This radio complies with the requirement for DSC capability in the 156 - 162 MHz band and in accordance with 80.225.

80.873; 80.956 Transmitter G3E emission capability: The transmitter was connected to 50 ohm resistive wattmeter and the frequency was set to 156.300 and to 156.800 MHz. With normal modulation, the output power displayed was 25 Watts at the high power setting and 1 watt at low power setting, consistent with previous measurements.

The transmitter has been demonstrated to be capable, with normal operating voltages applied, of delivering 25 watts of carrier power into a 50 ohm resistive load over the specified frequencies.

80.911 (a) 80.956 G3E Transmissions: This radio is capable of G3E emission on 156.300 and 156.800 MHz

80.911 (c) With 13.6 VDC applied and with the radio connected to a 50 ohm resistive wattmeter, the output power was measured at 156.300 and 156.800 MHz with a measured reading of 25 Watts under normal speech modulation.

80.911 (d)(2) 80.959 With the power supply set to 13.6 VDC, and the output of the transmitter terminated in a 50 ohm matching artificial load, the transmitter output power was monitored over a 10 minute continuous operational period while in full power. The output power varied from the nominal 25 Watts output power to 24.8 Watts output power

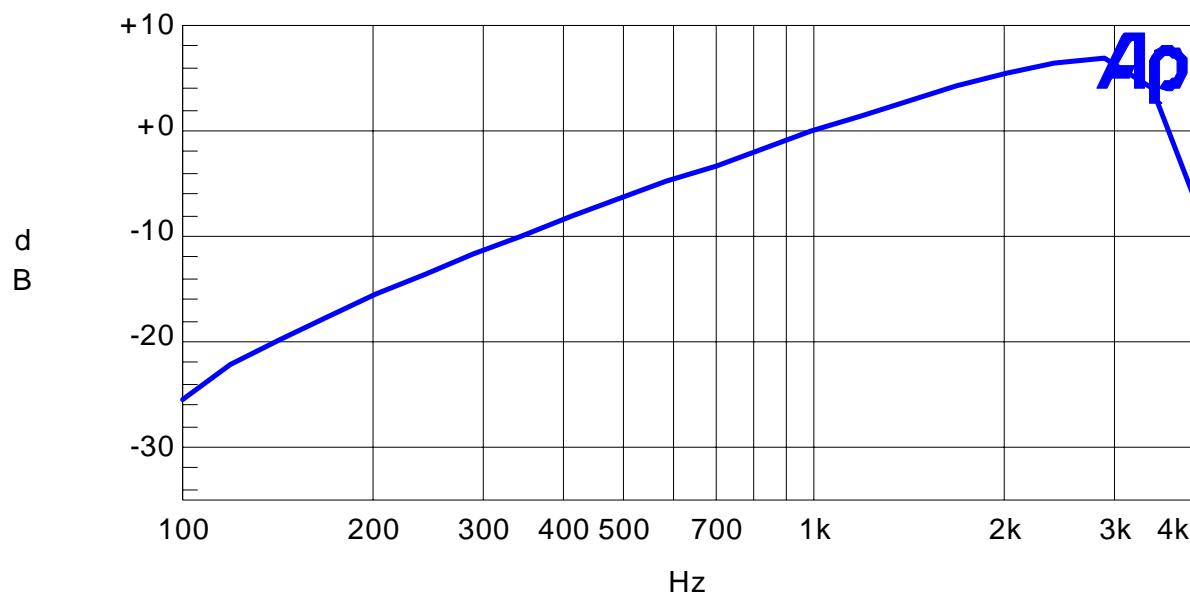
TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com


2.1047(a)

Voice Modulation characteristics:

(b)

AUDIO_FREQUENCY_RESPONSE See the following plot.

Audio Frequency Response Plot

Color	Line Style	Thick	Data	Axis
Blue	Solid	2	Anlr.Level A!Normalize	Left

MaxFreq.at1

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

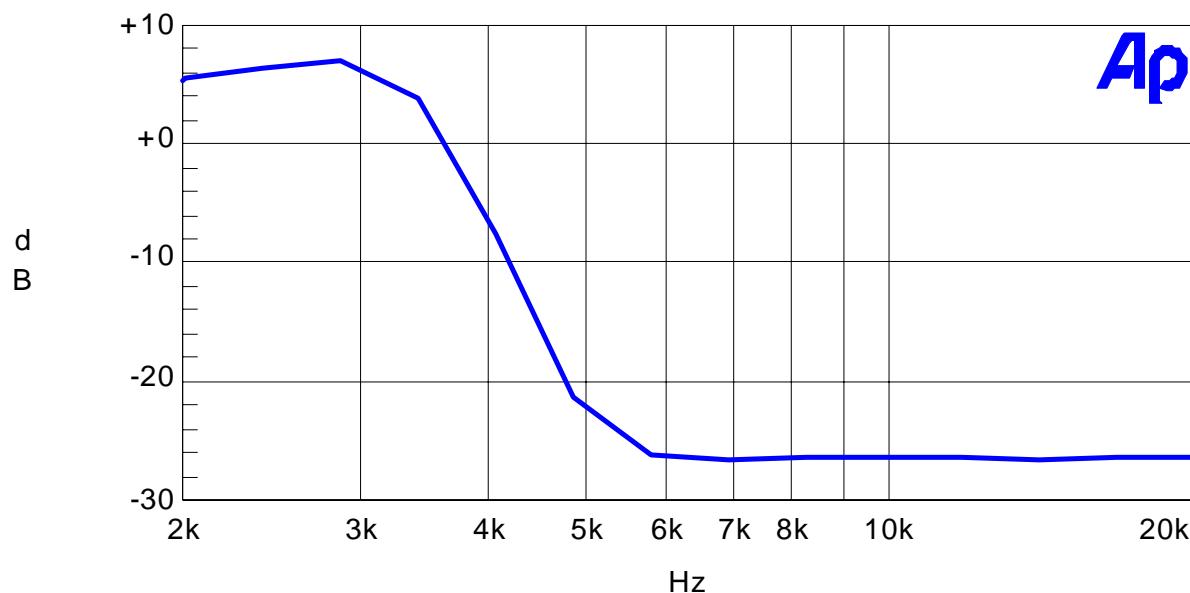
REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>


888.472.2424 F 352.472.2030 email: sid@timcoengr.com

2.1047(a)

AUDIO_LOW_PASS_FILTER

The audio low pass filter shown in the following plot.

Audio Low Pass Filter

Color	Line Style	Thick	Data	Axis
Blue	Solid	2	Anlr.Level A!Normalize	Left

MaxFreq.at1

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

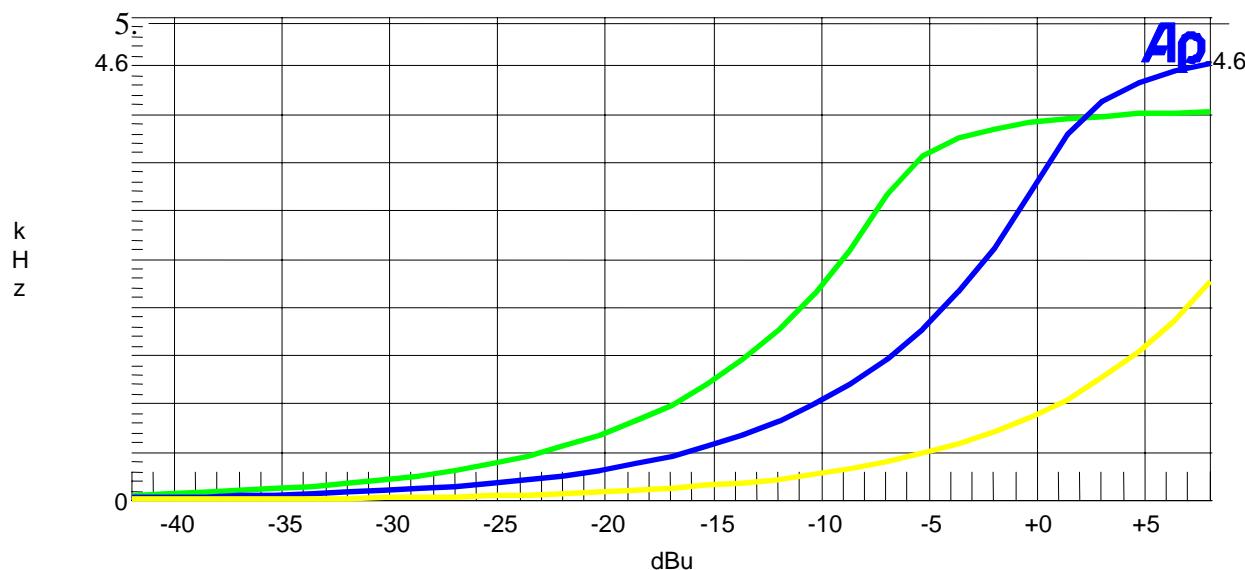
TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com


2.1047(b)

80.213 (d)

Audio_input_versus_modulation

A plot of the audio input versus deviation is shown in the following plots.

Modulation Limiting Plots:
2.5 KHz (Green), 1.0 KHz (Blue), and 300 Hz (Yellow)

Color	Line Style	Thick	Data	Axis
Green	Solid	3	Anlr.Level A	Left
Blue	Solid	3	Anlr.Level A	Left
Yellow	Solid	3	Anlr.Level A	Left

modulation limiting.at1

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

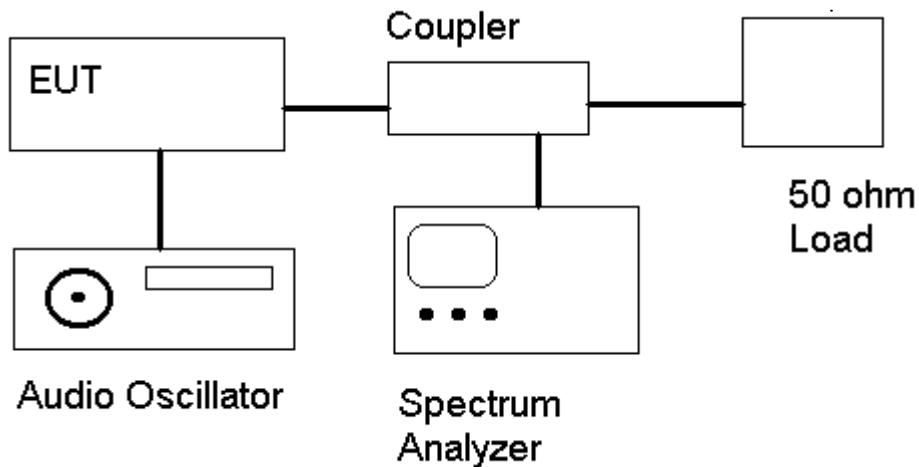
<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

2.1049(c)

Occupied bandwidth:

80.213 (b)


Data in the plots shows that on any frequency removed from the assigned frequency by more than 50%, but not more than 100%: At least 25dB. On any frequency removed from the assigned frequency by more than 100%, but not more than 250%: At least 35dB. On any frequency removed from the assigned frequency by more than 250%, of the authorized bandwidth:
At least $43 + \log(P)$ dB.

Radiotelephone transmitter with modulation limiter.

Test procedure: TIA/EIA-603 para 2.2.11, with the exception that various tones were used.

Test procedure diagram

OCCUPIED BANDWIDTH MEASUREMENT

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

OCCUPIED BANDWIDTH PLOT

NOTES:

BRUNSWICK NEW TECHNOLOGIES-MARINE ELECETRONICS
FCC ID: S2UNS100SSUS - OCCUPIED BANDWIDTH PLOT

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

2.1051
80.211

Spurious emissions at antenna terminals (conducted):

The data on the following page shows the level of conducted spurious responses. The carrier was modulated 100% using a 2500Hz tone. The spectrum was scanned from 0.4 to at least the 10th harmonic of the fundamental. The measurements were made in accordance with standard TIA/EIA-603.

REQUIREMENTS: Emissions must be $43 + 10\log(Po)$ dB below the mean power output of the transmitter.

43 + 10log(25) = 57

43 + 10log(1) = 43

TF HIGH POWER	EF	dB below carrier	TF LOW POWER	EF	dB below carrier
156.05	156.05	0	156.05	156.05	0
	312.10	90.9		312.10	88.8
	468.15	90.2		468.15	100.5
	624.20	100.6		624.20	101.6
	780.25	102.1		780.25	101.5
	936.30	102.7		936.30	101.5
	1092.35	106.1		1092.35	102.4
	1248.40	105.4		1248.40	102.4
	1404.45	103.6		1404.45	101.5
	1560.50	105.4		1560.50	101.1

TF HIGH POWER	EF	dB below carrier	TF LOW POWER	EF	dB below carrier
157.425	157.425	0	154.425	157.425	0
	314.850	90.1		314.850	89.3
	472.275	83.8		472.275	97.9
	629.700	102.3		629.700	101.6
	787.125	103.4		787.125	100.9
	944.550	102.2		944.550	102.4
	1101.975	106.6		1101.975	101.5
	1259.400	104.8		1259.400	101.4
	1416.825	104.7		1416.825	100.8
	1574.250	105.1		1574.250	100.9

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45
Newberry, Florida 32669
<http://www.timcoengr.com>
888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Method of Measuring Conducted Spurious Emissions

METHOD OF MEASUREMENT: The procedure used was TIA/EIA-603 STANDARD without any exceptions. The measurements were made using the shielded room located at TIMCO ENGINEERING INC. 849 STATE ROAD 45, NEWBERRY FLORIDA 32669.

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS
FCC ID: S2UNS100US
REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

2.1053(a)

Field strength of spurious emissions:

NAME OF TEST: RADIATED SPURIOUS EMISSIONS

REQUIREMENTS: Emissions must be $43 + 10\log(P_o)$ dB below the mean power output of the transmitter.

$$43 + 10\log(25) = 57$$

$$43 + 10\log(1) = 43$$

TEST DATA - HIGH POWER:

Emission Frequency MHz	Ant. Polarity	dB Below Carrier (dBc)
156.05	0	0
312.10	H	105.13
468.15	H	89.398
624.20	H	80.238
780.25	H	93.708
936.30	V	91.568
1092.35	H	91.778
1248.40	H	92.588
1404.45	V	92.488
1560.50	H	95.698

Emission Frequency MHz	Ant. Polarity	dB Below Carrier (dBc)
157.43	0	0
314.85	H	105.63
472.28	H	88.618
629.70	H	80.808
787.13	V	94.418
944.55	H	90.258
1101.98	H	92.738
1259.40	H	94.338
1416.83	V	91.638
1574.25	H	92.298

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

2.1053(a)

Field strength of spurious emissions:

NAME OF TEST: RADIATED SPURIOUS EMISSIONS

REQUIREMENTS: Emissions must be $43 + 10\log(P_o)$ dB below the mean power output of the transmitter.

$$43 + 10\log(25) = 57$$

$$43 + 10\log(1) = 43$$

TEST DATA - LOW POWER:

Emission Frequency MHz	Ant. Polarity	dB Below Carrier (dBc)
156.05	0	0
312.10	H	91.65
468.15	H	87.32
624.20	H	83.86
780.25	V	85.73
936.30	H	89.19
1092.35	H	82.1
1248.40	H	81.51
1404.45	H	88.11
1560.50	H	83.92

Emission Frequency MHz	Ant. Polarity	dB Below Carrier (dBc)
157.43	0	0
314.85	H	92.85
472.28	H	89.64
629.70	H	84.13
787.13	H	85.04
944.55	H	87.98
1101.98	V	91.16
1259.40	H	83.96
1416.83	H	87.66
1574.25	H	83.32

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

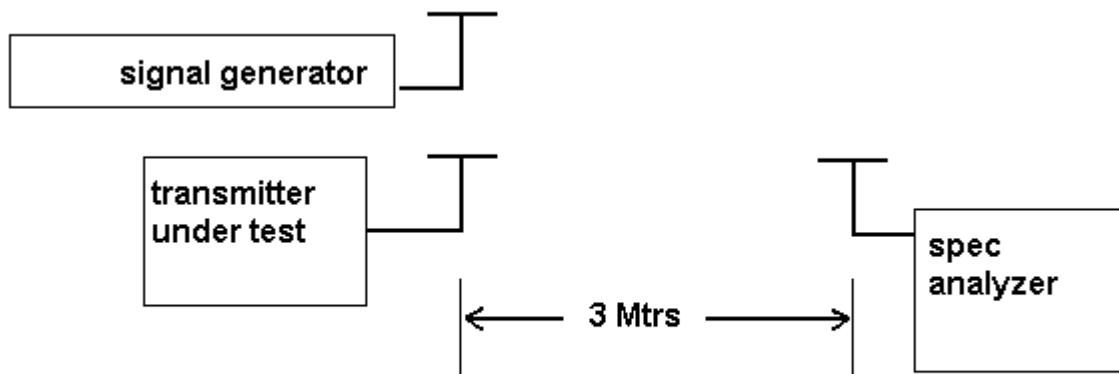
FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669


<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

2.1053(a)

Continued Field_strength_of_spurious_emissions:

Method of Measuring Radiated Spurious Emissions

METHOD OF MEASUREMENT: The tabulated data shows the results of the radiated field strength emissions test. The spectrum was scanned from 30 to at least the tenth harmonic of the fundamental. This test was conducted per TIA/EIA STANDARD 603 using the substitution method. Measurements were made at the open field test site of TIMCO ENGINEERING, INC. located at 849 N.W. State Road 45, Newberry, FL 32669.

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Frequency stability:

2.1055(a)(2)

80.209 (a)

Temperature and voltage tests were performed to verify that the frequency remains within the .0010%, 10.0ppm specification limit, for 20kHz spacing. The test was conducted as follows: The transmitter was placed in the temperature chamber at 25° C and allowed to stabilize for one hour. The transmitter was keyed ON for one minute during which four frequency readings were recorded at 15 second intervals. The worse case number was taken for temperature plotting. The assigned channel frequency was considered to be the reference frequency. The temperature was then reduced to -30° C after which the transmitter was again allowed to stabilize for one hour. The transmitter was keyed ON for one minute, and again frequency readings were noted at 15 sec intervals. The worst-case number was recorded for temperature plotting. This procedure was repeated in 10-degree increments up to + 50° C.

Readings were also taken at minus 15% of the battery voltage, which we estimate to be the battery endpoint.

MEASUREMENT DATA:

TEMPERATURE °C	FREQUENCY MHz	PPM
REFERENCE:	156.050098	
-30C	156.049196	-5.78
-20C	156.049883	-1.38
-10C	156.050319	1.42
0C	156.050595	3.18
10C	156.050496	2.55
20C	156.050225	0.81
30C	156.050075	-0.15
40C	156.050030	-0.44
50C	156.050040	-0.37
Batt. Volts	Batt. Data	PPM
-15%	156.050217	0.76
+15%	156.050237	0.89

RESULTS OF MEASUREMENTS: The test results indicates that the EUT meets the requirements.

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

RF Exposure Information

General information:

FCCID:

Device category: Mobile per Part 2.1091

Environment: General Population/Uncontrolled Exposure

Mobile devices that operate under part 80 of this chapter are subject to routine environmental evaluation for RF exposure prior to equipment authorization or use if they operate at frequencies of 1.5 GHz or below and their effective radiated power (ERP) is 1.5 watts or more. However, compliance with the power density limits of 1.1310 is required.

Antenna:

The manufacturer does not specify any antenna to be used with this device.

This device has provisions for operation in a boat or a fixed location.

Configuration	Antenna p/n	Type	Max. Gain (dBi)
Boat	Any	-	7dBi (5dBd)
Fixed	Any	-	7dBi (5dBd)

Operating configuration and exposure conditions:

- Boat Operation: Cable length = 20 ft exposed and 3 feet internal to radom = 23 ft. Total. 23 feet cable loss including connector insertion loss at 156 MHz 1 dB. The maximum antenna gain that can be used is 5dBd (7 dBi).

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

W := 25 power in Watts D := 1 Duty Factor in decimal % (1=100%)

E := 15 exposure time in minutes 1 for FM

U := 30 (use 6 for controlled and 30 for uncontrolled)

$$W_{exp} := W \cdot D \cdot \left(\frac{E}{U} \right)$$

$$PC := \frac{E}{U}$$

PC = 0.5 percent on time

Wexp = 12.5 Watts

Po := 12500 mWatts dBd := .5 antenna gain minus coax loss

G := dBd + 2.15 gain in dBi f := 156 Frequency in MHz

Gn := $10^{\frac{G}{10}}$ gain numeric S := .2 power density limit for uncontrolled exposure

Gn = 1.841

S = 0.2

$$R := \sqrt{\frac{(Po \cdot Gn)}{(4 \cdot \pi \cdot S)}}$$

$$\text{inches} := \frac{R}{2.54}$$

R = 95.683 distance in centimeters

required for compliance

inches = 37.67

Conclusion:

The device complies with the MPE requirements by providing a safe separation distance of 96 cm between the antenna, including any radiating structure, and any persons when normally operated .

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Proposed RF exposure safety information to include in User's Manual:

“FCC RF Exposure Requirements:

CAUTION:

The antenna(s) used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Vehicle – Antenna Installation:

- Antennas used for this transmitter must not exceed an antenna gain of 5 dBd.
- For rear deck trunk and roof top installations, the antenna must be located at least 96 cm away from rear-seat passengers and bystanders in order to comply with the FCC RF exposure requirements.

Boat – Antenna Installation:

- Antennas used for this transmitter must not exceed an antenna gain of 5dBd(7dBi).
- The antenna must be located at least 96 cm away from passengers in order to comply with the FCC RF exposure requirements.

Failure to observe these restrictions will result in exceeding the FCC RF exposure limits.

FYI - Draft/Grant notes – RF exposure: **TCB Section D: Mobile transmitters identified in §2.1091 that satisfy Categorical Exclusion Requirements of §2.1091:**

...

The antenna installation and operating configurations of this transmitter, including any applicable source-based time-averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of §2.1091. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 96 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. Users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance.

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

EMC Equipment List

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date or Status
3-Meter OATS	TEI	N/A	N/A	Listed 1/13/03	1/12/06
3/10-Meter OATS	TEI	N/A	N/A	Listed 3/27/04	3/26/07
Tan Tower Spectrum Analyzer	HP	8566B Opt 462	3138A07786 3144A20661	CAL 9/23/03	9/23/05
Tan Tower RF Preselector	HP	85685A	3221A01400	CAL 9/23/03	9/23/05
Tan Tower Quasi-Peak Adapter	HP	85650A	3303A01690	CAL 9/23/03	9/23/05
Tan Tower Preamplifier	HP	8449B-H02	3008A00372	CAL 9/23/03	9/23/05
Blue Tower Spectrum Analyzer	HP	8568B	2928A04729 2848A18049	CAL 4/15/03	4/15/05
Blue Tower RF Preselector	HP	85685A	2620A00294	CAL 4/27/04	4/27/06
Blue Tower Quasi-Peak Adapter	HP	85650A	2811A01279	CAL 4/15/03	4/15/05
Silver Tower Spectrum Analyzer	HP	8566B Opt 462	3552A22064 3638A08608	CAL 3/22/04	3/22/06
Silver Tower RF Preselector	HP	85685A	2926A00983	CAL 3/22/04	3/22/06
Silver Tower Quasi-Peak Adapter	HP	85650A	3303A01844	CAL 3/22/04	3/22/06
Silver Tower Preamplifier	HP	8449B	3008A01075	CAL 3/22/04	3/22/06
Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
Biconnical Antenna	Eaton	94455-1	1096	CAL 8/17/04	8/17/06
Biconnical Antenna	Eaton	94455-1	1057	CAL 3/18/03	3/18/05
BiconiLog Antenna	EMCO	3143	9409-1043	No Cal Required	
Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 8/26/04	8/26/06
Log-Periodic	Electro-	LPA-30	409	CAL	3/4/05

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date or Status
Antenna	Metrics			3/4/03	
Log-Periodic Antenna	Eaton	96005	1243	CAL 5/8/03	5/8/05
Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CAL 9/26/02	9/26/05
Double-Ridged Horn Antenna	Electro-Metrics	RGA-180	2319	CAL 2/17/03	2/17/05
Horn Antenna *(at 3 meters)	Electro-Metrics	EM-6961	6246	CAL 3/31/03	3/31/05
Horn Antenna *(at 10 meters)	Electro-Metrics	EM-6961	6246	CAL 6/4/03	6/4/05
Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03
Harmonic Mixer with Horn Antenna	Oleson Microwave Labs	M08HW/A	F30425-1	CHAR 4/25/03	4/25/05
Harmonic Mixer with Horn Antenna	Oleson Microwave Labs	M12HW/A	E30425-1	CHAR 4/25/03	4/25/05
LISN	Electro-Metrics	ANS-25/2	2604	CAL 8/27/04	8/27/06
LISN	Electro-Metrics	EM-7820	2682	CAL 3/12/03	3/12/05
Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 7/16/04	7/16/06
Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CAL 7/16/04	7/16/06
Oscilloscope	Tektronix	2230	300572	CAL 7/3/03	7/3/05
System One	Audio Precision	System One	SYS1-45868	CHAR 4/25/02	4/25/04
Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
AC Voltmeter	HP	400FL	2213A14499	CAL 7/19/04	7/19/06
AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BRUNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date or Status
Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
Multimeter	Fluke	FLUKE-77-3	79510405	CHAR 9/26/01	9/26/03
Peak Power Meter	HP	8900C	2131A00545	CAL 7/2/03	7/2/05
Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 7/2/03	7/2/05
Power Meter	HP	432A	1141A07655	CAL 4/15/03	4/15/05
Power Sensor	HP	478A	72129	CAL 4/15/03	4/15/05
Power Meter And Sensor	Bird	4421-107 & 4022	0166 & 0218	CAL 4/16/03	4/16/05
Digital Thermometer	Fluke	2166A	42032	CAL 7/19/04	7/19/06
Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
Thermometer	Extech	4028	14871-2	CAL 3/7/03	3/7/05
Hygro-Thermometer	Extech	445703	0602	CAL 10/4/02	10/4/04
Frequency Counter	HP	5352B	2632A00165	CAL 8/3/04	8/3/06
Frequency Counter	HP	5385A	2730A03025	CAL 3/7/03	3/7/05
Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	Out of Service
Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
Signal Generator	HP	8640B	2308A21464	CAL 8/26/04	8/26/06
Sweep Generator	Wiltron	6648	101009	CAL 4/15/03	4/15/05
Sweep Generator	Wiltron	6669M	007005	CAL 3/3/03	3/3/05
Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/03
Modulation Meter	Boonton	8220	10901AB	CAL 4/15/03	4/15/05
Near Field Probe	HP	HP11940A	2650A02748	CHAR	Out of

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BRUNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date or Status
				2/1/01	Service
BandReject Filter	Lorch Microwave	5BR4-2400/60-N	Z1	CHAR 4/17/03	4/17/05
BandReject Filter	Lorch Microwave	6BR6-2442/300-N	Z1	CHAR 4/17/03	4/17/05
BandReject Filter	Lorch Microwave	5BR4-10525/900-S	Z1	CHAR 4/12/03	4/12/05
Notch Filter	Lorch Microwave	5BRX-850/X100-N	AD-1	CHAR 4/17/03	4/17/05
High Pass Filter	Unk	3768(5)-400	041	CHAR 12/17/02	12/17/04
High Pass Filter	Microlab	HA-10N		CHAR 11/17/02	11/17/04
High Pass Filter	Microlab	HA-20N		CHAR 12/17/02	12/17/04
Audio Oscillator	HP	653A	832-00260	CHAR 12/1/02	12/1/04
Audio Generator	B&K Precision	3010	8739686	CHAR 12/1/02	12/1/04
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	Out of Service
Frequency Counter	HP	5385A	3242A07460	CAL 3/7/03	3/7/05
Amplifier	HP	11975A	2738A01969	No Cal Required	
Egg Timer	Unk			CHAR 2/1/02	2/1/04
Measuring Tape-20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape-7.5M	Kraftixx	7.5M PROFI		CHAR 2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04
Injection Probe	Fischer Custom Communications	F-120-9A	270	CAL 6/1/01	6/1/03
Power Line Coupling/Decoupling	Fischer Custom Communications	FCC-801-M2-16A	01048	CAL 8/29/01	8/29/03

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BRUNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date or Status
Network					
Power Line Coupling/Decoupling Network	Fischer Custom Communications	FCC-801-M3-16A	01060	CAL 8/29/01	8/29/03
VHF/UHF Current Probe	Fischer Custom Communications	F-52	130	CAL 8/30/01	8/30/03
Passive Impedance Adapter	Fischer Custom Communications	FCC-801-150-50-CDN	01117 & 01118	CAL 8/29/01	8/29/03
Radiating Field Coil	Fischer Custom Communications	F-1000-4-8/9/10-L-1M	9859	CAL 10/15/98	10/15/00
EMC Immunity Test System	Keytek	CEMASTER	9810210	CAL 2/1/02	2/1/04
Compliance Test System - AC Power Source	California Instruments	1251RP	L05865	CAL 2/25/04	2/25/06
Compliance Test System - PACS-1 Module	California Instruments	PACS-1	X71484	CAL 2/25/04	2/25/06
Isotropic Field Probe	Amplifier Research	FP5000	22839		
Isotropic Field Probe	Amplifier Research	FP5000	300103		
Capacitor Clamp	Keytek	CM-CCL	9811359	No Cal Required	
Amplifier	Amplifier Research	10W1000B	23117	No Cal Required	
Field Monitor	Amplifier Research	FM5004	22288	No Cal Required	
ELF Meter	F. W. Bell	4060	Not Serialized		Out of Service
Standard Gain Horn 1.0-2.4 GHz	Polarad	CA-L	235	No Cal Required	
Standard Gain Horn 2.14-4.34 GHz	Polarad	CA-S	203	No Cal Required	
Standard Gain Horn 3.95-5.85 GHz	Scientific-Atlanta Inc.	11A-3.9	8448CG	No Cal Required	
Standard Gain Horn 8.2-12.5 GHz	Systron Donner	DBG-520-20	Not Serialized	No Cal Required	
Standard Gain Horn 18.0-26.3 GHz	Systron Donner	DBE-520-20	Not Serialized	No Cal Required	
Standard Gain Horn 26.5-40.2 GHz	Systron Donner	DBD-520-20	Not Serialized	No Cal Required	
Standard Gain Horn	ATM	19-443-6R	Not Serialized	No Cal	

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45

Newberry, Florida 32669

<http://www.timcoengr.com>

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date or Status
40.0-60.0 GHz				Required	
Double-Ridged Horn Antenna	EMCO	3116	9011-2145		Out of Service
Standard Gain Horn 12.4-18.0 GHz	ATM	62-442-6	D262108-01	No Cal Required	
Standard Gain Horn 5.85-8.2 GHz	ATM	137-442-2	D261908-01	No Cal Required	
AC Voltmeter	HP	400F	0950A05433	CAL 8/13/05 8/13/03	
RF Power Amplifier	Ophir RF	5150F	1041 'X1'	No Cal Required	
Electric Field Sensor	Amplifier Research	FP6001	302504		
Electric Field Sensor	Amplifier Research	FP6001	302510	CAL 6/1/04	6/1/06
Surge Generator	Com-Power Corporation	SG-168	25802	CAL 2/27/04	2/27/06
RF Power Amplifier	Ophir RF, Inc.	5150F	1041	CHAR 10/31/03	10/31/05
3-Meter Anechoic Chamber	Panashield	N/A	N/A	Listed 5/12/04	5/11/07
Digital Multimeter	Fluke	77III	79510408	CAL 7/19/04	7/19/06
Open-Frame Tower Spectrum Analyzer	HP	8566B/85662A	2627A03154/2648A14276	CAL 7/9/04	7/9/06
Open-Frame Tower RF Preselector	HP	85685A	3107A01282	CAL 7/9/04	7/9/06
Open-Frame Tower Quasi-Peak Adapter	HP	85650A	2046A00305	CAL 7/9/04	7/9/06
Signal Generator	HP	8648C	3847A04696	CAL 9/27/04	9/27/06

APPLICANT: BRUNSWICK NEW TECHNOLOGIES-MARINE ELECTRONICS

FCC ID: S2UNS100US

REPORT #: B\BURNSWICK\620AUT5\620AUT5TestReport.doc