



**TITLE: Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **1 of 27**

| ISSUE    | DESCRIPTION OF CHANGES | DATE                       |
|----------|------------------------|----------------------------|
| <b>O</b> | Initial Release        | 8 <sup>th</sup> April 2013 |



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **2 of 27**

## Table of Contents

|            |                                           |           |
|------------|-------------------------------------------|-----------|
| <b>1.0</b> | <b>DESCRIPTION AND APPLICATION</b>        | <b>4</b>  |
| 1.1        | Description                               | 4         |
| 1.2        | Application                               | 4         |
| 1.3        | Module Block Diagram                      | 4         |
| <b>2.0</b> | <b>MECHANICAL SPECIFICATIONS</b>          | <b>5</b>  |
| 2.1        | Module Dimensions                         | 5         |
| 2.2        | Module Footprint                          | 6         |
| 2.3        | Recommended Main PCB Copper Ground Design | 7         |
| 2.4        | Module Pin-Out                            | 8         |
| <b>3.0</b> | <b>ELECTRICAL SPECIFICATIONS</b>          | <b>12</b> |
| 3.1        | Absolute Maximum Ratings                  | 12        |
| 3.2        | Environment Characteristics               | 12        |
| 3.3        | Operating Condition                       | 12        |
| 3.4        | DC Characteristics                        | 12        |
| 3.5        | RF Characteristics                        | 13        |
| 3.6        | Transmit Power Characteristic             | 14        |
| <b>4.0</b> | <b>APPLICATION NOTE</b>                   | <b>15</b> |
| 4.1        | Pin Assignments                           | 15        |
| 4.2        | Serial Communication                      | 16        |
| 4.3        | Power Supply Design                       | 19        |
| 4.4        | External Flash Memory                     | 19        |
| 4.5        | ADC                                       | 19        |
| 4.6        | GPIO ports (default setting)              | 20        |
| <b>5.0</b> | <b>ASSEMBLY INFORMATION</b>               | <b>21</b> |
| 5.1        | Lead-Free soldering reflow profile        | 21        |
| <b>6.0</b> | <b>RELIABILITY TESTS</b>                  | <b>21</b> |



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **3 of 27**

|             |                                    |           |
|-------------|------------------------------------|-----------|
| <b>7.0</b>  | <b>PACKAGING INFORMATION.....</b>  | <b>22</b> |
| 7.1         | Tape and Reel specification.....   | 22        |
| 7.2         | Component Orientation.....         | 22        |
| 7.3         | Module Marking.....                | 23        |
| <b>8.0</b>  | <b>REGULATORY INFORMATION.....</b> | <b>24</b> |
| 8.1         | FCC Notice.....                    | 24        |
| 8.2         | OEM Labeling Requirements.....     | 24        |
| 8.3         | RF Exposure.....                   | 24        |
| 8.4         | FCC Approved Antenna.....          | 25        |
| 8.5         | CE Notice.....                     | 25        |
| 8.6         | OEM Labeling Requirements.....     | 25        |
| 8.7         | CE Compliance Power Settings.....  | 26        |
| <b>9.0</b>  | <b>RoHS DECLARATION.....</b>       | <b>27</b> |
| <b>10.0</b> | <b>ORDERING INFORMATION.....</b>   | <b>27</b> |



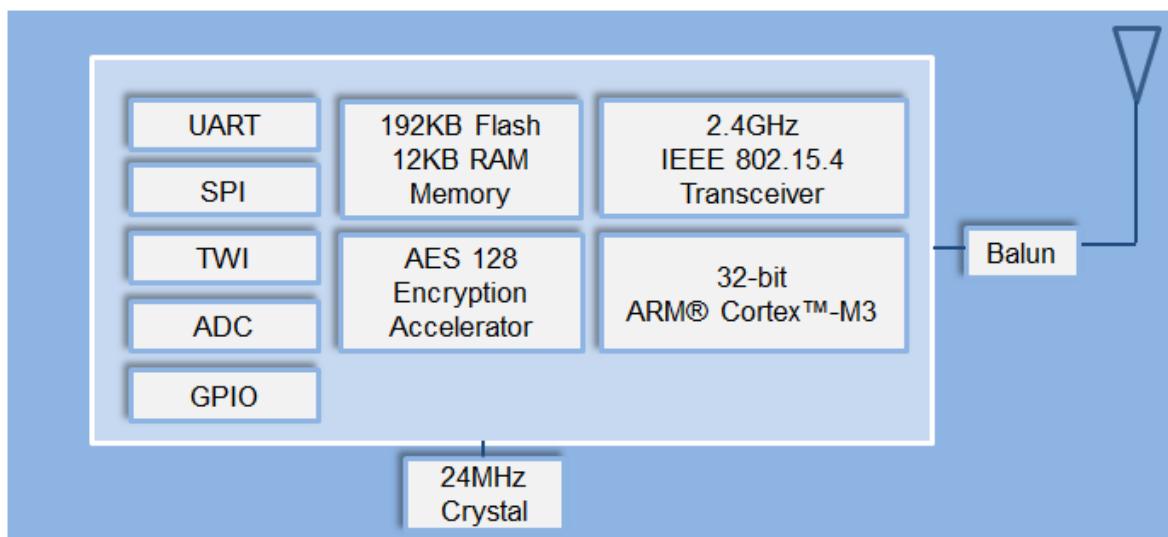
TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **4 of 27**

## **1.0 DESCRIPTION AND APPLICATION**


### **1.1 DESCRIPTION**

AT357 module is based on the Ember EM357 ZigBee compliant SOC IC. The IC is a 2.4GHz, IEEE 802.15.4 compliant transceiver, 32-bit ARM® Cortex™-M3 microprocessor, 192 KB of embedded flash and 12 KB of integrated RAM memory. The module is 17.9mm x 24.9mm x 2.75mm in dimensions with 51 I/O edge castellated interconnect.

### **1.2 APPLICATION**

The custom module support user-defined applications, peripherals include UART, SPI, TWI, ADC and general-purpose timers, as well as up to 24 GPIOs. The target applications include Smart Energy, Building automation and control, Home automation and control, Security and monitoring and General ZigBee wireless sensor networking.

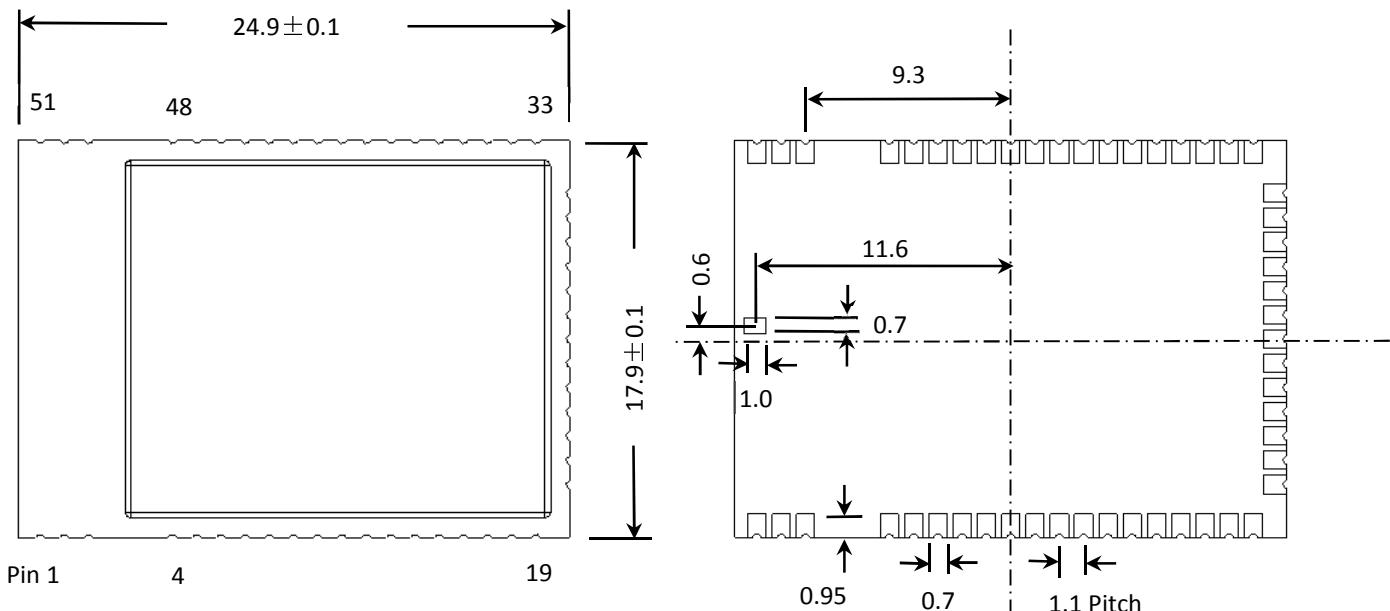
### **1.3 Module Block Diagram**



**Figure 1: Module Block Diagram**

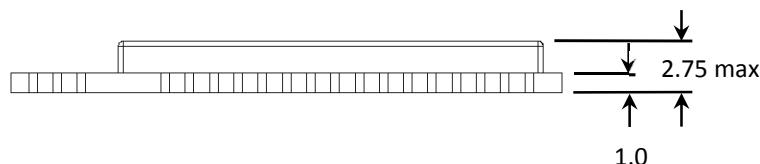


TITLE: Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD


REVISION DATE: 8 April 2013

ISSUE: 0

PAGE: 5 of 27


## 2.0 MECHANICAL SPECIFICATIONS

### 2.1 Module Dimensions (mm)



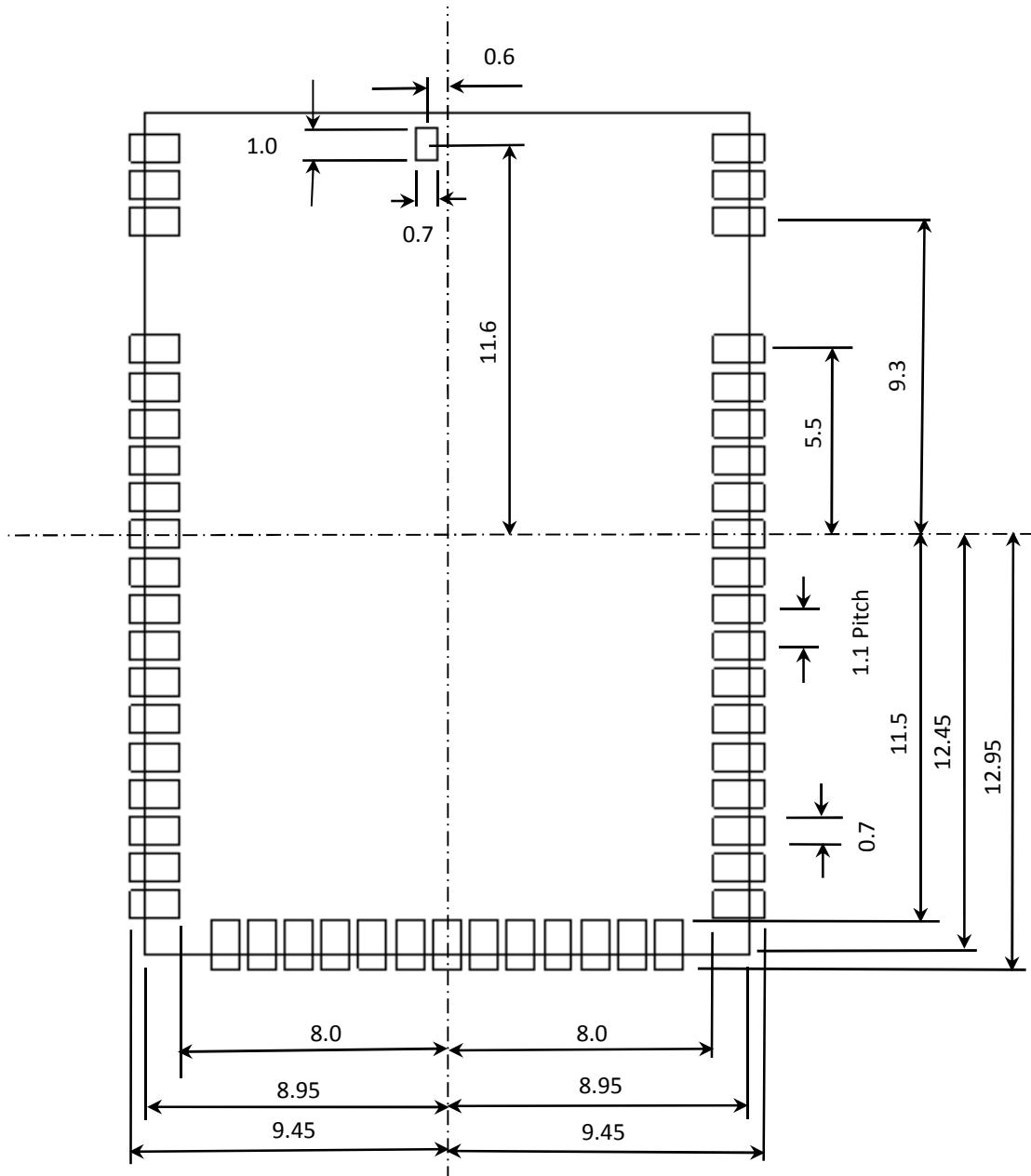
Top View

Bottom View



Side View

Figure 2: Module Top, Bottom and Side View


**TITLE: Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: 8 April 2013

ISSUE: 0

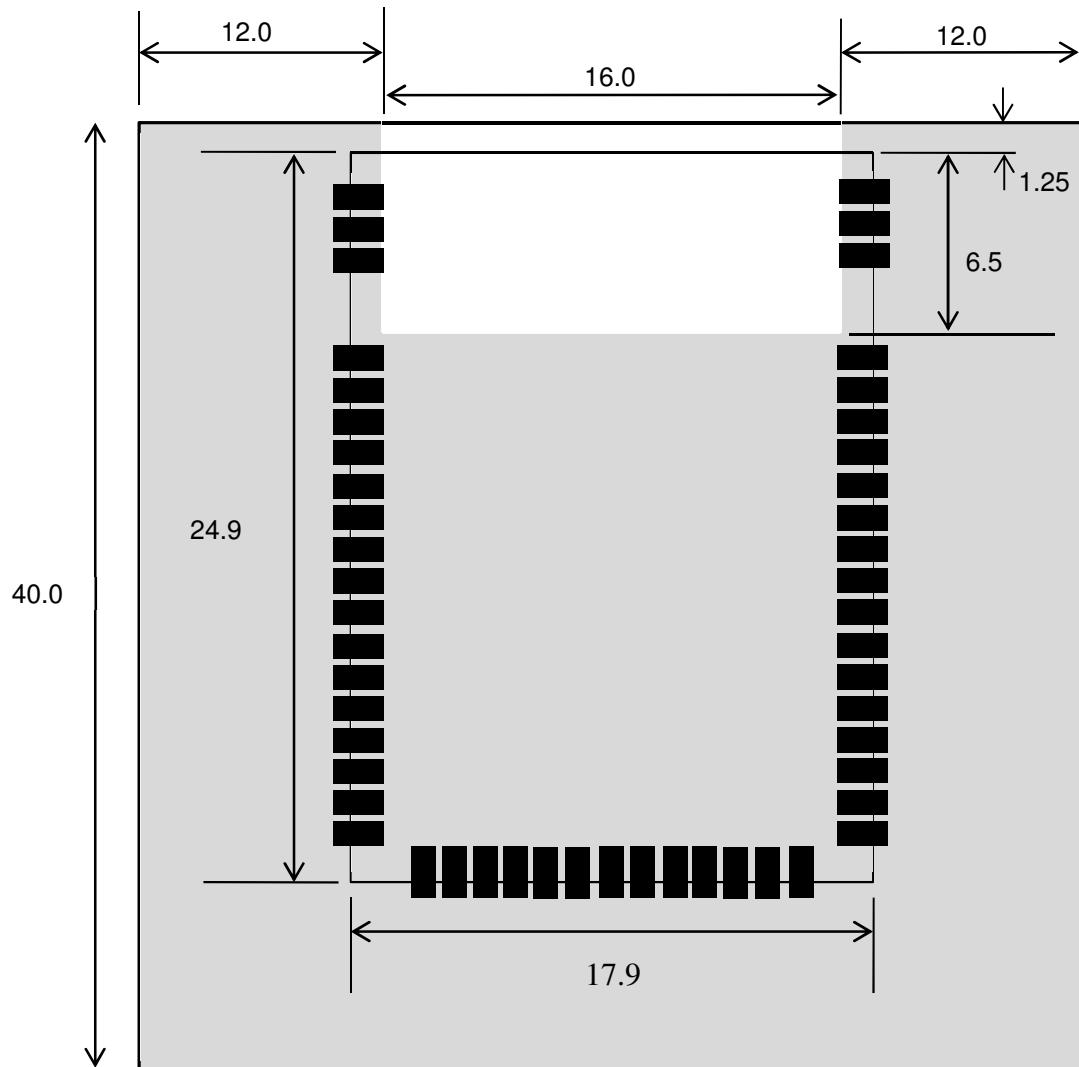
PAGE: 6 of 27

## 2.2 Module Footprint – Top “see through” View (mm)



**Figure 3: Module Footprint**

**TITLE: Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**


REVISION DATE: 8 April 2013

ISSUE: 0

PAGE: 7 of 27

## 2.3 Recommended Main PCB Copper Ground Design

(Only applicable to module with internal antenna)



**Figure 4: Recommended main PCB Copper design**



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **8 of 27**

## 2.4 Module Pin-Out

| Module Pin Number | EM357 IC Pin Number | Name   | Type | Description                                             |
|-------------------|---------------------|--------|------|---------------------------------------------------------|
| 1                 | 49                  | GND    | GND  | Ground                                                  |
| 2                 | 49                  | GND    | GND  | Ground                                                  |
| 3                 | 49                  | GND    | GND  | Ground                                                  |
| 4                 | 49                  | GND    | GND  | Ground                                                  |
| 5                 | 49                  | GND    | GND  | Ground                                                  |
| 6                 | 49                  | GND    | GND  | Ground                                                  |
| 7                 | 49                  | GND    | GND  | Ground                                                  |
| 8                 | 49                  | GND    | GND  | Ground                                                  |
| 9                 | 11                  | PC5    | I/O  | Digital I/O                                             |
| 10                | 12                  | NRESET | I/O  | Active low chip reset (internal pull-up on EM357)       |
| 11                | 13                  | PC6    | I/O  | Digital I/O                                             |
|                   |                     |        |      | OSC32B - 32.768KHz crystal oscillator                   |
|                   |                     |        |      | nTX_ACTIVE - Inverted TX_ACTIVE signal                  |
| 12                | 14                  | PC7    | I/O  | Digital I/O                                             |
|                   |                     |        |      | OSC32A - 32.768KHz crystal oscillator                   |
|                   |                     |        |      | OSC32_EXT - Digital 32.768KHz clock input source        |
| 13                | 18                  | PA7    | I/O  | Digital I/O                                             |
|                   |                     |        |      | TIM1C4 - Timer 1 Channel 4 output                       |
|                   |                     |        |      | TIM1C4 - Timer 1 Channel 4 input                        |
|                   |                     |        |      | REG_EN - External regulator open drain output           |
| 14                | 19                  | PB3    | I/O  | Digital I/O                                             |
|                   |                     |        |      | TIM2C3 - Timer 2 channel 3 output                       |
|                   |                     |        |      | TIM2C3 - Timer 2 channel 3 input                        |
|                   |                     |        |      | SC1nCTS - UART CTS handshake of serial controller 1     |
|                   |                     |        |      | SC1nCTS - SPI master/slave clock of serial controller 1 |
| 15                | 20                  | PB4    | I/O  | Digital I/O                                             |
|                   |                     |        |      | TIM2C4 - Timer 2 channel 4 output                       |
|                   |                     |        |      | TIM2C4 - Timer 2 channel 4 input                        |
|                   |                     |        |      | SC1nRTS - UART RTS handshake of serial controller 1     |
|                   |                     |        |      | SC1nSSEL - SPI slave select of serial controller 1      |
| 16                | 21                  | PA0    | I/O  | Digital I/O                                             |
|                   |                     |        |      | TIM2C1 - Timer 2 channel 1 output                       |
|                   |                     |        |      | TIM2C1 - Timer 2 channel 1 input                        |
|                   |                     |        |      | SC2MOSI - SPI master data out of serial controller 2    |
|                   |                     |        |      | SC2MOSI - SPI slave data in of serial controller 2      |
| 17                | 22                  | PA1    | I/O  | Digital I/O                                             |



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **9 of 27**

|    |    |     |     |                                                                |
|----|----|-----|-----|----------------------------------------------------------------|
|    |    |     |     | TIM2C3 - Timer 2 channel 3 output                              |
|    |    |     |     | TIM2C3 - Timer 2 channel 3 input                               |
|    |    |     |     | SC2MISO - SPI slave data out of serial controller 2            |
|    |    |     |     | SC2MISO - SPI master data in of serial controller 2            |
| 18 | 24 | PA2 | I/O | Digital I/O                                                    |
|    |    |     |     | TIM2C4 - Timer 2 channel 4 output                              |
|    |    |     |     | TIM2C4 - Timer 2 channel 4 input                               |
|    |    |     |     | SC2SCL - TWI clock of serial controller 2                      |
|    |    |     |     | SC2SCL - SPI master/slave clock of serial controller 2         |
| 19 | 49 | GND | GND | Ground                                                         |
| 20 | 49 | GND | GND | Ground                                                         |
| 21 | 25 | PA3 | I/O | Digital I/O                                                    |
|    |    |     |     | SC2nSSEL - SPI slave select of serial controller 2             |
|    |    |     |     | TRACECLK - Synchronous CPU trace clock                         |
|    |    |     |     | TIM2C2 - Timer 2 channel 2 output                              |
|    |    |     |     | TIM2C2 - Timer 2 channel 2 input                               |
| 22 | 26 | PA4 | I/O | Digital I/O                                                    |
|    |    |     |     | ADC4 - ADC Input 4                                             |
|    |    |     |     | PTI_EN - Frame signal of packet Trace Interface (PTI)          |
|    |    |     |     | TRACEDATA2 - Synchronous CPU trace data bit 2                  |
| 23 | 27 | PA5 | I/O | Digital I/O                                                    |
|    |    |     |     | ADC5 - ADC Input 5                                             |
|    |    |     |     | PTI_DATA - Data signal of Packet Trace Interface (PTI)         |
|    |    |     |     | nBOOTMODE - Embedded serial bootloader activation out of reset |
|    |    |     |     | TRACEDATA3 - Synchronous CPU trace data bit 3                  |
| 24 | 29 | PA6 | I/O | Digital I/O                                                    |
|    |    |     |     | TIM1C3 - Timer 1 channel 3 output                              |
|    |    |     |     | TIM1C3 - Timer 1 channel 3 input                               |
| 25 | 30 | PB1 | I/O | Digital I/O                                                    |
|    |    |     |     | SC1MISO - SPI master/slave data out of serial controller 1     |
|    |    |     |     | SC1SDA - TWI data of serial controller 1                       |
|    |    |     |     | SC1TXD - UART transmit data of serial controller 1             |
|    |    |     |     | TIM2C1 - Timer 2 channel 1 output                              |
|    |    |     |     | TIM2C1 - Timer 2 channel 1 input                               |
| 26 | 31 | PB2 | I/O | Digital I/O                                                    |
|    |    |     |     | SC1MISO - SPI master/slave data in of serial controller 1      |
|    |    |     |     | SC1SCL - TWI clock of serial controller 1                      |
|    |    |     |     | SC1RXD - UART receive data of serial controller 1              |
|    |    |     |     | TIM2C2 - Timer 2 channel 2 output                              |
|    |    |     |     | TIM2C2 - Timer 2 channel 2 input                               |



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **10 of 27**

|    |             |      |       |                                                                                        |
|----|-------------|------|-------|----------------------------------------------------------------------------------------|
| 27 | 32          | JCLK | I     | JTAG clock input from debugger<br>SWCLK - Serial Wire clock input/output with debugger |
| 28 | 33          | PC2  | I/O   | Digital I/O                                                                            |
|    |             |      |       | JTDO - JTAG data out to debugger                                                       |
|    |             |      |       | SWO - Serial Wire Output asynchronous trace output to debugger                         |
| 29 | 34          | PC3  | I/O   | Digital I/O                                                                            |
|    |             |      |       | JTDI - JTAG data in from debugger                                                      |
| 30 | 35          | PC4  | I/O   | Digital I/O                                                                            |
|    |             |      |       | JTMS - JTAG mode select from debugger                                                  |
|    |             |      |       | SWDIO - Serial Wire bidirectional data to/from debugger                                |
| 31 | 36          | PB0  | I/O   | Digital I/O                                                                            |
|    |             |      |       | VREF - ADC reference output                                                            |
|    |             |      |       | VREF - ADC reference input                                                             |
|    |             |      |       | IRQA - External interrupt source A                                                     |
|    |             |      |       | TRACECLK - Synchronous CPU trace clock                                                 |
|    |             |      |       | TIM1CLK - Timer 1 external clock input                                                 |
|    |             |      |       | TIM2MSK - Timer 2 external clock mask input                                            |
| 32 | 49          | GND  | GND   | Ground                                                                                 |
| 33 | 49          | GND  | GND   | Ground                                                                                 |
| 34 | 16,23,28,37 | VDD  | Power | 2.1 to 3.6V Module power domain                                                        |
| 35 | 49          | GND  | GND   | Ground                                                                                 |
| 36 | 38          | PC1  | I/O   | Digital I/O                                                                            |
|    |             |      |       | ADC3 - ADC Input 3                                                                     |
|    |             |      |       | SWO - Serial Wire Output asynchronous trace output to debugger                         |
|    |             |      |       | TRACEDATA0 - Synchronous CPU trace data bit 0                                          |
| 37 | 40          | PC0  | I/O   | Digital I/O                                                                            |
|    |             |      |       | JRST - JTAG reset input from debugger                                                  |
|    |             |      |       | IRQD - Default external interrupt source D                                             |
|    |             |      |       | TRACEDATA1 - Synchronous CPU trace data bit 1                                          |
| 38 | 41          | PB7  | I/O   | Digital I/O                                                                            |
|    |             |      |       | ADC2 - ADC Input 2                                                                     |
|    |             |      |       | IRQC - Default external interrupt source C                                             |
|    |             |      |       | TIM1C2 - Timer 1 channel 2 output                                                      |
|    |             |      |       | TIM1C2 - Timer 1 channel 2 input                                                       |
| 39 | 42          | PB6  | I/O   | Digital I/O                                                                            |
|    |             |      |       | ADC1 - ADC Input 1                                                                     |
|    |             |      |       | IRQB - External interrupt source B                                                     |
|    |             |      |       | TIM1C1 - Timer 1 channel 1 output                                                      |
|    |             |      |       | TIM1C1 - Timer 1 channel 1 input                                                       |



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **11 of 27**

|    |    |         |     |                                                                                  |
|----|----|---------|-----|----------------------------------------------------------------------------------|
| 40 | 43 | PB5     | I/O | Digital I/O                                                                      |
|    |    |         |     | ADC0 - ADC Input 0                                                               |
|    |    |         |     | TIM2CLK - Timer 2 external clock input                                           |
|    |    |         |     | TIM1MSK - Timer 1 external clock mask input                                      |
| 41 | 49 | GND     | GND | Ground                                                                           |
| 42 | 49 | GND     | GND | Ground                                                                           |
| 43 | 49 | GND     | GND | Ground                                                                           |
| 44 | 49 | GND     | GND | Ground                                                                           |
| 45 | 49 | GND     | GND | Ground                                                                           |
| 46 | 49 | GND     | GND | Ground                                                                           |
| 47 | 49 | GND     | GND | Ground                                                                           |
| 48 | 49 | GND     | GND | Ground                                                                           |
| 49 | 49 | GND     | GND | Ground                                                                           |
| 50 | 49 | GND     | GND | Ground                                                                           |
| 51 | 49 | GND     | GND | Ground                                                                           |
| 52 | -  | LGA pad | RF  | TX/Rx Antenna connection. Not applicable to UFL and internal Chip antenna option |

**Table 1: Module Signal Description**

Notes:

(1) The serial UART connections TXD, RXD, CTS and RTS are PB1, PB2, PB3 and PB4 respectively.



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **12 of 27**

### 3.0 ELECTRICAL SPECIFICATIONS

#### 3.1 Absolute Maximum Ratings

| PARAMETER                                                                                               | MIN  | MAX     | UNIT |
|---------------------------------------------------------------------------------------------------------|------|---------|------|
| Power Supply Voltage (VDD)                                                                              | -0.3 | +3.6    | V    |
| Voltage on any IO                                                                                       | -0.3 | VDD+0.3 | V    |
| Voltage on any Pad pin (PA4, PA5, PB5, PB6, PB7, PC1), when used as an input to the general purpose ADC | -0.3 | 2.0     | V    |
| RF Input Power                                                                                          |      | +15     | dBm  |
| Storage temperature                                                                                     | -40  | 85      | °C   |

**Table 2: Absolute Maximum Ratings**

#### 3.2 Environmental Characteristics

| PARAMETER                                 | MIN | MAX  | UNIT |
|-------------------------------------------|-----|------|------|
| ESD on any pad (human body model)         |     | ±2   | kV   |
| ESD on non-RF pads (charged device model) |     | ±400 | V    |
| ESD on RF terminal (charged device model) |     | ±225 | V    |
| Moisture Sensitivity Level                |     | 3    |      |

**Table 3: Environment Characteristics**

#### 3.3 Operating Conditions

| PARAMETER             | MIN | TYP | MAX | Unit |
|-----------------------|-----|-----|-----|------|
| Power supply          | 2.1 | 3.0 | 3.6 | V    |
| Operating Temperature | -40 | 25  | 85  | °C   |

**Table 4: Operating Conditions**

#### 3.4 DC characteristics

| PARAMETER                  | TEST CONDITIONS                                          | MIN | TYP  | MAX | UNIT |
|----------------------------|----------------------------------------------------------|-----|------|-----|------|
| Receive Mode               | VDD = 3.0V, TA = 25 °C, total Rx current                 |     | 24.0 |     | mA   |
| Transmit Mode              | VDD = 3.0V, TA = 25 °C, power setting (+3 dBm)           |     | 32   |     | mA   |
| Receive Mode (Boost mode)  | VDD = 3.0V, TA = 25 °C, boost mode total Rx current      |     | 25.5 |     | mA   |
| Transmit Mode (Boost mode) | VDD = 3.0V, TA = 25 °C, max power setting (+8 dBm)       |     | 43   |     | mA   |
| Sleep Mode                 | VDD = 3.0V, TA = 25 °C, including Internal RC oscillator |     | 0.7  |     | uA   |

**Table 5: DC characteristics**



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **13 of 27**

### 3.5 RF Characteristics

(VDD = 3V, TA = 25°C, Boost Mode measured at the U.FL connector with 50Ω termination)

| PARAMETER (Receive Section)                          | MIN  | TYP  | MAX  | UNIT |
|------------------------------------------------------|------|------|------|------|
| Frequency range                                      | 2400 |      | 2500 | MHz  |
| Sensitivity (boost mode)                             |      | -102 | -96  | dBm  |
| Sensitivity                                          |      | -100 | -94  | dBm  |
| Maximum input signal level for correct operation     | 0    |      |      | dBm  |
| High-Side Adjacent Channel Rejection                 |      | 37   |      | dB   |
| Low-Side Adjacent Channel Rejection                  |      | 42   |      | dB   |
| 2 <sup>nd</sup> High-Side Adjacent Channel Rejection |      | 53   |      | dB   |
| 2 <sup>nd</sup> Low-Side Adjacent Channel Rejection  |      | 50   |      | dB   |
| Co-channel rejection                                 |      | -6   |      | dBc  |
| Spurious emission                                    |      |      |      |      |
| 30 ~ 1000MHz                                         |      | -77  |      | dBm  |
| 1 ~ 12.75GHz                                         |      | -76  |      | dBm  |

**Table 6: Rx Characteristics**

| PARAMETER (Transmit Section)                   | MIN | TYP | MAX | UNIT |
|------------------------------------------------|-----|-----|-----|------|
| Maximum output power (boost mode)              |     | 7.9 |     | dBm  |
| Maximum output power                           | 0   | 4.0 |     | dBm  |
| Error vector magnitude (Offset-EVM)            |     | 5   | 15  | %    |
| Carrier frequency error                        | -40 |     | +40 | ppm  |
| PSD mask relative                              | -20 |     |     | dB   |
| PSD mask absolute                              | -30 |     |     | dBm  |
| 2 <sup>nd</sup> Harmonic                       |     | -54 |     | dBm  |
| 3 <sup>rd</sup> Harmonic                       |     | -53 |     | dBm  |
| Spurious emission (Max power modulated signal) |     |     |     |      |
| 30 ~ 1000 MHz                                  |     | -80 |     | dBm  |
| 1 ~ 2.5 GHz                                    |     | -67 |     | dBm  |
| 2.5 ~ 12.7 GHz (outside restricted bands)      |     | -74 |     | dBm  |

**Table 7: Tx Characteristics**



TITLE: Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD

REVISION DATE: 8 April 2013

ISSUE: 0

PAGE: 14 of 27

### 3.6 Transmit Power Characteristics

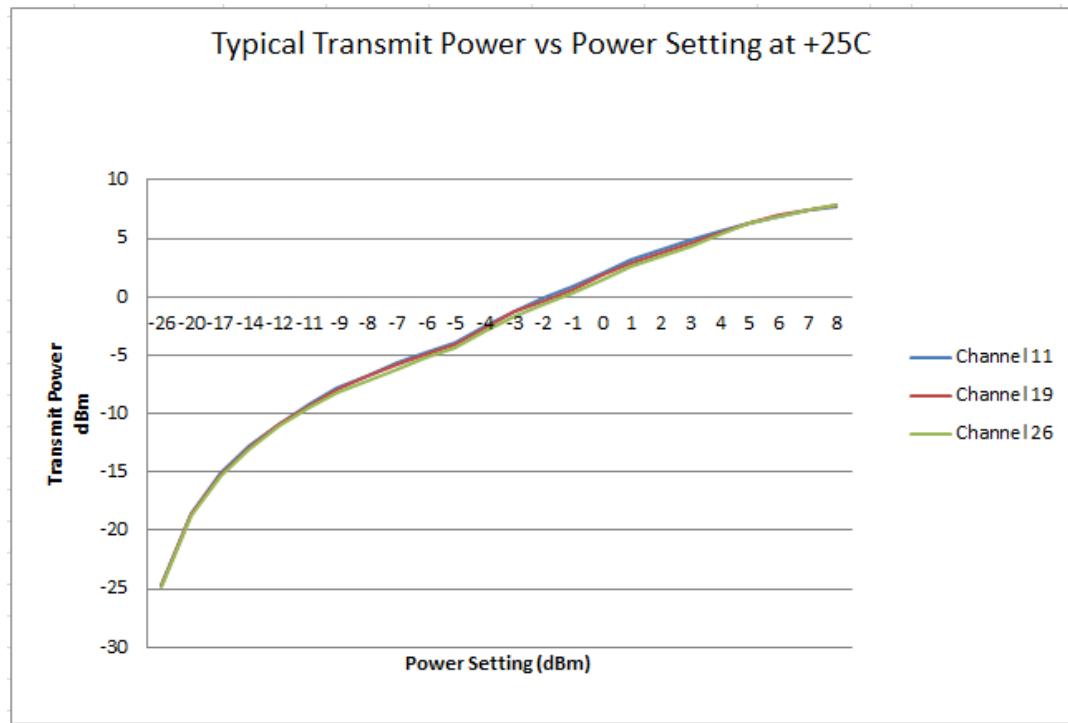



Figure 5: Transmit Power vs Power Setting

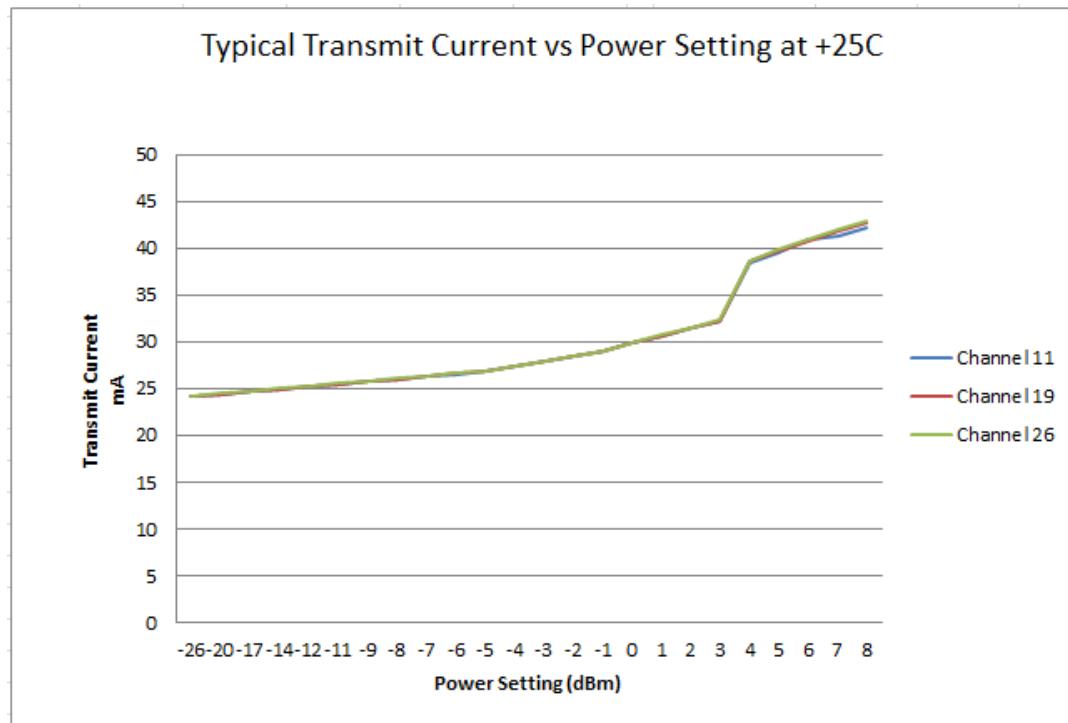



Figure 6: Transmit Current vs Power Setting



TITLE: Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD

REVISION DATE: 8 April 2013

ISSUE: O

PAGE: 15 of 27

## 4.0 APPLICATION NOTES

### 4.1 Pin Assignments

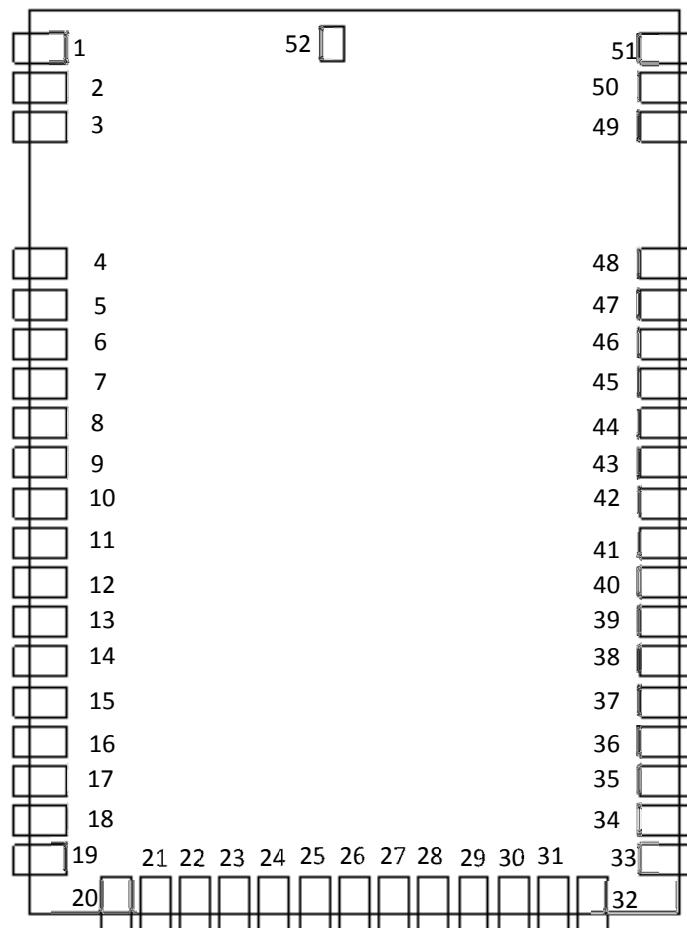



Figure 7. Pin Assignments

Refer to above chapter 2.4 for detailed pin functions.



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **16 of 27**

#### 4.2 Serial Communication

AT357 module provides several options for serial communications.

- *SPI (Serial Peripheral Interface)*

| SPI(Slave) Pin | Module Pin Number | GPIO Port |
|----------------|-------------------|-----------|
| SC2MOSI        | 16                | PA0       |
| SC2MISO        | 17                | PA1       |
| SC2SCLK        | 18                | PA2       |
| SC2nSEL        | 21                | PA3       |

Table 8: SPI Pins

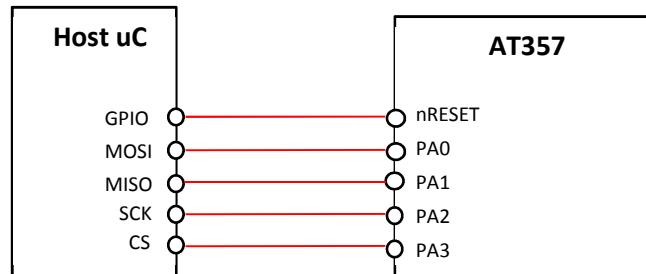



Figure 8a. Host uC to AT357 module via SPI Interface

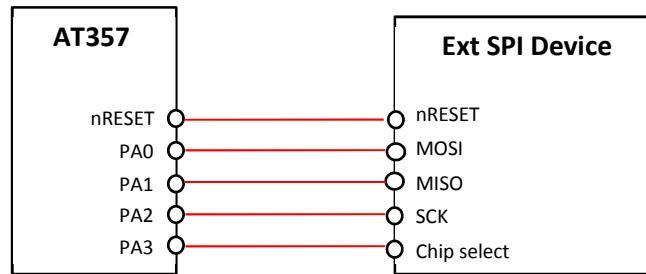



Figure 8b. AT357 module to external SPI device



TITLE: Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD

REVISION DATE: 8 April 2013

ISSUE: 0

PAGE: 17 of 27

- *UART (Universal Asynchronous Receiver/Transmitter)*

| UART pin | Module Pin Number | GPIO Port |
|----------|-------------------|-----------|
| TXD      | 25                | PB1       |
| RXD      | 26                | PB2       |
| nCTS     | 14                | PB3       |
| nRTS     | 15                | PB4       |

Table 9: UART Pins

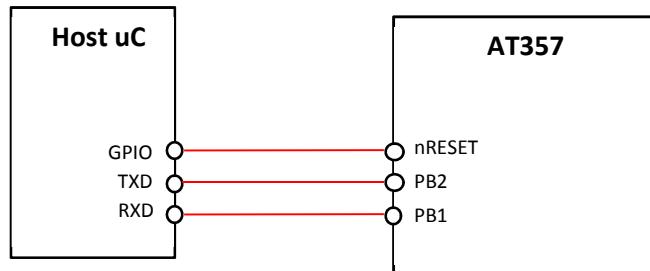



Figure 9a. Host uC to AT357 module via UART Interface

AT357 module can interface UART to external serial device (for example RS-232) through a level shifter (SP3232EBCN from Sipex).

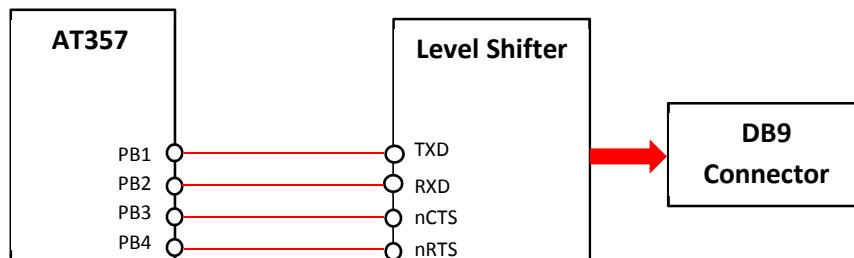



Figure 9b. AT357 module to external UART device



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **18 of 27**

- *TWI (Two Wire Serial Interface)*

| TWI pin             | Module Pin Number | GPIO Port |
|---------------------|-------------------|-----------|
| SC2SDA (open drain) | 17                | PA1       |
| SC2SCL (open drain) | 18                | PA2       |

Table 10: TWI Pins

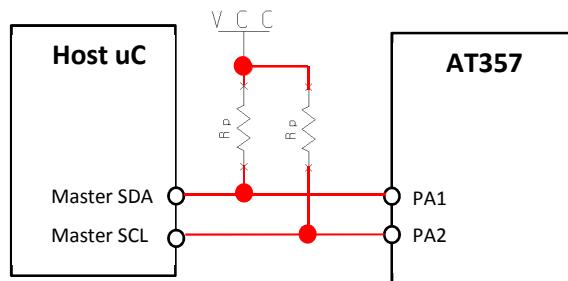



Figure 10a. Host uC to AT357 module via I2C Interface

AT357 can support external I2C devices such as sensor board to provide wireless sensing application.

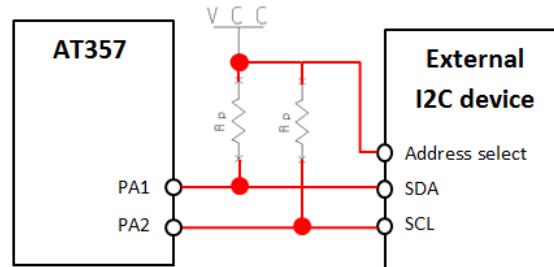



Figure 10b. AT357 module to external I2C device



TITLE: Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD

REVISION DATE: 8 April 2013

ISSUE: 0

PAGE: 19 of 27

#### 4.3 Power Supply Design

Excessive noise or ripple (from switching DC-DC regulator) which is decoupled into power supply pin will lead to severe radio performance degradation. Therefore, it's a must to implement proper power supply decoupling circuits in order to sharply suppress any undesired noise.

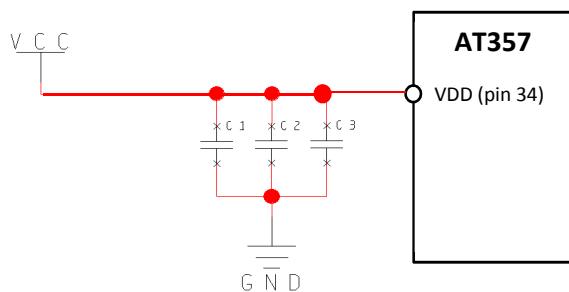



Figure 11. Power supply decoupling circuits

The decoupling capacitors can be in value of 10uF, 1uF and 10pF. The placement of three decoupling capacitor must be in the following order: 10uF (C1), 1uF (C2) and followed by 10pF (C3) which is closer to power supply pin.

#### 4.4 External Flash Memory

The AT357 can support bootloader feature that allows a node to update its image on demand, either by serial communication or over the air (OTA). The boot loading program is stored in external flash memory (for example AT45DB021D from ATMEL) which is accessible using SPI communication (refer to Figure 8b for signal connection).

#### 4.5 ADC

The AT357 has offered 24 multi-purpose GPIO ports. Six of them may be individually configured as ADC input.

| Analog Signal Pin | Module Pin Number | GPIO port |
|-------------------|-------------------|-----------|
| ADC0              | 40                | PB5       |
| ADC1              | 39                | PB6       |
| ADC2              | 38                | PB7       |
| ADC3              | 36                | PC1       |
| ADC4              | 22                | PA4       |
| ADC5              | 23                | PA5       |

Table 11: ADC Pins

Refer to EM35x datasheet (120-035x-000M) for detailed configuration.



TITLE: Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD

REVISION DATE: 8 April 2013

ISSUE: 0

PAGE: 20 of 27

#### 4.6 GPIO ports (default setting)

Below listed the default setting of all 24 multi-purpose GPIO ports.

| Ports | Assignment    | Logic Level | Peripheral             |
|-------|---------------|-------------|------------------------|
| PA0   | SPI bus       |             | MOSI                   |
| PA1   | SPI bus       |             | MISO                   |
| PA2   | SPI bus       |             | SCLK                   |
| PA3   | Digital out   | Active Low  | nSSEL (slave SPI only) |
| PA4   | Digital out   | Active High |                        |
| PA5   | Digital input | Active Low  | Bootloader             |
| PA6   | Digital out   | Active Low  |                        |
| PA7   | Digital out   | Active Low  |                        |
| PB0   | Digital out   | Active High |                        |
| PB1   | TxD           |             | UART                   |
| PB2   | RxD           |             | UART                   |
| PB3   | nCTS          |             | UART                   |
| PB4   | nRTS          |             | UART                   |
| PB5   | ADC Input     | Analog      |                        |
| PB6   | Digital input | Active Low  |                        |
| PB7   | Digital out   | Analog      |                        |
| PC0   | JTAG          |             | nJRST                  |
| PC1   | ADC Input     | Analog      |                        |
| PC2   | JTAG          |             | JTDO                   |
| PC3   | JTAG          |             | JTDI                   |
| PC4   | JTAG          |             | JTMS                   |
| PC5   | Digital out   | Active Low  |                        |
| PC6   | Digital input | Active Low  |                        |
| PC7   | Digital out   | Active Low  |                        |

Table 12: GPIO Ports



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **21 of 27**

## 5.0 ASSEMBLY INFORMATION

### 5.1 Lead-Free soldering reflow profile

| Condition                             | Exposure               |
|---------------------------------------|------------------------|
| Average ramp-up rate (200°C to 250°C) | < 3 °C / second        |
| > 217°C                               | 60-120 seconds         |
| Peak temperature                      | 250 +0/-5°C            |
| Time within 5°C of peak               | 20-30 seconds          |
| Ramp-down rate (Peak to 50°C)         | Less than 6°C / second |

**Table 13: Reflow Profile Recommendation**

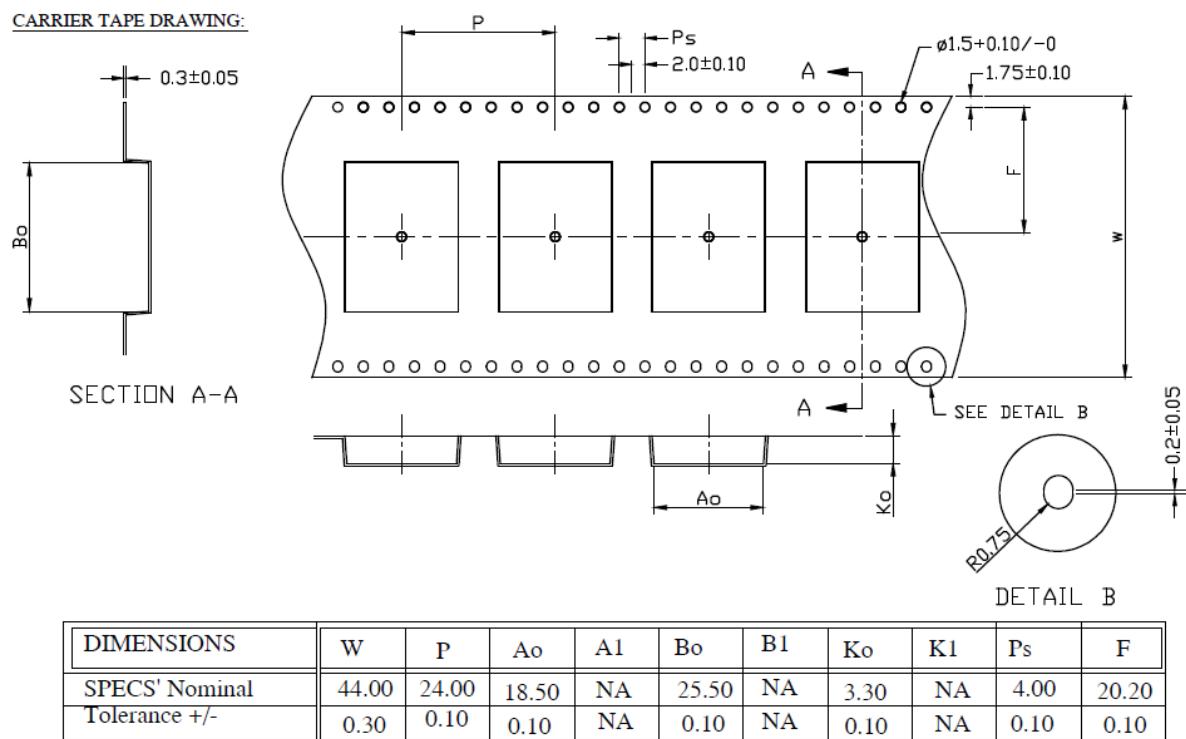
## 6.0 RELIABILITY TESTS

| No. | Test item                                | Test condition                                                                                                |
|-----|------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1   | Reflow Thermal Cycle                     | Normal Pbfree reflow Condition 2 times                                                                        |
| 2   | Thermal Shock Cycle                      | 30min. at -40°C, 30min. at 85°C , 100Cycles<br>Recovery Time 1hours                                           |
| 3   | Vibration Test                           | JESD22-B103-B Service Condition 5,<br>5Hz -> 500Hz, Acceleration 0.3g, 4min/Cycle.<br>Total 4 cycles per axis |
| 4   | High Temperature Storage Test            | 96 hours at 85°C, Recovery Time 1hours                                                                        |
| 5   | Low Temperature Storage Test             | 96 hours at -40°C, Recovery Time 1hours                                                                       |
| 6   | High Temperature & Humidity Storage Test | 96 hours at 60°C & 90%RH±2%RH.<br>Recovery Time 1hours                                                        |
| 7   | Drop Test                                | Height min 76 cm, All sides onto metal plate                                                                  |

**Table 14: Reliability Tests**



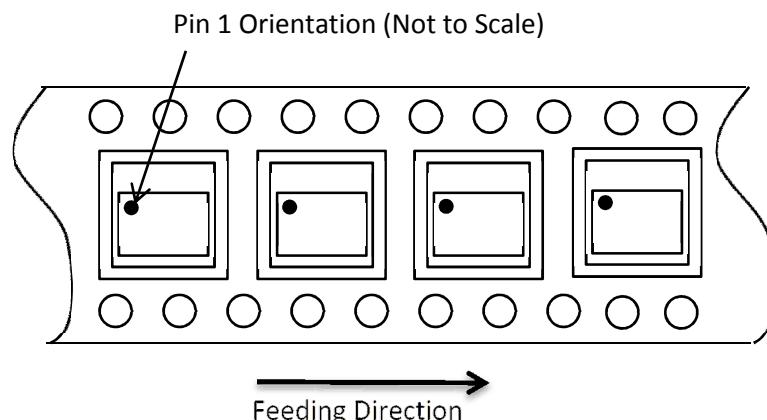
TITLE: Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD


REVISION DATE: 8 April 2013

ISSUE: 0

PAGE: 22 of 27

## 7.0 PACKAGING INFORMATION


### 7.1 Tape and Reel specification



All dimensions in mm

Figure 12: Tape Dimensions

### 7.2 Component Orientation





**TITLE: Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

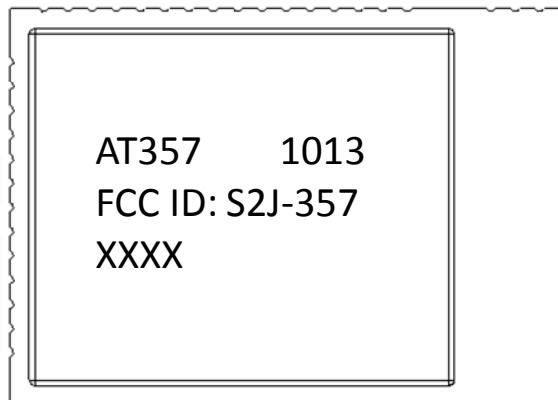
ISSUE: **O**

PAGE: **23 of 27**

7.2.1 Tape Width: 44 mm

7.2.2 Tape Pitch (part to part): 24 mm

7.2.3 Reel Diameter: 330 mm


### **7.3 Module Marking**

Legend:

AT357 - Module Model Number

1013 - Date Code (Example: 10-Workweek, 13-Year)

XXXX - Customer Program information





TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **24 of 27**

## 8.0 REGULATORY INFORMATION

### 8.1 FCC Notice

This module complies with Part 15 of the FCC rules and regulations. Compliance with the labeling requirements, FCC notice and antenna usage guideline is required. The OEM must comply with the following regulations:

1. The OEM integrator must ensure that the text on the external label provided with this device is placed on the outside of the final product.
2. AT357 module may only be used with antenna that have been tested and approved for use with this module.

**FCC Caution:** Any changes or modifications not expressly approval by the party responsible for compliance could void the user's authority to operate this device.

### 8.2 OEM Labeling Requirements

The Original Equipment Manufacturing (OEM) must ensure that FCC labeling requirements are met. This includes a clearly visible label on the outside of the finished product specifying the AT357 FCC identifier (**FCC ID: S2J-357**).

Below FCC label statements are required for OEM products containing AT357 Module.

#### Contains FCC ID: S2J-357

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference and (2) This device must accept any interference received, including interference that may cause undesired operation.

### 8.3 RF Exposure

This module has been certified for remote and base radio applications and is not intended to be operated within 20cm of the body. If the module will be used for portable applications, the OEM or OEM integrator is responsible for passing additional SAR (Specific Absorption Rate) testing in accordance with FCC Rules 2.1093.

The preceding statement must be included as a CAUTION statement in OEM product manuals in order to alert users of FCC RF exposure compliance.



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **25 of 27**

To satisfy FCC RF exposure requirements, a separation distance of 20cm or more should be maintained between the antenna of this device and persons during device operation. To ensure compliance, operation at closer than this distance is not recommended. The antenna used for this transmitter must not be co-located or operating in conjunction with other antennas or transmitters.

#### **8.4 FCC Approved Antenna**

AT357 Module has been tested and approved for use with the following antenna:

- Dipole (2.5dBi, AAC part number A.01.120)

Table 15 shows approved channels of operations with the corresponding maximum output power steps settings.

|       | Channel 11-25 | Channel 26 |
|-------|---------------|------------|
| AT357 | +8dBm         | -5dBm      |

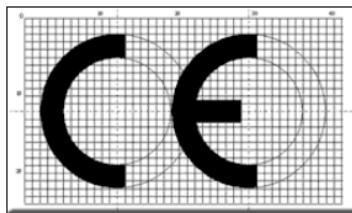
Table 15: Maximum Power Settings for FCC Compliance

#### **8.5 CE Notice**

The AT357 module has been tested and certified for use in the European Union. If this module is to be incorporated into a product, the OEM must ensure compliance of the final product to the European Harmonized EMC and low voltage/safety standards. A Declaration of Conformity must be issued for each of these standards and kept on file as described in Annex II of the R&TTE Directive. The final product must not exceed the specified power ratings, antenna specifications and installation requirements as specified in this user manual. If any of these specifications are exceeded in the final product then a submission must be made to a notified body for compliance testing to all of the required standards.

#### **8.6 OEM Labeling Requirements**

1. The CE conformity marking must consist of the initials CE taking the following form:




TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **26 of 27**



If the CE conformity marking is reduced or enlarged the proportions given in the above graduated drawing must be respected

2. Where the directive concerned does not impose specific dimensions, the CE marking must have a height of at least 5 mm.
3. The CE marking must be affixed to the product or to its data plate. However, where this is not possible or not warranted on account of the nature of the product, it must be affixed to the packaging, if any, and to the accompanying documents, where the directive concerned provides for such documents.
4. The CE marking must be affixed visibly, legibly and indelibly.

For more information please refer to <http://ec.europa.eu/enterprise/faq/ce-mark.htm>. Customers assume full responsibility for learning and meeting the required guidelines for each country in their distribution market.

## 8.7 CE Compliance Power Settings

The following antenna has been tested and approved for use with the AT357 Module:

- Dipole (2.5dBi, AAC part number A.01.120)

Table 16 shows approved channels of operations with the corresponding maximum output power steps settings.

|       |       | Channel 11-26 |
|-------|-------|---------------|
| AT357 | +8dBm |               |

Table 16: Maximum Power Settings for Europe (ESTI)



TITLE: **Module, ZigBee, 17.9 x 24.9 x 2.75mm, 51 I/O, Edge Castellated, SMD**

REVISION DATE: **8 April 2013**

ISSUE: **O**

PAGE: **27 of 27**

## 9.0 RoHS Declaration

Based on our supplier declarations, this product does not contain substances that are banned by Directive 2002/95/EC or contains a maximum concentration of 0.1% or 1000 ppm by weight in homogeneous materials for:

- Lead and lead compounds
- Mercury and mercury compounds
- Chromium (VI)
- PBB (polybrominated biphenyl)
- PBDE (polybrominated biphenyl ether)

And a maximum concentration of 0.01% or 100 ppm by weight in homogeneous materials for:

- Cadmium and cadmium compounds

## 10.0 Ordering Information

| Module | Description                                                                                                                                                                                                                                                    | QTY/Reel | Order Number |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| AT357  | +8dBm Output Power ZigBee Module <ul style="list-style-type: none"><li>• Based on Silicon Labs EM357</li><li>• AAC AT Style Command Interpreter</li><li>• EmberZNet meshing and self-healing ZigBee PRO stack</li><li>• U.FL/i-Pex Antenna Connector</li></ul> | 600      | R001         |

Note:

All Modules are pre-programmed with AAC AT style command interpreter based on the EmberZNet stack. Customers who are using their own firmware will be able to erase and write to the flash memory of the EM357.