

Global United Technology Services Co., Ltd.

Report No.: GTSL202212000076F02

TEST REPORT

Applicant: GUANGZHOU Walkera Technology Co., Ltd

Address of Applicant: Taishi Industrial Park, Dongchong Town, Panyu District,

Guangzhou, China

Manufacturer/Factory: GUANGZHOU Walkera Technology Co., Ltd

Address of Taishi Industrial Park, Dongchong Town, Panyu District,

Guangzhou, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: WKRC-H9 Model No.: WKRC-H9

Trade Mark: **W** walkera

FCC ID: S29WKRC-H9

FCC CFR Title 47 Part 15 Subpart E Section 15.407 Applicable standards:

December 09, 2022 Date of sample receipt:

Date of Test: December 12, 2022-December 14, 2022

Date of report issued: December 14, 2022

Test Result: PASS *

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	December 14, 2022	Original

Prepared By:	Jamel Uu Dat	e: December 14, 2022
	Project Engineer	
Check By:	Lotinson lus Dat	e : December 14, 2022

Reviewer

GTS

Report No.: GTSL202212000076F02

3 Contents

		Pa	age
1	COVI	ER PAGE	1
2	VERS	SION	2
3	CON.	TENTS	2
3	CON		3
4	TEST	SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
S			
5		ERAL INFORMATION	
		GENERAL DESCRIPTION OF EUT	
		TEST MODE	
		DESCRIPTION OF SUPPORT UNITS	
		DEVIATION FROM STANDARDSABNORMALITIES FROM STANDARD CONDITIONS	
		TEST FACILITY	
		TEST LOCATION	
		Additional Instructions	
6	TEST	INSTRUMENTS LIST	q
Ğ			0
7	TEST	RESULTS AND MEASUREMENT DATA	. 11
	7.1	ANTENNA REQUIREMENT	11
		CONDUCTED EMISSIONS	
		CONDUCTED PEAK OUTPUT POWER	
		CHANNEL BANDWIDTH	
		Power Spectral Density	
		BAND EDGE	
	7.6.1		
	7.7 771	Spurious Emission	
	174 74 1 4 4	FREQUENCY STABILITY	
8	IEST	SETUP PHOTO	. 31
9	EUT	CONSTRUCTIONAL DETAILS	31

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407(a)(3)	Pass
Channel Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407(a)(3)	Pass
Band Edge	15.407(b)(4)	Pass
Spurious Emission	15.205/15.209/15.407(b)(4)	Pass
Frequency Stability	15.407(g)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

WKRC-H9
WKRC-H9
0322Z120020
WKRC-H8_V1.1
1.1.2
GTSL202212000076-1
Engineer sample
802.11a/802.11n(HT20): 5745MHz ~ 5825MHz
802.11n(HT40): 5755MHz ~ 5795MHz
802.11a/802.11n(HT20): 5
802.11n(HT40): 2
802.11a/802.11n(HT20): 20MHz
802.11n(HT40): 40MHz
802.11a/802.11n(H20)/802.11n(H40)
Orthogonal Frequency Division Multiplexing (OFDM)
FPC Antenna
3dBi
Input:5V 2A
DC 7.4V, 2200mAh for Li-ion Battery

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745MHz	151	5755MHz	153	5765MHz	155	5775MHz
157	5785MHz	159	5795MHz	161	5805MHz	163	5815MHz
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Toot obound	Freque	ncy (MHz)				
Test channel	802.11 a/n(HT20)	802.11 n(HT40)				
Lowest channel	5745	5755				
Middle channel	5785					
Highest channel	5825	5795				

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6Mbps
802.11n(HT20)	6.5Mbps
802.11n(HT40)	13Mbps

5.3 Description of Support Units

None

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Test command provided by manufacturer
Power level setup	Default

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023	
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023	
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023	
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023	
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023	
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023	
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023	
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023	
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023	
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023	
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023	
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023	
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 16, 2022	Oct. 15, 2023	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 16, 2022	Oct. 15, 2023	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 16, 2022	Oct. 15, 2023	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023	
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023	

Con	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 24, 2022	April 23, 2023	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 23, 2022	June 22, 2023	
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 22, 2022	April 21, 2023	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 28, 2022	April 27, 2023	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 15, 2022	April 14, 2023	
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 22, 2022	April 21, 2023	
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 2023	

RF C	onducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Model No. Serial No.		Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023

Ger	General used equipment:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)						
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023						
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023						

7 Test results and Measurement Data

7.1 Antenna requirement

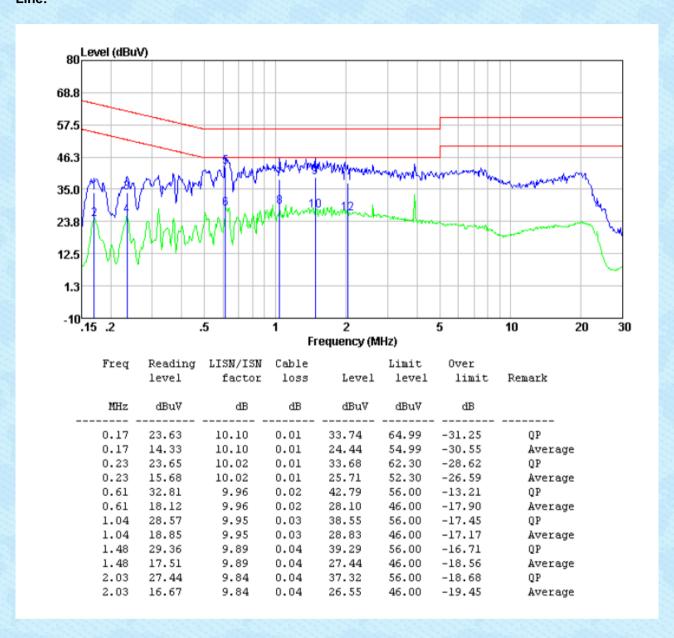
Standard requirement:	FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

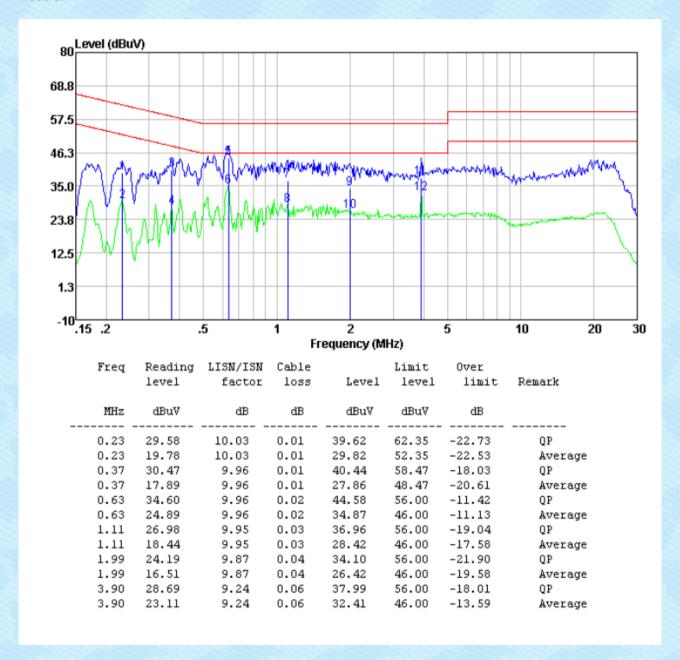
E.U.T Antenna:

The antennas are FPC antenna, reference to the appendix II for details


7.2 Conducted Emissions

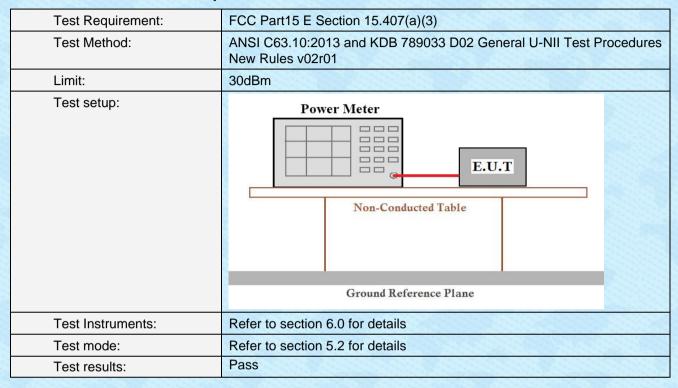
Test Requirement:	FCC Part15 C Section 15.207									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	150KHz to 30MHz									
Class / Severity:	Class B	Class B								
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto								
Limit:	Frequency range (MHz)		(dBuV)							
		Quasi-peak	Average							
	0.15-0.5	66 to 56*	56 to 46*							
	0.5-5 5-30	56 60	46							
	* Decreases with the logarithr		50							
Test setup:	Reference Plane			T. AND THE						
Test procedure:	AUX Equipment E.U.T EMI Receiver Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m									
rest procedure.	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 									
Test Instruments:	Refer to section 6.0 for details	3								
Test mode:	Refer to section 5.2 for details	S								
Test environment:	Temp.: 25 °C Hur	nid.: 52%	Press.: 10	12mbar						
Test voltage:	AC 120V, 60Hz									
Test results:	Pass									
Tool roodito.	1 400									

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



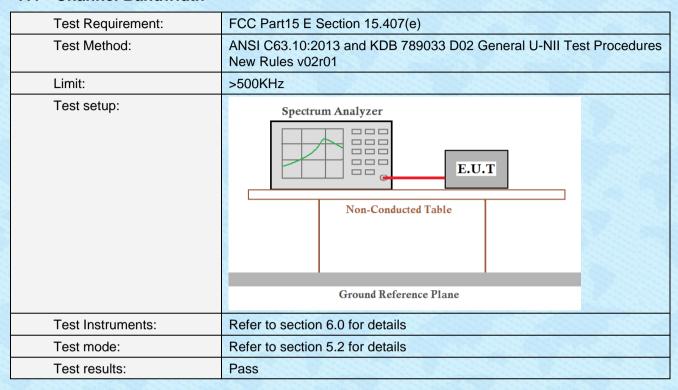
Measurement data Line:

Neutral:



Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both *limits and measurement with the average detector receiver is unnecessary.*


7.3 Conducted Peak Output Power

Measurement Data: The detailed test data see Appendix for WIFI 5.8G.

7.4 Channel Bandwidth

Measurement Data: The detailed test data see Appendix for WIFI 5.8G.

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)						
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01						
Limit:	30dBm/500kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Measurement Data: The detailed test data see Appendix for WIFI 5.8G.

7.6 Band edge

7.6.1 Radiated Emission Method

	tilou									
Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10: 2013									
Test Frequency Range:		9kHz to 40GHz, only worse case is reported								
Test site:	Measurement D	istance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak					
	Above 1G112	RMS	1MHz	3MHz	RMS					
Limit:	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.									
Test setup:	Tum Table < 150cm > .	< 3m >	Test Antenna- < lm 4m >- ecciver- Pres	mplifier						
Test Procedure:	the ground a determine th 2. The EUT wa antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Ba 6. If the emission the limit specified base of the EUT whave 10dB meak or aversheet.	t a 3 meter came position of the set 3 meters a che was mounted the maximum that the maximu	ber. The take highest race way from the don the top from one notimum value zations of the notion, the EUT ned to heigh from 0 decay as set to Peake aximum Hole UT in peaken gould be done of the could be done of the coul	ole was rotadiation. The interference of a variable of the field of the field one antennatives arrange of the field of the	r meters above the d strength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find unction and 10dB lower than and the peak values sions that did not using peak, quasi-					

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. According to KDB 789033 D02v02r01 section G) 1) d),for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

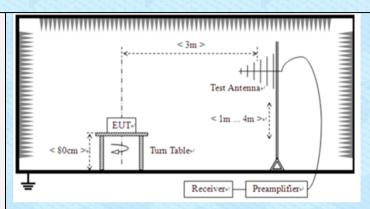
Measurement data:

	IEEE 802.11a										
Peak value:											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5650	34.69	32.36	9.72	23.83	52.94	68.20	-15.26	Horizontal			
5700	32.58	32.5	9.79	23.84	51.03	105.20	-54.17	Horizontal			
5720	28.72	32.53	9.81	23.85	47.21	110.80	-63.59	Horizontal			
5725	32.29	32.53	9.83	23.86	50.79	122.20	-71.41	Horizontal			
5850	33.69	32.7	9.99	23.87	52.51	122.20	-69.69	Horizontal			
5855	30.06	32.72	9.99	23.88	48.89	110.80	-61.91	Horizontal			
5875	32.77	32.74	10.04	23.89	51.66	105.20	-53.54	Horizontal			
5925	30.43	32.8	10.11	23.9	49.44	68.20	-18.76	Horizontal			
5650	30.93	32.36	9.72	23.83	49.18	68.20	-19.02	Vertical			
5700	27.60	32.5	9.79	23.84	46.05	105.20	-59.15	Vertical			
5720	31.10	32.53	9.81	23.85	49.59	110.80	-61.21	Vertical			
5725	32.10	32.53	9.83	23.86	50.60	122.20	-71.60	Vertical			
5850	28.61	32.7	9.99	23.87	47.43	122.20	-74.77	Vertical			
5855	33.45	32.72	9.99	23.88	52.28	110.80	-58.52	Vertical			
5875	29.53	32.74	10.04	23.89	48.42	105.20	-56.78	Vertical			
5925	31.10	32.8	10.11	23.9	50.11	68.20	-18.09	Vertical			

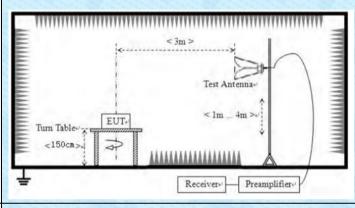
	IEEE 002 44n UT20											
	IEEE 802.11n HT20											
Peak value	Peak value:											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5650	28.78	32.36	9.72	23.83	47.03	68.20	-21.17	Horizontal				
5700	27.73	32.5	9.79	23.84	46.18	105.20	-59.02	Horizontal				
5720	29.12	32.53	9.81	23.85	47.61	110.80	-63.19	Horizontal				
5725	29.87	32.53	9.83	23.86	48.37	122.20	-73.83	Horizontal				
5850	34.18	32.7	9.99	23.87	53.00	122.20	-69.20	Horizontal				
5855	30.32	32.72	9.99	23.88	49.15	110.80	-61.65	Horizontal				
5875	33.64	32.74	10.04	23.89	52.53	105.20	-52.67	Horizontal				
5925	33.48	32.8	10.11	23.9	52.49	68.20	-15.71	Horizontal				
5650	33.28	32.36	9.72	23.83	51.53	68.20	-16.67	Vertical				
5700	32.59	32.5	9.79	23.84	51.04	105.20	-54.16	Vertical				
5720	32.98	32.53	9.81	23.85	51.47	110.80	-59.33	Vertical				
5725	30.72	32.53	9.83	23.86	49.22	122.20	-72.98	Vertical				
5850	32.47	32.7	9.99	23.87	51.29	122.20	-70.91	Vertical				
5855	33.65	32.72	9.99	23.88	52.48	110.80	-58.32	Vertical				
5875	28.47	32.74	10.04	23.89	47.36	105.20	-57.84	Vertical				
5925	34.59	32.8	10.11	23.9	53.60	68.20	-14.60	Vertical				

IEEE 802.11n HT40											
Peak value:											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5650	31.81	32.36	9.72	23.83	50.06	68.20	-18.14	Horizontal			
5700	30.94	32.5	9.79	23.84	49.39	105.20	-55.81	Horizontal			
5720	31.50	32.53	9.81	23.85	49.99	110.80	-60.81	Horizontal			
5725	32.26	32.53	9.83	23.86	50.76	122.20	-71.44	Horizontal			
5850	28.68	32.7	9.99	23.87	47.50	122.20	-74.70	Horizontal			
5855	33.70	32.72	9.99	23.88	52.53	110.80	-58.27	Horizontal			
5875	30.10	32.74	10.04	23.89	48.99	105.20	-56.21	Horizontal			
5925	31.31	32.8	10.11	23.9	50.32	68.20	-17.88	Horizontal			
5650	33.67	32.36	9.72	23.83	51.92	68.20	-16.28	Vertical			
5700	30.11	32.5	9.79	23.84	48.56	105.20	-56.64	Vertical			
5720	29.80	32.53	9.81	23.85	48.29	110.80	-62.51	Vertical			
5725	30.92	32.53	9.83	23.86	49.42	122.20	-72.78	Vertical			
5850	34.31	32.7	9.99	23.87	53.13	122.20	-69.07	Vertical			
5855	29.80	32.72	9.99	23.88	48.63	110.80	-62.17	Vertical			
5875	29.99	32.74	10.04	23.89	48.88	105.20	-56.32	Vertical			
5925	33.69	32.8	10.11	23.9	52.70	68.20	-15.50	Vertical			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



7.7 Spurious Emission


7.7.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 40GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Dete	ector	RBW	VBW	Value			
	9kHz-150KHz		i-peak	200Hz	1kHz	Quasi-peak Value			
	150kHz-30MHz		i-peak	9kHz	30kHz	Quasi-peak Value			
	30MHz-1GHz		i-peak	120KHz	300KHz				
	Above 1GHz		eak V	1MHz 1MHz	3MHz 3MHz	Peak Value			
I insta		A	V	TIVITZ	SIVITZ	Average Value			
Limit:	Frequency		Limit	(uV/m)	Value	Measurement Distance			
	0.009MHz-0.490	MHz	2400/	/F(KHz)	QP	300m			
	0.490MHz-1.705	MHz	24000)/F(KHz)	QP	300m			
	1.705MHz-30M	1Hz		30	QP	30m			
	30MHz-88MH	łz	1	100	QP				
	88MHz-216MI	Hz	1	150	QP	3m			
	216MHz-960M	lHz	2	200	QP	Jili			
	960MHz-1GH	Ηz	5	500	QP				
	Frequency Limit (dBm/MHz)		Remark						
	Above 1GHz	Z		-27.0		Peak Value			
Test setup:	For radiated emi	ssions	from 9	kHz to 30	MHz				
	**********	******	***********	*********	*****				
	E								
			< 3m >	, J					
	E			^					
		i	Te	est Antenna					
	EUT-								
	< 80cm > Turn Table Im								
	Ţ,	-		Receiver					
	For radiated emissions from 30MHz to1GHz								

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 23 of 31

For radiated emissions above 1GHz

Test Procedure:

- The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
- 7. The radiation measurements are performed in X, Y, Z axis positioning.

	And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to se	Refer to section 5.2 for details							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz								
Test results:	Pass								

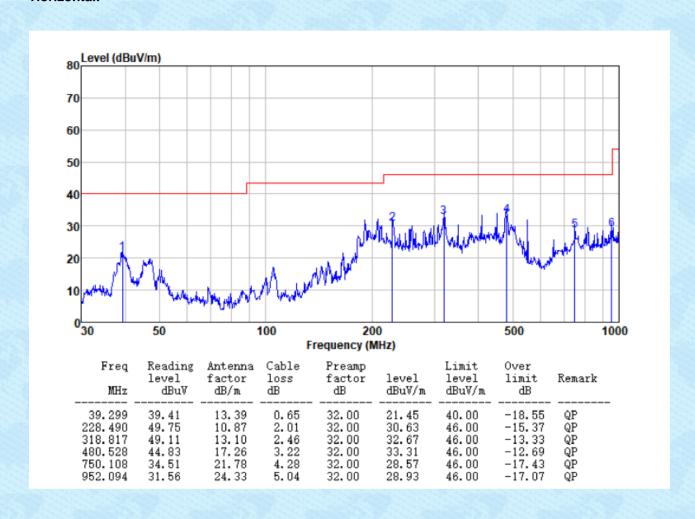
Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

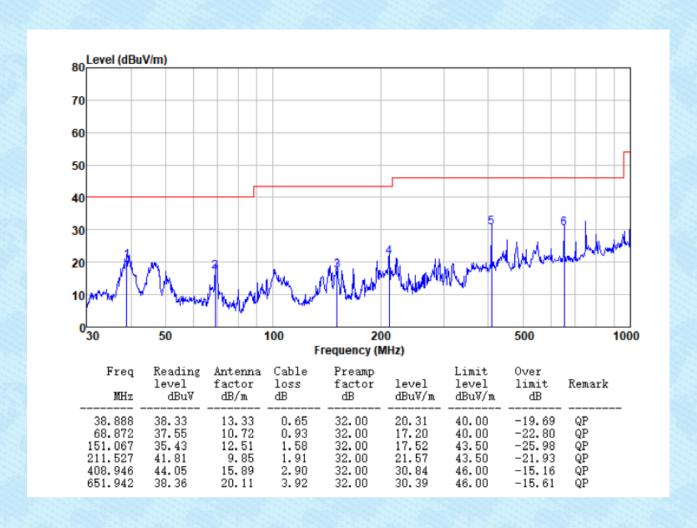
9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Below 1GHz


Pre-scan all test modes, found worst case at 802.11n(HT20), and so only show the test result of it **Horizontal:**

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Vertical:

Above 1GHz:

Above IGH								
802.11a					Test Frequency: 5745MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11490	28.77	39.40	8.73	36.30	40.60	68.20	-27.60	Horizontal
17235	29.27	41.00	11.37	36.28	45.36	68.20	-22.84	Horizontal
11490	30.13	39.40	8.73	36.30	41.96	68.20	-26.24	Vertical
17235	28.90	41.00	11.37	36.28	44.99	68.20	-23.21	Vertical
802.11a					Test Frequency: 5785MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11570	27.60	39.28	8.77	36.29	39.36	68.20	-28.84	Horizontal
17355	31.21	41.52	11.48	36.26	47.95	68.20	-20.25	Horizontal
11570	31.96	39.28	8.77	36.29	43.72	68.20	-24.48	Vertical
17355	26.28	41.52	11.48	36.26	43.02	68.20	-25.18	Vertical
		802.11a			Test Frequency: 5825MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11650	31.24	39.16	8.79	36.27	42.67	68.20	-25.53	Horizontal
17475	27.03	42.30	11.58	36.25	44.20	68.20	-24	Horizontal
11650	30.09	39.16	8.79	36.27	41.46	68.20	-26.74	Vertical
17475	26.64	42.30	11.58	36.25	44.04	68.20	-24.16	Vertical
	80	2.11n(HT20	0)		Test Frequency: 5745MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11490	32.97	39.40	8.73	36.30	44.32	68.20	-23.88	Horizontal
17235	30.03	41.00	11.37	36.28	45.82	68.20	-22.38	Horizontal
11490	27.60	39.40	8.73	36.30	39.21	68.20	-28.99	Vertical
17235	31.30	41.00	11.37	36.28	46.99	68.20	-21.21	Vertical
	80	2.11n(HT20	0)		Test Frequency: 5785MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11570	32.83	39.28	8.77	36.29	45.33	68.20	-22.87	Horizontal
17355	30.24	41.52	11.48	36.26	46.78	68.20	-21.42	Horizontal
11570	32.81	39.28	8.77	36.29	45.13	68.20	-23.07	Vertical
17355	26.29	41.52	11.48	36.26	42.74	68.20	-25.46	Vertical
802.11n(HT20)					Test Frequency: 5825MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11650	33.09	39.16	8.79	36.27	44.56	68.20	-23.64	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

GTS

Report No.: 0	STSL20221	2000076F02
---------------	-----------	------------

17475	30.69	42.30	11.58	36.25	47.94	68.20	-20.26	Horizontal
11650	30.57	39.16	8.79	36.27	41.99	68.20	-26.21	Vertical
17475	30.06	42.30	11.58	36.25	47.50	68.20	-20.7	Vertical
802.11n(HT40)					Test Frequency: 5755MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11510	28.91	39.40	8.74	36.30	39.93	68.20	-28.27	Horizontal
17265	28.26	41.26	11.40	36.27	44.13	68.20	-24.07	Horizontal
11510	31.40	39.40	8.74	36.30	42.87	68.20	-25.33	Vertical
17265	26.28	41.26	11.40	36.27	41.98	68.20	-26.22	Vertical
	80)2.11n(HT40))		Test Frequency: 5795MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11590	31.33	39.22	8.77	36.28	42.59	68.20	-25.61	Horizontal
17385	28.03	41.78	11.51	36.26	44.72	68.20	-23.48	Horizontal
11590	31.03	39.22	8.77	36.28	41.98	68.20	-26.22	Vertical
17385	29.63	41.78	11.51	36.26	46.16	68.20	-22.04	Vertical

Notes:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055					
Limit:	Manufactures of U-NII devices are responsible for ensuring freque stability such that an emission is maintained within the band of ope under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector				
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement data: The detailed test data see Appendix for WIFI 5.8G.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

----END-----